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Abstract

Let M be a C2-smooth strictly convex closed surface in R
3 and

denote by H the set of points x in the exterior of M such that all the

tangent segments from x to M have equal lengths. In this note we

prove that if H is either a closed surface containing M or a plane, then

M is an Euclidean sphere. Moreover, we shall see that the situation

in the Euclidean plane is very different.

1 In the Euclidean plane

Let K be a strictly convex body in the plane. The following fact is well
known: if the two tangent segments to K from every point x 6∈ K have equal
lengths then K is an Euclidean disc (see, for instance, [4] ). This statement is
easily proved by elementary geometry. The result was extended to the case of
Minkowski planes by S. Wu [9], and Z. Lángi [3] also gave a characterization
of the ellipsoid among centrally symmetric convex bodies in terms of tangent
segments of equal Minkowski length.

In the Euclidean plane, one may obtain the same conclusion with consider-
ably weaker assumptions. Namely, one has the following characterization of
a circle in terms of equal tangent segments.
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Lemma 1 Let γ be a strictly convex closed curve in the plane, and let ℓ be
a tangent line through a point p ∈ γ. Suppose that the two tangent segments
to γ from every point x ∈ ℓ have equal lengths. Then γ is a circle (see, e.g.,
[2] or Section 3).

Thus it is natural to ask whether the same conclusion remains true if the
locus of points from which the tangent segments to γ have equal lengths is a
line ℓ that is not tangent to γ. We consider the two cases separately: first,
when ℓ intersects γ, and second, when ℓ is disjoint from γ.

Example 2 Let us construct a non-circular curve with the desired equitan-
gent property.

Consider two circles and their radical axis ℓ (that is, the set of points having
equal power with respect to both of them). Then the tangent segments to
both circles from the points of ℓ are equal. Let x, y ∈ ℓ be two points in the
exterior of the convex hull of these circles. Draw the tangents xa, xb, yc, and
yd as shown in Figure 1, and also draw the two arcs of the circles tangent
to xa, xb at a and b, and to yc, yd at c and d, respectively. Then the union
of the arcs âb, b̂d, d̂c, and ĉa is a C1-smooth and strictly convex curve γ with
the property that for every point p ∈ ℓ \ conv(γ), the two tangent segments
to γ from p have equal lengths.
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Figure 1

A characterization in terms of hyperbolic geometry. In the case when
ℓ does not intersect γ, we have a complete characterization of such curves.
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Lemma 3 Assume that ℓ is the horizontal axis and that γ lies in the upper
half plane. Then the tangent segments to γ from every point of ℓ are equal if
and only if γ is a curve of constant width in the hyperbolic metric, considered
in the upper half plane model.

Proof. The two tangent segments from a point x ∈ ℓ have equal lengths if
and only if the circle centered at x is orthogonal to γ at both intersection
points (more precisely, is orthogonal to support lines to γ at these points).
See Figure 2.
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The circles centered at points of ℓ are the geodesics of the hyperbolic plane,
and the upper half plane model is conformal. Thus a geodesic segment can
make a full circuit inside γ, remaining orthogonal to it at both end points.
This property characterizes convex bodies of constant width, see [1]. �

Next we construct pairs of curves in the plane, Γ and γ, such that Γ encloses
γ and, for every point x ∈ Γ, the two tangent segments from x to γ have equal
lengths. Compare with [7] where a pair of curves Γ and γ is constructed such
that, for every point x ∈ Γ, the tangent segments from x to Γ have unequal
lengths.

Example 4 Consider a regular convex n-gon, with odd n ≥ 5, and make the
classical construction of a body of constant width. Concretely, let V1V2V3V4V5

be a regular pentagon and let λ be the length of its diagonals. Fix ε ≥ 0.
Draw the lines V1V3, V1V4, V5V2, V5V3, and V2V4. Now, draw the arcs of the
circles centered at V1 and the radii ε and λ + ε from line V3V1 to line V4V1,
see Figure 3. Do the same at the remaining vertices. We obtain a C1-smooth
convex curve γ of constant width λ+ 2ε.
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Figure 3.

Let Γ = P1P2 . . . P10 be the regular decagon constructed in the following way:
the segment P1P2 is contained in the radical axis of the circles with centers
V1 and V5 and the radii ε and λ + ε, respectively; this axis is orthogonal to
the side V1V5. Likewise, the segment P2P3 is contained in the radical axis of
the circles with centers V4 and V3 and the radii ε and λ+ ε, respectively, etc.
Then the tangent segments to γ from every point of Γ are equal.

Remark 5 It is interesting to investigate what happens if one imposes addi-
tional assumptions on the curve Γ. For example, is it true that if Γ is a circle
then γ also must be a circle? We do not know the answer to this question.

