arXiv:1205.0168v1l [math-ph] 1 May 2012

A HAMILTON-JACOBI THEORY FOR SINGULAR
LAGRANGIAN SYSTEMS IN THE SKINNER AND
RUSK SETTING

MANUEL DE LEON, DAVID MARTIN DE DIEGO, AND MIGUEL VAQUERO

ABSTRACT. We develop a Hamilton-Jacobi theory for singular la-
grangian systems in the Skinner-Rusk formalism. Comparisons
with the Hamilton-Jacobi problem in the lagrangian and hamil-
tonian settings are discussed.
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1. INTRODUCTION

The standard formulation of the Hamilton-Jacobi problem is to find
a function S(t,¢*) (called the principal function) such that

a3 L 08
L — ) = 1.1

Key words and phrases. Hamilton-Jacobi theory, presymplectic constraint
algorithm.
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where h = h(g*,pa) is the hamiltonian function of the system. If we
put S(t,¢*) = W(q") — tE, where E is a constant, then W satisfies

W o) = E: (1.2)

W is called the characteristic function.

Equations (L)) and (L2) are indistinctly referred as the Hamilton-
Jacobi equation (see [I], 2, 23]).

This theory works for classical mechanical systems, where the la-
grangian function is usually the kinetic energy corresponding to a Rie-
mannian metric on the configuration manifold minus a potential energy.
This is the case of the so-called regular lagrangian systems, that have
a well-defined hamiltonian counterpart. The theory has been recently
reformulated in a geometrical setting (see [3, 4, [B]) that has permitted
its extension to nonholomic mechanical systems [13] [15], and even clas-
sical field theories [14] [I8].The procedure is based on the comparison
of the hamiltonian vector field X}, on the cotangent bundle T*() and
its projection onto @) via a closed 1-form v on @); the result says that

both vector fields are y-related if and if the Hamilton-Jacobi equations
d(ho~) =0 holds.

On the other hand, a Hamilton-Jacobi theory for singular lagrangian
systems is far to be accomplished. There were several attempts ([20] 21]
22]), based on the homogeneization of the given lagrangian, which leads
to a new lagrangian system with null energy such that it is possible to
discuss the Hamilton-Jacobi equation for the constraints themselves.
The main problem is that, due to the integrability condition for the
resultant partial differential equation, one can only consider first class
constraints. Therefore, the treatment of the cases when second class
constraints appear should be developed by ad hoc arguments (as in
[22], for instance). Thus, in [20] and [21] the authors only discuss the
case of primary constraints.

A more modern discussion on this subject can be found in [3, [12],
but these authors only consider the case of primary constraints. More
recently, in [I7] it is proposed a Hamilton-Jacobi theory for arbitrary
singular systems that works even if the system exhibit secondary con-
straints. The strategy is to apply the geometric procedure described
above in combination with the constraint algoritm developed by M.J.
Gotay and J.M. Nester [7, 8,9, T0] and that geometrizes the well-known
Dirac theory of constraints [6].

In the present paper we take a different approach, and consider the
Skinner and Rusk setting to treat with singular lagrangians [24] 25].
Skinner and Rusk have considered a geometrized framework where the
velocities and the momenta are independent coordinates. To do this,
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they considered the dynamics on the Withney sum of T'Q) (the space
of velocities) and T*() (the phase space).

Given a lagrangian function L : TQ)Q — R (singular or regular, no
matter) one considers the bundle T'Q &T™* () with canonical projections
pr1 : TQ & T*Q — TQ and pry : TQ & T*Q — T*(Q onto the first
and second factors. We then define a function D : TQ & T*Q) — R
by D(X,,a,) = a,(X,) — L(X,). In bundle coordinates (¢*, v, pa),
D is given by D(g4,v*,pa) = v4pa — L(¢?,v?), and it is sometimes
refered as the Pontryagin hamiltonian or generalized energy (see [26]).
We can also define a 2-form 2 on T'Q & T*Q by Q = pr;(Qg), where
(2g denotes the canonical symplectic 2-form of T*Q).

Then, one discuss the presymplectic system (7'Q) & T7*Q, 2, dD) and
obtain the corresponding sequence of constraint submanifolds, which,
of course, have a close relation with those obtained by Gotay and Nester
on the lagrangian and hamiltonian sides. It should be noticed that this
algorithm includes the SODE condition just from the very beginning.

We apply the Hamilton-Jacobi geometric procedure to this presym-
plectic system and develop the corresponding Hamilton-Jacbi theory.
The relation with the Hamilton-Jacobi problems on the lagrangian and
hamiltonian sides are extensively discussed.

2. NOTATION AND BACKGROUND

In this work all manifolds are assumed to be finite dimensional and
C*. Given a function f, the differential at a point p will be indistinctly
denoted by d, f or df (p).

We refer to [19] for a detailed description of lagrangian and hamil-
tonian mechanical systems.

Let @ be a differentiable manifold and denote by T'Q) and T*() the
tangent and cotangent bundles, and by 79 : T'Q) — @ and 7 : T7Q) —
(@ the respective canonical projections on Q).

We introduce two canonical structures on the tangent bundle of a
manifold: the vertical endomorfism S, and the Liouville vector field A.

In bundle coordinates, (¢, v?), they are respectively given by
S =dq" ® 501,
A =4 a%.

Let now L : T'(Q) — R be a lagrangian on 7'Q); we can define the
Poincaré-Cartan 2-form and the energy function of L by

QL = —d@L, where 9L = S*(dL),
E,=A(L) - L,
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which in local coordinates read as

oL
0, = —dq*
v goA Y9
oL
Qp = d¢* Nd=—
4 OL

E, = v SuA (q,v).

We look for vector fields € which simultaneously satisfy the equations

ie Q= dE; (2.1)
SE=A. (2.2)
If the lagrangian L is regular, that is, det(&)‘fﬁ) # 0, then the form

Qy is symplectic (€2, has maximal rank) and there exists a unique
vector field & on T'Q) which satisfies the equation (2.1I). This vector
field automatically satisfies the SODE condition (2.2]).

