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NORMS INEQUALITIES FOR SQUARE FUNCTIONS IN

SOME MORREY’S SUBSPACES

JUSTIN FEUTO

Abstract. We prove that the intrinsic square function and the intrinsic
Littlewood-Paley g∗λ-function as defined by Wilson, are bounded in a family
of weighted subspaces of Morrey spaces. The corresponding commutators
generated by bounded mean oscillation functions are also considered.

1. Introduction

Let R
n be the n-dimensional euclidean space equipped with the euclidean

norm |·| and the Lebesgue measure dx. For 1 ≤ p, q ≤ ∞, the amalgam of
Lq(Rn) and Lp(Rn) is the space (Lq, Lp)(Rn) of measurable functions f : Rn →
C which are locally in Lq(Rn) and such that the function y 7→

∥

∥fχB(y,1)

∥

∥

q

belongs to Lp(Rn), where for r > 0, B(y, r) = {x ∈ Rn/ |x− y| < r} is the open
ball centered at y with radius r, χB(y,r) denoting the characteristic function of
the ball B(y, r) and ‖·‖q the usual Lebesgue norm in Lq(Rn).

Amalgams arise naturally in harmonic analysis and were introduced by N.
Wiener in 1926. But its systematic study goes back to the work of Holland [9].
We refer the reader to the survey paper of Fournier and Steward [7] for more
information about these spaces. We recapitulate some of their properties in
the following proposition.

Proposition 1.1. Let 1 ≤ q, p ≤ ∞.

(1) (Lq, Lq)(Rn) = Lq(Rn)
(2) Lq(Rn) ∪ Lp(Rn) ⊂ (Lq, Lq)(Rn) if q ≤ p,
(3) (Lq, Lq)(Rn) ⊂ Lq(Rn) ∩ Lp(Rn) if p ≤ q,
(4) The map f 7→ ‖f‖q,p, where

(1.1) ‖f‖q,p :=





∫

Rn

∥

∥fχB(y,1)

∥

∥

p

q





1
p
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with the usual modification when p = ∞, is a norm on (Lq, Lp)(Rn) (if
we identify functions that differ only on null subset of Rn) under which
it is a Banach space.

As we observe in the above proposition, the amalgam spaces (Lq, Lp)(Rn)
are interesting especially when q ≤ p. This will be a general assumption
throughout this work.

In the Lebesgue space Lq(Rn), it is well known that for r > 0 and x ∈ R
n,

the dilation operator δqr : f 7→ r
d
q f(r·) and the translation operators τx : f 7→

f(· − x) are isometries. We use the usual convention that 1
∞

= 0. When we
consider the amalgam space (Lq, Lp)(Rn), only translation operators conserve
this property, which is just a consequence of the one in Lebesgue spaces. But
it is easy to see that f ∈ (Lq, Lp) if and only if we have

(1.2) ‖δαr f‖q,p < ∞,

for all r > 0 and all α > 0. Notice that for r > 0 and α > 0, we have

(1.3)
‖δαr f‖q,p = rn(

1
α
− 1

q
− 1

p
)
(

∫

Rn

∥

∥fχB(y,r)

∥

∥

p

q
dy
)

1
p

≈
[

∫

Rn

(

|B(y, r)|
1
α
− 1

q
− 1

p

∥

∥fχB(y,r)

∥

∥

q

)p

dy
]

1
p

,

1

where |B(y, r)| stands for the Lebesgue measure of the ball B(y, r). This
bring us to consider the subspace (Lq, Lp)α(Rn) of (Lq, Lp)(Rn) that consists
in measurable functions f such that ‖f‖q,p,α < ∞, where for 1 ≤ q, p, α ≤ ∞,

(1.4) ‖f‖q,p,α := sup
r>0

‖δαr f‖q,p .

Taking into consideration Relation (1.3), we can generalize these spaces in the
context of space of homogeneous type in the sense of Coifman and Weiss (see
[5]).

As proved by Fofana in [6], where these spaces were first considered, the
spaces (Lq, Lp)α(Rn) are non trivial if and only if q ≤ α ≤ p. In this case it is
proved in [6, 1], that for 1 ≤ q < α fixed and p going from α to ∞, they form
a chain of distinct Banach spaces beginning with Lebesgue spaces Lα(Rn) and
ending by the classical Morrey’s space Lq,d(1− q

α
)(Rn) = (Lq, L∞)α(Rn). It is

proved [6] that for q < α < p < ∞, the weak Lebesgue space Lα,∞(Rn) is
continuously embedded in the space (Lq, Lp)α(Rn),i.e., there exists C > 0 such
that

(1.5) ‖f‖q,p,α ≤ C ‖f‖∗α,∞ , for all f ∈ Lα,∞.

