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We simulate the nonlocal Stokesian hydrodynamics of an elastic filament with a permanent distri-
bution of stresslets along its contour. A bending instability of an initially straight filament induces
curvatures in the distribution of stresslets, thus producing a net hydrodynamic flow in which the
filament propels autonomously. Depending on the ratio of stresslet strength to elasticity, the linear
instability can develop into unsteady states with large-amplitude nonlinear deformations, where the
filament conformation and the center of mass velocity fluctuate frequently. In planar flows, these
unsteady states finally decay into steady states where the filament has constant translational or
rotational motion. Our results can be tested in molecular-motor filament mixtures, synthetic chains
of autocatalytic particles or other linearly connected systems where chemical energy is converted to
mechanical energy in a fluid environment.

PACS numbers: 82.20.Wt, 87.16.A-, 47.63.M-

Components which convert chemical energy to me-
chanical energy internally are ubiquitous in biology.
Common examples where this conversion leads to au-
tonomous propulsion are molecular motors (at the sub-
cellular level) and bacteria (at the cellular level) [1]. Re-
cently, biomimetic elements which convert chemical en-
ergy into translational [2] or rotational [3] motion have
been realized in the laboratory. While the detailed mech-
anisms leading to autonomous propulsion in these biolog-
ical and soft matter systems shows a wonderful variety
[4], their collective behavior tends to be universal and can
be understood by appealing to symmetries and conserva-
tion laws [5]. This realization has led to many studies of
the collective properties of suspensions of hydrodynami-
cally interacting autonomously motile particles [6].

There are ample instances in biology, however, where
the conversion of chemical to mechanical energy is not
confined to a particle-like element but is, instead, dis-
tributed over a line-like element. Such a situation arises,
for example, in a microtubule with a row of molecular mo-
tors converting energy while walking on it. The mechani-
cal energy thus obtained not only produces motion of the
motors but also generates reaction forces on the micro-
tubule, which can deform elastically in response. Hydro-
dynamic interactions between the motors and between
segments of the microtubule must be taken into account
since both are surrounded by a fluid. This combination
of elasticity, autonomous motility through energy con-
version and hydrodynamics is found in biomimetic con-
texts as well. A recent example is provided by mixtures
of motors which crosslink and walk on polymer bundles.
A remarkable cilia-like beating phenomenon is observed
in these systems [7]. A polymer in which the monomeric
units are autocatalytic nanorods provides a nonbiological
example of energy conversion on linear elastic elements.
Though such elements are yet to be realized in the lab-

oratory, active elements coupled to passive components
through covalent bonds have been synthesized [2] and
may lead to new kinds of nanomachines [3].
Motivated by these biological and biomimetic exam-

ples, we study, in this Letter, a semi-flexible elastic fil-
ament immersed in a viscous fluid with energy convert-
ing “active” elements distributed along its length. We
present an equation of motion for the filament that in-
corporates the effects of nonlinear elastic deformation,
active processes and nonlocal Stokesian hydrodynamic
interactions. We use the lattice Boltzmann (LB) method
to numerically solve the active filament equation of mo-
tion. Our simulations show that the distribution of active
stresses induces a bending instability in a linear filament.
These stresses, now distributed along a curved line, pro-
duce fluid flows that propel the filament. Depending on
the ratio of activity and elasticity, the linear instability
can develop into a nonlinear unsteady state with large-
amplitude deformations where there are frequent changes
in the filament conformation and its center of mass veloc-
ity. In planar flows, these unsteady states eventually de-
cay into steady states where the filament translates bal-
listically or rotates steadily. In cubic flows, such steady
states do not appear in the time scales of our simulation.
We describe these results and our model in detail below.
Model: Our model for the active filament consists of

N beads, with coordinates rn, interacting through a po-
tential given by

U(r1, . . . , rN ) =

N−1
∑

m=1

US(bm) +

N−2
∑

m=1

UB(bm,bm+1)