If the lagrangian is not regular, then 2, is no longer symplectic and
equation (2.I)) has no solution in general and even if there is a solution
it is not necesary a SODE. Therefore for a singular lagrangian L, €1
is a presymplectic form (that is, the rank is not maximal, althought,
for simplicity, it is assumed that it is constant).

We define the Legendre transformation associated to L as the map-
ping

FL: TQ — T*Q
(¢*vh) = FL(g" v = (¢*, & (" v?)).

» OvA
From a direct inspection in local coordinates we know that the Legendre
transformation is a local diffeomorfism if and only if L is regular.

We can apply the Gotay-Nester-Hinds algorithm of constraints, see
[7, 8, @], to the presymplectic system (T'Q, €, dEr) and hence we
obtain a sequence of constraint submanifolds

Py > Py P =TQ.

Assume that the algorithm stabilizes at some step k, say P11 = Py,
which is called the final constraint submanifold, denoted by Py = P.

In this paper we will only consider almost regular lagrangians L :
T — R, that is:

(i) My =Im(FL) is a submanifold of 7%(), and
(ii) FL : TQ — Im(FL) is a surjective submersion of connected
fibers.
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Under these assumptions, the energy E is projected onto a function
hy : M; — R such that hy o FIL = Ej,

TQ FL T+Q
FL, A T
J1
M; =Im(FL)

Here F'L; is the restriction of F'L to its image, and j; : M7 — T%(Q) is
the canonical inclusion.

Next, study the presymplectic system given by (M, 1 = jiQq, dhy),
where ) is the canonical symplectic form on 7%(Q). Therefore, we con-
sider the equation

’iy Ql - dhl (23)

As above we can apply the presymplectic algorithm and we obtain a
sequence of constraint submanifolds

My — o= My — My — T7Q.
It is obvious that
FL(P;) = M;, for any 1,
and, furthermore, the induced mappings
FL;=FLp : P,— M,

are surjective submersions, for all i.

Hence, both algorithms stabilizes at the same step, say k, and then
FL(Py) = My,

and

is a surjective submersion (with the obvious notations).
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The following diagram summarizes the above discussion.

FL

P =TQ 0
| ]
g2 J1
Py M,
FLs ' ]
J2
M,
97
Py :
FL; jfT
My

where ¢; and j; denote the natural inclusions.

The relation between equations (2.1) and (23) is given by the fol-
lowing theorem.

Proposition 2.1. If{ € T,TQ satisfies (2.1)), then TFL(§) € Tprp M
satisfies (23)). Therefore, if £ is a FLg-projectable solution of (2.1I),
then its projection TFL¢(€) is a solution of (2.3).

Conversely, if Y is a solution of (21I), then any F Ly projectable
vector field on Py which projects on'Y, is a solution of (2.3).

Next, we shall discuss the SODE problem as it was stated by M.J.
Gotay and J.M. Nester [7, §.

The results can be summarized in the following result.
Theorem 2.2.

(i) If€ is a F'Ly-projectable vector field on Py then for any p € My
there exists a unique point in each fiber FLJIl(p), denoted by
ne(p) at which & is a SODE. The point ne(p) is given by

ne(p) = To(&(p))-
(ii) The map
ﬁg : Mf — Pf
P = Pep) = ne(p)

is a section of F'Ly : P — My and on Im(B¢) there ezists a
unique vector field, denoted by Ye, which simultaneously satis-
fies the equations

iv, Q= dEy, SY;=A.
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We will now recall the construction of the solution of the dynamical
equation which simultaneously satisfies the SODE condition. If Y =
(FLf).(€), then Y is a vector field on M/ satistying iy €y = dh;. The
vector field Y described in (ii) is given by

Ye(Be(p)) = TPe(Y (p)), for all p € My.
A detailed discussion can be found in [19] [7, &), [, [11].

3. THE SKINNER AND RUSK FORMALISM

Skinner and Rusk, [24], 25], have considered a geometrized framework
where the velocities and the momenta are independent coordinates.
Indeed, they considered the dynamics on the Withney sum of 7Q) (the
space of velocities) and T*(Q) (the phase space).

In this section we will briefly recall the Skinner and Rusk formalism.

Let @ be a differentiable manifold and L : T'Q) — R a lagrangian. We
can consider the bundle T'Q) ® T*(Q given by the Withney sum of 74 :
TQ — Qand g : T"Q — Q. We will denote by pri : TQ®T*Q — T'Q
and pry : TQ @ T*Q) — T*(@) the projections onto the first and second
factors, and by pr : TQ @& T*(Q) — (@ the projection onto ). We then
have the following commutative diagram

TQaT*Q (3.1)
TQ pr Q)
TQ
N AT
Q

We can define a function
D: TQ®TQ — R
(Xps ap) —  D(Xp, ap) = (X)) — L(Xp).
In bundle coordinates (¢, v, p.), D is given by D(¢*, v, pa) = vips—

L(g*,v?). The function D is sometimes refered as the Pontryagin
hamiltonian or generalized energy (see [20]).

We can define a 2-form © on 7Q & T*Q by 2 = pr;(£2g), where Qg
denotes the canonical symplectic 2-form of T%(Q).

Next, we can consider the presymplectic system given by (W, =
TQ @ T*Q, Q, dD) and study the equation

ixQ=dD, (3.2)

applying the Gotay-Nester-Hinds algorithm of constraints. Hence, we
obtain

Wy = {x € W, such that there exists X € T, W, satisfying ix Q = dD}.
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In canonical coordinates (¢*,v?,p4), we have
Q= qu ANdpa,
dD = —g}—ﬁqu + (pa — aav—LA)dvA + vidpy.

