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 Each observable ballistic phenomenon of a spin-stabilized rifle bullet can be explained in terms of the acceleration of gravity and the total 

aerodynamic force acting on that bullet. In addition to the coning motion itself, Coning Theory explains the spinning bullet’s aerodynamic jump and its 

steadily increasing yaw of repose together with its resulting spin-drift. The total aerodynamic force on the bullet comprises its drag and lift rectangular 

components and produces an associated overturning moment acting upon the rigid bullet. The coning motion of the bullet includes two distinct but 

synchronized aspects: 1) the well-known gyroscopic precession of the spin-axis of the bullet, and 2) the previously little-known orbiting of the center of 

gravity of the bullet around its mean trajectory with the nose of the bullet angled inward toward that trajectory. New equations are developed 

governing the orbital motion of the CG as a circular, isotropic harmonic oscillation driven by the lift and drag forces as they revolve together at the 

gyroscopic precession rate. Standard Tri-Cyclic Theory governs the uniform circular precession of the spin-axis driven by the overturning moment 

acting on the spinning bullet as a free-flying gyroscope. The synchronization of these two motions is the defining principle of Coning Theory.  

 

Nomenclature  

A. Forces and Moments  

FD  = Drag force on the bullet (in pounds)  

FL  = Lift force acting on the bullet (in pounds)  
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F  = Total aerodynamic force acting on the bullet (in pounds)  

M  = Overturning moment acting on the bullet (in pounds-feet)  

α  = Angle-of-attack of bullet spin-axis with respect to apparent wind and also the half-cone-angle of bullet’s coning motion (always a non-negative value 

in radians)  

q  = ρV
2
/2 = Dynamic pressure (in pounds per square foot)  

 

ρ  = Atmospheric density (in slugs per cubic foot)  

 

V  = Bullet velocity vector in earth-fixed coordinates tangent to the mean trajectory (in feet per second).  [V is directed essentially horizontally in “flat 

firing,” and its magnitude is essentially the supersonic airspeed of the bullet.]  

S  = πd
2
/4 = Reference (cross-sectional) area of the bullet (in square feet)  

 

d  = Barrel groove diameter = Caliber of the fired bullet (in feet)  

 

CD = Coefficient of aerodynamic drag as a dimensionless function of Mach number and as an even function in Sin(α)  

 

CLα = Coefficient of lift as a dimensionless function of Mach number used in determining the lift force on the bullet as an odd function in Sin(α).  

  

CMα = Coefficient for determining the overturning moment acting on the bullet as a dimensionless function of Mach number as an odd function in Sin(α)  

 

B. Coning Motion Symbols  

 

r  = Orbital radius (in feet) of the CG of the coning bullet about a center moving along the mean trajectory with the bullet  

   
FR  = Centripetal Hookean restoring force (in pounds) needed to maintain a circular harmonic orbit  

 

FC  = Coning force component of the total aerodynamic force F perpendicular to the coning distance vector D (in pounds)  

 

kR, kC = Slowly varying “force constant” values of restoring force per unit of radial displacement away from a neutral point at the mean center of the coning 

motion (in pounds per foot)  

 

m  = Mass of the bullet in slugs (0.000746 slugs for our example 168 grain bullet)  
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v  = Circular orbital velocity of the CG of the coning bullet about its mean center (in feet per second)  

 

T2  = 2π/ω2 = Period (in seconds) of a coning cycle at the slow-mode gyroscopic precession rate ω2  

 

ω2  = 2π*f2 = 2π/T2 = Circular frequency of gyroscopic precession, slow-mode (in radians per second)  

 

ω1  = 2π*f1 = Circular inertial frequency of gyroscopic nutation, fast-mode (in radians per second)  

 

f2  = Frequency of slow-mode gyroscopic precession (65 hertz initially in this example)  

 

f1  = Inertial frequency of gyroscopic nutation, fast-mode (311 hertz initially in this example)  

 

D  = Distance vector from cone apex to CG of the coning bullet (in feet)  

 

RCG, RApex = Position vectors for CG of bullet and apex of cone, respectively, both in either earth-fixed or moving coordinates, as needed (in feet)  

 

ΓC  = Rotating aerodynamic torque vector acting about the apex of the cone and driving the “torsional” coning motion (in pounds-feet)  

 

β  = Angle whose trigonometric tangent is the instantaneous “lift-to-drag ratio,” FL/FD (in radians)  

Δ  = Delta, the “small finite change in symbol following” operator. [ΔX is a vector if the symbol X represents a vector quantity.]  

 

IC  = m*D
2
 = Coning moment of inertia of coning bullet (as a point mass) about the cone apex (in slug-feet squared)  

 

g  = 32.174 feet per second squared = Nominal acceleration of gravity   

 

Ix  = Moment of inertia of the bullet about its spin-axis (in slug-feet squared) [Ix = 0.000247 pound-inch
2
 = 5.334x10

-8
 sl-ft

2
 for this bullet.]  

 

Iy  =  Moment of inertia of the bullet about a cross-axis (in slug-feet squared) [Iy = 0.001838 pound-inch
2
 = 3.969x10

-7
 sl-ft

2
 for this bullet.]  

 

L  = Ix*ω = Angular momentum of spinning bullet about its spin-axis (in slug-feet squared per second)  

 

p   = Spin-rate of the bullet about its axis of symmetry (in hertz) = 2800 revolutions/second (initially)   

 

ω  = 2π*p = Spin-rate of the bullet about its longitudinal principle axis of symmetry (in radians per second) [Note: ω, ω1, and ω2 are the three cyclic 

rates of the Tri-Cyclic Theory.]  

 

α(t) = Complex coning angle (in radians) as a function of time t  

 

φ(t) = Pitch attitude of bullet spin-axis (in radians measured upward from +V direction), the real part of α(t)  
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θ(t) = Yaw attitude of bullet spin-axis (in radians measured rightward from +V direction), the imaginary part of α(t)  

 

i  = Imaginary (+yaw) axis direction in the complex plane [i
2
 = -1]  

 

K0  = [φ0
2
 + (θ0 + γ)

2
]

1/2
 = Initial magnitude of complex cone angle α0 (in radians)  

 

ξ0  = ATAN2{-φ0, -(θ0 + γ)} +π = Initial “roll orientation” or phase angle of angle-of-attack α0, measured positive clockwise from the real +φ axis (in 

radians from zero to 2π) [α0 = K0*Cosξ0 + i*(K0*Sinξ0 + γ)]  

 

C. Apparent Wind and Transient Aerodynamic Effects  

 

W   = Instantaneous true wind vector in earth-fixed coordinates [W<<V] (in feet per second)  

 

WA  = Apparent wind in moving coordinate system (in feet per second)  

 

γ   = Angular offset of apparent wind direction WA from –V direction due to crosswind W (a non-negative angular magnitude in radians) [The offset γ 

is in the –φ direction for the left-to-right crosswind in this example.]  

δ   = Angular magnitude of fast-mode nutating motion caused by sudden appearance of crosswind W (a non-negative angular value in radians)  

 

TN   = Period of nutation with respect to the moving slow-mode arm = 2π/[(R – 1)*ω2] = 4.06 milliseconds, initially in this example  

 

ξ1, ξ2  = “Roll orientation” arguments as functions of time (t) of fast-mode and slow-mode arms, respectively, of epicyclic motion of bullet spin-axis about 

apparent wind direction, each measured clockwise (in radians) from the +φ (pitch axis) direction  

fN  = 1/TN = 246 hertz (initially) = Reduced nutation rate with respect to the moving slow-mode arm (in hertz) [f2<fN<f1]  

 

R  = Ratio of epicyclic (inertial gyroscopic) rates (dimensionless) [R = ω1/ω2 = f1/f2 = φ'1/φ'2 = 4.79>>1, initially, in this example.]  

