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A HAMILTON-JACOBI THEORY FOR SINGULAR

LAGRANGIAN SYSTEMS IN THE SKINNER AND

RUSK SETTING

MANUEL DE LEÓN, DAVID MARTÍN DE DIEGO, AND MIGUEL VAQUERO

Abstract. We develop a Hamilton-Jacobi theory for singular la-
grangian systems in the Skinner-Rusk formalism. Comparisons
with the Hamilton-Jacobi problem in the lagrangian and hamil-
tonian settings are discussed.
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1. Introduction

The standard formulation of the Hamilton-Jacobi problem is to find
a function S(t, qA) (called the principal function) such that

∂S

∂t
+ h(qA,

∂S

∂qA
) = 0, (1.1)

Key words and phrases. Hamilton-Jacobi theory, presymplectic constraint
algorithm.
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where h = h(qA, pA) is the hamiltonian function of the system. If we
put S(t, qA) = W (qA)− tE, where E is a constant, then W satisfies

h(qA,
∂W

∂qA
) = E; (1.2)

W is called the characteristic function.

Equations (1.1) and (1.2) are indistinctly referred as the Hamilton-

Jacobi equation (see [1, 2, 23]).

This theory works for classical mechanical systems, where the la-
grangian function is usually the kinetic energy corresponding to a Rie-
mannian metric on the configuration manifold minus a potential energy.
This is the case of the so-called regular lagrangian systems, that have
a well-defined hamiltonian counterpart. The theory has been recently
reformulated in a geometrical setting (see [3, 4, 5]) that has permitted
its extension to nonholomic mechanical systems [13, 15], and even clas-
sical field theories [14, 18].The procedure is based on the comparison
of the hamiltonian vector field Xh on the cotangent bundle T ∗Q and
its projection onto Q via a closed 1-form γ on Q; the result says that
both vector fields are γ-related if and if the Hamilton-Jacobi equations
d(h ◦ γ) = 0 holds.

On the other hand, a Hamilton-Jacobi theory for singular lagrangian
systems is far to be accomplished. There were several attempts ([20, 21,
22]), based on the homogeneization of the given lagrangian, which leads
to a new lagrangian system with null energy such that it is possible to
discuss the Hamilton-Jacobi equation for the constraints themselves.
The main problem is that, due to the integrability condition for the
resultant partial differential equation, one can only consider first class
constraints. Therefore, the treatment of the cases when second class
constraints appear should be developed by ad hoc arguments (as in
[22], for instance). Thus, in [20] and [21] the authors only discuss the
case of primary constraints.

A more modern discussion on this subject can be found in [3, 12],
but these authors only consider the case of primary constraints. More
recently, in [17] it is proposed a Hamilton-Jacobi theory for arbitrary
singular systems that works even if the system exhibit secondary con-
straints. The strategy is to apply the geometric procedure described
above in combination with the constraint algoritm developed by M.J.
Gotay and J.M. Nester [7, 8, 9, 10] and that geometrizes the well-known
Dirac theory of constraints [6].

In the present paper we take a different approach, and consider the
Skinner and Rusk setting to treat with singular lagrangians [24, 25].
Skinner and Rusk have considered a geometrized framework where the
velocities and the momenta are independent coordinates. To do this,
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they considered the dynamics on the Withney sum of TQ (the space
of velocities) and T ∗Q (the phase space).

Given a lagrangian function L : TQ → R (singular or regular, no
matter) one considers the bundle TQ⊕T ∗Q with canonical projections
pr1 : TQ ⊕ T ∗Q → TQ and pr2 : TQ ⊕ T ∗Q → T ∗Q onto the first
and second factors. We then define a function D : TQ ⊕ T ∗Q −→ R

by D(Xp, αp) = αp(Xp) − L(Xp). In bundle coordinates (qA, vA, pA),
D is given by D(qA, vA, pA) = vApA − L(qA, vA), and it is sometimes
refered as the Pontryagin hamiltonian or generalized energy (see [26]).
We can also define a 2-form Ω on TQ ⊕ T ∗Q by Ω = pr∗2(ΩQ), where
ΩQ denotes the canonical symplectic 2-form of T ∗Q.

Then, one discuss the presymplectic system (TQ⊕ T ∗Q,Ω, dD) and
obtain the corresponding sequence of constraint submanifolds, which,
of course, have a close relation with those obtained by Gotay and Nester
on the lagrangian and hamiltonian sides. It should be noticed that this
algorithm includes the SODE condition just from the very beginning.

We apply the Hamilton-Jacobi geometric procedure to this presym-
plectic system and develop the corresponding Hamilton-Jacbi theory.
The relation with the Hamilton-Jacobi problems on the lagrangian and
hamiltonian sides are extensively discussed.

2. Notation and background

In this work all manifolds are assumed to be finite dimensional and
C∞. Given a function f , the differential at a point p will be indistinctly
denoted by dpf or df(p).

We refer to [19] for a detailed description of lagrangian and hamil-
tonian mechanical systems.

Let Q be a differentiable manifold and denote by TQ and T ∗Q the
tangent and cotangent bundles, and by τQ : TQ → Q and πQ : T ∗Q →
Q the respective canonical projections on Q.

We introduce two canonical structures on the tangent bundle of a
manifold: the vertical endomorfism S, and the Liouville vector field ∆.
In bundle coordinates, (qA, vA), they are respectively given by

S = dqA ⊗ ∂
∂vA

,

∆ = vA ∂
∂vA

.

Let now L : TQ → R be a lagrangian on TQ; we can define the
Poincaré-Cartan 2-form and the energy function of L by

ΩL = −dθL, where θL = S∗(dL),

EL = ∆(L)− L,
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which in local coordinates read as

θL =
∂L

∂vA
dqA,

ΩL = dqA ∧ d
∂L

∂vA
,

EL = vA
∂L

∂vA
− L(q, v).

We look for vector fields ξ which simultaneously satisfy the equations

iξ ΩL = dEL (2.1)

S ξ = ∆. (2.2)

If the lagrangian L is regular, that is, det( ∂2L
∂vA∂vB

) 6= 0, then the form
ΩL is symplectic (ΩL has maximal rank) and there exists a unique
vector field ξ on TQ which satisfies the equation (2.1). This vector
field automatically satisfies the SODE condition (2.2).