So, given a tangent vector X = aAain—i—bA&%—i—cAa%A € Tiya vap ) Wo
we deduce that

ix Q= —cdg”* + a’dpa
and (3.2)) is equivalent to the following conditions

at = v,
=gk, (3.3)
pA—gj—ﬁ—O, 1<A<n

Next, we should restrict the dynamics to W; = {(qA,UA, pa) €
Wy such that py = gv—LA}, that is, Wy = graph(F'L), where FIL: TQ —
T*() has been defined in section

Accordingly with the Gotay-Nester-Hinds algorithm, a solution X
must be tangent to W;. Assume that such X has the local expression

_ A9 , 7408 9L —B 2L 78\ 5
X=a OgA +0 oA + (8vA8qBa + avAava )8pA (34)
Then, taking into account (B.3) and (B.4]),we deduce
at =04
2L B+ 2L 53 ) (3.5)
OvAdgB OvAouB — 9qA”

If there exists such a vector field X tangent to Wi, satisfying the

above conditions, we have done, and the final constraint manifold Wy

is just Wi. For instance, if the lagrangian is regular, det(av‘fﬁ) # 0,
—A

we can compute b explicitly. If we denote by C'4 g the matrix Cy g =

<66i) and C4P its inverse, then

vB ovA
o S 0*L B oL
b=-C (U owBogAr  0g¢4 )

Otherwise, we need to continue the process, and then we obtain a
sequence of submanifolds

If the algorithm stabilizes, that is, there exists k such that W, =
Wii1, then Wy is called the final constraint submanifold and denoted
by Wf.
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4. A HAMILTON-JACOBI THEORY IN THE SKINNER-RUSK SETTING

In this section we will develop a Hamilton-Jacobi theory in the
Skinner-Rusk formalism. We will use the same notation introduced
in the previous sections and discuss separately the regular and the sin-
gular cases.

4.1. The regular case. Assume that we begin with a regular la-
grangian L : T'() — R. Then, W; = W.

A section of TQ & T*Q is given by o = (Z,7) where Z and v are a
vector field and a 1-form on @), respectively. Assume that o satisfies
the following conditions

(i) Im(o) C Wy = graph(F'L), and
(ii) d(prooo)=dy=0.

Then, by the regularity of L, we know that there exists a unique
vector field on Wy, say X, satisfying

ix Q=4dD,
and then we can define a vector field on () by
X%(p) = Tpr(X(o(p))), for all p € Q.
Now we have the following proposition.

Proposition 4.1. Under the previous conditions, d(D o o) = 0 if and
only if the vector fields X and X° are o-related.

Proof.

“#”

Assume that d(D o ¢) = 0 holds, then we will prove first that
(ix-70(x7)2 = 0)jtm(o):

It is clear that if x € Im(o) then T, (TQ®T*Q) = T,Im(c)+V, where
V' denotes the vertical bundle of the projection pr : TQ @& T*Q — Q.
We will show that i(x_7,(x-)){ anihilates T,Im(c) and V. Indeed, by

the definition of €2, it is obvious that {2 vanishes acting on two elements
of V. Since X — T'o(X) is vertical, we have

(ix-ro(xen ) (V) = 0.
Given p € @), since X is a solution on Wy, we get

(ixp) Q) oTo(p) =TD(o(p)) o To(p) =T(Doo)(p).
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On the other hand, (i7s(x7 @) 2) o To(p) = 0 since for any Y € T,Q)
we have

(iro(xp) @) (To(p)(Y)) = QTo(X(p)), To(Y))
=Q(To(X(p), To(Y)) = pr3(Qq)(To(X?(p)), To(Y))
= (QQ)(Tpra o To(X?(p)), TpraoTo(Y)) = (Q)(TV(X7(p)), Tv(Y))
= —dy(Ty(X7(p)), T¥(Y)
=0

and so, we conclude that

(i(x—To(x7) ) (TIm(0) ) 1n(0) = 0,

)

which implies
(i(X*TUf(XU))Q) (V + Tlm(a))um(a)
= (ix—To; (xon Q) (T(TQ & T*Q)) (o) = 0-
Therefore (X —To(X7)) € ker(€2). This means that i(x_7,(x-)) 2 =0,
and hence ¢* (i(X,TU(Xa)) Q) = i(x—To(x7)) (1*Q) = 0, where ¢ : W; —
W)y is the inclusion.
It is not hard to see, that if L is regular then ¢*(2 is symplectic and
50 (X =T0(X7)) 1 (0)-
“<” Since ((i(X_TO(XJ))Q) oTo=d(Do 0)), if X = To(X7), then
d(Doo)=0. O

4.2. The singular case. Assume now that L : T'QQ — R is an almost
regular singular lagrangian.

Suppose that the algorithm of Gotay-Nester-Hinds applied to (W, =
TQ®T*Q, Q, dD) stabilizes at a final constraint submanifold W;. By
construction, there exists at least one vector field X on W; such that

We need some regularity conditions, thus we will also assume that
Qi = pr(W;) are submanifolds and that pr; = pryy, : W; — Q; are
submersions.

A section of pr: TQ @ T*Q — @ is given by 0 = (Z,7), where Z
and v are respectively a vector field and a 1-form on ). We will denote
by o the restriction of o to Q5 = pr(Wy) of 0. Suppose that o verifies
the following conditions:

(i) Im(o) C Wh.
(ii) Im(oy) C Wy
(iii) d(pre o o) = dvy =0, that is, 7 is closed.
Using o we can define a vector field on Q) by

X(p) =Tpr(X(os(p)), pEQs
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The construction is illustrated in the following diagram

Wy —— W; —>TW;

< ) af( Dprf LW

Q<~—Qy —TQy.

The relation between T'o;(X?) and X is shown in the following theo-
rem.

Proposition 4.2. The conditions
d(D o), =0

and

(X —Tos(X7) € ker(Q2))

|Im(ay)
are equivalent.

Proof. The proof follows by similar arguments as in Proposition (4.1l

t

Definition 4.3. A section o of TQ ® T*Q, 0 = (Z,~), satisfying the
following conditions

(11) [m(af) C Wf.
(iii) d(proo o) =dy=0.
) d(Docr)‘Qf =0

(iv
will be called a solution of the Hamsilton-Jacobi problem for the
lagrangian L in the Skinner-Rusk setting.

