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THE THEORY OF HAHN MEROMORPHIC FUNCTIONS, A

HOLOMORPHIC FREDHOLM THEOREM AND ITS

APPLICATIONS

JÖRN MÜLLER AND ALEXANDER STROHMAIER

Abstract. We introduce a class of functions near zero on the logarithmic cover
of the complex plane that have convergent expansions into generalized power
series. These power series are general enough to cover cases where non-integer
powers of z and also terms containing log z can appear. We show that under
natural assumptions some important theorems from complex analysis carry over
to the class of these functions. In particular it is possible to define a field
of functions that generalize meromorphic functions and one can formulate an
analytic Fredholm theorem in this class. We show that this modified analytic
Fredholm theorem can be used in spectral theory to prove convergent expansions
of the resolvent for Bessel type operators.

1. Introduction

Asymptotic expansions of the form

f(z) ∼
∑

k,m

zαk(− log(z))βm , as z → 0

with non-integer αk or βm for functions f defined in some sector in the com-
plex plane with base 0 appear quite frequently in mathematics and mathematical
physics. Classical examples are solutions for differential equations (e.g. in Frobe-
nius’ method) or expansions of algebraic functions at singularities. More recently
it was shown that low energy resolvent expansions in scattering problems are of
this form (see e.g. [1], [3] for Schrödinger operators in Rn, [4] for operators with
constant leading coefficients in Rn, and [2] for the case of the Laplace operator on
a general manifold with a conical end).

The algebraic theory of generalized power series is well developed and can be found
in the literature under the name Hahn series or Malcev-Neumann series. In this
paper we are concerned with the analytic theory of such generalized power series,
namely we will define a ring of functions, the Hahn holomorphic functions, that
have convergent expansions into generalized power series, and we will show that
this ring is actually a division ring. We show that the quotient field, the field of
Hahn-meromorphic functions, has a nice description in terms of Hahn series and
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2 J. MÜLLER AND A. STROHMAIER

we generalize the notions of Hahn-holomorphic and Hahn-meromorphic functions
to the operator valued case. The theory turns out to be very close to the case of
analytic function theory. In particular one of our main theorems states that an
analog of the analytic Fredholm theorem holds in the class of Hahn holomorphic
functions.

This analytic Fredholm theorem has a straightforward application: is can be used
to derive convergent resolvent expansions for Bessel type operators.

2. Hahn holomorphic functions

Let (Γ,+) be a linearly ordered abelian group and let (G, ·) be a group. Suppose
e : Γ → G, γ 7→ eγ is a group homomorphism, in particular

e0 = 1 ∈ G, eγ1+γ2 = eγ1 · eγ2 for all γ1, γ2 ∈ Γ.

The following definition and proposition are due to H. Hahn (see [6])

Definition 2.1. Let R be a ring. A formal series

h =
∑

γ∈Γ

aγeγ, aγ ∈ R

is called a Hahn-series, if the support of h,

supp(h) := {g ∈ Γ | ag 6= 0 ∈ R},
is a well-ordered subset of Γ. The set of Hahn-series will be denoted by R[[eΓ]].

Proposition 2.2. The set of Hahn series R[[eΓ]] is a ring with multiplication
(∑

α∈Γ

aαeα

)(∑

β∈Γ

bβeβ

)
=

∑

γ∈Γ

cγeγ , cγ :=
∑

(α,β)∈Γ×Γ
α+β=γ

aαbβ (1)

and addition
∑

α∈Γ

aαeα +
∑

β∈Γ

bβeβ =
∑

γ∈Γ

(aγ + bγ)eγ

If R is a field, then R[[eΓ]] is a field.

If the support of h is contained in Γ+ = {γ | γ > 0} then it is well known that
1− h is invertible in R[[eΓ]] and its inverse is given by the Neumann series

(1− h)−1 =

∞∑

k=0

hk.