If the lagrangian is not regular, then ΩL is no longer symplectic and
equation (2.1) has no solution in general and even if there is a solution
it is not necesary a SODE. Therefore for a singular lagrangian L, ΩL

is a presymplectic form (that is, the rank is not maximal, althought,
for simplicity, it is assumed that it is constant).

We define the Legendre transformation associated to L as the map-
ping

FL : TQ −→ T ∗Q

(qA, vA) → FL(qA, vA) = (qA, ∂L
∂vA

(qA, vA)).

From a direct inspection in local coordinates we know that the Legendre
transformation is a local diffeomorfism if and only if L is regular.

We can apply the Gotay-Nester-Hinds algorithm of constraints, see
[7, 8, 9], to the presymplectic system (TQ, ΩL, dEL) and hence we
obtain a sequence of constraint submanifolds

· · ·Pk →֒ · · · →֒ P2 →֒ P1 = TQ.

Assume that the algorithm stabilizes at some step k, say Pk+1 = Pk,
which is called the final constraint submanifold, denoted by Pf = Pk.

In this paper we will only consider almost regular lagrangians L :
TQ → R, that is:

(i) M1 =Im(FL) is a submanifold of T ∗Q, and
(ii) FL : TQ → Im(FL) is a surjective submersion of connected

fibers.
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Under these assumptions, the energy EL is projected onto a function
h1 : M1 → R such that h1 ◦ FL = EL

TQ
FL1

))❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘

FL // T ∗Q

M1 = Im(FL)

j1

OO

Here FL1 is the restriction of FL to its image, and j1 : M1 → T ∗Q is
the canonical inclusion.

Next, study the presymplectic system given by (M1, Ω1 = j∗1ΩQ, dh1),
where ΩQ is the canonical symplectic form on T ∗Q. Therefore, we con-
sider the equation

iY Ω1 = dh1. (2.3)

As above we can apply the presymplectic algorithm and we obtain a
sequence of constraint submanifolds

· · ·Mk →֒ · · · →֒ M2 →֒ M1 →֒ T ∗Q.

It is obvious that

FL(Pi) = Mi, for any i,

and, furthermore, the induced mappings

FLi = FL|Pi
: Pi → Mi

are surjective submersions, for all i.

Hence, both algorithms stabilizes at the same step, say k, and then

FL(Pf) = Mf ,

and

FLf : Pf → Mf

is a surjective submersion (with the obvious notations).
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The following diagram summarizes the above discussion.

P1 = TQ
FL //

FL1

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
T ∗Q

P2

g2

OO

FL2

((PP
PP

PP
PP

PP
PP

PP
PP

P M1

j1

OO

... M2

j2

OO

Pf

gf

OO

FLf

''PP
PP

PP
PP

PP
PP

PP
PP

P

...

Mf

jf

OO

where gi and ji denote the natural inclusions.

The relation between equations (2.1) and (2.3) is given by the fol-
lowing theorem.

Proposition 2.1. If ξ ∈ TpTQ satisfies (2.1), then TFL(ξ) ∈ TFL(p)M1

satisfies (2.3). Therefore, if ξ is a FLf -projectable solution of (2.1),
then its projection TFLf(ξ) is a solution of (2.3).

Conversely, if Y is a solution of (2.1), then any FLf projectable

vector field on Pf which projects on Y , is a solution of (2.3).

Next, we shall discuss the SODE problem as it was stated by M.J.
Gotay and J.M. Nester [7, 8].

The results can be summarized in the following result.

Theorem 2.2.

(i) If ξ is a FLf -projectable vector field on Pf then for any p ∈ Mf

there exists a unique point in each fiber FL−1
f (p), denoted by

ηξ(p) at which ξ is a SODE. The point ηξ(p) is given by

ηξ(p) = TτQ(ξ(p)).

(ii) The map

βξ : Mf −→ Pf

p → βξ(p) = ηξ(p)

is a section of FLf : Pf → Mf and on Im(βξ) there exists a

unique vector field, denoted by Yξ, which simultaneously satis-

fies the equations

iYξ
ΩL = dEL, SYξ = ∆.



A HAMILTON-JACOBI THEORY FOR SINGULAR LAGRANGIAN SYSTEMS 7

We will now recall the construction of the solution of the dynamical
equation which simultaneously satisfies the SODE condition. If Y =
(FLf)∗(ξ), then Y is a vector field on Mf satisfying iY Ω1 = dh1. The
vector field Yξ described in (ii) is given by

Yξ(βξ(p)) = Tβξ(Y (p)), for all p ∈ Mf .

A detailed discussion can be found in [19, 7, 8, 9, 11].

3. The Skinner and Rusk formalism

Skinner and Rusk, [24, 25], have considered a geometrized framework
where the velocities and the momenta are independent coordinates.
Indeed, they considered the dynamics on the Withney sum of TQ (the
space of velocities) and T ∗Q (the phase space).

In this section we will briefly recall the Skinner and Rusk formalism.

Let Q be a differentiable manifold and L : TQ → R a lagrangian. We
can consider the bundle TQ⊕ T ∗Q given by the Withney sum of τQ :
TQ → Q and πQ : T ∗Q → Q. We will denote by pr1 : TQ⊕T ∗Q → TQ

and pr2 : TQ⊕ T ∗Q → T ∗Q the projections onto the first and second
factors, and by pr : TQ ⊕ T ∗Q → Q the projection onto Q. We then
have the following commutative diagram

TQ⊕ T ∗Q

pr1yysss
ss
ss
ss
s

pr

��

pr2

%%▲▲
▲▲

▲▲
▲▲

▲▲

TQ
τQ

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

T ∗Q

πQ

yyrrr
rr
rr
rr
rr

Q

(3.1)

We can define a function

D : TQ⊕ T ∗Q −→ R

(Xp, αp) → D(Xp, αp) = αp(Xp)− L(Xp).

In bundle coordinates (qA, vA, pA),D is given byD(qA, vA, pA) = vApA−
L(qA, vA). The function D is sometimes refered as the Pontryagin
hamiltonian or generalized energy (see [26]).