 

Sg  = (1 + R)
2
/(4*R) = Gyroscopic stability of the bullet (dimensionless)  

 

J   = Cross-track impulse due to transient aerodynamic force (in pound-seconds)  

 

AJ  = Aerodynamic jump angle (in radians)  
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ΔVC  = Cross-track velocity “kick” (in feet per second)  

 

Φ  =  Flight path angle measured positive upward from local horizontal plane (in radians)  

 

βR  = Yaw-of-repose angle of the bullet’s coning-axis (in radians)  

n  = Twist rate of rifle barrel in calibers per turn 

 

I. Introduction  

 This paper puts forward a comprehensive new Coning Theory explaining in detail the motions of spin-stabilized rifle bullets in flight. If not all completely 

new to the science of ballistics, at least these ideas are probably original in the aggregate. An early popular version of this theory was published in Precision 

Shooting Magazine [1]. Most basic is the concept that the center of gravity (CG) of the coning bullet always spirals around the mean trajectory at a larger radius 

than does the nose of the bullet. We will show that the spinning bullet “cones around” at its slow-mode, gyroscopic precession rate with its nose angled inward 

toward its mean trajectory as diagrammed in Fig. 1 for a bullet fired from a right-hand twist barrel. The CG of the bullet revolves around the mean trajectory in 

the same rotational sense as the rifling twist, and so does the projected direction of the bullet’s spin-axis seen in the ballistician’s usual “wind axes” orthogonal 

pitch-versus-yaw coordinates plot as shown at the right side of the diagram in Fig. 1.  

Currently accepted aeroballistic theory seems to hold, instead, that the bullet should cone around with its nose pointing outward, and that the CG of the bullet 

should move directly along the trajectory. For example, Harold R. Vaughn [2] has defined “coning motion” as:  

 “The motion a bullet makes with its nose traveling in a circle while the CG remains fixed on the flight path.”  

This fallacy is cited only to illustrate the need for this new theory. While other working ballisticians might have disagreed with the good Mr. Vaughn, the 

situation has never been clarified. This paper is an attempt to do just that.  
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Fig. 1. Extreme Positions and Attitudes of Coning Bullet  

  

 The coning motion of a spin-stabilized rifle bullet in free flight is the result of a gyroscopic precession of the bullet’s spin-axis driven by an aerodynamically 

produced overturning moment. As such, the pointing direction of the coning bullet’s spin-axis follows a circular path in the “wind axes” coordinate system 

shown on the right-hand side in Fig. 1. If a gyroscopic nutation is superimposed on this precession the path of the bullet’s spin-axis in the wind plot becomes the 

familiar epicyclic curve. Current Tri-Cyclic ballistics theory explains these gyroscopic phenomena perfectly well. According to this new Coning Theory, the 

motion of the CG of the free-flying bullet is a circular two-dimensional isotropic harmonic oscillation at the precession rate as shown on the left-hand side of 

Fig. 1. This orbiting motion of the CG at the bullet’s gyroscopic precession rate is driven by the powerful primary aerodynamic forces of lift and drag as 

diagrammed in Fig. 2. The dual aspects of this coning motion are always perfectly synchronized with each other. We will develop this theory in detail.  
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Fig. 2. Powering the Coning Motion of the Bullet’s CG  

 

 

We theorize here that both the lift and drag forces, FL and FD, contribute to the coning force FC driving the bullet’s coning motion—as opposed to only the 

lift force FL participating in this motion per the currently accepted analytical formulation of Robert L. McCoy [3] and others at the US Army’s former Ballistics 

Research Laboratory (BRL) at Aberdeen, Maryland. This minor correction is necessary for self-consistency of the Coning Theory and produces better agreement 

with the empirical data. We frequently rely upon the primitive tools of vector differential geometry in this study of the physics behind the bullet’s coning motions 

in addition to the elegant calculus favored at BRL. These rather crude tools are sufficient to the task of illuminating the details of the motions more clearly.  

 Another important new concept is that the axis of the bullet’s coning motion, and not the spin-axis of the bullet itself, as seems commonly to be believed, 

always points directly into the “apparent wind” approaching the bullet. In fact, the direction of the apparent wind encountered by the bullet in flight continually 

defines the axis of the coning motion. The massless coning axis can incrementally change its direction even more readily than can the ficklest of real winds. The 

moving spin-axis of the bullet quickly accommodates each small change in the cone-axis direction into the coning motion—certainly within less than one fast-

mode nutation cycle. We should point out one important exception to this “wind tracking” ability of a coning bullet, even though its occurrence is well outside 

the scope of this study: a spinning artillery projectile, nearing the apogee of a high-angle trajectory, might be unable to “arc over” quickly enough to continue its 
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coning motion during the descending leg of its flight. We say such a projectile has “failed to trail” as it falls to earth sideways, or even backwards, badly missing 

its intended target [4].  

 Whenever the coning axis has to move in order to remain aligned with a new apparent wind direction, the only mechanism available for adjusting the coning 

motion is for the cone apex angle, together with its corresponding radius of the coning motion, to increase in magnitude in order to accomplish this re-alignment. 

In this way, the coning bullet is able to align its cone axis, orienting it into a new apparent wind, even though the nose of the spinning bullet itself is being pushed 

away from that wind direction by the approaching wind. Only later in the flight, after the precession-rate coning motion due to the wind change has damped out 

as it does for dynamically stable bullets, will the spin-axis of the bullet be seen to have oriented itself into alignment with the apparent wind. The coning bullet 

cannot just magically “turns its nose into the wind.”  

 A one-time-per-disturbance, transient coning motion, commencing when the bullet first encounters a new purely horizontal crosswind, explains the small and 

recently documented vertical-direction “crosswind aerodynamic jump” in the flight path angle that we can observe reliably in precision shooting. This same 

trajectory-deflecting effect has been analytically formulated in calculus-based aeroballistics terms by Robert L. McCoy at BRL. Independent numerical 

calculations of this angular deflection of the trajectory are presented here based on using differential geometry and Coning Theory. These numerical results agree 

well with McCoy’s values for our example bullet after the BRL formulation is adjusted to incorporate the small contribution of the bullet’s drag force toward 

driving its coning motion. No “Magnus effect” of any type is involved in either formulation. A similar transient coning effect produces a similar type of angular 

deflection whenever the bullet enters the windstream with a non-zero aeroballistic yaw (or yaw rate).  

 A transient incremental deviation from the nominal coning motion that recurs twice per coning cycle as the bullet’s trajectory arcs downward due to gravity 

explains the slow increase of the “yaw-of-repose” and, thence, the long-known resulting “spin-drift” of the bullet in the same rightward horizontal direction as 

the sense of the rifling twist. The horizontal spin-drift of the bullet at long ranges is the accumulated effect of the aerodynamic lift force acting rightward on the 

bullet due to an angle-of-attack of the small, but steadily increasing, yaw-of-repose. The continually downward changing of the flight path angle due to gravity 

causes repeated rightward transient gyroscopic reactions centered about the extreme top and bottom dead center positions of the coning motion, which is how the 
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double-rate yaw impulses come about. Calculations of the rate of change in the yaw-of-repose based on the differential geometry of Coning Theory have been 

fully reconciled with the analytical calculations of McCoy and others at BRL. The very small initial yaw-of-repose angle grows by about an order of magnitude 

over the maximum effective range for our example rifle bullet. Here, we have reformulated neither the yaw-of-repose, nor its resulting horizontal spin-drift.  