This is due to the fact that for any well-ordered subset Σ of Γ+ the semi-group
generated by Σ is also well-ordered, see e.g. [7], Lemma 2.10. Here convergence of
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a sequence (pn) ⊂ R[[eΓ]] to p ∈ R[[eΓ]] is understood in the sense that for every
element α ∈ Γ there exists an N > 0 such that for all n > N the coefficients of eα
in p and pn are equal.

In the following let Z be the logarithmic covering surface of the complex plane
without the origin. We will use polar coordinates (r, ϕ) as global coordinates to
identify Z as a set with R+ × R. Adding a single point {0} to Z we obtain a set
Z0 and a projection map π : Z0 → C by extending the covering map Z → C\{0}
in sending 0 ∈ Z0 to 0 ∈ C. We endow Z with the covering topology and Z0

with the topology generated by the open sets in Z together with the open discs
Dǫ := {0} ∪ {(r, ϕ) | 0 ≤ r < ǫ}. This means a sequence ((rn, ϕn))n converges to
zero if and only if rn → 0. The covering map is continuous with respect to this
topology. For a point z ∈ Z0 we denote by |z| its r-coordinate and by arg(z) its ϕ
coordinate. We will think of the positive real axis as embedded in Z as the subset
{z | arg(z) = 0}.
In the following Y ⊂ Z will always denote an open subset containing an open
interval (0, δ) for some δ > 0 and such that 0 /∈ Y . The set Y0 will denote Y ∪{0}.
In the applications we have in mind the set Y is typically of the form D

[σ]
δ \{0}

where D
[σ]
δ = {z ∈ Z0 | 0 ≤ |z| < δ, |ϕ| < σ}. For the discussion and the general

theorems it is not necessary to restrict ourselves to this case.

In the remaining part of this article we assume that G :=
(
Hol(Y ∩ Dǫ), ·

)×
is a

set of non-vanishing holomorphic functions and that the group homomorphism e
satisfies the condition

∀γ > 0 : eγ is bounded on Y and lim
z→0

|eγ(z)| = 0. (E1)

Definition 2.3. Suppose that R is a vector space with norm ‖.‖. A Hahn series
f =

∑
α∈Γ aαeα is called normally convergent in Y ∩Dǫ if its support is countable

and
∑

α∈Γ

‖aα‖ ‖eα‖Y,ε <∞,

where ‖eα‖Y,ε := supz∈Y ∩Dǫ
|eα(z)|.

Since a normally convergent series converges absolutely and uniformly, the value
of the function

f(z) =
∑

α∈Γ

aαeα(z), z ∈ Y ∩Dε

does not depend on the order of summation and f is holomorphic in z 6= 0.

Definition 2.4. Let S ⊂ Γ+
0 = Γ+ ∪ {0} be a subset of the non-negative group

elements.



4 J. MÜLLER AND A. STROHMAIER

• The family {eα}α∈S is called weakly monotonous, if there exists an rS > 0
such that for every x ∈ (0, rS) there is a radius ρ(x) with 0 < ρ(x) ≤ x
and with the property

α ∈ S ⇒ ‖eα‖Y,ρ(x) ≤ |eα(x)|.

• The set S is called admissible for e (or simply admissible), if {eα}α∈S is
weakly monotonous, and if for every B ⊂ S also the family

{eα−minB} α∈S
α>minB

is weakly monotonous.

Definition 2.5 (Hahn holomorphic functions). Suppose that R is a Banach al-
gebra. A continuous function h : Y0 → R which is holomorphic in Y , is called
(Y,Γ)-Hahn holomorphic (or simply Hahn holomorphic) if there is a Hahn-series

h =
∑

γ∈Γ

aγeγ , aγ ∈ R,

with countable, admissible support, which converges normally on Y ∩Dδ for some
δ > 0, and

h(z) =
∑

γ∈Γ

aγeγ(z), z ∈ Y ∩Dδ.