1Hereafter we propose the following abbreviation A ≈ B for the inequalities C−1
A ≤

B ≤ CA, where C is a positive constant independent of the main parameters.
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We recall that a measurable function f belongs to the weak-Lebesgue space
Lp,∞ if

‖f‖∗p,∞ := sup
λ>0

λ
1
p

∣

∣

{

x ∈ R
d : |f(x)| > λ

}∣

∣ < ∞.

These spaces and many of their properties have been extended in the context
of homogeneous groups by the author in his thesis [3] (see also [4]).

In the rest of this work, we will always assume that 1 ≤ q ≤ α ≤ p ≤ ∞.
We recall that many classical results established in the context of Lebesgue

spaces in Fourier analysis have been extended to the setting of (Lq, Lp)α(Rn)
spaces. For example, Hölder and Young inequalities are just a consequence of
their analog in Lebesgue spaces [6]. The Hardy-Littlewood-Sobolev inequality
for fractional integrals has been generalized to this case in [1, 2]. In this work,
we are interested in the norm inequalities involving some intrinsic functions
(see [12]).

For 0 < η ≤ 1, we denote by Cη the family of function ϕ defined on Rn with
support in the closed unit ball B = {x ∈ Rn : |x| ≤ 1} and vanishing integral,
i.e.,

∫

Rn ϕ(x)dx = 0, and such that for all x, x′ ∈ Rn, |ϕ(x)− ϕ(x′)| ≤ |x− x′|η.

Let R
n+1
+ = Rn × (0,∞) and ϕt(x) = t−nϕ(t−1x). For all (y, t) ∈ R

n+1
+ and

f ∈ L1
loc(R

n), we set

Aηf(y, t) = sup
ϕ∈Cη

|f ∗ ϕt(y)| .

The intrinsic square function of f (of order η) is defined by the formula

Sη(f)(x) =







∫

Γ(x)

Aη(f)(y, t)
2dydt

tn+1







1
2

,

where for x ∈ Rn, Γ(x) denote the usual ”cone of arperture one”,

Γ(x) =
{

(y, t) ∈ R
n+1
+ : |x− y| < t

}

.

We also define the intrinsic Littlewood-Paley g-function gη(f) and g∗λ-function
g∗λ,η(f) by

gη(f)(x) =





∞
∫

0

(Aη(f)(x, t))
2dt

t





1
2

,

and

g∗λ,η(f)(x) =







∫

R
n+1
+

(

t

t+ |x− y|

)λn

(Aη(f)(y, t))
2dydt

tn+1







1
2

,

respectively. Wilson in [13] proved that for 1 < q < ∞, the operators Sη for
0 < η ≤ 1 are bounded in the weighted Lebesgue space Lq

w, namely the space
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consisting in measurable functions f satisfying

‖f‖qw :=





∫

Rn

|f(x)|q w(x)dx





1
q

< ∞,

whenever the weight w fulfilled the Aq condition of Muckenhoupt (see Section
2 for the definition). This result has been extended by Wang (see Theorem
1.1 [11]) to weighted Morrey spaces Lq,κ

w (Rn). We recall that for 0 < κ < 1
the space Lq,κ

w (Rn) consists of measurable functions f such that ‖f‖Lq,κ
w

< ∞,
where

‖f‖Lq,κ
w

:= sup
B





1

w(B)κ

∫

B

|f(x)|q w(x)dx





1
q

.

The boundedness of the operators g∗λ,η in the weighted Morrey space Lq,κ
w (Rn)

is also proved in Theorem 1.3 of [11], while in Theorem 1.2 and 1.4 the author
consider the boundedness of the commutator operators [b, Sη] and

[

b, g∗λ,η
]

as
defined by Relations (2.2) and (2.3).