 The agreement of these detailed bullet motions with the existing equations of motion for bullet flight is illustrated by the use of data outputs from existing six-

degree-of-freedom (6-DOF) flight simulations (which numerically integrate these same equations of motion) to demonstrate how this new Coning Theory 

explains the motions of rifle bullets in flight. With proper initialization, these 6-DOF simulator outputs can agree very well with Doppler radar and instrumented 

range measurements of the flights of real bullets. This new Coning Theory generally coincides with and extends the bulk of the modern conventional analytic 

ballistic theory [5] for spin-stabilized projectiles. This new Coning Theory should be in complete agreement with the precepts of classical mechanics [6], but the 

author must assume sole responsibility for any errors in its development.  

 This new Coning Theory of Bullet Motions does not rely upon any of the minor aeroballistic forces or moments (spin-damping, pitch-damping, Magnus force 

or moment, etc.) in analytical explanation of the basic observed motions of spin-stabilized rifle bullets. Consequently, no discussions of these non-relevant forces 

and moments are included. In this explanation of bullet motions, we need consider only the primary aerodynamic forces of drag and lift and the primary 

aerodynamic overturning (or “pitching”) moment acting on the bullet, all of which combine at any given time during the bullet’s flight into a single, 

instantaneous total aerodynamic force, acting at one particular point on the surface of the bullet and with its line-of-action passing through the instantaneous 

center of pressure (CP) on the axis of symmetry of the spinning bullet. Coning motion always occurs even if a perfectly made bullet could be perfectly launched 

into a completely wind-free atmosphere. The aerodynamic interaction of (1) a spin-stabilized bullet with (2) a sensible atmosphere in the presence of (3) a 

gravitational field having a cross-track component is sufficient to initiate a small precession-rate coning motion around a very small initial yaw of repose defining 

its center of rotation in a “wind axes” plot.  
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II. Assumptions and Limitations of Study 

The modern Spitzer-style rifle bullet is a sharply-pointed, rigid, rotationally symmetric, statically unstable projectile of about 2.5 to 5.5 calibers in length. 

Spin-stabilization is applied to the bullet at launch to prevent its tumbling in flight. Throughout this study, the rotational sense of the bullet’s spin is “right 

handed,” i.e., the direction of rotation of a right-hand threaded screw advancing toward the target, or clockwise as seen from behind the bullet. For purposes of 

this discussion these rifle bullets are assumed to have been perfectly manufactured in balance, shape, and symmetry. The inertial spin-axis of the fired bullet is 

assumed to correspond exactly with the mechanical axis of symmetry of its outside profile. These rifle bullets are also assumed to have been perfectly launched 

so as to have an initial aeroballistic yaw of zero (and zero initial yaw-rate). Only our best target rifles can routinely approximate this level of perfection in bullet 

launching, and then only when using precision hand-loaded ammunition. [For our rotationally symmetric projectiles, the aeroballistic yaw can be thought of as 

the root-sum-square (RSS) of the small, non-Eulerian, orthogonal “aircraft type” pitch (up or down) and yaw (side-slip) attitude angles. This generalized 

aeroballistic yaw is also the “angle-of-attack” for rotationally symmetric projectiles as used herein.] The very real flight-disturbing effects of bullet imbalance, in-

bore yaw, muzzle blast, or the motions of the muzzle of the recoiling rifle (for examples) are not discussed here.  

Our subject rifle bullets are further assumed to be gyroscopically stable, but not over-stabilized, and also (usually) to be dynamically stable throughout their 

almost horizontal, supersonic flights in the flat-firing case being studied here. By saying that a rifle bullet is “statically unstable,” we mean that the aerodynamic 

center of pressure (CP) for the modern rifle bullet flying normally at small angles-of-attack is ahead of its center of gravity (CG). Both centers are located on the 

axis of symmetry of the ideal rotationally symmetric bullet being considered here. Our selected example bullet, the well-studied 30-caliber 168-grain Sierra 

MatchKing (formerly International), is launched with a gyroscopic stability of 1.75 and is just slightly unstable dynamically. That is, the angular amplitude of the 

coning motion slowly increases with flight time rather than damping down as with most rifle bullets. This unusual flight behavior makes our selected example 

bullet particularly suitable for use in the study of coning motion.  

The long axis of the rifle bullet is also a principal axis of inertia, producing an extremum (either a minimum or a maximum) in the second moment of the 

mass distribution of the bullet. In the case of a rifle bullet, its spin-axis is the axis having a minimum moment of inertia (i.e., the axial direction producing the 
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smallest possible second moment of the mass distribution of the bullet). For our example match-type bullet, the moment of inertia about any transverse principal 

axis is 7.44 times larger than that about its spin-axis. For a conventional gyroscope, the spin-axis has a maximum moment of inertia of just twice that of any 

transverse axis.  

Of course, it is more convenient to simulate and to study these perfectly launched, ideal rifle bullets rather than dealing mathematically with the definition 

and physical effects of the many flaws that might occur with real bullets fired from actual rifles. However, we also make these simplifying assumptions here 

because: 1) they make our studies easier to perform and to understand; and, 2) the study of this idealized case is actually the stronger form of analysis in this 

instance. That is to say, this new Coning Theory does not rely upon the presence of small imperfections in the flight of the bullet as do, for examples, the “Tri-

Cyclic Theory for Missiles Having Slight Configurational Asymmetries” of J. D. Nicolaides of BRL [7] and the x- and y-spirals theorized much earlier by Dr. 

Franklin W. Mann [8].  

 

III. Method of Studying the Coning Motion  

To determine the character of the coning motion, one can examine streams of digital flight simulation data values calculated on small time intervals in a 6-

DOF simulation of the flight of a perfectly launched, ideal example of our selected 30-caliber target-rifle bullet, the 168 grain Sierra MatchKing. We have the 

necessary aeroballistic coefficient data to perform these calculations for this bullet, at least in the guise of its substantially identical ancestor, the 168 grain Sierra 

International bullet [9]. These aeroballistic coefficients are tabulated as functions of the Mach number of the bullet, the ratio of the speed of the bullet through 

the air to the velocity of propagation of acoustic pressure waves through that atmosphere at the ambient temperature. We use a rather dense, dry sea-level ICAO 

standard atmosphere at 15 degrees Celsius (59 degrees Fahrenheit) throughout these studies in order to assure that reasonably large aerodynamic effects will be 

available for study. Our simulated rifle bullet is fired horizontally through a uniform 10 mile per hour crosswind approaching from 9:00 o’clock. The barrel of 

our assumed target rifle is chambered in 308 Winchester and is rifled at a right-hand twist rate of 12 inches per turn. The muzzle velocity used is 2800 feet per 

second.  
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Computed bullet drift and bullet drop data streams reported on 0.2 millisecond time centers were analyzed to determine the horizontal and vertical 

components, respectively, of the precession-rate coning motion of the bullet’s CG as seen in an earth-fixed coordinate system. In addition to the coning and 

nutation motion of the CG, the horizontal drift (in inches) includes any crosswind-drift, horizontal Coriolis effect, horizontal aerodynamic jump components, and 

spin-drift. And the vertical drop (also in inches) below the projected axis of the bore, while mostly due to the acceleration of gravity, also includes the effects of 

any vertical crosswinds, the vertical component of the total aerodynamic force acting on the bullet, the vertical Coriolis effect, as well as any vertical direction 

aerodynamic jump (angular deflection) experienced by the bullet. Gyroscopic precession (coning) and nutation are the only possible periodic modulations of 

these data streams. Each of the others is a secular (non-periodic) effect. All of these analytic effects are boiled together in these two streams of non-analytically 

produced uniform-time-series data values as output from the simulator.  