We will denote the Hahn series of a Hahn holomorphic function h by the corre-
sponding “fraktur” letter h. Note that (E1) together with uniform convergence
imply that supp h ⊂ Γ+

0 and h(0) = a0. Of course any normally convergent Hahn
series with admissible support gives rise to a Hahn holomorphic function.

A direct consequence of the support of Hahn holomorphic functions being admis-
sible is

Lemma 2.6. Let

h(z) =
∑

γ∈Γ

aγeγ(z), z ∈ Y ∩D2r.

be Hahn holomorphic with m = min supp(h). Then

e−m(z)h(z) =
∑

γ≥m

aγeγ−m(z)

is Hahn holomorphic.

Proof. Let ρ1 be the radius for {eγ} such that for all γ ∈ supp(h)

‖eγ‖ρ1(r) ≤ |eγ(r)|.
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and similarily let ρ2 the radius for {eγ−m}. For ρ(r) = min{ρ1(r), ρ2(r)},

‖em‖ρ(r)
∑

γ∈Γ

‖aγ‖ ‖eγ−m‖ρ(r) ≤ |em(r)|
∑

γ∈Γ

‖aγ‖|eγ−m(r)| =
∑

γ∈Γ

‖aγ‖|eγ(r)| <∞

Thus
∑

γ∈Γ aγeγ−m converges normally on Dρ(r). �

Proposition 2.7. Let f : Y → R be a Hahn holomorphic function represented by
a Hahn series f on Y ∩Dδ. Suppose the zeros of f accumulate in Y ∪ {0}. Then
f = 0 and f = 0. In particular the Hahn series of a Hahn holomorphic function is
completely determined by the germ of the function at zero.

Proof. If the zero set of f has accumulation points in Y then the statement follows
from the fact that f is holomorphic in this set. It remains to show that if f 6= 0 then
0 can not be an accumulation point of the zero set of f . Let f be a Hahn series that
represents the function on Y ∩ Dǫ. Let f 6= 0, hence f 6= 0. Let m = min supp f.
If there is no other element in the support of f then f(z) = amem(z) and the
statement follows from the fact that em has no zeros in Y . Otherwise, let m1 be
the smallest element in supp f which is larger than m. Then

f(z) =
∑

α

aαeα(z) = em(z)
(
am + em1−m(z)

∑

α≥m1

aαeα−m1
(z)

)
= em(z)(am + h(z))

with a Hahn holomorphic function h(z) such that h(0) = 0. Since h is continuous
and em(z) 6= 0 this shows f(z) 6= 0 in a neighborhood of 0. �

In the following suppose Y,Γ and the family of functions (eγ)γ∈Γ is fixed and
satisfies (E1).

We want to show that the space of Hahn holomorphic functions at 0 with values
in a Banach algebra R is a ring. To that end we need

Lemma 2.8. Let A1, A2 ⊂ Γ+ be admissible sets. Then the sets A1 ∪A2, A1 +A2

and n · A1 := A1 + . . .+ A1 (n times),
⋃∞

n=0 n · A1 are admissible.

Proof. First we show that A1 ∪ A2, A1 + A2 and n · A1 are weakly monotonuos.
Let ρi, i = 1, 2 be the radius for Ai and ρ(x) = min{ρ1(x), ρ2(x)}. Then ρ is a
radius for A1 ∪ A2 and as well for A1 + A2, because for αi ∈ Ai,

‖eα1+α2
‖ρ(r) ≤ ‖eα1

‖ρ(r) ‖eα2
‖ρ(r) ≤ ‖eα1

‖ρ1(r) ‖eα2
‖ρ2(r)

≤ |eα1
(r)||eα2

(r)| = |eα1+α2
(r)|

The same argument shows that ρ1 is a radius for n · A1.