In this paper we give norm inequalities of these operators in weighted version
of the space (Lq, Lp)α(Rn) say (Lq

w, L
p)α(Rn), for 1 < q ≤ α ≤ p ≤ ∞ (see the

next section for the definition).
The remaining of this paper is organized as follows:
In the second section, we recall the definition of (Lq

w, ℓ
p)α spaces and we state

our main results. Section three is devoted to the prove of the main results.
Throughout the paper, the letter C is used for non-negative constants that

may change from one occurrence to another. The notation A <
∼ B will always

mean that the ratioA/B is bounded away from zero by a constant independent
of the relevant variables in A and B. For α > 0 and a ball B ⊂ Rn, we write
αB for the ball with same center as B and with radius α times radius of B.
We denote by N

∗ the set of all positive integers.

2. Definitions and statement of the main results

A weight w on Rn,i.e., a positive locally integrable function on Rn, is of class
Ap or belongs to Ap for 1 < p < ∞ if there exists a constant C > 0 such that
for all balls B ⊂ R

n we have

(2.1)





1

|B|

∫

B

w(x)dx









1

|B|

∫

B

w
−1
p−1 (x)dx





p−1

≤ C.

We put [w]Ap
= inf {C ∈ Rn : (2.1) holds}. Let w be a weight on Rn and 1 ≤

q, p, α ≤ ∞. We define the space (Lq
w, L

p)α(Rn) as the space of all measurable
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functions f satisfying ‖f‖qw,p,α < ∞, where for r > 0, we put

r ‖f‖qw,p,α :=





∫

Rn

(

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥fχB(y,r)

∥

∥

qw

)p

dy





1
p

,

with w(B(y, r)) =
∫

B(y,r)
w(x)dx and the usual modification when p = ∞, and

‖f‖qw,p,α := sup
r>0

r ‖f‖qw,p,α .

When w ≡ 1, we recover the space (Lq, Lp)α(Rn), while for q < α and p = ∞,
the space (Lq

w, L
∞)α(Rn) is noting but the weighted Morrey space Lq,κ

w (Rn),
with κ = 1

q
− 1

α
.We are now ready to state our main results. The first result

giving the boundedness of the operators Sη, is an extension of Theorem 1.1 of
[11].

Theorem 2.1. Let 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. The operators Sη are
bounded in (Lq

w, L
p)α(Rn). More precisely,

‖Sη(f)‖qw,p,α
<
∼ ‖f‖qw,p,α .

The next result is an extension of Theorem 1.2 of [11] to the space (Lq
w, ℓ

p)α(Rn).
We first recall some definitions. The commutator [b, Sη] of a locally integrable
function b and Sη is defined by

(2.2) [b, Sη] (f)(x) =







∫

Γ(x)

sup
ϕ∈Cη

∣

∣

∣

∣

∣

∣

∫

Rn

(b(x)− b(z))ϕt(y − z)f(z)dz

∣

∣

∣

∣

∣

∣

2

dydt

tn+1







1
2

.

In [11], it is proved that the commutator [b, Sη] is bounded in the weighted
Morrey space Lq,κ

w (Rn) whenever the weight w fulfills the Aq condition, and b
belongs to BMO(Rn) (bounded mean oscillation functions) space, i.e.,

‖b‖BMO(Rn) := sup
B: ball

1

|B|

∫

B

|b(x)− bB| dx < ∞.

We have the following result in the case of our spaces.

Theorem 2.2. Let 0 < η ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. Suppose that
b ∈ BMO(Rn), then there exists a constant C > 0 not depending on f such
that

‖[b, Sη] (f)‖qw,p,α ≤ C ‖f‖qw,p,α ,

for all f ∈ (Lq
w, L

p)α(Rn).

When considering the intrinsic g-function of Littlewood-Paley, we have the
following extension of Theorem 1.3 of [11].
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Theorem 2.3. Let 0 < η ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. If
λ > max {q, 3} then there exists a constant C > 0 such that

∥

∥g∗λ,η(f)
∥

∥

qw,p,α
≤ C ‖f‖qw,p,α ,

for all f ∈ (Lq
w, L

p)α(Rn).

For any locally integrable function b, the commutator
[

b, g∗λ,η
]

is the operator
defined by
(2.3)

[

b, g∗λ,η
]

(f)(x) =







∫

R
n+1
+

(

t

t+ |x− y|

)λn

sup
ϕ∈Cη

∣

∣

∣

∣

∣

∣

∫

Rn

(b(x)− b(z))ϕt(y − z)f(z)dz

∣

∣

∣

∣

∣

∣

2

dydt

tn+1







1
2

.

Using the same argument as in Theorem 2.1 and 2.2, we can prove the follow-
ing.