 

A time-symmetric, unit power, low-frequency-passing, digital filtering technique was employed in the temporal domain to remove all modulations from the 

two data streams, except for the extraneous low-rate secular variations noted above, without time-shifting or distorting the amplitudes of the remaining data. The 

low-pass filter was designed to have a sharp cut-off at a frequency matching the gyroscopic precession rate of the spinning bullet in one particular selected early 

portion of its flight so that all precession and nutation-rate modulation would be removed. The low-pass-filtered data arrays were then subtracted, point by point, 

from the original arrays of data samples calculated by the 6-DOF simulator. The data remaining after this procedure contained only the unmodified precession-

rate (and higher-frequency) modulations of the path of the CG.  

 

The period T2 (initially 15.4 milliseconds, here) of the coning motion of the spinning bullet (i.e., the reciprocal of f2, its slow-mode precession rate in hertz) 

was used in the design of a time-symmetric (non-causal), unit-power digital filter to extract the f2-rate (65 hertz) modulation from each of the two uniform-time-

series data streams. An equally weighted running mean was selected for the type of digital filter to be used. It spanned a time interval of:  
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 2*n*Δt ≈ T2 ≥ 15.4 milliseconds (1)  

where n is a small positive integer (n ≥ 38) and Δt is the fixed data sample interval (0.2 msec). At each position of the moving filter, the low-pass-filtered 

average value was subtracted from the original data sample aligned with the center of the (2*n+1)-point running mean. The first and last n data points were not 

available as filtered values due to end-effects of the filter operator itself. The remaining data stream contained any modulating frequencies of f2 hertz and higher. 

The details of this procedure are included here to assist others in repeating this experiment using their own data sets.  

 

For convenience of analysis, the pointing directions of the right-hand spinning bullet’s spin-axis, as tabulated in orthogonal pitch and yaw angles for each 

sample time in the data streams, are converted into polar coordinates centered on the apparent wind direction. Examination of these four resulting tabulated data 

streams yields the following observations:  

The residual precession-rate modulation of these two drift and drop data streams shows that the periodic motion of the bullet’s CG matches 

the expected amplitude (r) of the coning motion, but that the CG of the bullet rotates 180 degrees out of phase with the motion of the 

bullet’s spin-axis as seen in “wind axes” plots.  

This relative phasing of the synchronous coning motions of the CG and of the spin-axis can only be consistent with an inwardly angled orientation of the bullet’s 

nose that, in turn, could occur only if the CG of the bullet were located behind a “crossing point” (i.e., a cone apex) moving along the mean trajectory ahead of 

the bullet, as shown earlier in Fig. 1. In this simulated flight, the coning motion is initiated by having the perfectly launched, non-coning, simulated bullet 

encounter a constant left-to-right 10 mile-per-hour horizontal crosswind immediately after launch. A nutation-rate wobbling motion due to suddenly hitting the 

crosswind is superimposed upon the precession-rate (65 hertz) coning motion. This high-rate (311 hertz) nutating motion damps to imperceptibility after 5 or 6 

additional coning cycles for our example bullet and does not produce any noticeable additional CG motion. We designed a similar digital filter to isolate any 

modulation at the nutation rate, but none could be detected.  
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Wind-axes plots of all precession-rate coning motions from 6-DOF simulator runs show circular, or at most slowly inward or outward spiraling, centered 

coning motions completely lacking any hint of ellipticity. The centers of the circular or spiraling pitch- and yaw-coordinate values in the observed wind-axes 

plots consistently indicate that the coning bullet’s spin-axis always revolves about the instantaneous apparent wind direction, which further indicates that the 

axis of the bullet’s coning motion always points directly into the apparent wind.  

 

IV. Aerodynamic Forces Acting on the Bullet  

 For certain bullets [10], we have tables of aeroballistic coefficients as functions of the Mach number of the bullet’s airspeed in flight that allow us to calculate 

the total aerodynamic force F experienced by the bullet at any point in its flight in terms of its rectangular components, the drag force FD and lift force FL, as 

functions of the airspeed V of the bullet, the density ρ of the atmosphere, and the bullet’s angle-of-attack α:  

 FD = q*S*CD (2)  

 FL = q*S*Sin(α)*CLα (3)  

then as a rectangular vector-summing relationship:  

 F = FD + FL (4)  

Variations in the density ρ of the local atmosphere are handled by incorporating that variable directly into the formulation for the dynamic pressure q. Variation 

in the elasticity of the local atmosphere with ambient temperature, and hence variation in the “speed of sound,” is handled by tabulating the aeroballistic 

coefficients as functions of the bullet’s Mach number instead of its airspeed V. Our example Spitzer-style rifle bullet is typical in that its transonic instability 

limits our study to airspeeds above about Mach 1.2 where steady flight can be maintained. In the bullet speed range of interest here (above Mach 1.2), the 

supersonic drag is not really quite proportional to the square of velocity, as incorporated into the formulation of the (subsonic type) dynamic pressure q. Instead, 
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the bullet’s supersonic drag is proportional to the 3/2-power of its airspeed, and this difference explains much of the variance in the tabulated drag coefficients as 

functions of Mach number.  

 

 The drag force FD acts in a downwind direction along the direction of relative motion of the undisturbed local air-mass as seen from the moving bullet; i.e., in 

the direction of movement of the apparent wind WA approaching the bullet. The direction of the drag force FD is independent of the orientation of the bullet in 

flight. The magnitude of the bullet’s drag coefficient CD is found from the sum of a tabulated primary “zero yaw” drag CD0 function of Mach number and an 

additive adjustment table of coefficients CDδ2 to be multiplied by δ
2
 (the square of the sine of α, the angle-of-attack of the bullet) before summing. The lift force 

FL is defined to act perpendicularly to the drag force FD and is directed, in this case, toward the axis of the coning motion of the bullet. The coefficient of lift 

CLα is tabulated as a function of Mach number, but is itself independent of the angle-of-attack α for our particular example rifle bullet. The “roll orientation” of 

the lift force vector FL for some non-zero angle-of-attack α is completely determined by the instantaneous orientation of the plane that contains the spin-axis of 

the bullet and the “eye” of the apparent wind. The “eye of the wind” is an old nautical expression for the exact direction from which the apparent wind is blowing 

at any instant.  