Now let B ⊂ A := A1 + A2. Then B = B1 + B2 for some Bi ⊂ Ai, i = 1, 2 and
minB = minB1 +minB2. Let α ∈ A with α = α1 + α2, αi ∈ Ai. Let ρi(r) be the
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radius for {eαi−minBi
} and ρ = min{ρ1, ρ2}. The estimate

‖eα−minB‖ρ(r) = ‖eα1−minB1+α2−minB2
‖ρ(r) ≤ ‖eα1−minB1

‖ρ1(r) ‖eα2−minB2
‖ρ2(r)

shows that A1 +A2 is admissible. The other statements are proven similarily. �

Let f(z) =
∑

α aαeα and g(z) =
∑

β bβeβ be Hahn holomorphic functions on Yf
and Yg respectively. First it is easy to see that f + g is Hahn holomorphic on
Y = Yf ∩ Yg. Since f and g are Hahn-series with support contained in Γ+

0 , also
supp(f · g) ⊂ Γ+

0 for the multiplication as defined in (1). From Lemma 2.8 we
obtain that the support of f · g is admissible. We claim that h(z) = f(z) · g(z) is
represented by the product of Hahn-series h = f · g on Yf ∩ Yg. Because f and g
are normally convergent,

∑

γ

∥∥ ∑

α+β=γ

aαbβ
∥∥ ‖eγ‖ ≤

∑

γ

( ∑

α+β=γ

‖aα‖‖bβ‖
)
‖eγ‖

≤
(∑

α

‖aα‖ ‖eα‖
)(∑

β

‖bβ‖ ‖eβ‖
)

so that the series f ·g is normally convergent in Yf ∩Yg. Thus the series f ·g defines
a Hahn holomorphic function on Y with values in R which equals h(z).

Altogether we have found

Proposition 2.9. Let R be a Banach algebra. The Hahn holomorphic functions
with values in R on Y form a ring under usual addition and multiplication, and
the map ψR : f 7→ f is a ring isomorphism onto its image in R[[eγ ]].

Corollary 2.10. The ring of Hahn holomorphic functions on Y with values in an
integral domain R is an integral domain.

Proof. By looking at the coefficient cγ with γ = min supp f in (1), we observe
that R[[eΓ]] is an integral domain, if R is an integral domain. Because ψR is an
isomorphism, the Hahn holomorphic functions must be an integral domain. �

Theorem 2.11. Let R be a Banach algebra and suppose f : Y0 → R is Hahn
holomorphic and f(z) is invertible for all z ∈ Y0. Then f(z)−1 is also Hahn
holomorphic on Y0.

Proof. Since 1/f is holomorphic in Y we only have to show that there is a Hahn
series for f(z)−1 that converges normally on some Y0 ∩ Dε. Since f(z)−1 =

f(0)−1 (f(z)f(0)−1)
−1

we can assume without loss of generality that f(0) = Id.
Thus we can write f(z) = Id− h(z), where m := min supp (h) > 0.
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By assumption the series h :=
∑

α∈Γ aαeα defining h(z) converges normally on the

set Y0 ∩Dδ0 for some δ0 > 0. The function h̃ defined by

h̃(t) =
∑

α∈Γ

‖aα‖ ‖eα‖Y0,t
≤ ‖em‖Y0,t

∑

α≥m

‖aα‖ ‖eα−m‖Y0,t

converges to 0 for t → 0 due to (E1) and Lemma 2.6. Therefore we can choose

δ > 0 so small that h̃ := h̃(δ) < 1/2. Because |h(z)| ≤ h̃ for z ∈ Y0 ∩ Dδ, the
geometric series

f(z)−1 =

∞∑

n=0

h(z)n

then converges normally on Y0 ∩Dδ . But we also know that f is invertible:

f−1 =
∞∑

n=0

hn =:
∑

α∈S

bαeα, with supp(f−1) ⊂ S :=
⋃

n≥0

supp(hn).

¿From Lemma 2.8 we obtain that S is admissible. It remains to show that∑
α∈S bαeα(z) is normally convergent on Y0 ∩Dδ and represents f(z)−1.