Theorem 2.4. Let 0 < η ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. If
b ∈ BMO(Rn) and λ > max {q, 3} then there exists a constant C > 0 such
that

∥

∥

[

b, g∗λ,η
]

(f)
∥

∥

qw,p,α
≤ C ‖f‖qw,p,α ,

for all f ∈ (Lq
w, L

p)α(Rn).

This result is an extension of Theorem 1.4 of [11]. Since for any 0 < η ≤ 1
the functions Sη(f) and gη(f) are pointwise comparable as we can see in [12],
as an immediate consequence of Theorem 2.1 and 2.2 we have the following
results.

Corollary 2.5. Let 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. The operator gη is
bounded in (Lq

w, L
p)α(Rn). More precisely,

‖gη(f)‖qw,p,α
<
∼ ‖f‖qw,p,α .

Corollary 2.6. Let 0 < η ≤ 1, 1 < q ≤ α < p ≤ ∞ and w ∈ Aq. Suppose
that b ∈ BMO(Rn), then there exists a constant C > 0 not depending on f
such that

‖[b, gη] (f)‖qw,p,α ≤ C ‖f‖qw,p,α ,

for all f ∈ (Lq
w, L

p)α(Rn).

3. Proof the main results

Proof of Theorem 2.1. Let f ∈ (Lq
w, L

p)α(Rn).
We fix r > 0 and let B = B(y, r) for some y ∈ Rn. As in [11], we write

f = f1 + f2, with f1 = fχ2B. Since Sη is a sub-additive operator, we have

(3.1) ‖Sη(f)χB‖qw ≤ ‖Sη(f1)χB‖qw + ‖Sη(f2)χB‖qw .
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We are going to estimate each of the terms of the second member of (3.1). For
the term in f1, we have

(3.2) ‖Sη(f1)χB‖qw
<
∼ ‖fχ2B‖qw

as an immediate consequence of the boundedness of Sη in Lq
w(R

n). Our atten-
tion will be focused now on the second term.

Let ϕ ∈ Cη, and t > 0. Since the family Cη is uniformly bounded with
respect to the L∞-norm, we have

(3.3) |f2 ∗ ϕt(u)| <
∼ t−n

∫

(2B)c∩B̃(u,t)

|f(z)| dz,

for all u ∈ Rn, where B̃(u, t) := {z ∈ Rn/ |z − u| ≤ t}. Thus for all x ∈ Rn,
we have

|Sη(f2)(x)| <
∼







∫

Γ(x)






t−n

∫

(2B)c∩B̃(u,t)

|f(z)| dz







2

dudt

tn+1







1
2

<
∼

∞
∑

k=1

∫

2k+1B\2kB

|f(z)|







∞
∫

0







∫

B(x,t)

χB̃(z,t)(u)du







dt

t3n+1







1
2

dz

where the last control is an application of Minkowski’s integral inequality.
We suppose x ∈ B(y, r). For k ∈ N∗, z ∈ 2k+1B \ 2kB and t > 0,

∫

B(x,t)
χB̃(z,t)(u)du 6= 0 implies that there exists u0 ∈ B(x, t) ∩ B(z, t). It

follows that

(3.4) 2t ≥ |x− u0|+ |z − u0| ≥ |x− z| ≥ |y − z| − |x− y| ≥ 2k−1r.

Thus for x ∈ B = B(y, r),

|Sη(f2)(x)| <
∼

∞
∑

k=1

∫

2k+1B\2kB

|f(z)|







∞
∫

2k−2r

∫

B(x,t)

du
dt

t3n+1







1
2

dz

<
∼

∞
∑

k=1

∫

2k+1B\2kB

|f(z)|





∞
∫

2k−2r

dt

t2n+1





1
2

dz <
∼

∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|f(z)| dz.

But we have for every k ∈ N
∗

(3.5)
1

|2k+1B|

∫

2k+1B

|f(z)| dz <
∼ ‖fχ2k+1B‖qw w(2k+1B)−

1
q ,
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since w ∈ Aq. Hence,

(3.6)
∥

∥Sη(f2)χB(y,r)

∥

∥

qw
<
∼

∞
∑

k=1

‖fχ2k+1B‖qw

(

w(B)

w(2k+1B)

)
1
q

.