 

From the study of the statics of rigid bodies, we can state the following three theorems about the complete system of aerodynamic forces acting on the free-

flying bullet at any instant:  

 A. Disregarding any possible aerodynamic effect of the spinning of the bullet and treating the bullet as a solid rigid body, we can sum 

the entire system of aerodynamic pressures and friction forces acting over the whole surface of the bullet into a single, total aerodynamic 

force F acting at the one point on the surface of the bullet that uniquely produces the exact instantaneous overturning moment M that is also 

being experienced by the bullet. [There are apparently no aerodynamic spin effects that apply for a bullet flying with a small angle-of-attack 

α.]  
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 B. Because 1) the shape of the bullet is effectively a closed-ended, axisymmetric “solid of revolution,” 2) the aerodynamic force F is a 

line-vector that produces a torque, and 3) the bullet is a rigid body; we can translate this total aerodynamic force vector F from the surface 

of the bullet, near its nose, along the line-of-action of the line-vector F, that must intersect the bullet’s spin-axis by symmetry, to a center-

of-pressure CP lying on that spin-axis. [The force F still produces the same moment M when it is applied at the axial CP of the bullet.]  

 C. We can once again translate the force vector F rearward from the CP along the spin-axis to the center-of-gravity CG of the bullet if 

we also separately consider the overturning moment M as being produced by the resulting force couple (F, -F) acting on the whole bullet as 

a rigid body, but considered as a torque vector acting about the CG of the bullet. [The original force F of the couple always remains acting 

through the CP of the bullet, while the added force –F, completing the couple, acts at the CG of the bullet exactly compensating the newly-

added translated force F now also acting at the CG.]  

 

By this procedure, we “de-couple” the translational and overturning aerodynamic effects so that these can be analyzed separately. The location of the CP 

might well migrate along the spin-axis of our example bullet as the flight progresses and the cone angle gradually increases with ongoing time-of-flight. In 

addition, we should remember that changes over time in the total aerodynamic force F, together with its lift FL and drag FD component forces (which drive the 

orbital coning motion of the CG) and its associated overturning moment M (which drives the Tri-Cyclic precession and nutation motions of the spin axis), always 

remain perfectly synchronized. Of course, this is because they are always just different manifestations of the common source vector F. [We will consider the 

overturning moment M in later sections.]  

 

V. Forces Driving the Coning Motion  

If the CG of the bullet is to orbit about the mean trajectory at its gyroscopic precession-rate ω2 as an isotropic harmonic oscillation, it must move as if the 

bullet were subject to some hypothetical, radially symmetric, centripetal, linearly proportional restoring force FR of the form given in Hooke’s Law as:  
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 FR = -kR*r  (5)  

Furthermore, from Newton’s Second Law of Motion, for a body moving in a circular orbit at this precession rate ω2 in such a force field, this unspecified 

centripetal restoring force FR, whatever its source, must also equal:  

 FR = (Bullet Mass)*(Centripetal Acceleration for a Circular Orbit)  

 FR = m*(-v
2
/r) = -m*(ω2*r)

2
/r = -m*ω2

2
*r = -kR*r  (6)  

 

 More precisely, the isotropic coning motion of the rifle bullet is a type of “torsional” harmonic oscillation in cone angle α about a cone apex that remains at a 

relatively fixed distance D ahead of the CG of the bullet in flight. One could envision the CG of the bullet being affixed as a “point mass” at the tip of a 

“massless” fly-rod of length D. Earlier analysis [3] had the CG of the bullet moving in response to a simple radial restoring force, the aerodynamic lift force FL 

alone, perpendicular to the apparent wind, with the drag force FD contributing nothing toward driving the coning motion.  

 

 We can define a vector D, giving the position of the CG of the bullet relative to the apex of the cone in any suitable coordinate system by the vector 

relationship:  

 D = RCG - RApex  (7)  

Then, as diagrammed in Fig. 2 above, we can formulate an aerodynamic torque vector ΓC, driving the torsional coning oscillation about the apex of the cone, as 

the vector cross-product:  

 ΓC = D x F = D x FD + D x FL 

or, in magnitudes 
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 ΓC = D*F*Sin(α+β) = D*FC (8)  

where the magnitude of the coning force FC is the size of the aerodynamic force component perpendicular to D and thus directly available to drive the coning 

motion. The angle between the vectors D and F is α+β, where β represents the small angle whose tangent is the lift-to-drag ratio FL/FD of the bullet flying 

through the specified atmosphere at airspeed V and with angle-of-attack α:  

 β = Tan
-1

[FL/FD] = Tan
-1

[(CLα/CD)*Sin(α)]  (9)  

Thus, the angle β will normally exceed the cone angle α by a significant amount.  

 

If the aerodynamic driving force FC is perpendicular to the direction of D, then from trigonometry its component forces project in this perpendicular direction 

as:  

 FC = F*Sin(α+β) = [F*Sin(β)]*Cos(α) + [F*Cos(β)]*Sin(α) = FL*Cos(α) + FD*Sin(α)  (10)  

For these small coning angles (α < 0.10 radians = 5.7 degrees), we can approximate:  

 Cos(α) ≈ 1.00  

Then, after this simplification, and substitution of the aeroballistic expressions from Eq. 2 and Eq. 3 for the components of the force F into the expression for FC 

in Eq. 10 above, we see an interesting and fundamental relationship defining the magnitude {FC} of the coning force FC available to drive the coning motion:  

 {FC} = q*S*Sin(α)*[CLα+CD] (11)  

So, the drag force FD does contribute somewhat (about 10 to 20 percent for small coning angles in most cases) toward driving the coning motion of the rifle 

bullet along with the more direct contribution from the smaller lift force FL.  
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Since Sin(α), the trigonometric sine of the half-cone-angle α, can also be expressed geometrically as the ratio r/D, and adopting our negative sign convention 

for a centripetal force, we can put this expression into the form of a Hookean “restoring force” by those changes:  

 FC = -q*S*Sin(α)*[CLα+CD] = -[q*S*(CLα+CD)/D]*r = -kC*r  (12)  

Furthermore, if the aerodynamic coning force FC on the bullet is actually to provide the hypothetical centripetal force FR necessary to maintain this circular 

harmonic orbit, then at any given time these two force constants kR (from Eq. 6) and kC above, must be equal to each other (at least for α < 5.7 degrees), so that, 

solving for the cone apex distance D, we have another important flat-firing relationship:  

 D = q*S*(CLα+CD)/(m*ω2
2
)  (13)  

and, the coning radius r can then be computed as:  

 r = D*Sin(α) = q*S*Sin(α)*(CLα+CD)/(m*ω2
2
) (14)  

 

 Thus, we have expressions for the cone apex distance D and the coning radius r as functions of several slowly varying aeroballistic parameters. The cone 

apex distance D and radius r are fundamental parameters describing the bullet’s coning motion. The coning bullet adjusts its apex position, and hence its apex 

distance D, as its aeroballistic parameters change slowly during the flight. The cone apex distance D starts out at about 1.25 inches (or four calibers) at launch for 

our example 30-caliber rifle bullet and gradually increases to about 3 inches (or ten calibers) at 900 yards downrange. The coning radius r is 0.10*D for α = 0.10 

radians (5.7 degrees), so r is seldom much larger than about 0.3 inches (or one caliber). The distance D, from the apex of the cone to the CG of the bullet, serves 

effectively as a lever arm, converting the forces driving the coning motion into a net torque ΓC about the cone apex driving the “torsional” harmonic oscillation 

of the bullet. The cone angle α itself, and its corresponding coning radius r, are unconstrained in the precession-rate oscillation and are thus available to vary in 

accommodating any changes in flight conditions that may be encountered by the bullet.  
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As the bullet slightly increases its coning angle α upon encountering a change in the apparent wind direction, it can only selectively increase its orbital radius 

r in in accordance with Eq. 14, above, to accomplish the necessary cone-axis re-orientation. Unusually in physics, the period of oscillation (T2 = 1/f2 = 2π/ω2) for 

a harmonic oscillator is completely independent of variations in the amplitude of its oscillation (i.e., variations in α and in r in this case). This amplitude 

independence would seem rarer still, except that upon analysis many different types of mechanical vibrations turn out to be either true or slightly non-linear 

versions of harmonic oscillation. The coning rate ω2 and cone apex distance D are fixed independently by bullet spin-rate and other aeroballistic conditions (but 

not including the cone angle α). Thus, only the independently determined amplitude of the oscillation in α (or, equivalently, in r) is available for variation in 

response to changes in crosswinds.  

