
ar
X

iv
:1

20
5.

25
67

v1
  [

ph
ys

ic
s.

at
om

-p
h]

  1
1 

M
ay

 2
01

2

Controllable steep dispersion with gain in a four-level N -scheme with four-wave

mixing

Nathaniel B. Phillipsa, Irina Novikovaa, Eugeniy E. Mikhailova, Dmitry Budkerb,c, Simon Rochesterb

aDepartment of Physics, The College of William and Mary, Williamsburg, VA 23185, USA; bRochester Scientific,

LLC, El Cerrito, CA, 94530, USA; cDepartment of Physics, University of California, Berkeley, CA 94720, USA
We present a theoretical analysis of the propagation of light pulses through a medium of four-level

atoms, with two strong pump fields and a weak signal field in an N-scheme arrangement. We show
that the generation of four-wave mixing has a profound effect on the signal field group velocity and
absorption, allowing the signal field propagation to be tuned from superluminal to slow light regimes
with amplification.

I. INTRODUCTION

Precise rotation sensors are critical components for sta-
bilization, navigation, and targeting applications. At the
moment, the most sensitive commercial devices are op-
tical gyroscopes based on the Sagnac effect [1]. Such a
device consists of a ring interferometer with two counter-
propagating light waves, as shown in Fig. 1. The rotation
of such an interferometer results in a phase difference be-
tween the two optical fields proportional to the magni-

tude of the rotational angular velocity ~Ω:

∆φ =
4πω

c2
~A · ~Ω, (1)

where ω is the light angular frequency, c is the speed of

light, and ~A is the area of the optical loop. Most suc-
cessful realizations to date are fiber-optics gyroscopes,
in which the interferometer ring is formed by a loop
of an optical fiber. The sensitivity of such an inter-
ferometer is usually boosted by using a large number
N of loops that increase the effective area in Eq. (1)
by a factor of N . The Sagnac phase shift can then
be measured directly from the interference of the two
counter-propagating waves at the output, or by moni-
toring the resulting frequency difference between corre-
sponding counter-propagating modes of the interferome-
ter cavity. In either case, the reciprocity of light propaga-
tion dramatically reduces effects of environmental factors
(temperature, vibrations, etc.), and ensures high reliabil-
ity. As a result, the sensitivity of state-of-the-art com-
pact fiber-optic gyroscopes has reached the shot-noise-
limited value of 10−7–10−8 rad/s/

√
Hz [2], while large-

area laser gyroscopes have achieved even greater sensi-
tivities, on the order of 10−10 rad/s/

√
Hz [3].

Similar sensitivity has been also achieved with matter-
based Sagnac interferometers. In this case, the rotation-
induced phase equation may be written as

∆φ =
4π

λdBv
~A · ~Ω, (2)

where v and λdB = 2π~/(mv) represent the average ve-
locity and the de Broglie wavelength of the massive parti-
cles, respectively. Here, the advantage gained by the use
of massive particles (mc2 ≫ ~ω) is offset by the much

Ω
beam
splitter

input

detector

output

Ecw

Eccw

FIG. 1. Generic schematic of a generic optical gyroscope
based on the Sagnac effect.

smaller effective area compared to fiber-optics devices,
resulting in similar performance [4].

Recent demonstrations of slow light pulse propaga-
tion in coherent optical media stirred active debate on
the possibility of using slow-light pulses to enhance the
Sagnac effect. It was quickly established that neither
large positive (“slow light”) nor negative (“fast light”)
dispersion has a direct influence on the magnitude of the
Sagnac phase shift in Eq. (1) [5].

Nevertheless, it still seems to be possible to take ad-
vantage of a large group index to enhance gyroscopic
performance. For example, the output signal of a ro-
tating interferometer with a highly dispersive slow-light
medium can be enhanced by its differential response to
opposite Sagnac phase shifts of two counter-propagating
light waves [6]. A modest factor-of-2.5 enhancement of
the observed phase difference has been recently demon-
strated in a slow light fiber ring [7], and a more signifi-
cant enhancement (up to a factor of 200) is predicted in
certain coupled resonator structures [6].