We can define a 2-form Ω on TQ⊕ T ∗Q by Ω = pr∗2(ΩQ), where ΩQ

denotes the canonical symplectic 2-form of T ∗Q.

Next, we can consider the presymplectic system given by (W0 =
TQ⊕ T ∗Q, Ω, dD) and study the equation

iX Ω = dD, (3.2)

applying the Gotay-Nester-Hinds algorithm of constraints. Hence, we
obtain

W1 = {x ∈ W0 such that there exists X ∈ TxW0 satisfying iX Ω = dD}.
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In canonical coordinates (qA, vA, pA), we have

Ω = dqA ∧ dpA,

dD = − ∂L
∂qA

dqA + (pA − ∂L
∂vA

)dvA + vAdpA.

So, given a tangent vectorX = aA ∂
∂qA

+bA ∂
∂vA

+cA ∂
∂pA

∈ T(qA,vA,pA)W0

we deduce that

iX Ω = −cAdqA + aAdpA

and (3.2) is equivalent to the following conditions

aA = vA,

cA = − ∂L
∂qA

,

pA − ∂L
∂vA

= 0, 1 ≤ A ≤ n.

(3.3)

Next, we should restrict the dynamics to W1 = {(qA, vA, pA) ∈
W0 such that pA = ∂L

∂vA
}, that is, W1 = graph(FL), where FL : TQ →

T ∗Q has been defined in section 2.

Accordingly with the Gotay-Nester-Hinds algorithm, a solution X

must be tangent to W1. Assume that such X has the local expression

X = aA ∂
∂qA

+ b
A ∂

∂vA
+ ( ∂2L

∂vA∂qB
aB + ∂2L

∂vA∂vB
b
B
) ∂
∂pA

(3.4)

Then, taking into account (3.3) and (3.4),we deduce

aA = vA

∂2L
∂vA∂qB

vB + ∂2L
∂vA∂vB

b
B
= − ∂L

∂qA
.

(3.5)

If there exists such a vector field X tangent to W1, satisfying the
above conditions, we have done, and the final constraint manifold Wf

is just W1. For instance, if the lagrangian is regular, det( ∂2L
∂vB∂vA

) 6= 0,

we can compute b
A
explicitly. If we denote by CAB the matrix CAB =

(

∂2L
∂vB∂vA

)

and CAB its inverse, then

b
A
= −CAB

(

vA
∂2L

∂vB∂qA
−

∂L

∂qA

)

.

Otherwise, we need to continue the process, and then we obtain a
sequence of submanifolds

. . . →֒ Wk →֒ . . . →֒ W2 →֒ W1 →֒ W0 = TQ⊕ T ∗Q.

If the algorithm stabilizes, that is, there exists k such that Wk =
Wk+1, then Wk is called the final constraint submanifold and denoted
by Wf .
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4. A Hamilton-Jacobi theory in the Skinner-Rusk setting

In this section we will develop a Hamilton-Jacobi theory in the
Skinner-Rusk formalism. We will use the same notation introduced
in the previous sections and discuss separately the regular and the sin-
gular cases.

4.1. The regular case. Assume that we begin with a regular la-
grangian L : TQ → R. Then, Wf = W1.

A section of TQ⊕ T ∗Q is given by σ = (Z, γ) where Z and γ are a
vector field and a 1-form on Q, respectively. Assume that σ satisfies
the following conditions

(i) Im(σ) ⊂ W1 = graph(FL), and
(ii) d(pr2 ◦ σ) = dγ = 0.

Then, by the regularity of L, we know that there exists a unique
vector field on W1, say X , satisfying

iX Ω = dD,

and then we can define a vector field on Q by

Xσ(p) = Tpr(X(σ(p))), for all p ∈ Q.

Now we have the following proposition.

Proposition 4.1. Under the previous conditions, d(D ◦ σ) = 0 if and

only if the vector fields X and Xσ are σ-related.

Proof.

“⇒”

Assume that d(D ◦ σ) = 0 holds, then we will prove first that
(i(X−Tσ(Xσ ))Ω = 0)|Im(σ).

It is clear that if x ∈ Im(σ) then Tx(TQ⊕T ∗Q) = TxIm(σ)+V , where
V denotes the vertical bundle of the projection pr : TQ ⊕ T ∗Q → Q.
We will show that i(X−Tσ(Xσ ))Ω anihilates TxIm(σ) and V . Indeed, by
the definition of Ω, it is obvious that Ω vanishes acting on two elements
of V . Since X − Tσ(Xσ) is vertical, we have

(

i(X−Tσ(Xσ ))Ω
)

(V ) = 0.

Given p ∈ Q, since X is a solution on W1, we get

(iX(p)Ω) ◦ Tσ(p) = TD(σ(p)) ◦ Tσ(p) = T (D ◦ σ)(p).
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On the other hand, (iTσ(Xσ(p)) Ω) ◦ Tσ(p) = 0 since for any Y ∈ TpQ

we have

(iTσ(Xσ (p))Ω) (Tσ(p)(Y )) = Ω(Tσ(Xσ(p)), Tσ(Y ))

= Ω(Tσ(Xσ(p)), Tσ(Y )) = pr∗2(ΩQ)(Tσ(X
σ(p)), Tσ(Y ))

= (ΩQ)(Tpr2 ◦ Tσ(X
σ(p)), T pr2 ◦ Tσ(Y )) = (ΩQ)(Tγ(X

σ(p)), T γ(Y ))

= −dγ(Tγ(Xσ(p)), T γ(Y ))

= 0

and so, we conclude that
(

i(X−Tσ(Xσ))Ω
)

(T Im(σ))|Im(σ) = 0,

which implies
(

i(X−Tσf (Xσ))Ω
)

(V + T Im(σ))|Im(σ)

=
(

i(X−Tσf (Xσ))Ω
)

(T (TQ⊕ T ∗Q))|Im(σ) = 0.

