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Abstract. Radiation pressure on a flat mirror submerged in a transparent liquid, depends not only on 
the refractive index n of the liquid, but also on the phase angle ψo of the Fresnel reflection coefficient 
of the mirror, which could be anywhere between 0º and 180º. Depending on the value of ψo, the 
momentum per incident photon picked up by the mirror covers the range between the Abraham and 
Minkowski values, i.e., the interval (2ћωo/nc, 2nћωo/c). Here ћ is the reduced Planck constant, ωo is 
the frequency of the incident photon, and c is the speed of light in vacuum. We argue that a simple 
experimental setup involving a dielectric slab of refractive index n, a vibrating mirror placed a short 
distance behind the slab, a collimated, monochromatic light beam illuminating the mirror through the 
slab, and an interferometer to measure the phase of the reflected beam, is all that is needed to deduce 
the precise magnitude of the radiation pressure on a submerged mirror. In the proposed experiment, 
the transparent slab plays the role of the submerging liquid (even though it remains detached from the 
mirror at all times), and the adjustable gap between the mirror and the slab simulates the variable 
phase-angle ψo. The phase of the reflected beam, measured as a function of time during one 
oscillation period of the mirror, then provides the information needed to determine the gap-
dependence of the reflected beam’s Doppler shift and, consequently, the radiation pressure 
experienced by the mirror.  

1. Introduction. The 1954 experiments of Jones and Richards on submerged mirrors [1], 
followed by those of Jones and Leslie nearly a quarter century later [2,3], established the 
dependence of radiation pressure on the refractive index n of the submerging liquid. The 
radiation pressure found in these experiments was proportional to n, thus providing strong 
evidence in favor of the Minkowski momentum of the photon inside dielectric media. Later 
calculations of the Lorentz force exerted on submerged mirrors showed the pressure to depend 
not only on the refractive index n of the liquid, but also on the phase-angle ψo of the Fresnel 
reflection coefficient of the mirror [4,5]. Specifically, whereas the pressure on a mirror having 
ψo = 180º is directly proportional to n, that on a mirror with ψo = 0º is inversely proportional to n. 
A continuous variation of ψo between these extreme values would result in a continuous change 
of the pressure experienced by the mirror, indicating, at first sight, a photon momentum that 
could be anywhere between the Abraham value of ћωo/nc and the Minkowski value of nћωo/c. 
Here ћ is the reduced Planck constant, ωo is the frequency of the incident photon, and c is the 
speed of light in vacuum. Since most conventional mirrors have a Fresnel reflection coefficient 
close to −1.0, it is reasonable to assume that the phase of the mirrors used in the aforementioned 
experiments must have been close to 180º, which explains the observation of the Minkowski 
momentum in those experiments. 

An alternative explanation of the submerged mirror experiments that emerges from Lorentz 
force calculations [6-15] is as follows. Inside the liquid, in the region between the light source 
and the mirror, the beam reflected from the mirror interferes with the incident beam. The Lorentz 
force that the resulting interference fringes exert on the liquid tends to pull the liquid away from 
the mirror when ψo = 180º, and it tends to push the liquid toward the mirror when ψo = 0º. The 
total force (acting on both the mirror and the liquid) is always the same, regardless of the value 
of ψo, and the photon momentum in the liquid is neither Abraham’s nor Minkowski’s, but is 
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given by ½(n+ n−1)ћωo/c, which is part electromagnetic (ћωo/nc) and part mechanical 
[½(n −n−1)ћωo/c] in nature [5,11]. 

The present paper provides a different kind of evidence in support of the above picture 
painted by the Lorentz force calculations of radiation pressure on submerged mirrors. The basis 
of the new argument, Doppler shift of the light reflected from a moving mirror, is fundamentally 
different from that of the Lorentz force, yet the conclusions reached by the two arguments are 
identical. We describe in Sec.2 the proposed system for monitoring the Doppler shift of a light 
beam upon reflection from a vibrating mirror placed immediately behind a transparent dielectric 
slab. The expected value of the Doppler shift (based on theoretical considerations) is calculated 
in Sec.3, and related to the radiation pressure on the mirror in Sec.4. In Sec.5, we directly 
calculate the radiation pressure on the mirror behind the slab, and show that the result coincides 
with that obtained from the Doppler shift argument. Some final thoughts and concluding remarks 
are the subject of Sec.6. 