Even more dramatic improvements are predicted for
the measurement of the Sagnac-effect-induced mode
splitting in an active ring cavity with strong negative dis-
persion [8]. Calculations have shown that the resulting
frequency difference between two counter-propagating
modes is inversely proportional to the group index, and
thus nominally diverges for ng = 0 (i.e., for n ≃
−ω ∂n

∂ω
) [8, 9]. While this divergence disappears after cor-
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recting for higher-order nonlinear effects, a 106 improve-
ment in gyroscope sensitivity should still be possible.
The current status of these debates shows that while

strong positive or negative optical dispersion may indeed
be capable of dramatic improvements in optical gyro-
scope performance, there is no clear winning approach.
Thus, an atomic system that can be easily reconfigured
to exhibit either strong positive or strong negative dis-
persion is an ideal candidate for the development of such
a new generation of advanced optical gyroscopes. In the
last decade, controllable manipulations of the group ve-
locity of light have been demonstrated in a wide range of
systems [10, 11]. Nonetheless, atomic systems with long-
lived spin coherences still provide the highest values of
group index for both slow and fast light regimes [12]. In
such atomic systems, the group velocity for a probe opti-
cal field can be widely tuned by adjusting parameters of
a strong control field that provides strong coupling of the
probe optical field to a collective atomic spin state [13].

|2〉

|1〉

|3〉

δ

∆HFS

|4〉

Ω 1Ω 2

δ1

Ω 3

δ 3

Ω 4

δ 2
 P

δ 4

FIG. 2. Schematic for four optical fields interacting with four-
level atoms in an N -configuration.

An ideal test system for the development of a new type
of optical gyroscope with improved rotational sensitiv-
ity should have a dispersion that can be continuously
controlled in the widest possible range—from the high-
est positive group index to the highest negative group
index—with minimal changes in the experimental ar-
rangement. While several interaction schemes are capa-
ble of such wide tunability [14, 15], a so-called N -scheme
has recently emerged as a promising candidate [16–20].
A possible realization of an N -scheme is formed by three
optical fields interacting with four-level atoms in the ar-
rangement shown in Fig. 2. In the absence of the control
field, the two resonant optical fields Ω1,2 form a regular
Λ system exhibiting EIT and slow light [13]. The inter-
action of the atoms with the second strong control field
Ω3 splits this single EIT peak into two, separated by a
narrow enhanced-absorption peak. This spectral region
exhibits a fast-light effect, desired for gyroscope perfor-
mance enhancement. However, this fast-light regime can-
not be directly utilized in the proposed active enhanced-
sensitivity optical gyroscope due to its unavoidable high
optical losses.
In this manuscript, we provide an extended treatment

of the four-level N -scheme that includes the possibility
of four-wave mixing (FWM) by allowing optical transi-
tions (and spontaneous decay) between states |4〉 and |1〉.
The associated FWM gain modifies the transmission of
the probe field [21, 22], and provides a smooth switch be-
tween slow- and fast-light regimes by varying the strength
of one of the pump fields (Ω3).

II. SLOW AND FAST LIGHT IN A

FOUR-LEVEL N -SCHEME

The evolution of a four-level N -system, shown in
Fig. 2, can be described under the rotating-wave approx-
imation by the following Hamiltonian:

Ĥ

i~
=









0 0 − 1
2e

−iφ1Ω1 − 1
2e

−iφ4Ω4

0 −δ1 + δ2 − 1
2e

−iφ2Ω2 − 1
2e

−iφ3Ω3

− 1
2e

iφ1Ω1 − 1
2e

iφ2Ω2 −δ1 0
− 1

2e
iφ4Ω4 − 1

2e
iφ3Ω3 0 −δ1 + δ2 − δ3









,

(3)
where Ωi and φi are the Rabi frequencies and phases
of the corresponding optical fields, respectively, and δi
are their detunings from the corresponding optical tran-
sitions, as shown in Fig. 2. Here we have assumed the
four-photon resonance condition −δ1 + δ2 − δ3 + δ4 = 0,
as well as the phase-matching condition on the optical
wavenumbers ki, −k1+k2−k3+k4 = 0, which results in
the elimination of the explicit time and space dependence
from the Hamiltonian [23]. The four-photon resonance
condition is automatically satisfied in the situation that
we will primarily consider, in which the Stokes field Ω4

is spontaneously generated.
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FIG. 3. Real and imaginary parts of the probe-field suscep-
tibility for various interaction configurations: (a) only one
control field Ω1 = (2π) 3 MHz is on (standard EIT regime);
(b) both control fields Ω1 = (2π) 3 MHz and Ω3 = (2π) 6 MHz
are present, but no radiative transition between states |4〉 and
|1〉 is allowed (standard N -scheme); (c) both control fields
Ω1 = (2π) 3 MHz and Ω3 = (2π) 6 MHz are present, and
both excited states have equal decay rates into each of the
ground states. For all graphs the excited state decay rates
are γ3 = γ4 = (2π) 3 MHz, the ground-state relaxation rate
is (2π) 0.01 MHz, we assume equal branching ratios for all
optical transitions, and both pump fields are resonant with
corresponding optical transitions.