+
1

2

N
∑

m,n=1

ULJ(rn − rm). (1)

The two-body harmonic spring potential US(bm) =
1

2
k(bm − b0)

2 penalizes departures of bm, the modulus
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of the bond vector bm = |rm − rm+1|, from its equi-
librium value of b0. The three-body bending potential
UB(bm,bm+1) = κ̄(1 − cosφm) penalizes departures of
the angle φm between consecutive bond vectors from its
equilibrium value of zero. The rigidity parameter κ̄ is
related to the bending rigidity as κ = b0κ̄. The repul-
sive Lennard-Jones potential ULJ vanishes if the distance
between beads rmn = |rm − rn| exceeds σLJ. The n-th
bead experiences a force fn = −∂U/∂rn when the fil-
ament stretches or bends from its equilibrium position.
With the above choice of potential the connected beads
approximate an inextensible, semi-flexible, self-avoiding
filament.

Active non-equilibrium processes, such as those that
convert chemical energy to mechanical energy, are inter-
nal to the fluid and hence cannot add net momentum
to it. Then, the integral of the force density on a sur-
face enclosing the active element must vanish. This is
ensured if the active force density is the divergence of
a stress. Since the active processes cannot add angular
momentum to the fluid, the stress must be symmetric
[8]. The most dominant Stokesian singularity with these
properties is the stresslet [9]. There is a remaining free-
dom of the sign of the stresslet and its angle relative to
the filament. Motivated by the tangential stresses ex-
erted by motors walking on microtubules [7], we choose
the stresslet to be extensile and oriented along the in-
stantaneous tangent t̂n to the filament,

σn = σ0(t̂nt̂n − I/d) (2)

where d is the spatial dimension and σ0 > 0 sets the scale
of the activity. The results of other choices of sign and
orientation will be presented elsewhere.

Elastic forces and active stresses produce velocities
in the fluid. In the Stokesian regime, the velocity in
a three-dimensional unbounded fluid at location r pro-
duced by a force f at the origin is vα(r) = Oαβ(r)fβ
where Oαβ(r) = (δαβ + r̂αr̂β)/8πηr is the Oseen ten-
sor, Cartesian directions are indicated by Greek indices,
η is the fluid shear viscosity and r̂α = rα/r. Simi-
larly, the velocity at location r produced by a stresslet
σ at the origin is vα(r) = Dαβγ(r)σβγ where Dαβγ(r) =
(−r̂αδβγ + 3r̂αr̂β r̂γ)/8πηr

2 [10]. In the presence of rigid
or periodic boundaries the tensors O and D must be
replaced by the appropriate Green’s functions of Stokes
flow that vanish at the boundaries or have the periodicity
of the domain [10]. Similarly, two-dimensional Green’s
functions must be used when studying the motion of fil-
aments in planar flows [9]. The velocity of the n-th bead
is obtained by summing the force and activity contribu-
tions from all beads, including itself, to the fluid velocity
at its location. An isolated spherical bead with a force f

acquires a velocity µ f where µ is its mobility. By symme-
try, an isolated spherical bead with a stresslet σ cannot
acquire a velocity. This gives the following equation of

FIG. 1. (Color online) Bead positions (white circles) and fluid
velocity field (arrows) after 4000 LB steps showing the linear
instability of the filament. The background color shows the
magnitude of fluid velocity at that point.

motion for the active filament

ṙn =

N
∑

m=1

[O(rn − rm) · fm +D(rn − rm) · σm] (3)

where Oαβ = µδαβ and Dαβγ = 0 for m = n. Equa-
tions (1), (2) and (3) represent our model for the nonlocal
Stokesian hydrodynamics of an active elastic filament. In
the absence of bending rigidity and activity, our model
reduces to Zimm dynamics of a polymer in a good solvent
[11].