2. Illuminating a flat mirror through a dielectric slab. With reference to Fig.1, consider a 
pulse of light having energy E, duration τ , and center frequency ωo, arriving at normal incidence 
on a flat mirror through a thick dielectric slab of refractive index n. The front facet of the slab is 
anti-reflection coated to eliminate reflection losses, but also, more significantly, to prevent 
multiple reflections within the slab. The mirror has a Fresnel reflection coefficient ρ exp(iψ ), 
with 1ρ ≈  and ψ  being a fixed but arbitrary parameter somewhere between 0º and 180º. We 
also allow for a small air-gap d  between the mirror and the rear facet of the dielectric slab. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 (Color online). A mirror having Fresnel reflection coefficient ρ exp(iψ ) is placed a short 
distance d behind a fairly thick dielectric slab of refractive index n. The incident light pulse 
propagating along the z-axis has energy E, duration τ , frequency ωo, and wavelength λo = 2πc/ωo. The 
Fresnel reflection coefficient of the dielectric surface at z = 0, denoted by r exp(iφ ), is a function of n, 
ρ, ψ, d and ωo. 

The air-gap need not be large; in fact the range of values of d that is of interest here is 
o0 /4,d λ≤ ≤  where o o2 /cλ π ω=  is the vacuum wavelength of the incident light; c is the speed 

of light in vacuum. The gap has practical value in that it allows one to measure the pressure on 
the mirror without having to worry about the dielectric slab sticking to the mirror. This 
eliminates the possibility of measurement errors due to the viscous force as well as the force of 
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radiation that acts on the slab. Another advantage of the air-gap is that, by adjusting d, one can 
shift the effective phase of the Fresnel reflection coefficient of the mirror to any desired value. It 
will be seen in the final equations that ψ  and d appear only in the combination o4 / ;dψ π λ+  
therefore, the effective phase of the mirror used in any experiment can be adjusted between 0º 
and 180º simply by changing the air-gap. 

Ideally, the light pulse should be short enough that any overlap between the incident and 
reflected pulses would occur within the dielectric slab (and, of course, in the air-gap as well), but 
not in the region preceding the slab. For a 10ps pulse, for instance, a 1.0cm-thick slab would be 
appropriate. This will simplify the computation of the Lorentz force on the slab, which would 
otherwise have to be extended into the antireflection coating layer(s). In principle, of course, 
there is no reason to limit the experiment to such short pulses; even a continuous-wave (CW) 
laser beam could be acceptable, provided that the temporal coherence length of the light source is 
short enough to confine the interference fringes – arising from overlap between incident and 
reflected beams – to the vicinity of the rear facet of the slab located at z = 0 [11]. The constraint 
should thus be properly placed not on the length of the pulse in the time domain, but on its 
spectral width in the Fourier domain. None of these considerations apply, however, if the goal of 
the experiment is to measure only the radiation pressure on the mirror, not that on the slab. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 (Color online). A glass prism with blackened bottom is used to monitor the Doppler shift of a 
light beam reflected from a vibrating mirror behind a dielectric medium of refractive index n. A 
typical set of system parameters are λ o = 633nm, fo = 1.0kHz, d0=d1=1μm. The Michelson 
interferometer is set up to measure the phase φ (t) of the beam reflected from the vibrating mirror. The 
photodetector signal, S(t)=S0 + S1cosφ (t), is a periodic function of time t (period T =1/fo). At each 
instant of time, the Doppler shift, given by Δω(t) = φ '(t), is proportional to the instantaneous velocity 
of the mirror, but the proportionality constant itself is a function of the gap-width d(t) at that instant.  