The ability to control the dispersion of the probe field
Ω2 by adjusting the intensities of two strong control fields
Ω1 and Ω3 is illustrated in Fig. 3, obtained by numerically
solving the evolution equations obtained from the above
Hamiltonian for the steady-state condition. Figure 3(a)
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shows a traditional EIT regime, with a moderately strong
first control field Ω1 = (2π) 3 MHz and the second con-
trol field Ω3 turned off. As expected, we observe a dip
in the absorption spectrum (dashed line) and steep, pos-
itive, linear dispersion of the refractive index (solid line)
near zero two-photon detuning δP = δ2 − δ1 = 0, be-
tween two absorption peaks corresponding to the Autler-
Townes splitting of the excited state by the strong con-
trol field. Figure 3(b) depicts the situation in which the
atoms interact with both strong control fields Ω1 and Ω3

in a standardN -configuration, in which optical transition
from state |4〉 to |1〉 is not allowed by selection rules. In
this case, the spectrum consists of four partially-resolved
absorption resonances, which can be interpreted as un-
equal Autler-Townes splittings of the states |2〉 and |3〉 by
the control fields of different intensities Ω1 = (2π) 3 MHz
and Ω3 = (2π) 6 MHz. Even though there are several
spectral regions in which steep anomalous dispersion is
realized, all of them occur in conjunction with enhanced
absorption.

Finally, Figure 3(c) shows that the situation is quite
different if optical transitions are allowed from both ex-
cited states to each of the ground states. In this case,
the four-wave mixing process in a double-Λ system is
possible, and it is enhanced through the long-lived spin
coherence between states |1〉 and |2〉 [13, 22, 24]. As a re-
sult, a new optical Stokes field Ω4 is efficiently generated,
and the probe-field spectrum consists of two antisymmet-
ric Raman resonances, with gain regions at both positive
and negative probe-field detunings. For properly chosen
intensities of the two control fields, it is possible to ad-
just the frequency splitting and widths of these peaks to
achieve a negatively-sloped refractive index for the probe
field near the zero two-photon detuning δP = 0, while the
its gain drops to zero between the two gain peaks. Thus,
the probe field experiences minimal absorption or gain
for frequencies near the two-photon resonance, which are
the desired characteristics of an atomic medium for gy-
roscope enhancement.

From this picture, it is clear that optimization of the
control field intensities allows for smooth tuning of the
probe field’s dispersion from slow to fast light regimes
by changing the frequency shift and shape of the Raman
peaks. To find the optimal operational parameters nu-
merically, we compute the spectrum of the probe field
Ω2 for the range of the control fields’ Rabi frequencies
and calculate dispersion at the zero two-photon reso-
nance. The results are shown in Fig. 4. One can see
that depending on the ratio between two control fields,
the probe experiences either slow light (when the two
gain peaks for positive and negative two-photon detun-
ing are not resolved and form a single gain peak), or fast
light (when the two peak are farther apart, forming a
distinct dip between them). When both fields are very
strong, the Raman resonances are shifted too far from the
origin, leading to flat dispersion. From this analysis we
have identified Ω1 = (2π) 3 MHz and Ω3 = (2π) 6 MHz
as suitable values for producing the desired lossless fast-
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FIG. 4. Optimization of the probe-field group index ng on
the two-photon resonance, as function of both control fields’
strengths. For this calculation, we assumed 1 cm-long atomic
medium of 109 cm Rb density; the rest of the experimental
parameters are the same as in Fig. 3. Zero probe-field absorp-
tion is predicted for the shown range of control fields’ Rabi
frequencies.