VI. Mathematics of the Coning Motion  

 The oscillation in cone angle α about the cone apex can properly be described mathematically in terms of a complex cone angle α(t), having real pitch φ(t) 

and imaginary yaw θ(t) orthogonal attitude angle components as functions of ongoing time t:  

 α(t) = φ(t) + i*[θ(t) - γ] (15)  

Here, γ is a non-negative, leftward, angular yaw offset of the incoming direction of the apparent wind WA from the origin while the bullet is experiencing a left-

to-right crosswind. No similar pitch offset is shown because of the definition of the origin direction of the standard “wind axes” plots (being always in the +V 

direction) and because we are not studying the effects of vertical crosswinds here. To the extent that the “pitching over” of the bullet follows the change in flight 

path angle Φ (the tangent to the trajectory) during the flight, this change in pitch attitude is “invisible” in wind-axes plots.  

 

Making use of a torsional version of Newton’s Second Law of Motion and Eq. 8 above, we can write:  

 ΓC = IC*d
2
α/dt

2
 = D*FC (16)  
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Substituting our previous expressions for the magnitudes of IC (formulated as equal to m*D
2
, considering the bullet as a point mass), D (from Eq. 13), and FC 

(from Eq. 12), and invoking the same small-angle approximation that we use in reducing a similar expression to the form of Hooke’s law when treating the 

small-amplitude motion of a pendulum as simple harmonic motion, we find that:  

 d
2
α/dt

2
 = -(ω2)

2
 * α(t)  (17)  

A typical solution in real and imaginary parts for this second-order differential equation in complex α(t) can be expressed as an orthogonal pair of the well-

known relationships for harmonic oscillation at the precession rate ω2:  

 φ(t) = K0*Cos(ω2*t + ξ0)  

 θ(t) = K0*Sin(ω2*t + ξ0)  (18) 

with (K0, ξ0) and (K0, ξ0-π/2) taken as arbitrary constants of the four integrations.  

 

These two parametric equations, with time t as the independent variable, mathematically describe an isotropic circular clockwise coning motion of the spin-

axis of the bullet at the slow-mode gyroscopic precession rate ω2 and with an initial angular radius K0, centered about the apparent wind direction (0, -i*γ), as 

seen in the traditional “wind axes” plot for this example and shown in Fig. 3, below. This exercise shows how the observed isotropic coning motion of the CG of 

the bullet can be derived from the driving forces as these have been formulated above. This coning motion can be described as the CG of the bullet orbiting in a 

clockwise circular path about its mean trajectory at a cyclic rate determined by the rate of gyroscopic precession ω2 of the bullet’s spin-axis.  

 

As long as the spin-rate of a gyroscope remains nearly the same, and the overturning torque remains nearly constant, the rate ω2 of the stable slow-mode 

precession of the gyroscope will also remain nearly constant (once established, and absent any ω1-rate undamped fast-mode nutating motion) and the spin-axis of 

the gyroscope will maintain a nearly constant angle α with its neutral axis of precession (i.e., the direction of the approaching apparent wind). The vector rate of 
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gyroscopic precession ω2 is related to the angular momentum vector L of the spinning bullet and to the overturning moment vector M acting on the bullet by the 

magnitude of the vector cross-product [6]:  

 ω2 x L = M= q*S*d*Sin(α)*CMα  (19)  

where the angle between the vectors ω2 (the approaching wind direction) and L (the bullet’s spin-axis direction) is just the angle-of-attack α (and also the half-

cone-angle α). The overturning moment coefficient CMα itself comprises a tabulated primary Mach-dependent function CM0 plus a tabular negative corrective 

coefficient CMδ2 function multiplied by δ
2
 = Sin

2
(α) and algebraically summed into the coefficient CMα as a function of Mach number and angle-of-attack.  

 

 Note that Sin(α) appears as a factor in the magnitudes on both the left and right sides of Eq. 19 and, thus, divides out for non-zero angles-of-attack so that the 

magnitude of the precession rate ω2 (in radians per second) can be calculated from:  

 ω2*L*Sin(α) = q*S*d*Sin(α)*CMα  

 ω2 = q*S*d*CMα/L  (20)    

Also notice that the pseudo-regular precession rate ω2 is not directly dependent on the amplitude of the cone angle α. The variation of the overturning moment 

coefficient CMα with angle-of-attack α is quite small for the small α-angles considered here. The angular momentum L of the spinning bullet is the product of its 

moment of inertia Ix about its spin-axis and its spin-rate ω (ω = 2*π*p). The spin-rate of the bullet p slows only very gradually in flight in accordance with an 

aeroballistic spin-damping coefficient.  
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VII. Wind Shift Effects 

Whenever the coning bullet encounters a new wind W, its massless cone axis can and necessarily does instantly move so as to point directly into the new 

apparent wind WA, controlled by the three-dimensional vector relationship:  

 WA = W – V  (21)  

The apparent wind WA is just the true wind vector W translated into a coordinate system moving at velocity V along with the bullet.  

 

 Envision for a moment a horizontally fired, perfectly launched, spin-stabilized, ideal rifle bullet that has just emerged from the muzzle blast cloud and has not 

yet begun any actual coning motion. If a steady crosswind W, of much slower speed than V, is blowing horizontally from 9:00 o’clock (i.e., from left-to-right) 

across the trajectory, this non-coning bullet will experience an immediate small change in the direction of the approaching apparent wind vector, from straight 

ahead over to just leftward of straight ahead, by a small, inherently non-negative angle-of-attack γ, given in radians for this limited special case by:  

 γ = Tan
-1

[W/V] ≈ W/V  (22)  

This angular difference γ between the –V direction and the apparent wind direction WA creates a small cross-track component of the aerodynamic drag force FD, 

of magnitude γ*FD, which in turn causes the familiar horizontal drift of the rifle bullet fired through a crosswind as first formulated by Didion in 1859.  

 

 As a result of this left-to-right crosswind W, the horizontally fired rifle bullet, with its CP ahead of its CG, immediately begins experiencing a nose-rightward 

aerodynamic overturning moment M, a torque vector pointing vertically downward in this case, and of magnitude given by:  

 M = q*S*d*Sin(γ)*CMα  (23)  
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As a gyroscopic reaction to the application of this moment M to the spinning bullet, the forward-pointing angular momentum vector L of the right-hand-spinning 

bullet will be just as strongly forced downward, in the direction of the moment vector M, and at a rate proportional to the magnitude of M, according to the 

vector relationship:  

 M = dL/dt  (24)  

This gyroscopic relationship is just the rotational analogue of Newton’s Second Law of Motion. Of course, the nose of the bullet is pulled downward along with 

the bullet’s angular momentum vector.  