Note that if
∑N

n=0 h
n =

∑
α∈S cα(N)eα then

∑

α∈S

‖cα(N)‖ ‖eα‖ ≤
N∑

n=0

h̃n in Y0 ∩Dδ

as a simple consequence of the triangle inequality. For every fixed finite set A ⊂ S
there exists an NA > 0 such that for all N ≥ NA

f−1 −
N∑

n=0

hn =
∑

α∈S\A

(bα − cα(N))eα

has support away from A. In particular cα(N) = bα for α ∈ A and N ≥ NA.
Therefore for N > NA

∑

α∈A

‖bα‖ ‖eα‖ ≤
∑

α∈S

‖cα(N)‖ ‖eα‖ ≤
N∑

n=0

h̃n <
1

1− h̃
,

and this proves convergence since this bound is independent of A.

In particular
∑

α∈S bαeα(z) converges absolutely in R, hence it converges and the
value does not depend on the order of summation. After reordering,

∑

α∈S

bαeα(z) =
∞∑

n=0

h(z)n = f(z)−1.

�
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Because of Lemma 2.6, every complex valued Hahn holomorphic f can be inverted:
Let m := min supp(f) ≥ 0, then

f−1(z) = a−1
m e−m(z)

∞∑

n=0

(
1− a−1

m e−m(z)f(z)
)n

Theorem 2.12. Suppose that f : Y0 → C is a Hahn holomorphic function with
Hahn series f. Suppose that U is an open neighbourhood of f(0) and h : U → C is
holomorphic. Then h ◦ f is Hahn holomorphic on its domain.

Proof. Since holomorphicity away from zero is obvious it is enough to show that
h ◦ f has a normally convergent expansion into a Hahn series. Replacing f(z)
by f(z)− f(0) and h(z) by h(z − f(0)) we can assume without loss of generality
that f(0) = 0 and thus supp(f) ⊂ Γ+. Since h is holomorphic near f(0) it has a
uniformly and absolutely convergent expansion

h(z) =

∞∑

k=0

ak(z − f(0))k.

Thus,

h ◦ f(z) =
∞∑

k=0

ak(f(z))
k.

Note that
∑∞

k=0 ak fk is a Hahn series. A similar argument as in the proof of
Theorem 2.11 shows that this Hahn series is normally convergent and represents
h ◦ f(z). �

3. Hahn meromorphic functions

Definition 3.1. A meromorphic function h : Y → C is called Hahn meromorphic
if h is represented by a Hahn series h in Y ∩ Dε for some ε > 0 and there exist
Hahn holomorphic functions f , g 6= 0 on Y0 ∩Dε such that h · g = f.

In this sense a Hahn meromorphic function can be written as a quotient h = f/g
of Hahn holomorphic functions in a neighborhood of 0.

Example 3.2. The logarithm log z = z log z
z

is Hahn meromorphic for Γ ⊂ Z× Z.

Remark 3.3. Since C-valued Hahn holomorphic functions form an integral do-
main, the Hahn meromorphic functions form a field. More generally let R be a
(commutative) integral domain. ¿From Corollary 2.10 we know that Hahn holo-
morphic functions with coefficients in R are a commutative integral domain, so
that their quotient field is defined. Furthermore, the map f 7→ f induces an in-
jective morphism from the quotient field of Hahn holomorphic functions to the
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quotient field R((eΓ)) of Hahn series R[[eΓ]]. Note that R((eΓ)) = R[[eΓ]], if R is
a field.

An important difference with usual meromorphic functions is that Hahn mero-
morphic functions may have infinitely many negative exponents. For example the
function

f(x) =
∞∑

n=1

1

n2
z1−1/n

is Hahn holomorphic and therefore
∞∑

n=1

1

n2
z−1/n−1 =

f(z)

z2

is Hahn-meromorphic.

It follows from our analysis for Hahn holomorphic functions that every C-valued
Hahn meromorphic function h can be written as

h(z) = emin supp h(z)f(z),

where f is Hahn holomorphic. Moreover, if h 6= 0 then f(0) 6= 0. In particular this
implies that Hahn meromorphic functions which are bounded on (0, δ) are Hahn
holomorphic in some neighborhood of 0.