light behavior.
Under the four-wave mixing condition, the sponta-

neously generated Stokes field Ω4 experiences strong
gain, and thus its intensity increases as it propagates
through the medium. Moreover, its presence has a strong
effect on the probe field amplitude due to their mu-
tual coupling through the atomic spin coherence, even
though both probe and Stokes fields remain significantly
weaker than either control field. In Fig. 5, we plot the
real and imaginary parts of optical polarizations for both
the probe (top) and Stokes (bottom) fields, under con-
ditions corresponding to different points along the opti-
cal path through the atomic medium. The left column
represents the entrance of the vapor cell, where only the
probe field is present, and Ω4 = 0 since it is not yet gener-
ated. Under these conditions, Ω4 experiences strong gain,
which leads to its spontaneous generation. The Stokes
field is generated at the frequency that satisfies the four-
photon resonance condition—any variation in the probe
two-photon detuning δP = δ2 − δ1 is matched by the
corresponding change in the Stokes field two-photon de-
tuning δS = δ4 − δ3 = −δP .
As the unattenuated probe light and generated Stokes

field propagate along the cell, the increasing strength
of Ω4 starts affecting the propagation of the probe
field through the FWM coupling. In particular, the
negatively-sloped refractive index is somewhat flattened
out, due to appearance of a small amount of gain
[Fig. 5(c)]. Farther along the cell, the probe field ex-
periences stronger gain, but the dispersion switches to
non-anomalous, associated with slow-light propagation
regime. The observed behavior indicates the the am-
plitude of the Stokes field offers an additional control
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FIG. 5. Top row : Real and imaginary parts of atomic po-
larization ρ3,2, proportional to the refractive index and ab-
sorption for the probe field Ω2 for for various strengths of the
Stokes field. Bottom row : Same for real and imaginary parts
of atomic polarization ρ4,1 for the Stokes field Ω4. Pump fields
are Ω1 = (2π) 3 MHz and Ω3 = (2π) 6 MHz.

mechanism of the group index through, for example, the
optical depth of the atomic ensemble. At the same time,
the four-wave mixing process produces higher gain for
the probe field at the output, and thus allows for com-
pensation of unavoidable optical losses when operating
inside a cavity.

III. ANALYTICAL SOLUTION

The results presented above have been obtained by nu-
merical solution of the propagation equations for all four
optical fields using interaction Hamiltonian, described
by Eq. (3) without making any additional assumptions
about the parameters of the system. However, with a few
reasonable approximations, we also can find an analyti-
cal solution for time-dependent weak optical fields Ω2 and
Ω4 and strong cw optical fields Ω1 and Ω3. In this case
we can assume a linear response of the atomic medium
in response to both weak optical fields. The strong con-
trol fields determine the populations of the atomic levels
and optical polarizations for the |1〉 → |3〉 and |2〉 → |4〉
transitions that are coupled with these fields. Thus, the
corresponding density matrix elements can be calculated
assuming only the interaction of the two strong fields
with the atoms, which in the interaction scheme under
consideration (Fig. 2) reduces to the simple case of two
independent two-level systems, connected only through

the decays of the excited states |3〉 and |4〉:

ρ̇1,1 = γ31ρ3,3 + γ41ρ4,4 +
1

2
iΩ1(ρ3,1 − ρ1,3) (4)

ρ̇2,2 = γ32ρ3,3 + γ42ρ4,4 +
1

2
iΩ2(ρ4,2 − ρ2,4) (5)

ρ̇3,3 = −γ3ρ3,3 −
1

2
iΩ1(ρ3,1 − ρ1,3) (6)

ρ̇4,4 = −γ4ρ4,4 −
1

2
iΩ2(ρ4,2 − ρ2,4) (7)

ρ̇1,3 = −(γ3/2 + iδ1)ρ1,3 −
1

2
iΩ1(ρ1,1 − ρ3,3) (8)

ρ̇2,4 = −(γ4/2 + iδ3)ρ2,4 −
1

2
iΩ3(ρ2,2 − ρ4,4) (9)

Here γ3 = γ31+γ32 and γ4 = γ41+γ42 are the population
decay rates of the excited states. For simplicity, we have
neglected the population decay rates from the two ground
states, assuming that they are significantly smaller than
the excited state decays and the strong optical fields’
Rabi frequencies. Comparison with the exact numerical
solutions indicates that this is a good approximation.
Solving Eqs. (4-9) in the steady state and assuming

equal branching ratios for the excited state decay chan-
nels (γ31 = γ32 = γ3/2 and γ41 = γ42 = γ4/2), we obtain
the following expressions for atomic populations and op-
tical coherences:





















ρ
(0)
1,1

ρ
(0)
2,2

ρ
(0)
3,3

ρ
(0)
4,4

ρ
(0)
1,3
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(0)
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=
1