Therefore (X−Tσ(Xσ)) ∈ ker(Ω). This means that i(X−Tσ(Xσ ))Ω = 0,

and hence ι∗
(

i(X−Tσ(Xσ ))Ω
)

= i(X−Tσ(Xσ )) (i
∗Ω) = 0, where ι : W1 →

W0 is the inclusion.

It is not hard to see, that if L is regular then i∗Ω is symplectic and
so (X = Tσ(Xσ))|Im(σ).

“⇐” Since
(

(i(X−Tσ(Xσ ))Ω) ◦ Tσ = d(D ◦ σ)
)

, if X = Tσ(Xσ), then
d(D ◦ σ) = 0. �

4.2. The singular case. Assume now that L : TQ → R is an almost
regular singular lagrangian.

Suppose that the algorithm of Gotay-Nester-Hinds applied to (W0 =
TQ⊕T ∗Q, Ω, dD) stabilizes at a final constraint submanifold Wf . By
construction, there exists at least one vector field X on Wf such that

(iX Ω = dD)|Wf

We need some regularity conditions, thus we will also assume that
Qi = pr(Wi) are submanifolds and that pri = pr|Wi

: Wi → Qi are
submersions.

A section of pr : TQ ⊕ T ∗Q → Q is given by σ = (Z, γ), where Z

and γ are respectively a vector field and a 1-form on Q. We will denote
by σf the restriction of σ to Qf = pr(Wf) of σ. Suppose that σ verifies
the following conditions:

(i) Im(σ) ⊂ W1.
(ii) Im(σf ) ⊂ Wf .
(iii) d(pr2 ◦ σ) = dγ = 0, that is, γ is closed.

Using σ we can define a vector field on Qf by

Xσ(p) = Tpr(X(σf(p))), p ∈ Qf .



A HAMILTON-JACOBI THEORY FOR SINGULAR LAGRANGIAN SYSTEMS 11

The construction is illustrated in the following diagram

W0

pr





Wf
oo

prf





X // TWf

Tprf

��
Q

σ

JJ

Qf
oo

σf

JJ

Xσ
// TQf .

The relation between Tσf (X
σ) and X is shown in the following theo-

rem.

Proposition 4.2. The conditions

d(D ◦ σ)|Qf
= 0

and

(X − Tσf(X
σ) ∈ ker(Ω))|Im(σf )

are equivalent.

Proof. The proof follows by similar arguments as in Proposition 4.1.
�

Definition 4.3. A section σ of TQ ⊕ T ∗Q, σ = (Z, γ), satisfying the

following conditions

(i) Im(σ) ⊂ W1.

(ii) Im(σf) ⊂ Wf .

(iii) d(pr2 ◦ σ) = dγ = 0.
(iv) d(D ◦ σ)|Qf

= 0

will be called a solution of the Hamilton-Jacobi problem for the

lagrangian L in the Skinner-Rusk setting.

Remark 4.4. The last proposition says that Tσf (X
σ) is a vector field

along Im(σf ) which is also a solution of the equation (3.2). So if we
find an integral curve c(t) of Xσ on Qf , then (σf ◦ c)(t) is an integral
curve of a solution of (3.2). ⋄

Remark 4.5. The natural question is ifX andXσ are σf -related in the
singular case, as it happens in the standard Hamilton-Jacobi theory,
see [17]. The answer is that, as we discussed later (section 6), in some
cases the fields are not necessarily σf -related. ⋄

5. Comparison with the Hamiltonian and lagrangian
settings

In the previous section we have developed a Hamilton-Jacobi the-
ory in the Skinner-Rusk setting. The Skinner-Rusk formalism unifies
lagrangian and hamiltonian formalisms, so we would like to relate the
present Hamilton-Jacobi theory to the corresponding ones for the two
formalisms (see [17]).
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5.1. The hamiltonian setting.

5.1.1. The regular case. If the lagrangian, L, is regular, that is, FL is
a local diffeomorfism, then we can define locally a hamiltonian function
h : T ∗Q → R by h = EL◦FL−1. Let us now assume that the lagrangian
is hyperregular, that is, FL is a global diffeomorfism and h is globally
defined. Denote by Xh the corresponding hamiltonian vector field

iXh
ΩQ = dh.

Let γ be a closed 1-form on Q; then we can define a vector field on Q

by

Xγ(p) = TπQ(Xh(γ(p))) for all p ∈ Q.

Then we have the following Hamilton-Jacobi theorem.

Proposition 5.1. The vector fields X and Xγ are γ-related if and only

if d(h ◦ γ) = 0.

Proof. For a proof see [1]. �

5.1.2. The singular case. Since we are considering an almost regular
lagrangian L : TQ → R, then we can apply the Dirac theory of con-
straints developed in Section 2.

We have to study the presymplectic system given by (M1, Ω1 =
j∗1ΩQ, dh1), where j1 : M1 → T ∗Q is the inclusion and h1 is defined
implicitly by h1 ◦ FL = EL.

If we apply the Gotay-Nester-Hinds algorithm, we obtain a sequence

· · ·Mk →֒ · · · →֒ M2 →֒ M1 →֒ T ∗Q;

assume that we obtain a final constraint submanifold, denoted by Mf .
We also assume that Qi = πQ(Mi) are submanifolds and that πi =
πQ|Mi

: Mi → Qi are submersions.

Remark 5.2. It is important to notice that the algorithm of Gotay-
Nester-Hinds applied to the same lagrangian in the Skinner-Rusk set-
ting and in the corresponding hamiltonian setting does not neces-
sary stop at the same level. For example, the lagrangian given by
L(q1, q2, v1, v2) = v1 q2 produces the two presymplectic systems (M1,Ω1,

dh1) and (W0 = TQ ⊕ T ∗Q,Ω, dD). The first algorithm stabilizes in
k = 1, but the second one does in k = 2.

⋄

Let γ be a 1-form on Q satisfying the following conditions:

(i) Im(γ) ⊂ M1.
(ii) Im(γf) ⊂ Mf , where γf denotes the restriction to Qf of γ.
(iii) dγ = 0.
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Then, if Y is a vector field on Mf solving the equation iY Ω1 = dh1,
we can construct the vector field Y γ on Qf biven by

Y γ(p) = TπQ(Y (γf(p))), for each p ∈ Qf

and obtain an analogous of theorem 4.2 (notice that in this case we can
ensure that the vector fields are γf -related, see [17] for the details).