To measure the Doppler shift of the reflected beam from a moving mirror and to relate it to 
the instantaneous mirror velocity V(t), to the corresponding gap-width d(t), and to the refractive 
index n of the dielectric slab, one could use the setup depicted in Fig.2. Here the parallel-plate 
slab has been replaced by a 90º prism to avoid the use of antireflection coatings; note that the 
bottom of the prism is blackened to prevent multiple internal reflections. The CW light source 
used in the setup of Fig.2 is quasi-monochromatic, with a coherence length greater than the 
optical path-length-difference between the two arms of the Michelson interferometer. We denote 
by φ (t) the phase difference between the two light beams arriving at the detector. Since the 
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reference mirror is stationary, the time-dependence of the relative phase is entirely due to the 
vibrations of the mirror behind the glass prism. The photodetector signal, S(t)=S0 + S1cosφ (t), is 
a periodic function of time with a period T =1/fo, where fo is the vibration frequency of the 
mirror. At each instant of time, the Doppler shift Δω (t) is given by the time derivative φ '(t) 
of φ (t). As expected, this Doppler shift turns out to be proportional to the instantaneous velocity 
of the mirror, V(t) =π fod1sin(2π fot), although the proportionality constant also happens to vary 
with time due to its dependence on the gap-width d(t); see Sec.3 for a detailed explanation.  

The system depicted in Fig.2 thus enables the measurement of the Doppler shift of the light 
reflected from the mirror behind the glass prism as a function of the mirror velocity V, the gap-
width d, and the refractive index n of the dielectric material of the prism. Different mirrors 
having different phase-angles ψ  may also be used in the experiment, but since a change of the 
gap-width d at the instant of measurement will have the same effect on the Doppler shift as a 
change of the phase-angle ψ , only one of these two variables would suffice.  

3. Doppler shift upon reflection from a moving mirror. Our goal in the present section is to 
compute the Doppler shift of the reflected light in the system of Fig.1 as a function of ωo, n, d, ρ 
and ψ, when the mirror moves along the z-axis at a constant (and slow) velocity V. To this end, 
we fix the air-gap at d and calculate the Fresnel reflection coefficient at the rear facet of the 
dielectric slab (i.e., at z = 0) as a function of d. We find 

 o

o

[( 1)/( 1)] exp[i( 4 / )] .exp(i )
1 [( 1)/( 1)] exp[i( 4 / )]

n n dr
n n d

ρ ψ π λφ
ρ ψ π λ

− + + +
=

+ − + +
 (1) 

If the mirror is a 100% reflector, that is, if ρ = 1.0, it is easy to show that the reflection 
coefficient r of the glass slab at z = 0 will also be equal to 1.0. In practice, ρ will be close to but 
slightly less than unity, causing r to vary ever so slightly with a change of the gap-width d 
between the mirror and the slab. These variations, however, are going to be insignificant 
provided that ρ is sufficiently large and the changes in d are kept at a small fraction of one 
wavelength, λo. 

The phase φ of the reflection coefficient at z = 0 is readily obtained from Eq.(1), as follows: 

 
2

o
2 2 2

o

[2 /( 1)] sin( 2 / ) .tan
( 1) ( 1)/[2( 1) ] cos( 2 / ){ }

n n d c
n n d c

ψ ωφ
ρ ρ ψ ω

+ +
=

− + + + +
 (2) 

Let o ,d d Vt= +  where do is the width of the initial gap between the mirror and the dielectric slab, 
and V is some small velocity with which the mirror moves away from the slab. The velocity V is 
so small that during the time interval of interest, say, o0 ,t t≤ ≤ the gap d will change only by a 
small fraction of the wavelength λo, thus keeping r essentially constant and allowing one to 
approximate φ (t) as 0 1 ,tφ φ+  the first two terms in the Taylor series expansion of φ (t) around 
t = 0. To simplify the notation, we define the new parameters α , β, and ψo as follows: 

 22 / ( 1),n nα = +  (3a) 

 
2 2

2

( 1) ( 1) ,
2( 1)

n
n

ρβ
ρ

− +
=

+
 (3b) 
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 o o o o o2 / 4 / .d c dψ ψ ω ψ π λ= + = +  (3c) 