 

VIII. The Crosswind Aerodynamic Jump  

As the coning motion is becoming established for the originally non-coning, horizontally fired bullet that is just encountering a purely horizontal left-to-right 

crosswind, the spin-axis direction will initially accelerate rightward and then predominately downward from its original orientation in the +V-direction. This is 

clearly shown in Fig. 3, the computer-generated wind axes plot from 6-DOF data provided by Bryan Litz.  



25 

 

 

Fig. 3. Epicyclic Motion of Spin-Axis Direction (Provided by Bryan Litz)  

During the coning start-up period, with the initial movement of the spin-axis being rightward in the downwind direction of the 

crosswind W, the bullet’s trajectory becomes permanently deflected slightly downward by the transient, vertically downward aerodynamic 

impulse J due to its momentarily nose-down attitude relative to the approaching windstream.  
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After completion of the first fast-mode nutation cycle, the uniformly rotating total aerodynamic force vector F produces no further net deflection of the bullet’s 

path; i.e., the precessing lift vector sums to zero over each successive cycle of nutation (or coning) motion.  

 

Actually, the suddenly encountered crosswind W creates a non-zero fast-mode (nutation) arm of initial angular magnitude δ0, as well as a slow-mode 

(precession) arm of magnitude γ0+δ0. Each arm rotates clockwise for our right-hand-spinning rifle bullet, but the initial “roll-orientations” (ξ1 and ξ2) of the two 

epicyclic arms are oppositely directed, so that the slow-mode precession arm (γ0+δ0) initially points rightward from the apparent wind direction (0, -i*γ0) along 

the +yaw axis, and the fast-mode nutation arm (δ0) initially points back to the left in the -yaw direction. Their combined epicyclic sum must initially equal γ0, the 

offset angle due to the initial apparent wind at time t = 0 when the bullet has just exited the muzzle, because the spin-axis of this perfectly launched bullet starts 

out pointing in the +V direction (toward the origin of the wind axes plot).  

 

As shown in Fig. 3 for our example bullet, the fast-mode nutations damp fairly rapidly, to insignificance after 5 or 6 slow-mode coning cycles. After 

completion of the first full, relative nutation cycle at 1/TN = fN hertz, the steadily rotating aerodynamic forces acting on the coning bullet subsequently integrate 

out to zero net deflection of the trajectory. Certainly the rotating lift force attributable to the fast-mode (fN) nutation itself averages to a net of zero rather quickly.  

 

The epicyclic motion of the bullet’s spin-axis about the apparent wind direction in “wind axes” coordinates can be defined in terms of the complex cone angle 

function α(t) as:  

 α(t) = -i*γ0 + (γ0+δ0)*(Cosξ2 + i*Sinξ2) + δ0*(Cosξ1 + i*Sinξ1) (25)  

 

These three vector terms are, respectively; §1 the initial and nearly constant apparent wind offset angle γ0 for this example; §2 the initial slow-mode, 

clockwise rotating coning motion arm of length γ0+δ0; and, §3 the initial fast-mode, clockwise rotating nutation arm of length δ0. These vectors are best 
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envisioned as being summed “head-to-tail” in this sequential order. The apparent wind vector §1 is always defined with respect to the –V direction. This –V 

vector points toward the origin of the “wind axes” coordinate system, but from behind the plot. ξ1 and ξ2 are the phase angles of the clockwise rotations of the 

fast and slow epicyclic arms, respectively. These angles are measured positive clockwise from the +φ (pitch) axis direction. The fast arm §3 rotates clockwise at 

the nutation rate ω1, while the slow arm §2 rotates clockwise at the coning (or precession) rate ω2. The “yaw of repose” βR is too small to be seen at the scale of 

this plot.  

 

The angular arguments ξ1(t) and ξ2(t) start out just as explained above and grow with ongoing time t at their respective rotation rates, so that:  

 ξ1(t) = ω1*t – π/2   

 ξ2(t) = ω2*t + π/2 (26)   

 

The attitude angles γ+δ and δ also vary slowly with time t according to their respective slow-mode and fast-mode damping factors. For our somewhat 

dynamically unstable example bullet, the slow-mode coning angle slowly increases with ongoing time t.  

 

The vertical component of this epicyclic motion at any time t during the initial relative nutation cycle, is given by the real part of the expression (Eq. 23) for 

α(t):  

 Re{α(t)} = (γ0+δ0)*[Cos(ω2*t + π/2)] + δ0*[Cos(ω1*t – π/2)]  

 Re{α(t)} = -(γ0+δ0)*[Sin(ω2*t)] + δ0*[Sin(R*ω2*t)] (27)  

From the initial condition of rightward first motion, we can set the time-derivative of this vertical component expression (Eq. 27) initially equal to zero, so that:  

 γ0 + δ0 = R* δ0 = 4.79* δ0  
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 δ0 = γ0/(R - 1) = γ0/3.79 (28)  

Thus, the initial condition of rightward first motion of the spin-axis from the +V direction determines the initial ratio 1/(R – 1) that fixes the size of the nutation 

δ0 relative to the size of the apparent wind offset γ0. From the conditions established for this flight simulation run, we know that initially:  

 γ0 = (14.67 fps)/(2800 fps) = 5.24 milliradians (29)  

 δ0 = γ0/3.79 = 1.38 milliradians (30)  

 γ0+δ0 = 6.62 milliradians (in this example) (31)  

 

The vertical-direction aerodynamic impulse J is the time integral of the vertical component of the perpendicular aerodynamic force FC(α,t) over this first full 

fast-mode nutation cycle relative to the moving slow-mode arm, which spans the time required to establish a steady coning motion at the precession rate ω2. The 

time TN of completion of the first full relative nutation cycle is found (with R = 4.79, initially, in this example) from:  

 TN = 2π/[(R – 1)*ω2] = T2/3.79 = 4.06 milliseconds (32)  

While the coning motion is establishing itself, the vertical (pitch) component of the total epicyclic angle-of-attack α(t) is increasing in magnitude from zero to a 

maximum amplitude of -1.35*γ (pitch downward).  

 

An impulse J (in pound-seconds) directly causes a vertically downward change in the linear momentum of the bullet, which can be well-approximated by use 

of a “linearizing” technique:  

 J = ∫FC(α,t)dt = AVE{FC(α,t)}*TN ≈ FC[AVE{α}]*TN (33)  

 J= Δ(mVC) = m*ΔVC (34)  
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where ΔVC is a negative, or downward, “kick” velocity in this example.  

 

 The time-average of the vertical component of the angle-of-attack AVE{α} can be evaluated by the definite integration of Re{α(t)} from zero to TN, i.e., over 

the first complete relative nutation cycle:  

 AVE{α} = (1/TN)∫{[-(γ0+δ0)/ω2]*Sin(ω2*t)d(ω2*t) + [δ0/(4.79*ω2)]*Sin(4.79*ω2*t)d(4.79*ω2*t)}   

 AVE{α} = -(γ0+δ0)*(3.79/2π)*[1 – Cos(2π/3.79)] + (3.79/4.79)*(δ0/2π)*{1 – Cos[(4.79/3.79)*2 π]}   

 AVE{α} = -4.340 mrad + 0.189 mrad = -4.151 milliradians (35)  

 

Note from the slow-mode angular argument (2π/3.79) that the coning motion has progressed through 95 degrees to the first inward-pointing epicyclic cusp at 

time TN while the fast-mode argument ξ1(TN) has progressed through 455 degrees:  

 ξ1(TN) = 4.79*95 degrees = 360 + 95 degrees = 455 degrees (36)   

 Then 

 J ≈ TN*FC(-4.15 mrad) =  TN*q*S*Sin(-4.15 mrad)*[CLα + CD]  

 J ≈ (4.06 msec)*(4.82 lbs.)*(-.00415)*[2.85 + 0.32] ≈ -2.58x10
-4

 pound-seconds (37)  

 

 

The permanent downward angular deflection AJ of the trajectory of the bullet resulting from this downward cross-track “kick velocity” ΔVC (from Eq. 34) is 

given by:  
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 AJ = Tan
-1

[ΔVC/V] ≈ ΔVC/V = J/(m*V) (in radians)  

 AJ ≈ -2.58x10
-4

 pound-seconds/2.09 pound-seconds ≈ -0.123 milliradians (38)  

 

Note that m*V = 2.09 pound-seconds is just the linear momentum of the bullet itself at the time it encountered the crosswind W.  