Remark 4.4. The last proposition says that To(X?) is a vector field
along Im(oy) which is also a solution of the equation ([B.2)). So if we
find an integral curve ¢(¢) of X% on Qy, then (o o ¢)(¢) is an integral
curve of a solution of (3.2). o

Remark 4.5. The natural question is if X and X7 are os-related in the
singular case, as it happens in the standard Hamilton-Jacobi theory,
see [I7]. The answer is that, as we discussed later (section [d), in some
cases the fields are not necessarily os-related. o

5. COMPARISON WITH THE HAMILTONIAN AND LAGRANGIAN
SETTINGS

In the previous section we have developed a Hamilton-Jacobi the-
ory in the Skinner-Rusk setting. The Skinner-Rusk formalism unifies
lagrangian and hamiltonian formalisms, so we would like to relate the
present Hamilton-Jacobi theory to the corresponding ones for the two
formalisms (see [17]).
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5.1. The hamiltonian setting.

5.1.1. The regular case. If the lagrangian, L, is regular, that is, F'L is
a local diffeomorfism, then we can define locally a hamiltonian function
h:T*Q — Rby h = EpoFL™!. Let us now assume that the lagrangian
is hyperregular, that is, 'L is a global diffeomorfism and A is globally
defined. Denote by X}, the corresponding hamiltonian vector field

ix, g = dh.
Let v be a closed 1-form on (); then we can define a vector field on @)
by
X7(p) = Tmo(Xn(y(p))) for all p € Q.

Then we have the following Hamilton-Jacobi theorem.

Proposition 5.1. The vector fields X and X" are vy-related if and only
if d(ho~y)=0.

Proof. For a proof see [1]. O

5.1.2. The singular case. Since we are considering an almost regular
lagrangian L : T'Q) — R, then we can apply the Dirac theory of con-
straints developed in Section 21

We have to study the presymplectic system given by (M;, Q; =
J1Qq, dhy), where j; : M; — T*Q is the inclusion and h; is defined
implicitly by hy o FIL = Ey.

If we apply the Gotay-Nester-Hinds algorithm, we obtain a sequence

My e s My <3 My < T*Q;

assume that we obtain a final constraint submanifold, denoted by M.
We also assume that @; = mg(M;) are submanifolds and that m; =
TQ s, M; — @); are submersions.

Remark 5.2. It is important to notice that the algorithm of Gotay-
Nester-Hinds applied to the same lagrangian in the Skinner-Rusk set-
ting and in the corresponding hamiltonian setting does not neces-
sary stop at the same level. For example, the lagrangian given by
L(q', ¢, v',v*) = vl ¢ produces the two presymplectic systems (M, Qy,
dhy) and (Wy = TQ & T*Q,2,dD). The first algorithm stabilizes in
k = 1, but the second one does in k = 2.

<

Let v be a 1-form on @ satisfying the following conditions:

(i) Im(~y) C M;.
(ii) Im(yf) C My, where 4 denotes the restriction to Qs of 7.
(iii) dvy = 0.
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Then, if Y is a vector field on M; solving the equation iy €2 = dhy,
we can construct the vector field Y7 on ()5 biven by

Y (p) = Tmq(Y (74(p))),  for each p € Qy

and obtain an analogous of theorem (notice that in this case we can
ensure that the vector fields are y¢-related, see [L7] for the details).

Proposition 5.3. We have
d(hio7)iq, =0 Y and Y are ys-related.

Proof. Given q € ()f, we have

(i(Y<w<q>>—Tq7f<Yv<q>>) Ql) © Tyy = iy (y(a)) 11 0 Ty = iy (@) S0 © Ty
= dy, P10 Tyy = dg(h107)

vr(q
where we have T,v;(Y?) = T,y(Y") and
sy (ay O © T (Y (@) = 4 (T (V) Ty (Y ()
= (7€) (Y(q),Y(q)) = dv(Y"(q), Y (q)) = 0,
for all Y, € T,Q.

The previous discussion can be applied to every point g € Q¢; there-
fore, taking into account that €2; vanishes acting on two vertical tangent
vectors, we can deduce the following

Y — Ty (Y7) € ker(€y) < d(h107)q, = 0.

As we did before, we will see that Y and Y7 are v related.
Remember that for any point p of M; we have a decomposition
T,(T°Q) = T,My + V,(T*Q),
where V(T*(Q) denotes as above the space of vertical tangent vectors
on p.
Since Y — Ty;(Y") is vertical at the points of Im(ys), given any
U eV, pelm(ys), then

QoY = T1(Y),U) = 0
Now, given U € T,M; we get

because (Y —Tv;(Y7)) € ker(€;), and hence QoY —Ty¢(Y7),Z) =0
for any tangent vector Z € T,(T*Q) at any point of Im(ys). Since Qg
is non-degenerate, we deduce that Y = Ty;(Y™) along Im(v;).

O
Definition 5.4. A 1-form v satisfying the previous conditions will be

called a solution of the Hamilton-Jacobt problem for L in the
hamiltonian setting.
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We are now going to relate the Hamilton-Jacobi problem in the
Skinner-Rusk setting and the corresponding one in the hamiltonian
setting. First, the following result gives the relation between W, and
M;, and also a relation between solutions of equations (2.3) and (3.2]).

Lemma 5.5.
(i) If X € T,W; satisfies ix Q = dD, then Xo = Tpro(X) €
Tora(pyMy satisfies ix, 2 = dhy.
(ii) For each step k of the constraint algorithms applied to the
presymplectic systems (My, Qp, dhy) and (Wy =TQ & T*Q,
Q, dD) we have
pTé(Wk) - Mka
and, if we denote the respective final constraint submanifolds
by Wy and My, then
pra(Wy) = My.
(ili) We have pr(Wy) = mo(My) = Qy.

Proof.
» S(21) Re;%ll t‘lflfat a vector § € Tiga ,\T'Q, § = uAain + wAaviA satisfies
lgalp, = L1

%L (UB . uB) -0

ovAovB
9L, B 9%L B _ 0L __ _9%L B _,B
vAouB U + avAanw g2 — OvBogA (U u )

If X € T,W; verifies ix 2 = dD, then X has the expression (3.4])
and satisfies ([B.0). So, it is clear that X; = T'pry(X) satisfies ix, 2, =
dEy. Since X is tangent to Wy, Xy = Tpro(X) = TFL o Tpri(X) =
TFL(X;) and using Proposition 2l we can conclude that ix, € = dh;.

(ii) It will be proved by induction.

For k =1 we have pry(W;) = M since Wy = graph(F'L).