We can also define Hahn meromorphic functions with values in a Banach algebra:

Definition 3.4. Let R be a Banach algebra. A function h : Y → R is called Hahn
meromorphic if it is meromorphic on Y and there exists a δ > 0 and a non-zero
Hahn holomorphic function f on Y0∩Dδ such that f(z)h(z) is a Hahn holomorphic
function on Y0 ∩Dδ with values in R.

Remark 3.5. Let R > 0 and σ > 0. If there exists one non-zero Hahn holomorphic

function on Y ∩ D
[σ]
R one can use the Weierstrass product theorem together with

theorem 2.12 to show that the set of complex valued Hahn meromorphic functions

on Y ∩ D
[σ]
R can be identified with the quotient field of the division ring of Hahn

holomorphic functions on Y ∩D[σ]
R .

4. A Hahn holomorphic Fredholm theorem

Let H be a complex Hilbert space and denote by K(H) the space of compact
operators on H.

Theorem 4.1. Suppose Y0 ⊂ Z is connected and let f : Y0 → K(H) be Hahn
holomorphic. Then either (Id − f(z)) ∈ B(H) is invertible nowhere in Y0 or its
inverse (Id− f(z))−1 exists everywhere except at a discrete set of points in Y0 and
defines a Hahn meromorphic function. Moreover, all the negative coefficients in
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its Hahn series are finite rank operators and the residues of the poles away from 0
are finite rank operators, too.

Proof. The proof generalizes that of Theorem VI.14 of [5]. Let A be a finite rank
operator such that ‖f(0)−A‖ < 1/2 and let δ > 0 be such that ‖f(x)−f(0)‖ < 1/2

for all x ∈ U [σ] := D
[σ]
δ ∩ Y . Then ‖f(x) − A‖ < 1 and thus (Id − f(x) + A)−1

exists and is Hahn holomorphic by Theorem 2.11. Consequently g(x) = A(Id −
f(x) + A)−1 is a Hahn holomorphic function on U [σ] with values in the Banach
space B(H, rg(A)). It is easy to see that

(Id− f(x))−1 = (Id− f(x) + A)−1(Id− g(x))−1 (2)

where equality means here that the left hand side exists if and only of the right
hand side exists. Let now P be the orthogonal projection onto rg(A) and let
G(x) be the endomorphisms of rg(A) defined by restricting g(x) to rg(A), i.e.
G(x) = g(x) ◦ P .
Invertibility of (Id− g(x)) in B(H) is equivalent to invertibility of P (Id− g(x))P ,
and this is equivalent to det(Idrg(A) − G(x)) 6= 0. Moreover, a straightforward
computation shows

(Id− g(x))−1 = (P (Id− g(x))P )−1
(
P + g(x)(Id− P )

)
+ (Id− P ). (3)

Now note that G(x) is a Hahn holomorphic family of endomorphisms of rg(A). In
particular det(Id−G(x)) is a Hahn holomorphic C-valued function. As such, it is
holomorphic in U [σ] \ {0}, and together with Proposition 2.7 this shows that the
set

S = {z ∈ U [σ] | det(Id−G(x)) = 0}
is either discrete in U [σ] or S = U [σ].

If det(Id−G(x)) 6= 0, then after a choice of basis of rg(A) the inverse (Id−G(x))−1

can be computed with Cramer’s rule, showing that with respect to this basis

det(Id−G(x))(Id−G(x))−1 ∈ Mat
(
dim rg(A),C[[eΓ]]

)

is represented by a matrix with Hahn holomorphic entries. After the identification

Mat
(
dim rg(A),C[[eΓ]]

)
= Mat

(
dim rg(A),C

)
[[eΓ]]

we see that the function (Id − G(x))−1 is Hahn meromorphic with coefficients in
End(rg(A)) if there is only a single point in U [σ] for which it exists. Consequently,
due to (3) and (2), (Id−f(x))−1 is Hahn meromorphic with all negative coefficients
being of finite rank, if there is only a single point in U [σ] for which (Id− f(x)) is
invertible.