 

The permanent, one-time-per-disturbance, downward angular deflection AJ of the entire remaining trajectory produces a downward displacement on the 

target that varies linearly with range to the target (minus about 2 yards). If the horizontal wind-drift due to our assumed constant 10 MPH crosswind from 9:00 

o’clock in this example is the expected 3.0 inches to the right on a 200-yard target, and the bullet also strikes 0.887 inches below the center of the bullseye, the 

combined downward-sloping skew angle is 16.5 degrees below the horizontal across the face of the target. Since the horizontal wind deflection itself varies 

approximately with the square of the range to the target when firing through a constant crosswind, the downward left-to-right skew angle of the combined 

windage effects on the target due to this purely horizontal crosswind must “flatten out” significantly at longer ranges (and steepen at shorter ranges). In addition, 

since this vertical deflection effect is not quite as directly proportional to the strength of the horizontal crosswind as is the basic horizontal windage effect, this 

skew angle across the face of the target must also “flatten out” very slightly with increasing crosswind speeds.  

 

This vertically downward (negative), angular deflection AJ of the bullet’s trajectory, is one type of aerodynamic jump caused by encountering a purely 

horizontal crosswind, as it has been termed by Bob McCoy of BRL. McCoy [11] formulates this jump JA as:  

 JA = -[Ix/(m*d
2
)]*(CLα/CMα)*(2*π/n)*(W/V) (Eq. 12.98, McCoy)  

 JA = -[0.10854]*(2.85/2.56)*(2*π/38.96)*(14.67/2800) = -0.102 milliradians (39)  

 JA = 0.829*AJ (our coning value) (40)  
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Had McCoy used (CLα + CD)/CMα as proposed herein, instead of just (CLα/CMα) in his formulation for JA, he would have found:  

 JA = - 0.114 milliradians = 0.922*AJ (the coning value) (41)  

or a value 7.8 percent smaller than our calculated AJ. This jump angle JA corresponds to a skew angle of 15.3 degrees across the target. Modern benchrest 

competition rifles and across-the-course target rifles achieve the level of repeatability necessary to demonstrate quite clearly that this small vertical displacement 

does occur while flat-firing through purely horizontal near-surface crosswinds. Several available PRODAS 6-DOF runs for the quite similar 175-grain Sierra 

MatchKing bullet fired in military M118LR ammunition show a 200-yard skew angle of 16.9 degrees in these same conditions.  

 

If the initial crosswind W had been blowing from right-to-left instead, the angular deflection of the trajectory would have been positive (upward) for our 

example right-hand spinning bullet. Additionally, similar one-time transient aerodynamic jumps will occur whenever an already-coning bullet encounters any 

significant change in the direction γ of the approaching apparent wind. We analyze a case here starting with a non-coning bullet simply for convenience.  

 

If a bullet is launched with some non-zero initial pitch and (or) yaw attitude, a similar aerodynamic jump will occur very early in its flight, as well. 

Unfortunately, real rifle bullets routinely suffer “in-bore yaw” during firing and enter the airstream with a greatly enlarged first-maximum yaw angle after 

emerging into the atmosphere as given by Kent’s Equation (Eq. 12.92, McCoy) [12]. A bullet’s having a non-zero initial pitch rate and (or) yaw rate will also 

produce a similar type of one-time aerodynamic jump. In any event, the rotational orientation of the one-time jump angle deflection of the bullet’s path will 

always be rotated 90 degrees clockwise (as seen from behind the bullet) from the roll-orientation of the initial movement of the spin-axis of the bullet. This 90-

degree clockwise rotation is indicated in the complex plane by the initial factor of i (where i
2
 = -1) in the BRL formulation (Eq. 12.83, McCoy) [13] for this type 

of aerodynamic jump (or –i for our complex plane definition). The angular deflection of the trajectory caused by any of these types of initial aerodynamic jump 

effects gets established during the first fast-mode nutation cycle that takes place during the first 2 or 3 yards of travel for most rifle bullets. Perhaps this is one of 

the reasons why experienced benchrest competitors pay particular attention to any wind blowing across directly in front of their firing benches.  
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IX. Conclusions  

We have shown that the bullet cones around at its gyroscopic precession rate in accordance with the Tri-Cyclic Theory, but with its nose angled inward, 

toward the mean trajectory. We posit that the incoming direction of the apparent wind seen by the moving bullet continually defines the orientation of the axis of 

this coning motion so that the spin-axis of the coning bullet always precesses around the instantaneous “eye of the apparent wind.” We theorize that the spin-

stabilized bullet in free flight acts exactly as would a gimbal-mounted gyroscope under similar conditions. We have shown that the coning motion of the spin-

axis of the bullet is a pseudo-regular gyroscopic precession and that the CG of the bullet orbits in a circle around the mean trajectory “in sync” with this same 

precession of its axis. We found that higher-rate gyroscopic nutation does not produce significant bullet motion. The observed vertical deflection of rifle bullets 

fired through purely horizontal crosswinds has been shown numerically to be a one-time transient effect occurring during start-up of the coning motion upon first 

encountering that crosswind.  

Mathematically, we can describe the coning motion of the spin-axis direction of a rifle bullet using complex notation as the vector sum:   

 α(t) = (βR + γ)*i + (βR + γ + δ)*exp[i*ξ2(t)] + (βR + δ)*exp[i*ξ1(t)] (42)  

This vector relationship defining the complex coning angle α(t) is shown in Fig. 4, below.  
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Fig. 4. Epicyclic Motions of Spin-Axis Direction for a Coning Bullet  

 

 

Summary  

This detailed new analysis of the physics behind the equations of motion describing the flight of a rifle bullet is entirely consistent with BRL’s standard 

calculus-based formulation of these equations and with the mathematics currently implemented in existing 6-DOF flight simulation software. The major 

accomplishment of this effort is illuminating the dual nature of the bullet’s coning motion—the circular orbiting of the CG of the bullet synchronized with the 

gyroscopic precession of its spin-axis. Only the primary aeroballistic forces, drag and lift, and the overturning moment are used in this new analysis of bullet 

motions. The minor aeroballistic forces and moments (e.g., Magnus force and moment, pitch-damping force and moment, and spin-damping moment, etc.) do not 

seem to be needed directly in the analytical explanation of all observable phenomena of modern rifle bullets flying essentially horizontally. The expected 
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advantages of adopting this new Coning Theory of Bullet Motions are perceived to lie primarily in the teaching of exterior ballistics. Demystifying a subject 

always improves its pedagogy.  
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