Noting that the argument of the sine and cosine functions in Eq.(2) may now be expressed as 
o o2( / ) ,V c tψ ω+  we will have 

 o
0

o

1 sintan ,
cos

α ψφ
β ψ

−=
+

 (4a) 

 o o
1

o o
2 2 2

2( / ) (1 cos ) .
( cos ) sin

V c ω α β ψφ
β ψ α ψ

+
=

+ +
 (4b) 

The time-dependence factor of the incident beam in Fig.1 is oexp( i ),tω−  which must be 
multiplied by exp[i ( )]tφ  to yield the corresponding factor for the reflected beam. The phase of 
the reflected beam thus becomes φo, while its frequency changes to ω = ωo−φ1. We thus have 

 o
o

o o
2 2 2

2( / ) (1 cos ) .1
( cos ) sin

V c α β ψω ω
β ψ α ψ

⎡ ⎤+
= −⎢ ⎥

+ +⎣ ⎦
 (5) 

This is the general formula for the Doppler shift of the reflected light associated with the 
slow, linear motion of the mirror away from the dielectric slab of Fig.1, at the instant when 
d = do. In the special case when n = 1 (i.e., no glass slab), we will have α = 1, β = 0 and 
ω =ωo[1−2(V/c)], independent of the value of ψo, as expected for reflection from a mirror 
moving in free space at a non-relativistic speed. 

When 1,ρ ≈  we may write 2 2( 1)/( 1)n nβ ≈ − +  to a very good approximation, in which case 
Eq.(5), without further approximations, simplifies as follows: 

 o
o

2 2
2 /1 .

1 ( 1)cos ( /2)
nV c

n
ω ω

ψ
⎡ ⎤

≈ −⎢ ⎥
+ −⎣ ⎦

 (6) 

Note that the Doppler shift of Eq.(6) is a strong function of the phase parameter ψo. Even 
when the mirror is initially in contact with the dielectric slab (i.e., when do= 0), the Doppler shift 
depends on the phase ψ  of the reflection coefficient of the mirror; only when ψ =180º do we 
find the familiar formula o (1 2 / )nV cω ω= −  with the mirror initially in contact with the slab. This 
is in stark contrast with the case of a submerged mirror within a dielectric liquid of refractive 
index n, where the standard Doppler formula, o (1 2 / ),nV cω ω= −  would be independent of ψ. 

4. Radiation pressure on mirror initially at rest. Suppose now that a single photon of energy 
oω  arrives at the glass slab of Fig.1. Let the slab be extremely massive, so we will not have to 

consider any kinetic energy acquired by this slab as a result of its interactions with the photon. 
The mirror, however, while massive, is not excessively so, and we write its acquired momentum 
(upon reflection of the photon) as mirror m=p V  and its corresponding kinetic energy as  

mirror
21

2 .mV=E  Here m is the mass and V  the final velocity of the mirror along the z-axis. Since 
the mirror is at rest before the arrival of the photon, and its velocity climbs to V upon reflection, 
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the Doppler shift associated with the reflected photon will correspond to the mirror’s average 
velocity V/2. (We are making no approximations here; this is an exact statement.) Using 
conservation of energy and the Doppler formula of Eq.(6) (with V replaced by V/2) we arrive at 

 o o
o

2
2 2

1
2

/1 .
1 ( 1)cos ( /2)

nV cmV
n

ω ω
ψ

⎡ ⎤
≈ + −⎢ ⎥

+ −⎣ ⎦
 (7) 

Eliminating oω  from both sides of the above equation, then dividing by V, yields 

 o
mirror

o
2 2
2 / .