The weight w being in Aq with 1 < q < ∞, there exists 1 < s < ∞ such that

(3.7)
w(B(y, r))

w(B(y, 2k+1r))
<
∼

1

2nk(1−
1
s
)
.

Multiplying both Inequalities (3.2) and (3.6) by w(B(y, r))
1
α
− 1

q
− 1

p and taking
into consideration Relation (3.7), we have
(3.8)

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥Sη(f)χB(y,r)

∥

∥

qw
<
∼ w(B(y, 2r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw

+
∞
∑

k=1

w(B(y, 2k+1r))
1
α
− 1

q
− 1

p

∥

∥fχB(y,2k+1r)

∥

∥

qw

1

2
nk( 1

s′α
− 1

s′p
)
.

Since (3.8) is true for all y ∈ Rn, the Lp norm of both sides led to

r ‖Sη(f)‖qw,p,α
<
∼ ‖f‖qw,p,α , r > 0,

and the result is obtained by taking the supremum over all r > 0. ✷

For the proof of the next result on commutator, we use the following char-
acterization of BMO (see [10]). Let b be a locally integrable function. If
b ∈ BMO(Rn), then for every 1 < p < ∞, we have

(3.9) ‖b‖BMO(Rn) ≈ sup
B: ball





1

|B|

∫

B

|b(x)− bB|
p dx





1
p

Proof of Theorem 2.2. Fix r > 0 and let B = B(y, r) be a ball in Rn. As above,
we split f into two parts f1 and f2 such that f1 = fχ2B and f = f1 + f2. It
comes from the sub-additivity of the commutator that

(3.10)
w(B)

1
α
− 1

q
− 1

p ‖[b, Sη] (f)χB‖qw ≤ w(B)
1
α
− 1

q
− 1

p ‖[b, Sη] (f1)χB‖qw
+ w(B)

1
α
− 1

q
− 1

p ‖[b, Sη] (f2)χB‖qw

Let us estimate each of the term in the right hand sides of (3.10). For the term
in f1, we have
(3.11)

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥[b, Sη] (f1)χB(y,r)

∥

∥

qw
<
∼ w(B(y, 2r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw
,

according to the boundedness of the commutator on Lq
w(R

n) (Theorem 3.1
[11]) and the doubling character of w. For the second term, we proceed almost
as in [11].
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Let x ∈ Rn. For u ∈ Rn, we have

supϕ∈Cη

∣

∣

∫

Rn(b(x)− b(z))ϕt(u− z)f2(z)dz
∣

∣ ≤ |b(x)− bB| supϕ∈Cη

∣

∣

∫

Rn ϕt(u− z)f2(z)dz
∣

∣

+ supϕ∈Cη

∣

∣

∫

Rn(b(z)− bB)ϕt(u− z)f2(z)dz
∣

∣ ,

so that
(3.12)
|[b, Sη] f2(x)| ≤ |b(x)− bB|Sη(f2)(x)

+
(

∫

Γ(x)
supϕ∈Cη

∣

∣

∫

Rn(b(z)− bB)ϕt(u− z)f2(z)dz
∣

∣

2 dudt
tn+1

)
1
2

.

If x ∈ B = B(y, r), then

|Sη(f2)(x)| <
∼

∞
∑

k=1

‖fχ2k+1B‖qw w(2k+1B)−
1
q ,

as we can see in the proof of Theorem 2.1. It follows that

w(B)
1
α
− 1

q
− 1

p ‖|b− bB|Sη(f2)χB‖qw

<
∼ ‖b‖BMO

∞
∑

k=1

(

1

2nk

)
1
s′
( 1
α
− 1

p
)

w(2k+1B)
1
α
− 1

q
− 1

p ‖fχ2k+1B‖qw ,

where we use the following estimation

(3.13)





1

w(B)

∫

B

|b(x)− bB|
q w(x)dx





1
q

<
∼ ‖b‖BMO ,

which is satisfied whenever w ∈ Aq. This comes from the fact that for w ∈ Aq,
with 1 ≤ q < ∞, there exist two reals constants C > 0 and s > 1 depending
only on n, q and [w]Aq

such that for all balls B, we have the following Reverse

Hölder condition (Theorem 9.2.2 [8])




1

|B|

∫

B

ws(z)dz





1
s

≤
C

|B|

∫

B

w(z)dz,

and Relation (3.9). The second term on the right hand sides of Relation (3.12)
is controlled by

(3.14)