Assume that pro(Wy) C M. Then

Wi = {& € Wy such that there exists X € T, W), satisfying ix Q = dD}

My41 = {y € M, such that there exists Y € T, M, satisfying iy €y = dh4}.

If x € Wiyq, then there exists X € T,W;, satisfying 1x Q = dD.
Since pro(Wi) C My, Tpra(X) € TM;, and by (i) irpryx) 01 = dhy.
Thus, we have proved that pro(z) € M1 and that pro(Wy) C M.

To prove that pro(Wy) = My, take a solution Y of equation 2.3] on
M. Then we can construct a vector field £ on Py which is F'Ls-related
with Y, and using Theorem we obtain a vector field Y along the
image of the section f¢ which satisfies (2.1]) and (2.2)). We can construct
the map

Be M; — TQaT"Q
(@ %) = (Be(a® pa), (a*,pa)).
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It is easy to see, that the vector field T3,(Y") on Im(8;) is a solution
of (3:2). By the maximality of the final constraint manifold Wy, we can
conclude that Im(B¢)C Wy, but My = pro(Im(B;)) C pro(Wy) C My
and then the result follows.

(iii) It is a direct consequence of (ii) and the commutativity of dia-

gram (3.1)). O

A solution of the Hamilton-Jacobi problem as stated in the previous
section is given by a section o of TQ @& T*Q, so 0 = (Z,7), where Z
and ~ are a vector field and a 1-form on @), respectively.

We will see that v satisfies the Hamilton-Jacobi problem in the hamil-
tonian sense.

From the fact that o is a solution of the Hamilton-Jacobi problem
in the Skinner-Rusk setting, we deduce:

(i) Since Im(o) C Wy, then Im(y) = pro(Im(o)) C pro(Wy) =
M;.
(ii) Since Im(oy) C Wy, then Im(vys) = pro(dm(oy)) C pro(Wy)
= M.
(iii) Since d(pry o o) = dy = 0, then = is closed.
(iv) Since Im(o) C Wy, then D oo = hy o+ and then, using that
d(D o o) g, =0, we finally get d(hy 07)q, = 0.

On the other hand, given a vector field X on Wy which is a solution
of (8:2), we can obtain a solution of (Z3]) along Im(vy) by defining

Xo(v¢(p)) = Tpra(X(04(p))), for all p € Qy.
Now, from Lemma it follows that X5 is a solution of (2.3]).
As above we can construct the projected vector field on @, by
putting
X3 (p) = Trs(Xa(vs(p))), for all p € Q.

Remark 5.6. By the commutativity of the diagram (B.1) we deduce
that pr = mg o pre, and in consequence we have

X7(p) = Tpr(X(os(p))) = Tmq o pra(X(o4(p))) = Tmp(X2(74(p)))
for all p € Qy, and so, X7 = X3 o

Summarizing the above discussion, we can conclude that it is possible
to relate the Hamilton-Jacobi theory in the Skinner-Rusk setting to the
Hamilton-Jacobi theory on T*@). In this case the vector fields X, and
X7 are ys-related.

5.2. The lagrangian setting. In this section we will relate the Hamil-
ton-Jacobi theory developed in the Skinner-Rusk setting with the cor-
responding one on the lagrangian side
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5.2.1. The regular case. If the lagrangian L is regular, then we have a
symplectic system given by (T'Q), 1, Er). Then there exists a unique
solution & of the equation 2.1l which automatically satisfies the SODE
condition.

Given Z a vector field on () such that Z*Q2;, = 0 we can define the
following vector field on @)

¢ (p) = Trq(&(Z(p))) for all p € Q

and obtain the following result.

Proposition 5.7. Under the previous conditions, the vector fields &
and &2 are Z-related if and only if d(Ep o Z) = 0.

Proof. The proof is a consequence of Proposition (.11 O

5.2.2. The singular case. In this case, we will discuss the presymplec-

tic system given by (T'Q,Qr,dFEL). Applying the Gotay-Nester-Hinds

algorithm we obtain a sequence of submanifolds
Py P P =TQ.

We also assume that Q); = 7¢(F;) are submanifolds and that , =

Progp, : P, — @); are submersions, for any index 1.

Remember that the algorithm of Gotay-Nester-Hinds applied to the
presymplectic systems (M7, @, dhy) and (T'Q, Qp, dEL) stop at the
same step, so we will denote the final constraint manifold of the system
(TQ,QL,dEL) by Pf

Let Z be a vector field on @) satisfying the following properties:

(i) Im(Zf) C Py, where Z; denotes the restriction of Z to Q.
(il) 2", = 0.

Then, if £ is a vector field on Py solving the equation i¢ ), = dEj,

we can construct the vector field €7 on @y by

§7(p) = T1o(&(Zs(p))), for all p € Qy.

Now, we can develop the corresponding Hamilton-Jacobi theory in the
lagrangian setting.

Proposition 5.8. Under the above hypothesis for Z we have
d(ELoZ)ig, =0< (£ = TZ;(£7)) € ker(Qy).
Proof. “="
Assume that d(E o Z)|q, = 0 holds, then we will prove that
((e-r2,(67)) e = O)im(z))-

For any « € Im(Z) we have the decomposition T;,(T'Q) = T,Im(Z)+
V(TQ), where V(T'Q) denotes the vertical bundle of the projection

70 : TQ — Q.
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Since 7, vanishes acting on two elements of V(T'Q) and £ —TZ;(£7)
is vertical, we have

(i(g—Tzf(gZ))Q> (V(TQ)) =0
Since ¢ is a solution along Im(Zy), we have
(ier) Q1) 0 To(p) = dzp B 0 TZs(p) = dy(Ep 0 Z)

for any p € Qy.
On the other hand, (ipz, 7)) Q1) o TZ(p) = 0, since for any Y €
T,Q we get

(i(g—Tzf(f%) QL) o TZ(p)(Y) = Qu(TZ;(£%(p), TZ(Y))
=(Z°Q) ((£7,Y) = =dy(¢7,Y) =0

and so we can conclude that

(i(e 12692 ) (TT(2)) = 0

“<:77
Since i(g_Tzf@Z))QL =d(EpoZ),if (€ = TZ(&?)) € ker(Qy), then
d(Bp o Z)g, =0 O

Definition 5.9. A wvector field on Q, Z satsifying the previous condi-
tions will be called a solution of the Hamilton-Jacobt problem for
L in the lagrangian setting.