1 ( 1)cos ( /2)
n cp mV

n
ω

ψ
= ≈

+ −
 (8) 

This is the momentum given to the mirror upon reflection of a single photon through the 
dielectric slab. In the absence of the slab, of course, we will have n = 1 and omirror 2 / ,p cω≈  as 
expected. In the presence of the slab, the transferred momentum to the mirror depends on the 
refractive index of the glass as well as on the phase parameter ψo. If ψo=180º, which is typical of 
metallic as well as most dielectric-stack mirrors, the mirror’s momentum will become twice the 
Minkowski momentum of the photon, that is, omirror 2 / .p n cω≈  If, however, the phase parameter 
happens to be ψo= 0º, the mirror will acquire twice the Abraham momentum, omirror 2 /( ).p ncω≈  
For intermediate values of the phase parameter, pmirror will cover the entire range of values 
between the Abraham and Minkowski limits. 

5. Direct calculation of the radiation pressure on the mirror. We calculate the radiation 
pressure per photon on a 100% reflector having reflection coefficient exp(i ),ψ  placed a distance 
d behind the glass slab of refractive index n, as shown in Fig.1. Let the incident light pulse be 
linearly polarized, having an E-field amplitude Eo before entering the slab. Denoting by 
Zo=√ μo/εo the impedance of free space, where μo and εo are the permeability and permittivity of 
free space, the total energy content of the pulse will be 

 
2
o

o

.
2
E
Z
τ

=E  (9) 

Inside the slab, the E-field amplitude will be Eo/√n, while the H-field amplitude will be √ n Eo/Zo, 
as the anti-reflection coating ensures the continuity of the Poynting vector = ×S E H  in passing 
from air into the dielectric slab. Denoting the E-field amplitude entering the gap at z = 0 by Eg , 
the continuity of the tangential E-field at z = 0 yields 

 o o

o o

[1 exp(i )] / 2 .
1 exp(i ) ( 1) ( 1)exp(i )g

E n nEE
n n

φ
ψ ψ

+
= =

+ + + −
 (10) 

The momentum transferred to the mirror is thus given by 

 o o
omirror

o

22
2 2

.
1 ( 1)cos ( /2)g

n Ep E
n

ε τε τ
ψ

= =
+ −

 (11) 
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Considering that the pulse energy is given by Eq.(9), we may substitute for o
2E τ  of a single 

photon the quantity o o2 ,Z ω  thereby transforming Eq.(11) into Eq.(8). (Here we have used the 
fact that c=1/√μoεo .) This confirms the validity of deriving the radiation pressure on the mirror 
from the Doppler shift of the reflected light. 

Note that a mirror whose Fresnel reflection coefficient in vacuum is specified as exp(i ),ρ ψ  
will exhibit a different reflection coefficient when submerged in a liquid of refractive index n. In 
fact, setting d to zero in Eq.(1) yields an exact expression for the reflection coefficient exp(i )r φ  
of the mirror as measured within the liquid. When the mirror happens to be 100% reflective, the 
magnitudes of both reflection coefficients (i.e., ρ  in vacuum and r in the liquid) will be unity, 
while ψ  and φ  will be related via Eq.(2) with d set to zero, as follows: 

 2 2
2 sin .tan

( 1) ( 1)cos
n

n n
ψφ

ψ
=

− + +
 (12) 

It is readily seen from the above equation that tan(ψ /2) = n tan(φ /2). Therefore, when d = 0, 
Eq.(8) may be rewritten in terms of φ , as follows: 

 omirror
2 22[1 ( 1)sin ( /2)] /( ).p n ncφ ω= + −  (13) 

The last equation is in agreement with the result obtained in [5], where the mirror was 
submerged in a liquid of refractive index n, and the phase of the Fresnel coefficient was specified 
as φ within the liquid (rather than as ψ , which is the corresponding phase in vacuum). The 
results of the preceding sections, therefore, are in complete agreement with our earlier results, 
which were obtained for a submerged mirror in a transparent liquid. 