Proposition 5.3. We have

d(h1 ◦ γ)|Qf
= 0 ⇔ Y and Y γ are γf -related.

Proof. Given q ∈ Qf , we have
(

i(Y (γ(q))−Tqγf (Y γ(q))) Ω1

)

◦ Tqγ = iY (γ(q)) Ω1 ◦ Tqγ − iTqγf (Y γ(q)) Ω1 ◦ Tqγ

= dγf (q)h1 ◦ Tqγ = dq(h1 ◦ γ)

where we have Tqγf(Y
γ) = Tqγ(Y

γ) and

iTqγf (Y γ(q)) Ω1 ◦ Tqγ(Y (q)) = Ω1(Tqγ(Y
γ), Tqγ(Y (q)))

= (γ∗Ω1)(Y
γ(q), Y (q)) = dγ(Y γ(q), Y (q)) = 0,

for all Yq ∈ TqQ.

The previous discussion can be applied to every point q ∈ Qf ; there-
fore, taking into account that Ω1 vanishes acting on two vertical tangent
vectors, we can deduce the following

Y − Tγf(Y
γ) ∈ ker(Ω1) ⇔ d(h1 ◦ γ)|Qf

= 0.

As we did before, we will see that Y and Y γ are γf related.

Remember that for any point p of M1 we have a decomposition

Tp(T
∗Q) = TpM1 + Vp(T

∗Q),

where V (T ∗Q) denotes as above the space of vertical tangent vectors
on p.

Since Y − Tγf(Y
γ) is vertical at the points of Im(γf), given any

U ∈ Vp, p ∈ Im(γf), then

ΩQ(Y − Tγ(Y γ), U) = 0

Now, given U ∈ TpM1 we get

ΩQ(Y − Tγf(Y
γ), U) = Ω1(Y − Tγf(Y

γ), U) = 0

because (Y −Tγf(Y
γ)) ∈ ker(Ω1), and hence ΩQ(Y −Tγf(Y

γ), Z) = 0
for any tangent vector Z ∈ Tp(T

∗Q) at any point of Im(γf). Since ΩQ

is non-degenerate, we deduce that Y = Tγf(Y
γ) along Im(γf).

�

Definition 5.4. A 1-form γ satisfying the previous conditions will be

called a solution of the Hamilton-Jacobi problem for L in the

hamiltonian setting.
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We are now going to relate the Hamilton-Jacobi problem in the
Skinner-Rusk setting and the corresponding one in the hamiltonian
setting. First, the following result gives the relation between Wi and
Mi, and also a relation between solutions of equations (2.3) and (3.2).

Lemma 5.5.

(i) If X ∈ TpW1 satisfies iX Ω = dD, then X2 = Tpr2(X) ∈
Tpr2(p)M1 satisfies iX2

Ω = dh1.

(ii) For each step k of the constraint algorithms applied to the

presymplectic systems (M1, Ω1, dh1) and (W0 = TQ⊕ T ∗Q,

Ω, dD) we have

pr2(Wk) ⊂ Mk,

and, if we denote the respective final constraint submanifolds

by Wf and Mf , then

pr2(Wf) = Mf .

(iii) We have pr(Wf) = πQ(Mf ) = Qf .

Proof.

(i) Recall that a vector ξ ∈ T(qA,vA)TQ, ξ = uA ∂
∂qA

+ wA ∂
∂vA

satisfies

iξ ΩL = dEL iff

∂2L
∂vA∂vB

(vB − uB) = 0

∂2L
∂vA∂vB

uB + ∂2L
∂vA∂qB

wB − ∂L
∂qA

= ∂2L
∂vB∂qA

(vB − uB)

If X ∈ TpW1 verifies iX Ω = dD, then X has the expression (3.4)
and satisfies (3.5). So, it is clear that X1 = Tpr1(X) satisfies iX1

ΩL =
dEL. Since X is tangent to W1, X2 = Tpr2(X) = TFL ◦ Tpr1(X) =
TFL(X1) and using Proposition 2.1 we can conclude that iX2

Ω1 = dh1.

(ii) It will be proved by induction.

For k = 1 we have pr2(W1) = M1 since W1 = graph(FL).

Assume that pr2(Wk) ⊂ Mk. Then

Wk+1 = {x ∈ Wk such that there exists X ∈ TxWk satisfying iX Ω = dD}

Mk+1 = {y ∈ Mk such that there exists Y ∈ TyMk satisfying iY Ω1 = dh1}.

If x ∈ Wk+1, then there exists X ∈ TxWk, satisfying iX Ω = dD.
Since pr2(Wk) ⊂ Mk, Tpr2(X) ∈ TMk and by (i) iTpr2(X) Ω1 = dh1.
Thus, we have proved that pr2(x) ∈ Mk+1 and that pr2(Wk) ⊂ Mk.

To prove that pr2(Wf) = Mf , take a solution Y of equation 2.3 on
Mf . Then we can construct a vector field ξ on Pf which is FLf -related
with Y , and using Theorem 2.2 we obtain a vector field Yξ along the
image of the section βξ which satisfies (2.1) and (2.2). We can construct
the map

βξ : Mf −→ TQ⊕ T ∗Q

(qA, pA) → (βξ(q
A, pA), (q

A, pA)).
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It is easy to see, that the vector field Tβξ(Y ) on Im(βξ) is a solution
of (3.2). By the maximality of the final constraint manifold Wf , we can

conclude that Im(βξ)⊂ Wf , but Mf = pr2(Im(βξ)) ⊂ pr2(Wf ) ⊂ Mf

and then the result follows.

(iii) It is a direct consequence of (ii) and the commutativity of dia-
gram (3.1). �

A solution of the Hamilton-Jacobi problem as stated in the previous
section is given by a section σ of TQ ⊕ T ∗Q, so σ = (Z, γ), where Z

and γ are a vector field and a 1-form on Q, respectively.

We will see that γ satisfies the Hamilton-Jacobi problem in the hamil-
tonian sense.