So far we have proved the statement in U [σ]. By the usual analytic Fredholm
theorem, invertibility of (Id− f(x)) at a single point in Y implies that the inverse
exists as a meromorphic function on Y . Conversely, we have seen that invertibility
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of (Id− f(x)) at a single point in U [σ] implies that (Id− f(x))−1 exists as a Hahn
meromorphic function on U [σ]. By the usual holomorphic Fredholm theorem it
then exists as a Hahn meromorphic function on Y . �

5. zα-Hahn holomorphic functions

The prominent class of Hahn holomorphic functions is defined by convergent power
series with non-integer powers.

Let Γ ⊂ R be a subgroup with order inherited from the standard ordering of R.
As the group G we will take the group generated by the set of functions

eα(z) := zα, z ∈ D[σ]
r \{0}.

In this definition we choose the principal branch of the logarithm with | Im log z| <
π for z ∈ C \ (−∞, 0] and as usual set log(reiϕ) = log r + iϕ, |ϕ| < σ and
zα := eα log z.

A zα-Hahn holomorphic function f with values C then is a holomorphic function

on D
[σ]
r \{0} such that the generalized power series

f(z) =
∑

γ

aγz
γ , aγ ∈ C

is normally convergent in Y ∩D[σ]
δ for some δ > 0.

Note that every well-ordered subset of W ⊂ Γ+ is admissible for e, because for
every α ∈ W ,

|zα| = |z|α ≤ |z|minW , z ∈ D
[σ]
1/2. (4)

Example 5.1. If Γ = Z and ek(z) = zk then the set of Hahn series corresponds
to the formal power series and the set of z-Hahn holomorphic functions can be
identified with the set of functions that are holomorphic on the disc of radius δ > 0
centered at the origin.

Example 5.2. The series

zπ
∞∑

k=0

z2k

(2k)!

converges normally on Dr for any r > 0 and defines a z-Hahn holomorphic function
for Γ = πZ+ 2Z.

Example 5.3. Puiseux series and Levi-Civita series as defined in e.g. [8] are spe-
cial cases of Hahn series with certain Γ ⊂ Q. In case they are normally convergent
they define z-Hahn holomorphic functions.
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6. z log z-Hahn holomorphic functions

In the following let R2 be equipped with the lexicographical order and let Γ ⊂ R2

be a subgroup with order inherited from that of R2. In the following Y = D
[σ]
1/2 for

fixed σ > 0. The group G will be generated by

e(α,β)(z) := zα(− log z)−β , |z| < 1.

With the inclusion R× {0} ⊂ R2 this comprises the power functions zα from the
previous section. Note that

lim
z→0

e(α,β)(z) = 0 ⇐⇒ α > 0 ∨ (α = 0 ∧ β > 0)

which is equivalent to (α, β) > (0, 0) in the lexicographical ordering of R2.

The monotonicity (4) of power functions zα, has to be replaced by the following
“weak monotonicity” property.

Lemma 6.1. Let S ⊂ Γ+ = {γ ∈ Γ | γ > 0} be a set such that there exists an
N ∈ N0 with

− β ≤ Nα for all (α, β) ∈ S. (∗)
Then

a) There exists rN < 1 such that for (α, β) ∈ S and |θ| < σ the function

r 7→ |reiθ|α| log(reiθ)|−β

is monotonously increasing on [0, rN).
b) Given x with 0 < x < rN , there exists ρN(x) ≤ x such that for all z with

0 ≤ |z| ≤ ρN(x), | arg z| < σ we have

(α, β) ∈ S =⇒ |e(α,β)(z)| ≤ e(α,β)(x)

Proof. The proof is elementary and will be omitted here. �

It is not difficult to see that if S satisfies (∗), then a similar inequality holds for
the set (S −A) ∩ Γ+ where A ⊂ S and the constant N depends on A. Thus a set
S with (∗) is admissible for e.