∫

Γ(x)






t−n

∫

(2B)c∩B̃(u,t)

|b(z)− b2k+1B| |f(z)| dz







2

dudt

tn+1







1
2

+







∫

Γ(x)






t−n

∫

(2B)c∩B̃(u,t)

|b2k+1B − bB | |f(z)| dz







2

dudt

tn+1







1
2

,
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according to the uniformly bounded property of the family Cη. Using once
more the Minkowski’s inequality for integrals and Inequality (3.4), we have

(3.15)







∫

Γ(x)






t−n

∫

(2B)c∩B̃(u,t)

|b(z)− b2k+1B| |f(z)| dz







2

dudt

tn+1







1
2

<
∼

∞
∑

k=1

1

|2k+1B|

∫

2k+1B\2kB

|b(z)− b2k+1B| |f(z)| dz,

for all x ∈ B(y, r). But then Hölder inequality allow to write

∫

(2k+1B\2kB)
|b(z)− b2k+1B| |f(z)| dz ≤

(

∫

2k+1B
|b(z)− b2k+1B|

q′ w(z)−
q′

q dz

)
1
q′

×
(∫

2k+1B
|f(z)|q w(z)dz

)
1
q ,

so that using the fact that the weight v(z) = w(z)−
q′

q belongs to Aq′ whenever
w ∈ Aq and Relation (3.13), we obtain
(3.16)

∫

(2k+1B\2kB)

|b(z)− b2k+1B| |f(z)| dz <
∼ ‖fχ2k+1B‖qw

∣

∣2k+1B
∣

∣w(2k+1B)−
1
q ‖b‖BMO .

Finally, taking (3.16) into (3.15) yield

(3.17)







∫

Γ(x)






t−n

∫

(2B)c∩B̃(u,t)

|b(z)− b2k+1B| |f(z)| dz







2

dudt

tn+1







1
2

<
∼ ‖b‖BMO

∞
∑

k=1

‖fχ2k+1B‖qw w(2k+1B)−
1
q .

for all x ∈ B. Thus the Lq
w(B) norm of the first term of (3.14) is controlled by

‖b‖BMO

∞
∑

k=1

‖fχ2k+1B‖qw

(

w(B)

w(2k+1B)

)
1
q

.

For the second term of (3.14), we use the fact that

|b2k+1B − bB| <
∼ (k + 1) ‖b‖BMO .
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It follows that for x ∈ B, we have







∫

Γ(x)






t−n

∫

(2B)c∩B̃(u,t)

|b2k+1B − bB| |f(z)| dz







2

dudt

tn+1







1
2

<
∼ ‖b‖BMO

(

∞
∑

k=1

(k + 1) ‖fχ2k+1B‖qw w(2k+1B)−
1
q

)

,

according to Minkowski inequality and Relation (3.5). Thus the Lq
w(B) norm

of the second term of (3.14) is majored by an absolute constant times

‖b‖BMO

(

∞
∑

k=1

(k + 1) ‖fχ2k+1B‖qw

(

w(B)

w(2k+1B)

)
1
q

)

.

Hence,

(3.18)

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥[b, Sη] (f2)χB(y,r)

∥

∥

qw

<
∼ ‖b‖BMO

(

∞
∑

k=1

k + 2

2
2nk
s′

( 1
α
− 1

p
)
w(B(y, 2k+1r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2k+1r)

∥

∥

qw

)

for all y ∈ Rn. Taking Estimation (3.11) and (3.18) in (3.10) yield,
(3.19)

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥[b, Sη] (f)χB(y,r)

∥

∥

qw

<
∼ ‖b‖BMO

(

∞
∑

k=1

k + 2

2
2nk
s′

( 1
α
− 1

p
)
w(B(y, 2k+1r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2k+1r)

∥

∥

qw

)

+ w(B(y, 2r))
1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw

for all y ∈ Rn. Thus taking the Lp-norm of both sides of (3.19), we have

r ‖[b, Sη] (f)‖qw,p,α
<
∼ (1 + ‖b‖BMO) ‖f‖qw,p,α ,

for all r > 0, since the series
∑∞

k=1
k+2

2
2nk
s′

( 1
α−

1
p )

converges. We end the proof by

taking the supremum over all r > 0. ✷

For the proof of Theorem 2.3, we will need the following varying-aperture
versions of Sη. For 0 < η ≤ 1 and β > 0, we define Sη,β(f) by

(3.20) Sη,β(f)(x) =







∫

Γβ(x)

Aη(f)(y, t)
2dydt

tn+1







1
2

,

where Γβ(x) =
{

(x, t) ∈ R
n+1
+ / |x− y| < βt

}

.
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Proof of Theorem 2.3. As we can see in the proved of Theorem 1.3 in [11], for
all x ∈ R

n, we have

g∗λ,η(f)(x)
2 <
∼ Sη(f)(x)

2 +

∞
∑

j=1

2−jλnSη,2j (f)(x)
2.