From the fact that σ is a solution of the Hamilton-Jacobi problem
in the Skinner-Rusk setting, we deduce:

(i) Since Im(σ) ⊂ W1, then Im(γ) = pr2(Im(σ)) ⊂ pr2(W1) =
M1.

(ii) Since Im(σf ) ⊂ Wf , then Im(γf) = pr2(Im(σf )) ⊂ pr2(Wf )
= Mf .

(iii) Since d(pr2 ◦ σ) = dγ = 0, then γ is closed.
(iv) Since Im(σ) ⊂ W1, then D ◦ σ = h1 ◦ γ and then, using that

d(D ◦ σ)|Qf
= 0, we finally get d(h1 ◦ γ)|Qf

= 0.

On the other hand, given a vector field X on Wf which is a solution
of (3.2), we can obtain a solution of (2.3) along Im(γf) by defining

X2(γf(p)) = Tpr2(X(σf(p))), for all p ∈ Qf .

Now, from Lemma 5.5 it follows that X2 is a solution of (2.3).

As above we can construct the projected vector field on Qf , by
putting

X
γ
2 (p) = Tπf (X2(γf(p))), for all p ∈ Qf .

Remark 5.6. By the commutativity of the diagram (3.1) we deduce
that pr = πQ ◦ pr2, and in consequence we have

Xσ(p) = Tpr(X(σf(p))) = TπQ ◦ pr2(X(σf (p))) = Tπf(X2(γf(p)))

for all p ∈ Qf , and so, Xσ = X
γ
2 . ⋄

Summarizing the above discussion, we can conclude that it is possible
to relate the Hamilton-Jacobi theory in the Skinner-Rusk setting to the
Hamilton-Jacobi theory on T ∗Q. In this case the vector fields X2 and
X

γ
2 are γf -related.

5.2. The lagrangian setting. In this section we will relate the Hamil-
ton-Jacobi theory developed in the Skinner-Rusk setting with the cor-
responding one on the lagrangian side
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5.2.1. The regular case. If the lagrangian L is regular, then we have a
symplectic system given by (TQ, ΩL, EL). Then there exists a unique
solution ξ of the equation 2.1 which automatically satisfies the SODE
condition.

Given Z a vector field on Q such that Z∗ΩL = 0 we can define the
following vector field on Q

ξZ(p) = TτQ(ξ(Z(p))) for all p ∈ Q

and obtain the following result.

Proposition 5.7. Under the previous conditions, the vector fields ξ

and ξZ are Z-related if and only if d(EL ◦ Z) = 0.

Proof. The proof is a consequence of Proposition 5.1. �

5.2.2. The singular case. In this case, we will discuss the presymplec-
tic system given by (TQ,ΩL, dEL). Applying the Gotay-Nester-Hinds
algorithm we obtain a sequence of submanifolds

· · ·Pk →֒ · · · →֒ P2 →֒ P1 = TQ.

We also assume that Qi = τQ(Pi) are submanifolds and that τi =
prQ|Pi

: Pi → Qi are submersions, for any index i.

Remember that the algorithm of Gotay-Nester-Hinds applied to the
presymplectic systems (M1, Ω1, dh1) and (TQ, ΩL, dEL) stop at the
same step, so we will denote the final constraint manifold of the system
(TQ,ΩL, dEL) by Pf .

Let Z be a vector field on Q satisfying the following properties:

(i) Im(Zf) ⊂ Pf , where Zf denotes the restriction of Z to Qf .
(ii) Z∗ΩL = 0.

Then, if ξ is a vector field on Pf solving the equation iξ ΩL = dEL,
we can construct the vector field ξZ on Qf by

ξZ(p) = TτQ(ξ(Zf(p))), for all p ∈ Qf .

Now, we can develop the corresponding Hamilton-Jacobi theory in the
lagrangian setting.

Proposition 5.8. Under the above hypothesis for Z we have

d(EL ◦ Z)|Qf
= 0 ⇔

(

ξ − TZf(ξ
Z)
)

∈ ker(ΩL).

Proof. “⇒”

Assume that d(EL ◦ Z)|Qf
= 0 holds, then we will prove that

(i(ξ−TZf (ξZ ))ΩL = 0)|Im(Zf ).

For any x ∈ Im(Zf ) we have the decomposition Tx(TQ) = TxIm(Z)+
V (TQ), where V (TQ) denotes the vertical bundle of the projection
τQ : TQ → Q.
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Since ΩL vanishes acting on two elements of V (TQ) and ξ−TZf(ξ
Z)

is vertical, we have
(

i(ξ−TZf (ξZ))Ω
)

(V (TQ)) = 0

Since ξ is a solution along Im(Zf), we have
(

iξ(p)ΩL

)

◦ Tσ(p) = dZ(p)EL ◦ TZf(p) = dp(EL ◦ Z)

for any p ∈ Qf .

On the other hand, (iTZf (ξZ (p))ΩL) ◦ TZ(p) = 0, since for any Y ∈
TpQ we get

(

i(ξ−TZf (ξZ)) ΩL

)

◦ TZ(p)(Y ) = ΩL(TZf(ξ
Z(p)), TZ(Y ))

= (Z∗ΩL) ((ξ
Z , Y ) = −dγ(ξZ , Y ) = 0

and so we can conclude that
(

i(ξ−TZf (ξZ ))ΩL

)

(T Im(Z)) = 0

“⇐”

Since i(ξ−TZf (ξZ ))ΩL = d(EL ◦ Z), if (ξ − TZf(ξ
Z)) ∈ ker(ΩL), then

d(EL ◦ Z)|Qf
= 0 �

Definition 5.9. A vector field on Q, Z satsifying the previous condi-

tions will be called a solution of the Hamilton-Jacobi problem for

L in the lagrangian setting.

The vector fields ξ and ξZ are not necessarily related as the next
example shows.

Example 5.10. Let L : TR2 → R be the lagrangian given by

L(q1, q2, v1, v2) = q1 v2 + q2 v1

We have

FL(q1, q2, v1, v2) = (q1, q2, q2, q1),

EL(q
1, q2, v1, v2) = q1 v2 + q2 v1 − q1 v2 − q2 v1 = 0,

ΩL = 0,

so every vector field ξ on TR2 satifies

iξ ΩL = dEL.