The ratio of the stresslet and Stokeslet terms in the
equation of motion is a dimensionless measure of activ-
ity. Estimating the curvature elastic force as κ/L2, where
L = Nb0 is the length of the filament, yields the “ac-
tivity number” A = Lσ0/κ. The rates of active and
elastic relaxation are Γσ = σ0/ηL

d and Γκ = κ/ηLd+1

respectively. Since A = Γσ/Γκ the activity number also
measures the ratio of time scales associated with active
and elastic relaxation. As A → 0 the active time scale
diverges and conformational changes occur only due to
elastic forces. As A → ∞ conformational changes due to
activity are much more rapid than those due to elasticity.
Method: Here we use the lattice Boltzmann method

[12] to obtain solutions to Eq. (3) in periodic planar and
cubic geometries. The fluid is forced by the forces fn
and stresses σn through a standard method [13]. The
resulting fluid velocity is interpolated to the position of
the bead which is then updated using a forward Euler
method. Forces and stresses corresponding to the up-
dated conformation are calculated and passed on to the
fluid and the velocity computation is repeated to advance
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FIG. 2. (Color) (a) Filament motion for κ = 0.1 and
σ0 = 0.01, A = 6.4 showing a run and tumble state. (b) Fil-
ament motion for κ = 0.1 and σ0 = 0.04, A = 25.6 showing
frequent changes in conformation and changes in the center of
mass velocity vCM. The filament ultimately reaches a ballistic
steady state. In both (a) and (b) the color of the trace corre-
sponds to vCM normalized by its maximum value. (c) Time
traces of the radius of gyration Rg normalized by its maxi-
mum value (solid blue curve) and the normalized vCM (dashed
red curve) corresponding to simulation in (a). (d) Distribu-
tion of run times of the filament corresponding to simulation
in (b). Times are always in 103 LB steps.

to the next time step. All forces are kept small in lattice
units to ensure that compressibilities and nonlinearities
play a negligible role. The vorticity diffusion time scale
L2/η is kept smaller than all other time scales in the
problem to ensure that the dynamics is Stokesian. We

use lattice units in which both spatial and temporal dis-
cretization scales are unity. We choose b0 = 2 and k such
that there is less than 1% variation in contour length.
We choose κ̄ in the range 0.0 to 0.5 and σ0 in the range 0
to 0.05, and N in the range 16 to 96. The initial filament
conformation is a mixture of small amplitude transverse
sinusoidal deformations of wavelengths that are a few in-
teger multiples of L. The integration is carried out for
several million time steps. Our results, unless otherwise
stated, are for periodic planar lattices of size 128.

Results: We summarize our results in Figs. (1) - (3)
and the movies in [14]. At early times, the filament de-
velops a bending instability due to the activity. We show
the nature of this instability, as A → ∞ and k → 0, in
Fig. (1) and its accompanying movie [14]. The extensile
flow induced by the activity stretches the filament which
then develops a sinusoidal instability that propagates in-
wards from the edges. The activity-induced linear in-
stability proceeds unchecked due to the weakness of the
elastic restoring forces. For A → 0 and k → ∞, this
instability is controlled by inextensibility and curvature
to produce bent filament conformations. As the curva-
ture develops, the flows produced by individual stresslets
coherently add to form a net flow which propels the fil-
ament. Since the hydrodynamic drag on the filament is
greater at its ends [15], a balance between elastic defor-
mation, active propulsion and drag ensues and the fila-
ment propels steadily in a mildly deformed bow-shaped
conformation, as shown in panel (a) of Fig. (3). We ex-
pect that, on dimensional grounds, the active filament
will be linearly unstable only when L > lA ∼ κ/σ0,
where numerical prefactors can be obtained from the lin-
ear stability analysis of Eq. (3). In contrast, the elastic
Euler instability of a filament under force F occurs when
L > lE ∼

√

κ/F . A linear instability of passive filaments
in an active medium, but without nonlocal hydrodynam-
ics, was found in [16], while bow-shaped conformations,
for filaments driven by external forces, were found in [17].