Let r > 0. For any ball B = B(y, r) include in Rn, it comes from the above
inequality that
(3.21)

w(B)
1
α
− 1

q
− 1

p

∥

∥g∗λ,η(f)χB

∥

∥

qw
<
∼ w(B)

1
α
− 1

q
− 1

p ‖Sη(f)χB‖qw
+

∑∞
j=1 2

−jλn/2w(B)
1
α
− 1

q
− 1

p

∥

∥Sη,2j (f)χB

∥

∥

qw
.

By Theorem 2.1, we have that the Lp norm of the first term of (3.21) is
controlled by ‖f‖qw,p,α. For the terms under the summation, we proceed as

in Theorem 2.1. Let j ∈ {1, 2, . . .}, we write f = f1 + f2 with f1 = fχ2B, It
follows that

(3.22)
w(B)

1
α
− 1

q
− 1

p

∥

∥Sη,2j (f)χB

∥

∥

qw
≤ w(B)

1
α
− 1

q
− 1

p

∥

∥Sη,2j (f1)χB

∥

∥

qw

+ w(B)
1
α
− 1

q
− 1

p

∥

∥Sη,2j (f2)χB

∥

∥

qw
.

Applying Lemma 4.1-4.3 and Theorem A of [11], we obtain that

(3.23) w(B)
1
α
− 1

q
− 1

p

∥

∥Sη,2j (f1)χB

∥

∥

qw
<
∼ (2jn + 2jnq/2)w(2B)

1
α
− 1

q
− 1

p ‖fχ2B‖qw

Let us estimate know the term in f2. Using estimation (3.3) and (3.5) and
proceed as in [11], we obtain that

∣

∣Sη,2j (f)(x)
∣

∣ <
∼ 23jn/2

∑∞
k=1

1

|2k+1B|

∫

2k+1B\2kB
|f(z)| dz

<
∼ 23jn/2

∑∞
k=1

∥

∥fχB(y,2k+1r)

∥

∥

qw
w(B(y, 2k+1r))−

1
q ,

for all x ∈ B(y, r). Thus
(3.24)

w(B)
1
α
− 1

q
− 1

p

∥

∥Sη,2j (f2)χB

∥

∥

qw
<
∼ 23jn/2

∞
∑

k=1

w(2k+1B)
1
α
− 1

q
− 1

p

2nk(1−
1
s
)( 1

α
− 1

p
)

‖fχ2k+1B‖qw .

If we take Estimations (3.23) and (3.24) in (3.22), we have

w(B(y, r))
1
α
− 1

q
− 1

p

∥

∥Sη,2j (f)χB(y,r)

∥

∥

qw
<
∼ (2jn + 2jnq/2)w(B(y, 2r))

1
α
− 1

q
− 1

p

∥

∥fχB(y,2r)

∥

∥

qw

+ 23jn/2
∑∞

k=1
w(B(y,2k+1r))

1
α−

1
q −

1
p

2
nk(1− 1

s )( 1
α−

1
p )

∥

∥fχB(y,2k+1r)

∥

∥

qw

,

for all x ∈ Rn, so that taking the Lp-norm of both sides of the above inequality,
we obtain

(3.25) r

∥

∥Sη,2j (f)
∥

∥

qw,p,α
<
∼ (2jn + 2jnq/2) ‖f‖qw,p,α + ‖f‖qw,p,α 2

3jn/2,
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Therefore the Lp norm of the (3.21) gives
(3.26)

r

∥

∥g∗λ,η(f)
∥

∥

qw,p,α
<
∼ ‖f‖qw,p,α

(

1 +
∑∞

j=1 2
−jλn/2(2jn + 2jnq/2 + 23jn/2)

)

<
∼ ‖f‖qw,p,α .

where the convergence of the series is due to the fact that λ > max {q, 3}. By
taking the supremum over all r > 0, we conclude the proof. ✷
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