T















Ω2
3(4δ

2
1 +Ω2

1 + γ2
3)γ4

Ω2
1(4δ

2
3 +Ω2

3 + γ2
4)γ3

Ω2
1Ω

2
3γ4

Ω2
1Ω

2
3γ3

−Ω1Ω
2
3γ4(2δ1 + iγ3)

−Ω3Ω
2
1γ3(2δ3 + iγ4)















, (10)

where T = 2Ω3
2γ4

(

2δ1
2 +Ω1

2
)

+

γ3γ4
(

Ω3
2γ3 +Ω1

2γ4
)

+ 2Ω1
2γ3

(

2δ3
2 +Ω3

2
)

is the
common denominator. We make the additional ap-
proximation that the values of these density matrix
elements do not change along the length of the cell.
The validity of this approximation may be questioned,
since, in fact, both strong fields will experience some
absorption. Later, we will demonstrate that in the
range of strong field intensities that produce the desired
fast-light regime this absorption is not significant, and
the non-depletion approximation is reasonable.
We are interested in calculating the propagation of the

weak probe field Ω2, as well as in the possible generation
of the four-wave mixing field Ω4 connecting the |4〉 and
|1〉 transition, governed by the wave equation,

(−iω + c∂z)Ω2 = ig2Nρ3,2, (11)

(−iω + c∂z)Ω4 = ig4Nρ4,1, (12)

where g2,4 are coupling coefficients for the corresponding
optical transitions.
The remaining density matrix elements are described

by the following equations:
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ρ̇1,2 = −Γ12ρ1,2 +
1

2
iΩ1ρ3,2 −

1

2
iΩ3ρ1,4 −

1

2
iΩ2ρ

(0)
1,3 +

1

2
iΩ4ρ

(0)
4,2; (13)

ρ̇1,4 = −Γ14ρ1,4 +
1

2
iΩ1ρ3,4 −

1

2
iΩ3ρ1,2 +

1

2
iΩ4(ρ

(0)
4,4 − ρ

(0)
1,1); (14)

ρ̇3,2 = −Γ32ρ3,2 +
1

2
iΩ1ρ1,2 −

1

2
iΩ3ρ3,4 −

1

2
iΩ2(ρ

(0)
3,3 − ρ

(0)
2,2); (15)

ρ̇3,4 = −Γ34ρ3,4 +
1

2
iΩ1ρ1,4 −

1

2
iΩ3ρ3,2 +

1

2
iΩ2ρ

(0)
2,4 −

1

2
iΩ4ρ

(0)
3,1; (16)

where Γ12 = i(δ1 − δ2), Γ14 = γ4/2 + i(δ1 − δ2 + δ3),
Γ32 = γ3/2− iδ2, and Γ34 = (γ3 + γ4)/2 + i(δ3 − δ2).
It is important to note that we assume that the detun-

ing of this generated field is such that it always obeys the
four-photon resonance condition −δ1 + δ2 − δ3 + δ4 = 0.
For example, if both strong fields are tuned to the atomic
transition frequencies (δ1 = δ3 = 0) and the probe field
detuning δ2 is scanned, the detuning of the generated
Stokes field changes in the opposite direction δ4 = −δ2
to maintain the resonance.
Equations (13–16) can be compactly written as

ρ̇↓ = Mρ↓ +B, (17)

where vector ρ↓ consists of the four unknown density ma-
trix elements (ρ↓)

T = {ρ1,2, ρ1,4, ρ3,2, ρ3,4}, M is a 4 × 4
matrix:

M =







iδ2 −iΩ3/2 iΩ1/2 0
−iΩ3/2 iδ2 − γ4/2 0 iΩ1/2
iΩ1/2 0 iδ2 − γ3/2 −iΩ3/2

0 iΩ1/2 −iΩ3/2 iδ2 − γ3/2− γ4/2






,

(18)
and B is defined as

B =
1

iT









Ω1Ω3(Ω2Ω3 +Ω1Ω4)γ3γ4
iΩ3

2Ω4

(

Ω1
2γ3 − Ω1

2γ4 − γ2
3γ4

)

iΩ1
2Ω2

(

Ω3
2γ4 − Ω3

2γ3 − γ3γ
2
4

)

Ω1Ω3(Ω1Ω2 +Ω3Ω4)γ3γ4









. (19)