With increasing A, the activity-induced linear insta-
bility cannot be contained by elastic restoring forces and
the filament develops large-amplitude nonlinear deforma-
tions. An unsteady state is then produced, as shown
in panel (b) of Fig. (3), where the filament undergoes
conformational fluctuations as it autonomously propels.
The flow acquires a rotational component of motion due
to which there are frequent changes in direction of the
center of mass velocity. This is shown in greater de-
tail in Fig. 2(a) and its accompanying movie [14]. The
radius of gyration and the center of mass velocity are
anti-correlated, as is clear from Fig. 2(c). The confor-
mations in this unsteady state depend sensitively on the
initial conditions and on A. The top panels of Fig. (3)
show typical unsteady conformations for corresponding
values of A. For the largest values of activity in our sim-
ulations, the center of mass motion resembles a random
walk, with short bursts of runs followed by frequent tum-
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FIG. 3. (Color online) Filament conformations at various val-
ues of the activity number A. Red dashed boxes correspond
to transient conformations which evolve to the steady confor-
mations below in blue solid boxes. Notches on the sides of
the blue boxes indicate the corresponding value of A.

bles, as seen in Fig. 2(b) and its accompanying movie [14].
The histogram of the run time distribution is decidedly
non-Poissonian, as shown in Fig. 2(d), indicating that
the steps of the walk may be correlated. It is remarkable
that such “animate” behavior can be generated by Eq.
(3).

The unsteady states described above decay into nonlin-
ear steady states, where the filament is either ballistically
propelling, panels (b) and (d) of Fig. (3), or steadily ro-
tating, panel (c) of Fig. (3). In the ballistically propelling
states, the filament resembles a teardrop. The transient
unsteady state that decays to the ballistically propelling
teardrop is shown in Fig. 2(b). The translational veloc-
ity is drastically reduced in the steady teardrop confor-
mation, as seen in the accompanying movie [14]. Pos-
sible reasons for this could be the increased drag on
the teardrop shape or the less effective addition of the
stresslet velocities in that conformation. For intermedi-
ate values of A, the filament assumes an S shape, and
begins to rotate steadily as shown in the movie [14].
These elastically nonlinear and hydrodynamically nonlo-
cal steady states cannot be obtained from a local, linear
analysis of Eq. (3). In cubic flows, we see similar linear
instabilities and unsteady states [14]. However, due to
the large time scales (Γ−1

σ ∼ 4 × 106 LB steps), we are
unable to observe steady states for the duration of our
simulations.

For a microtubule of size L ∼ 30µm, κ ∼ 50pNµm2

with about 200 motors per micron exerting approxi-
mately 6pN of force, we obtain A ∼ 60. The activity can
be manipulated in motor-polymer bundle systems or in
polymers of autonomously motile nanorods over a large
range of A. These systems would be the best candidates

for a verification of our results.
Discussion and conclusion: Our model has several im-

portant variations. We argued that active processes can-
not add linear or angular momentum to the fluid and,
so, must be represented by Stokesian singularities with
those properties. This ruled out the Stokeslet and the
rotlet but allowed for higher singularities, of which the
stresslet, being the most dominant, was retained. The
stresslet, with a C∞ axis, is not forbidden by symme-
try as a representation of a polar active element. If it
is forbidden for non-symmetry reasons, we must use the
potential dipole d [10], the leading singularity with po-
lar symmetry, whose velocity field is vα(r) = Gαβ(r)dβ ,
Gαβ = (−δαβ+3r̂αr̂β)/8πηr