Therefore, the algorithm of Gotay-Nester-Hinds stabilizes at the first
step, and Pf = P1 = TQ.

Moreover, every vector field Z on R
2 is a solution of the Hamilton-

Jacobi problem, since EL ◦ Z = 0 and Z∗ΩL = 0.
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Let ξ be the solution satisfying the SODE condition given by

ξ(q1, q2, v1, v2) = v1
∂

∂q1
+ v2

∂

∂q2
+

∂

∂v1
+

∂

∂v2

Let Z be

Z(q1, q2) =
∂

∂q1
+

∂

∂q2

An easy computation shows that

TZ(Z(q1, q2)) =
∂

∂q1
+

∂

∂q2
,

but

ξ(Z(q1, q2)) =
∂

∂q1
+

∂

∂q2
+

∂

∂v1
+

∂

∂v2
6= TZ(Z(q1, q2)).

Thus, the vector fields ξ and ξZ are not Z-related.

Next we will show that a solution of the Hamilton-Jacobi problem in
the Skinner-Rusk formalism induces a solution of the Hamilton-Jacobi
theory in the lagrangian setting.

The following lemma is analogous to Lemma 5.5.

Lemma 5.11.

(i) If X ∈ TpW1 satisfies iX Ω = dD, then X2 = Tpr1(X) satisfies
iX1

ΩL = dEL and the SODE condition (2.2).
(ii) For each step k of the constraint algorithm applied to the presym-

plectic systems (M1, Ω1, dh1) and (W0 = TQ⊕T ∗Q, Ω, dD),
we have

pr2(Wk) ⊂ Pk

(iii) We have pr(Wf) = τQ(Pf)

Proof.

(i) and (ii) are proved using similar arguments to that in Lemma 5.5.

(iii) Since the following diagram

Pf

τf

��✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

FLf

((PP
PP

PP
PP

PP
PP

PP
PP

Mf

πf~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Qf

is commutative, and FLf is a surjective submersion, we deduce that
πQ(Mf ) = τQ(Pf ). By Lemma 5.5 (iii), we obtain πQ(Mf ) = pr(Wf),
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and the result follows. The situation can be summarized in the follow-
ing commutative diagram

Wf

pr1

��

pr2

��

pr

��
pr(Wf) = τQ(Pf)

Pf

τQ

77♣♣♣♣♣♣♣♣♣♣♣♣ FL // Mf

πQ

gg◆◆◆◆◆◆◆◆◆◆◆◆

�

If σ = (Z, γ) is a solution of the Hamilton-Jacobi problem, we deduce
the following results:

(i) Since Im(σf ) ⊂ Wf , then pr1(Im(σf )) ⊂ pr1(Wf ) ⊂ Pf .
(ii) We have Z∗ΩL = 0, since Z∗ΩL = Z∗(dθL) = d(Z∗θL) =

d(FL(Z)) = dγ = 0.
(iii) Since Im(σ) ⊂ W1, then D ◦ σ(p) = EL ◦ Z(p) and, because

d(D ◦ σ)|Qf
= 0, then d(EL ◦ Z)|Qf

= 0.

Now, given a solution X of (3.2), we can obtain a solution of (2.1)
along Im(Zf ) using Lemma 5.11, and putting

X1(Zf(p)) = Tpr1(X(σ(p))), for all p ∈ Qf

We can also define the vector field on Qf given by

XZ
1 (p) = TτQ(X1(Zf(p))).

The vector fields X1 and XZ
1 are not Zf -related in general, as we

have proved in example 5.10.

Remark 5.12. By the commutativity of diagram (3.1) we have pr

= τQ ◦ pr1 and hence

Xσ(p) = Tpr(X(σf(p))) = TτQ ◦ pr1(X(Zf(p))) = TτQ(X1(Zf(p))),

for all p ∈ Qf , and so Xσ = XZ
1 .

Moreover, since X1 satisfies the SODE condition, then

XZ
1 (p) = TτQ(X1(Z(p))) = τTQ(X1(Z(p))) = Z(p) = Zf(p),

and we have

Xσ = XZ
1 = X

γ
2 = Zf .

Note that this means that we only need to compute X
γ
2 to obtain

Zf . ⋄
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6. Final considerations

In the last section we show that a solution of the Hamilton-Jacobi
problem in the Skinner-Rusk setting, σ = (Z, γ), gives a solution of the
Hamilton-Jacobi problem in the lagrangian and hamiltonian settings
(Z and γ respectively). A solution of the equation 3.2 along Im(σ) can
be also projected to solutions of 2.1 and 2.3 along Im(Z) and Im(γ),
denoted respectively by X1 and X2.

If we take a vector field X solution of the equation (3.2) onWf , using
σ we can compute Xσ. Now we can easily conclude that the vector
fields X and Xγ are σf related iff the corresponding vector fields X1

and XZ
1 are Zf related in the lagrangian setting.

To illustrate the above results we revisite example 5.10 in the Skinner-
Rusk setting and apply the corresponding Hamilton-Jacobi theory.

Example 6.1. Consider the lagrangian given in Example 5.10

L(q1, q2, v1, v2) = q1 v2 + q2 v1.

Then, on TR2 ⊕ T ∗
R

2 we have

D(q1, q2, v1, v2, p1, p2) = v1p1 + v2p2 + v1q2 + v2q1,

and hence

dD(q1, q2, v1, v2, p1, p2) = −v2dq1 − v1dq2 + (p1 − q2)dv1

+(p1 − q1)dv2 + v1dp1 + v2dp2
(6.1)

Recall that we must compute

W1 = {(qA, vA, pA) such that there exists X ∈ T(qA,vA,pA)TR
2 ⊕ T ∗

R
2

satisfying iX Ω = dD}.

If

X = a1
∂

∂q1
+ a2

∂

∂q2
+ b1

∂

∂v1
+ b2

∂

∂v2
+ c1

∂

∂p1
+ c2

∂

∂p2
(6.2)

then

iX Ω = −c1dq1 − c2dq2 + a1dp1 + a2dp2 (6.3)

and so

a1 = v1, a2 = v2, c1 = v2, c2 = v1, p1 − q2 = 0, p2 − q1 = 0
(6.4)

must hold.