6. Concluding remarks. We have shown that the momentum transferred to a submerged mirror 
upon reflection of a single photon of frequency ωo could be anywhere in the range from 
2ћωo/(nc) to 2nћωo/c, depending on the phase angle ψ  of the mirror’s reflection coefficient. We 
used a theoretical argument based on the Doppler shift of the reflected light to arrive at the above 
conclusion, even though the Doppler shift caused by radiation pressure is so tiny as to be 
practically immeasurable. Nevertheless, what is important is the proportionality coefficient 
between the Doppler shift and the mirror velocity, and this coefficient can be readily measured in 
a setup such as that shown in Fig.2. The proportionality coefficient was derived from theoretical 
considerations in Sec.3, where it was necessary to assume a small mirror velocity to ensure that 
multiple reflections within the gap would stabilize before the gap-width could change 
perceptibly. For high-Q cavities and fast-moving mirrors, one expects the Doppler shift 
measured in the system of Fig.2 to depart from the predictions of Eq.(5). However, in the 
argument advanced in Sec.4 with regard to radiation pressure on a submerged mirror, the mirror 
velocity is exceedingly small and any deviation from Eq.(5) will be totally negligible. 

Since the difference between the momenta of the incident photon (before entering the 
dielectric slab of Fig.1) and the reflected photon (upon emerging from the slab) is 2ћωo/c, it is 
clear that the difference between this value and pmirror of Eq.(8) must have been transferred to the 
glass slab. This can indeed be confirmed by a direct calculation of the Lorentz force of the light 
on the region of the slab where the incident and reflected beams overlap [16], and also on the 
antireflection coating at the entrance facet of the slab [11]. For the argument from Doppler shift 
presented in Sec.4 to be valid, it is important to recognize that, while the slab picks up a net 
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momentum of 2(ћωo/c) −pmirror from each photon, its acquired kinetic energy will be negligible, 
simply because its mass may be assumed to be much greater than that of the mirror. This, in fact, 
was our requirement for the validity of the energy balance equation, Eq.(7). 

In a recent paper [17], Kemp questioned the validity of Eq.(13), which we had derived 
earlier from consideration of the Lorentz force on submerged mirrors [5]. Kemp’s argument is 
based on an analysis of the Doppler shift of the reflected light, but his energy balance equation is 
incomplete in that the energy required to drag the submerging liquid along with the mirror has 
been ignored. In Kemp’s analysis, unlike ours in Sec.4, the mirror remains in contact with the 
surrounding liquid while being driven forward by radiation pressure. The mirror must therefore 
drag the liquid molecules along as it moves forward. Had Kemp taken into account the energy 
needed to bring these molecules along – molecules upon which acts the Lorentz force within the 
fringes produced by interference between incident and reflected beams – his analysis would have 
yielded the same mirror momentum as that given by Eq.(13). 

In another recent paper [18], Barnett invoked a thought experiment (originally suggested by 
Milonni et al [19,20]) to argue in favor of the Minkowski momentum for a photon inside a 
transparent medium. The thought experiment involves the absorption of a photon by an atom 
submerged in a liquid dielectric. The Doppler shift of the photon (as seen by the moving atom) in 
conjunction with energy conservation is used to arrive at the Minkowski momentum for the 
photon. As was the case with Kemp’s analysis, we believe the energy balance equation used by 
Milonni et al is incomplete. Had these authors taken into consideration the energy needed to drag 
along the liquid molecules – which molecules are subject to the Lorentz force at the trailing edge 
of the wavepacket – they would have found a momentum equal to ½(n+n−1)ћωo/c for individual 
photons inside a medium of refractive index n; see [21] for a detailed discussion of this point. 

The bottom line is that there is perfect agreement between experiments that indicate a recoil 
momentum of nћωo/c inside dielectric media [1-3,22-25], and theoretical arguments that show a 
photon momentum of ½(n+n−1)ћωo/c that is divided between an electromagnetic part (ћωo/nc) 
and a mechanical part [½(n−n−1)ћωo/c]. It is immaterial whether theory relies on direct 
calculations of the Lorentz force, as in [26], or is based on an analysis of the Doppler shift, as in 
the present paper. The computed recoil momentum in every case agrees with experimental 
observations without violating the conservation laws, as the balance of energy and momentum is 
picked up by the host dielectric. 

Acknowledgement. The author is grateful to Brian Anderson, Stephen Barnett, Poul Jessen, 
Khanh Kieu, Henri Lezec, Ewan Wright, and Armis Zakharian for helpful discussions. 
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