3, in Eq. (3). The axis of the
stresslet or the potential dipole can be oriented normally
or obliquely to the local tangent of the filament and the
stresslet can also be contractile, σ0 < 0. The precise na-
ture of the nonlinear steady states obtained from these
various combination will be reported in future work. A
generic equation of motion encompassing these specific
cases is provided in [14].
Semi-flexibility is crucially important in obtaining the

results above. A rigid rod (κ = ∞, A = 0) will be im-
mune to the active instability. Since the uniaxial axes
of the stresslets and the rod are aligned, it cannot, by
symmetry, acquire any translational or rotational mo-
tion. It is only by the breaking of this symmetry, pos-
sible when A 6= 0, that the filament is able to acquire
motion. The interplay between nonlocal hydrodynamics
and semi-flexibility is necessary for the rotational motion
of the filament, as has been noted earlier in a different
context [17].
We have presented a model for an autonomously motile

semi-flexible filament which takes into account nonlocal
hydrodynamic interactions. It is surprising that a mini-
mal model, such as ours, contains such rich phenomenol-
ogy. Our model can be used to explore other remarkable
effects of single active filaments like the cilia-like beat-
ing of motor-polymer bundles [7] as well as the collec-
tive properties of networks of active filaments, such as
the cytoskeleton. Our model opens up the possibility
of studying the non-equilibrium dynamics of active fil-
aments including the effects of nonlinear elasticity and
nonlocal hydrodynamics.
Financial support from PRISM, Department of Atomic

Energy, Government of India (SG and RA) and comput-
ing resources through HPCE, IIT Madras is gratefully
acknowledged.

Supplemental material: We present a generic model
for autonomously motile elastic filaments which encom-
passes all the variations of Eq. (3). We include the poten-
tial dipole as a possible singularity that is polar. This is
subdominant to the stresslet, but is the most important
singularity if the stresslet vanishes due to non-symmetry
reasons. In addition, we include an externally imposed
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shear flow characterized by the shear rate tensor E. We
allow for any orientation of the stresslet axis p̂n and the
potential dipole axis d̂n relative to the local tangent of
the filament t̂n. Thus, we have two new parameters in
the model, θσ = p̂n · t̂n and θd = d̂n · t̂n, the preferred an-
gle that the stresslet and the potential dipole make with
respect to the tangent. These angles can be made to vary

along the filament, or may fluctuate in response to ther-
mal noise. Finally, we include an external force gn which
may be due to externally imposed fields like gravity or
electricity. Such fields are required when studying the
driven motion, for example sedimentation under gravity,
of active filaments. The generic equation of motion then,
is

ṙn =

N
∑

m=1

[O(rn − rm) · fm +D(rn − rm) · σm +G(rn − rm) · dm] +E · rn (4)

fn = −
∂U

∂rn
+ gn, σn = σ0(p̂np̂n − I/d), dn = d0d̂n. (5)

Oαβ(r) =
1

8πηr
(δαβ + r̂αr̂β), Dαβγ(r) =

1

8πηr2
(−r̂αδβγ + 3r̂αr̂β r̂γ), Gαβ =

1

8πηr3
(−δαβ + 3r̂αr̂β) (6)

For an unbounded two-dimensional fluid, the tensors can
be obtained from their corresponding three-dimensional
expressions through the replacements 1/r → log r,
1/rn+1 → 1/rn for n = 1, 2 and 8π → 4π [9]. For peri-
odic flows, the forms given by Hasimoto must be used
[18]. A principal advantage of the lattice Boltzmann
method of solution is that the Green’s functions above
need not be computed explicitly. This is especially ad-
vantageous for complicated geometries where the Green’s
functions are typically not available in closed form. If re-
quired, the hydrodynamic interactions can be evaluated
to higher orders in a multipole expansion [19] or can be
formulated within the more rigorous framework of slen-
der body theory [15].

The relaxation rates associated with elasticity, stresslet
activity and potential dipole activity are Γκ = κ/ηLd+1,
Γσ = σ0/ηL

d and Γd = d0/ηL
d+1. The shear rate tensor

introduces at least one additional independent relaxation
rate ΓE = γ̇. The ratio of uniaxial and polar activities
is Lσ0/d0, indicating that uniaxial activity dominates
for long filaments. This motivates why Eq. (3) retains
only uniaxial activity. These equations form the basis
by which we can explore the non-equilibrium dynamics
of active filaments under external fields or externally im-
posed velocity gradients.
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