The vector fields ¢ and £Z are not necessarily related as the next
example shows.

Example 5.10. Let L : TR? — R be the lagrangian given by
L(g", %, vt ) = ¢t o? + 2ot
We have

FL(q",¢* 0" v?) = (¢', ¢ 4%, ¢"),
Er(q', ¢ v v%) = ¢ v + @ o' — ¢ v? — v =0,
Q, =0,

so every vector field ¢ on TR? satifies

ie QU = dEy.

Therefore, the algorithm of Gotay-Nester-Hinds stabilizes at the first
step, and Py = P, =TQ.

Moreover, every vector field Z on R? is a solution of the Hamilton-
Jacobi problem, since Ej, o Z =0 and Z*Q;, = 0.
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Let ¢ be the solution satisfying the SODE condition given by

L0 ,0 0 0
i

1 2,1 .2\ _ s
g(q,q,’l},’l})—v 8(]1 aqz 8'01 602

Let Z be
0 0
VA 1 2 —
An easy computation shows that
0 0
TZ(Z(q" ¢*) = =— + ==
(Z(q",q%)) o o
but
0 0 0 0
2" ) = — 4+ —+ — + — £ TZ(Z(q". ¢*)).
§(Z(q,q7)) q1+aq2+av1+av27é (Z(q',q%))

Thus, the vector fields &€ and £Z are not Z-related.

Next we will show that a solution of the Hamilton-Jacobi problem in
the Skinner-Rusk formalism induces a solution of the Hamilton-Jacobi
theory in the lagrangian setting.

The following lemma is analogous to Lemma [5.5]

Lemma 5.11.

(i) If X € T,W, satisfies ix Q2 = dD, then Xo = Tpri(X) satisfies
ix, Qp = dEy and the SODE condition ([2.2]).

(ii) For each step k of the constraint algorithm applied to the presym-
plectic systems (My, Q, dhy) and (W =TQ®T*Q, 0, dD),

we have
pro(Wy) C Py
(iii) We have pr(Wy) = 1q(Py)

Proof.
(i) and (ii) are proved using similar arguments to that in Lemma [5.5]

(iii) Since the following diagram

Py
x\
Tf Mf
S
Qf
is commutative, and F'L; is a surjective submersion, we deduce that
mo(My) = 179(Py). By Lemma 5.5 (iii), we obtain mg(My) = pr(Wy),
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and the result follows. The situation can be summarized in the follow-
ing commutative diagram

g

If o = (Z,7) is a solution of the Hamilton-Jacobi problem, we deduce
the following results:

(i) Since Im(of) C Wy, then pri(Im(oy)) C pri(Wy) C Py.
(ii)) We have Z*Qp = 0, since Z2*Q; = Z*(df,) = d(Z*0;) =
d(FL(Z)) =dy = 0.
(iii) Since Im(o) C Wi, then D o o(p) = Ep o Z(p) and, because
d(D o U)\Qf = O, then d(EL 9] Z)\Qf =0.

Now, given a solution X of (3.2]), we can obtain a solution of (2.1])
along Im(Z) using Lemma [5.17] and putting

X1(Z;(p)) = Tpri(X(a(p))), for all p € Qy
We can also define the vector field on Q)5 given by
X{ (p) = Tro(X1(Z¢(p))).

The vector fields X; and X7 are not Z;-related in general, as we
have proved in example B.10.

Remark 5.12. By the commutativity of diagram (3. we have pr
= 7¢ o pr1 and hence

X%(p) = Tpr(X(os(p))) = Trq o pri(X(Zs(p))) = To(X1(Z;(p))),
for all p € Qy, and so X = X{.
Moreover, since X satisfies the SODE condition, then
X{(p) = Tro(X1(Z(p))) = mra(X1(Z(p))) = Z(p) = Z;(p).
and we have
X7 =X{=X] =27

Note that this means that we only need to compute X, to obtain
7 f- &
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6. FINAL CONSIDERATIONS

In the last section we show that a solution of the Hamilton-Jacobi
problem in the Skinner-Rusk setting, o = (Z,~), gives a solution of the
Hamilton-Jacobi problem in the lagrangian and hamiltonian settings
(Z and ~ respectively). A solution of the equation along Im(co) can
be also projected to solutions of 2] and along Im(Z) and Im(~),
denoted respectively by X; and X5.

If we take a vector field X solution of the equation (B:2) on Wy, using
o we can compute X?. Now we can easily conclude that the vector
fields X and X7 are oy related iff the corresponding vector fields X;
and X7 are Z; related in the lagrangian setting.

To illustrate the above results we revisite example[5.10/in the Skinner-
Rusk setting and apply the corresponding Hamilton-Jacobi theory.

Example 6.1. Consider the lagrangian given in Example
L(gh, ¢, v', 0%) = ' v? + 2o,
Then, on TR? @ T*R? we have
D(q',¢%v" 0%, pr,p2) = v'pL + 0%ps + 0l + 0%,

and hence

dD(q', ¢, vt v pr,po) = —vidgt — vldg® + (py — ¢?)dv? 6.1)
+(p1 — ¢")dv® 4 v'dpy + v3dp,

Recall that we must compute
Wy = {(g*, v?, pa) such that there exists X € T(qA7vA7pA)TR2 @ T*R?
satisfying iy Q = dD}.

If
0 0 0 0 0 0
X — I 2 ¥ bl_ b2— 1~ 2 - 62
a8q1+a8q2+ 8v1+ 8v2+60p1+68p2 (6.2)
then
ix Q= —cldg' — dg® + a'dpy + a*dps (6.3)
and so
CLl:’Ul, CLZ:’UZ, Cl:UQa 02:vl7 pl_q2:07 p2_q1:0
(6.4)
must hold.