We remark that the existence of planar bodies (different from the circle)
floating in equilibrium in all positions, [8], imply that there exist non-trivial
pairs of smooth strictly convex curves Γ and γ with the desired equal tangent
property, and moreover, the length of the tangent segments is constant for
all points of Γ. In this setting, one can prove that if Γ is the boundary of a
body which floats in equilibrium in all positions and γ (the boundary of its
floating body ) is homothetic to Γ then the curves are concentric circles. We
do not dwell on the proof here.
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2 In Euclidean space

In this section we shall see that the situation in Euclidean 3-space is very
different from the plane.

Let M be a C2-smooth strictly convex closed surface in R
3. Denote by H

the set of points x in the exterior of M such that all the tangent segments
from x to M have equal lengths. The following theorem states that M is a
sphere, provided H is large enough.

Theorem 6 Suppose that H is
(i) a closed surface containing M in its interior;
(ii) a plane;
(iii) the union of three distinct lines.
Then M is the sphere.

Proof. Let x be a point outside ofM . Denote by γx the curve onM consisting
of the contact points between the tangents to M from x and M . Since all the
tangent segments from x to M have the same length, the curve γx belongs
to a sphere S(x) centered at x. Hence γx is a line of curvature of S(x).
The surfaces M and S(x) are orthogonal along the curve γx. Therefore, by
Joachimstahl’s theorem1, γx is also a line of curvature of M .

The idea of the proof is to show that almost every (and then, by continuity,
every) point of M is umbilic. Through a non-umbilic point there pass exactly
two lines of curvature, so if one has three such lines through a point then
this point is umbilic.

To prove (i) and (ii), pick a point p ∈ M . Consider the intersection curve of
the tangent plane TpM with the surface H . Choose three points x1, x2, x3 on
this curve. Then the curves γxi

, i = 1, 2, 3, are different lines of curvature
on M through point p. Hence p is umbilic.

1Let two surfaces intersect along a curve γ, and the angle between the surfaces along

γ is constant. If γ is a line of curvature on one surface then it is also a line of curvature

on the other one.
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Likewise, in case (iii), let p ∈ M be such a point that TpM intersects each
of the three lines that constitute H at a single point. Almost every point
p satisfies this condition. Denoting the intersection points by x1, x2, x3, we
repeat the argument from the previous paragraph. �

3 Further results

The following optical (or billiard) property of ellipses is well known (see, e.g.,
[6]). Let E be an ellipse with the foci P and Q, and let X be a point outside
of E . Let ℓ1 and ℓ2 be the tangent lines to E from X . Then the angles
between the pairs of lines ℓ1 and XP , and ℓ2 and XQ, are equal.

One has the following converse characterization of ellipses, somewhat in the
spirit of Lemma 1.

Proposition 7 Let ℓ be a line tangent to a convex body K in the plane, and
let P and Q be two points in the interior of K. For every point X in ℓ

consider the other tangent line, LX , to K. Suppose that the angle between ℓ

and XP is equal to the angle between LX and XQ. Then, K is an ellipse
with foci P and Q. See Figure 4.

b b

b

b

b

bb b

α α

X ℓ

P
Q

LX

γ

B

A
R S

Figure 4.

Proof. Suppose that the angle between LX and XQ is smaller than the angle
between LX and XP . Let A and B be the projections of Q and P on the line
LX and let R and S be the projections of P and Q on the line ℓ. We conclude
from the hypothesis of the proposition that the right triangles △XQA and
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△XPR are similar, and so are the right triangles △XQS and △XPB. From
these similarities we conclude that

RP · SQ = PB ·QA.

Let E be the ellipse with foci P and Q, tangent to ℓ. Let L′

X be the tangent
line to E , parallel to LX , such that the ray QA intersects L′

X . Let A
′ and B′

be the projections of Q and P on L′

X . Using the optical property of ellipses,
one concludes that RP ·QS = PB′ ·QA′. It follows that L′

X coincides with
LX . Thus the tangent lines to E and K from all points of the line ℓ coincide,
and hence K = E . �

In conclusion, we remark that Lemma 1 holds in all three classical geometries:
elliptic, Euclidean, and hyperbolic; we give a proof that works in all three
cases, cf. [5, 7].

In the argument below, a “circle” means a curve of constant curvature. In
Euclidean and elliptic geometry this is indeed a circle; in hyperbolic geometry
this may be a circle, a horocycle, or an arc with both endpoints at infinity,
depending on the value of the curvature.

Let x be a point of ℓ = Tpγ, and let xy, y ∈ γ, be the other tangent segment
to γ from x. Then |xy| = |xp| if and only if there exists a “circle” tangent
to γ at p and y.

Consider the family of “circles”, tangent to ℓ at point p. In the complement
of p, these curves form a smooth foliation F . Since the two tangent segments
to γ from every point x ∈ ℓ have equal lengths, the curve γ is everywhere
tangent to the leaves of the foliation F . It follows that γ coincides with a
leaf, that is, γ is a “circle”. Since γ is a closed curve, it is indeed a circle.
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