Therefore, W1 = {(q1, q2, v1, v2, q2, q1) such that qA, vA ∈ R} = graph(FL).

Next, we compute

W2 = {(q1, q2, v1, v2, q2, q1) ∈ W1 such that there exists

X ∈ T(q1,q2,v1,v2,q2,q1)W1 satisfying iX Ω = dD}
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If X ∈ TW1 then X can be locally expressed as

X = a1 ∂
∂q1

+ a2 ∂
∂q2

+ b1 ∂
∂v1

+ b2 ∂
∂v2

+( ∂2L
∂v1∂q1

a1 + ∂2L
∂v1∂q2

a2 + ∂2L
∂v1∂v1

+ ∂2L
∂v2∂v1

) ∂
∂p1

+( ∂2L
∂v2∂q1

a1 + ∂2L
∂v2∂q2

a2 + ∂2L
∂v2∂v1

b1 + ∂2L
∂v2∂v2

b2) ∂
∂p2

= a1 ∂
∂q1

+ a2 ∂
∂q2

+ b1 ∂
∂v1

+ b2 ∂
∂v2

+ a2 ∂
∂p1

+ a1 ∂
∂p2

(6.5)

Taking into account (6.4) and (6.5), for every point (q1, q2, v1, v2, q2, q1)
∈ W1 we obtain

X = v1
∂

∂q2
+ v2

∂

∂q2
+ b1

∂

∂v1
+ b2

∂

∂v2
+ v2

∂

∂p1
+ v1

∂

∂p2

for arbitrary b1, b2, and so W2 = W1 and therefore the final constraint
submanifold is W1; consequently, Qf = Q.

Now, a solution of the Hamilton-Jacobi problem in the Skinner-Rusk
setting is given by σ = (Z, γ) such that

(i) Im(σ) ⊂ W1.
(ii) Im(σf ) ⊂ Wf .
(iii) d(pr2 ◦ σ) = dγ = 0, that is, γ is closed.
(iv) d(D ◦ σ)|Qf

= 0

It is easy to see that every pair given by a vector field Z and its
image by the Legendre transformation, that is (Z, γ = FL(Z)) is a
solution of the problem. In fact, by construction Im(σ) ⊂ W1 and
D|W1

= 0 ⇒ D ◦ σ = 0. Following the argument in example 5.10 we

can take Z(q1, q2) = ∂
∂q1

+ ∂
∂q2

, and so

σ(q1, q2) =
∂

∂q1
+

∂

∂q2
+ q2dq1 + q1dq2

If we consider the solution

X(q1, q2, v1, v2) = v1
∂

∂q1
+ v2

∂

∂q2
+

∂

∂v1
+

∂

∂v2
+ v2

∂

∂p1
+ v1

∂

∂p2

then

Xσ(q1, q2) =
∂

∂q1
+

∂

∂q2

and

Tσ(Xσ(q1, q2)) =
∂

∂q1
+

∂

∂q2
+

∂

∂p1
+

∂

∂p2
.

A direct inspection shows that

Tσ(Xσ(q1, q2)) 6= X(σ(q1, q2) =
∂

∂q1
+

∂

∂q2
+

∂

∂v1
+

∂

∂v2
+

∂

∂p1
+

∂

∂p2
.
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We can also obtain information of the Hamilton-Jacobi problem in
the Skinner-Rusk setting from a solution of the Hamilton-Jacobi prob-
lem in the hamiltonian side.

If γ is a solution of the Hamilton-Jacobi problem in the hamiltonian
setting and Y a vector field on Mf wich is a solution of equation (2.3),
then we can define Y γ as before.

We can also define a section σ̃ of prf : Wf → Qf given by σ̃(p) =
(Y γ(p), γ(p)) for all p ∈ Qf . An easy computation shows that T σ̃(Y γ)
is a vector field along Im(σ̃) which solves (3.2). Moreover if we find a
vector field Z on Q such that FL ◦ Z = γ and Zf = Y γ, then the pair
(Z, γ) is a solution of the Hamilton-Jacobi problem in the Skinner-Rusk
setting.

7. Appendix: The Gotay-Nester-Hinds algorithm of
constraints

In this section we will briefly review the constraint algorithm of con-
straints for presymplectic systems (see [11, 7]).

Let M1 be a manifold, Ω a presymplectic structure on M1, i.e., Ω
is a closed 2-form, and α a 1-form on M1. We will call (M1, Ω, α) a
presymplectic system.

Gotay et al. developed an algorithm to find N , a submanifold of M1

where we can solve the equation

iX Ω = α (7.1)

with X tangent to N .

The previous equation could not hold for every point of M1, because
α could not be in the range of Ω. So it is necesary to introduce the
following set

M2 = {p ∈ M1 such that there exists X ∈ TpM1 satisfying iX Ω = α},

and it is assumed that M2 is a submanifold.

At the points of M2 there exists solution to equation (7.1) but in an
algebraic sense, that is, the solution could not be tangent to M2. This
forces a further restriction to

M3 = {p ∈ M2 such that there exists X ∈ TpM2 satisfying iX Ω = α},

which is also assumed to be a submanifold.

Proceeding as above, the algorithm will produce a sequence of sub-
manifolds

· · ·M3 . . . →֒
j3 M2 →֒j2 M1

where

Ml+1 = {p ∈ Ml such that there exists X ∈ TpMl satisfying iX Ω = α},

and jl denote the inclusions.
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There are three possibilities:

(i) There exists k such that Mk = Ø.
(ii) There exists k such that Mk = Mk+1.
(iii) The algorithm does not end.

In the second case the submanifold Mk is called the final constraint
submanifold and is denoted by Mf . By construction there exists a
vector field on Mf such that is solution of equation (7.1). The third
case is only possible in the infinite dimensional setting. In this case,
the final constraint submanifold is defined by Mf = ∩i=1Mi.

Note that the final constraint submanifold is maximal in the sense
that if R is submanifold of M1 where there exists a tangent solution of
equation (7.1), then R ⊂ Mf .
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