Therefore, W1 = {(q', ¢*,v*,v%, ¢%, ¢") such that ¢*, v4 € R} = graph(FL).
Next, we compute
Wo = {(¢*,¢% v, v? ¢% ¢') € W such that there exists
X € Tigr g2,01 02,2,gy W1 satisfying ix Q = dD}
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If X € TW; then X can be locally expressed as
_ 41 8 2 0 1.0 2_0

9*L 9?L 9L \ 9
+<8v18q1a + 8v18q2a + avlavl + Ov2ov! >8p1 (6 5)
2L 2L 8L 11 2L 12 )
+((waqla + 8v28q2a + ol + au2au2b )am

8q1 ta 8q2+b18v1 +b28v2 +a +a ap2
Taking into account (6.4]) and (G.5)), for every point (¢, ¢%, v*, v%, ¢%, ¢*)
€ Wi we obtain
0 0 0 0 0 0
X=v S+ 5 +b =+ +v"—+v'—
g2 0q>? ovt ov? Ipy Opo
for arbitrary b, b2, and so W5 = W, and therefore the final constraint
submanifold is W;; consequently, @ = Q.

Now, a solution of the Hamilton-Jacobi problem in the Skinner-Rusk
setting is given by o = (Z, ) such that

(i) Im(o) C Wh.

(i) Im(oy) C Wy.
(iii) d(proo o) =dy =0, that is, 7 is closed.
(iv) d(D o o)g, = 0

It is easy to see that every pair given by a vector field Z and its
image by the Legendre transformation, that is (Z,7 = FL(Z)) is a
solution of the problem. In fact, by construction Im(c) C W; and
Dw, =0= Doo = 0 Following the argument in example (.10 we
can take Z(q', ¢*) = 8q1 + 8q2’ and so

0 0
o(q',q%) = i tog T ¢dg' + ¢'dg?

If we consider the solution

0
X 1.2 1,2y _ 1 7
(q q V7,V ) v 8q1 +wv aqg oyl 2 apl v ap2

then
X7 ) = o+
’ oqt  O¢?
and
0 0 0 0
To(X (¢ ) = — + 2+ 2 2
U( (qaq)) 81+8q2+3 +8p2

A direct inspection shows that

0 0 0 0
T X 1 2 L X 1 2
0( (q » q )) (U(q y 4 ) 8 8 a 81)2

0

K
op1  Opy’
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We can also obtain information of the Hamilton-Jacobi problem in
the Skinner-Rusk setting from a solution of the Hamilton-Jacobi prob-
lem in the hamiltonian side.

If v is a solution of the Hamilton-Jacobi problem in the hamiltonian
setting and Y a vector field on My wich is a solution of equation (2.3)),
then we can define Y7 as before.

We can also define a section & of pry : Wy — Q) given by &(p) =
(Y7(p),~(p)) for all p € Qy. An easy computation shows that T'¢(Y7)
is a vector field along Im(&) which solves ([8.2)). Moreover if we find a
vector field Z on () such that F'LoZ =~ and Z; = Y, then the pair
(Z,7) is a solution of the Hamilton-Jacobi problem in the Skinner-Rusk
setting.

7. APPENDIX: THE GOTAY-NESTER-HINDS ALGORITHM OF
CONSTRAINTS

In this section we will briefly review the constraint algorithm of con-
straints for presymplectic systems (see [L1], [7]).

Let M; be a manifold, €2 a presymplectic structure on M, i.e.,
is a closed 2-form, and « a 1-form on M;. We will call (M;, Q, a) a
presymplectic system.

Gotay et al. developed an algorithm to find NV, a submanifold of M;
where we can solve the equation

’iX 0=« (71)
with X tangent to V.
The previous equation could not hold for every point of M7, because
a could not be in the range of 2. So it is necesary to introduce the
following set
M, = {p € M, such that there exists X € T,M; satisfying iy 2 = a},
and it is assumed that M, is a submanifold.

At the points of M, there exists solution to equation (7)) but in an
algebraic sense, that is, the solution could not be tangent to M,. This
forces a further restriction to

M; = {p € M, such that there exists X € T),M, satisfying iy 2 = a},
which is also assumed to be a submanifold.
Proceeding as above, the algorithm will produce a sequence of sub-
manifolds ‘ A
M3 33 M2 12 M1
where
M1 = {p € M, such that there exists X € T, M, satistying iy 2 = a},

and j; denote the inclusions.
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There are three possibilities:

(i) There exists k such that M = Q.
(ii) There exists k such that My = M.
(iii) The algorithm does not end.

In the second case the submanifold M is called the final constraint
submanifold and is denoted by AMy. By construction there exists a
vector field on M, such that is solution of equation (ZI)). The third
case is only possible in the infinite dimensional setting. In this case,
the final constraint submanifold is defined by My = N;—1 M;.

Note that the final constraint submanifold is maximal in the sense
that if R is submanifold of M; where there exists a tangent solution of
equation (Z.II), then R C Mjy.

ACKNOWLEDGMENTS

This work has been partially supported by MICINN (Spain)
MTM2010-21186-C02-01, the European project IRSES-project “Geo-
mech-246981” and the ICMAT Severo Ochoa project SEV-2011-0087.

REFERENCES

[1] R. Abraham, J.E. Marsden: Foundations of Mechanics. 2nd ed., Benjamin-
Cummings, Reading (Ma), 1978.

[2] V.I. Arnold: Mathematical methods of classical mechanics. Second edition.
Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.

[3] J.F. Carifiena, X. Gracia, G. Marmo, E. Martinez, M. Mufioz-Lecanda, N.
Roméan-Roy: Geometric Hamilton-Jacobi theory. Int. J. Geom. Meth. Mod.
Phys. 3 (7) (2006), 1417-1458.

[4] J.F. Carifiena, X. Gracia, G. Marmo, E. Martinez, M. Mufioz-Lecanda, N.
Roman-Roy: Geometric Hamilton-Jacobi theory for nonholonomic dynamical
systems. Int. J. Geom. Meth. Mod. Phys. (7)(2010), no. 3, 431-454.

[5] J.F. Carinena, X. Gracia, G. Marmo, E. Martinez, M. Munoz-Lecanda,
N. Roméan-Roy: Hamilton-Jacobi theory and the evolution operator.
arXiv:0907.1039.