In this case the solution of Eq. (20) in the frequency
domain is

ρ
(1)
↓ = −(M + iωI)−1B, (20)

where I is the identity matrix. Finally, the calculated ex-
pressions for the density matrix elements ρ3,2 and ρ1,4 in
terms of the optical-field Rabi frequencies must be substi-
tuted into Eqs. (11,12) to obtain the propagation equa-
tions for the probe and Stokes field in a self-consistent
form:

∂z

(

Ω2

Ω4

)

=
iNg

c
M2

(

Ω2

Ω4

)

, (21)

where the matrix M2 contains the information about
atomic response, and we assume equal coupling coeffi-
cients g2 = g4 = g. The explicit form of the matrix M2

consists of algebraic combinations of the Rabi frequen-
cies and detunings of the strong optical fields and optical
transition decay rates, but is omitted here for brevity.

The important consequence of the non-depletion ap-
proximation for the strong fields is that the right-hand
side of Eq. (21) does not depend on position z, allowing
a direct solution:

(

Ω2(ω, z)
Ω4(ω, z)

)

= e
iNg

c
M2z

(

Ω2(ω, 0)
Ω4(ω, 0)

)

(22)

≡
(

A(ω, z) B(ω, z)
C(ω, z) D(ω, z)

)(

Ω2(ω, 0)
Ω4(ω, 0)

)

.

Here Ω2,4(0) are the Rabi frequencies corresponding to
the input probe and Stokes fields. It is important to note
that expanding the expressions for the coefficients A-D
forms in Taylor series up to the ω2 terms accurately cap-
tures the pulse propagation dynamics, but allows signifi-
cant speed-up in the calculations. The results presented
below were obtained in this approximation.
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FIG. 6. Comparison between exact solution (top) and ap-
proximate analytical calculations (bottom) of the signal pulse
propagation through the cell of varying length.

Fourier transformation of this solution describes the
propagation dynamics of signal/Stokes optical fields.
Fig. 6 demonstrates the comparison between the ex-
act numerical solutions obtained by calculating all time-
dependent density matrix elements and propagation for
all four optical fields, and the prediction of our simpli-
fied analytical theory for propagation of a 100-ns Gaus-
sian probe pulse through an atomic medium with den-
sity 109 cm−3. We observe that, for short lengths of the
atomic medium (15 mm and 25 mm), the two methods
provide similar solutions, predicting small gain and some
advance for the probe optical field, as well as generation
of the Stokes field in a slow-light regime. For the longer
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cell (50 mm), however, the analytical model significantly
overestimates the gain in both probe and Stokes fields
compared to the exact numerical solution that takes into
the account the attenuation of both strong control fields
associated population redistribution. Nevertheless, it is
interesting to note that both models predict positive de-
lay for the probe pulse for the longer cell, with similar
delay time.
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FIG. 7. Coefficients A and B of the transfer matrix Eq. (22)
for near-zero probe detuning δ2. The calculations are made
for conditions identical to those of Fig. 6(a).

The analytical solution also provides useful intuition
about the role of the generated Stokes field in the dy-
namics of the probe optical field. For example, Fig. 7
shows the real and imaginary parts of the coefficients
A and B of the transfer matrix in Eq. (22) for a rela-
tively short atomic medium (L = 1 cm). The real part
of these coefficients [Fig. 7(a)] illustrates that both input
probe and Stokes fields directly contribute to the pre-
dicted amplification of the probe field after the cell, and

have no spectral dependence near the resonance. The
imaginary parts of the coefficients, shown in Fig. 7(b),
represent the dispersive effect of the atomic medium.
They are both nearly linear functions of frequency, with
slopes of opposite sign. Also, for the chosen detunings,
∂Im(B)/∂ω, representing the Stokes field contribution
to the dispersion, is approximately twice as steep as
∂Im(A)/∂ω. Thus, it is not surprising that for very weak
Stokes fields (corresponding to low optical depth values)
the dispersion is predominantly determined by the probe
field propagation, and displays “fast light” regime. As
the amplitude of the Stokes field increases, it adds up
with the opposite phase to the output field, and, even-
tually, changes the sign of the dispersion. Under these
conditions, the output probe field is delayed, as in the
“slow light” regime.

IV. CONCLUSIONS

In conclusion, we have analyzed the propagation of
a weak resonant probe through a medium of four-level
atoms in an N -scheme with allowed four-wave mixing
generation, and found it to be a promising candidate
for the realization of tunable “slow-to-fast” light with
no absorption. This is particularly interesting for the ex-
perimental investigation of potential techniques for the
enhancement of optical-gyroscope performance.
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