[6] P.A.M. Dirac: Lectures on quantum mechanics. Second printing of the 1964
original. Belfer Graduate School of Science Monographs Series, 2. Belfer Grad-
uate School of Science, New York; produced and distributed by Academic
Press, Inc., New York, 1967.

[7] M. J. Gotay: Presymplectic Manifolds, Geometric Constraint Theory and the
Dirac- Bergmann Theory of Constraints, Ph. D. Thesis, University of Mary-
land, 1979.

[8] M. J. Gotay, J. M. Nester: Presymplectic Lagrangian systems. I. The con-
straint algorithm and the equivalence theorem. Ann. Inst. H. Poincar Sect. A
(N.S.) 30 (1979), no. 2, 129-142.

[9] M. J. Gotay, J. M. Nester: Presymplectic Lagrangian systems. II. The second-
order equation problem. Ann. Inst. H. Poincar Sect. A (N.S.) 32 (1980), no.
1, 1-13.

[10] M. J. Gotay, J. M. Nester: Generalized constraint algorithm and special
presymplectic manifolds. Geometric methods in mathematical physics (Proc.



24

M. DE LEON, D. MARTIN DE DIEGO, AND M. VAQUERO

NSF-CBMS Conf., Univ. Lowell, Lowell, Mass., 1979), pp. 78104, Lecture
Notes in Math., 775, Springer, Berlin, 1980.

M. J. Gotay, J. M. Nester, G. Hinds: Presymplectic manifolds and the Dirac-
Bergmann theory of constraints. J. Math. Phys. 19 (1978), no. 11, 2388-2399.
M. Leok, T. Ohsawa, D. Sosa: Hamilton-Jacobi Theory for Degener-
ate Lagrangian Systems with Holonomic and Nonholonomic Constraints.
arXiv:1109.6056.

M. de Leén, D. Iglesias-Ponte, D. Martin de Diego: Towards a Hamilton-Jacobi
theory for nonholonomic mechanical systems. Journal of Physics A: Math. Gen.
(2008), no. 1, 015205, 14 pp.

M. de Leén, J.C. Marrero, D. Martin de Diego: A geometric Hamilton-Jacobi
theory for classical field theories. Variations, geometry and physics, 129-140,
Nova Sci. Publ., New York, 2009

M. de Leoén, J.C. Marrero, D. Martin de Diego: Linear almost Poisson struc-
tures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics.
J. Geom. Mech. 2 (2010), no. 2, 159-198.

M. de Leén, D. Martin de Diego: A constraint algorithm for singular La-
grangians subjected to nonholonomic constraints. J. Math. Phys. 38 (1997),
no. 6, 3055-3062.

M. de Leén, J. C. Marrero, D. Martin de Diego, M. Vaquero: A Hamilton-
Jacobi theory for singular lagrangian systems. preprint.

M. de Leén, D. Martin de Diego, M. Vaquero: A geometric Hamilton-Jacobi
theory for multisymplectic field theories. In preparation.

M. de Ledn, P. R. Rodrigues: Methods of differential geometry in analytical
mechanics. North-Holland Mathematics Studies, 158. North-Holland Publish-
ing Co., Amsterdam, 1989.

G. Longhi, D. Dominici, J. Gomis, J. M. Pons: The Hamilton-Jacobi formal-
ism for systems with constraints. Relativistic action at a distance: classical
and quantum aspects (Barcelona, 1981), 165-189, Lecture Notes in Phys., 162,
Springer, Berlin, 1982

G. Longhi, D. Dominici, J. Gomis, J. M. Pons: Hamilton-Jacobi theory for
constrained systems. J. Math. Phys. 25 (1984), no. 8, 2439-2452.

K. D. Rothe, F. G. Scholtz: On the Hamilton-Jacobi equation for second-class
constrained systems. Ann. Physics (2003), no. 2, 639-651.

H. Rund: The Hamilton-Jacobi Theory in the Calculus of Variations. Hazell,
Watson and Viney Ltd., Aylesbury, Buckinghamshire, U.K. 1966.

R. Skinner, R. Rusk: Generalized Hamiltonian dynamics. I. Formulation on
TQ ®TQ. J. Math. Phys. 24 (1983), no. 11, 2589-2594.

R. Skinner, R. Rusk: Generalized Hamiltonian dynamics. II. Gauge transfor-
mations. J. Math. Phys. 24 (1983), no. 11, 2595-2601.

H. Yoshimura, J. E. Marsden: Dirac structures in Lagrangian mechanics. I.
Implicit Lagrangian systems.J. Geom. Phys. 57 (2006), no. 1, 133-156.



A HAMILTON-JACOBI THEORY FOR SINGULAR LAGRANGIAN SYSTEMS 25

MANUEL DE LEON: INSTITUTO DE CIENCIAS MATEMATICAS (CSIC-UAM-
UC3M-UCM), ¢\ NicorLAs CABRERA,N 13-15, CAMPUS CANTOBLANCO,UAM
28049 MADRID, SPAIN

FE-mail address: mdeleon@icmat.es

DaAvID MARTIN DE DIEGO: INSTITUTO DE CIENCIAS MATEMATICAS (CSIC-
UAM-UC3M-UCM), ¢\ NicoLAs CABRERA,N 13-15, CAMPUS CANTOBLANCO,UAM
28049 MADRID, SPAIN

FE-mail address: david.martin@icmat.es

MIGUEL VAQUERO: INSTITUTO DE CIENCIAS MATEMATICAS (CSIC-UAM-
UC3M-UCM), ¢\ NicorLAs CABRERA,N 13-15, CAMPUS CANTOBLANCO,UAM
28049 MADRID, SPAIN

E-mail address: miguel.vaquero@icmat.es



	1. Introduction
	2. Notation and background
	3. The Skinner and Rusk formalism
	4. A Hamilton-Jacobi theory in the Skinner-Rusk setting
	4.1. The regular case
	4.2. The singular case

	5. Comparison with the Hamiltonian and lagrangian settings
	5.1. The hamiltonian setting
	5.2.  The lagrangian setting

	6. Final considerations
	7. Appendix: The Gotay-Nester-Hinds algorithm of constraints
	Acknowledgments
	References