Now the assumptions from section 2 are all satisfied and we can consider Hahn
holomorphic and meromorphic functions: A z log z-Hahn holomorphic function
with values in a Banach algebra R is defined by a normally convergent series

f(z) =
∑

(α,β)∈Γ

a(α,β)z
α(− log z)−β, a(α,β) ∈ R, z ∈ D

[σ]
1/2,

such that supp(f) is contained in a set S ∪ {(0, 0)} with S as in Lemma 6.1.
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Note that the property (∗) is invariant under addition and multiplication of Hahn
holomorphic functions, so that z log z-Hahn holomorphic function indeed are a
ring, and all results from section 2 apply.

Example 6.2. The series

∞∑

n=0

zn(− log z)n = (1 + z log z)−1

is a Hahn series in Γ = Z × Z with support {(n,−n) | n ∈ N0}. It converges
normally on the set {z ∈ Z | |z log z| < 1/2} and therefore defines a z log z-Hahn

holomorphic function on D
[σ]
r for any σ, r > 0.

Example 6.3. The formal series

∞∑

n=0

1

n!
z(− log z)n

is not a Hahn series for Γ = Z× Z, because the support

{(1,−n) | n ∈ N0}

is not a well-ordered subset of Γ.

Example 6.4. The series

∞∑

n=1

∞∑

m=1

1

m2
zn(− log z)(2n−1+ 1

m
)

defines a z log z-Hahn holomorphic function neighborhood D
[σ]
ǫ for any σ > 0 and

for small enough ǫ = ǫ(σ) with Γ = Z×Q and support

{(n, 1− 2n− 1/m) | n,m ∈ N}.

7. Applications: Hahn meromorphic continuation of resolvent

kernels

7.1. Suppose that a > 0. Then the differential operator

Ba := − ∂2

∂x2
+
a2 − 1

4

x2
Id

is essentially self-adjoint on the space {f ∈ C∞
c ([1,∞)) | f(1) = 0}, equipped with

the inner product inherited from L2((1,∞), dx). In the following we will denote
the self-adjoint extension of Ba by the same symbol Ba.



14 J. MÜLLER AND A. STROHMAIER

Let H
(1)
a and H

(2)
a be the Hankel functions of order a of the first and second kinds

respectively, and

H̃(j)
a (λ, x) :=

√
x
H

(j)
a (λx)

H
(j)
a (λ)

, j ∈ {1, 2}.

The following lemma summarizes some elementary properties of these functions.

Lemma 7.1.

a) The function ψλ(x) := H̃
(1)
a (λ, x) is the unique solution of the boundary value

problem
(Ba − λ2)ψλ = 0, ψλ(1) = 1, (5)

such that ψλ ∈ L2((1,∞), dx) for all λ ∈ C with Imλ > 0. Similarly, H̃
(2)
a is

the square integrable solution for Imλ < 0.

b) Furthermore, H̃a(λ, x) is a Hahn holomorphic function in λ for all a > 0.
c) The cylinder function

Ga(λ, x) =
i

2

(
H(2)

a (λ)H(1)
a (λx)−H(1)

a (λ)H(2)
a (λx)

)
(6)

is the unique solution of the initial value problem

(Ba − λ2)Ga(λ, ·) = 0, Ga(λ, 1) = 0,
d

dx
Ga(λ, x)|x=1 = −2

π
.

Moreover, Ga(λ, x) is holomorphic and even in λ.

Proof. We will only sketch the arguments. All formulas can be found in [9] and
the references there.

a) The Hankel functions H
(1)
a are solutions of the Bessel equation. That H̃

(1)
a is a

square integrable solution then follows from the asymptotics

H(1;2)
a (z) ∼

√
2

πz
e±i(z−

π
2
a−

π
4
) , |z| → ∞. (7)

b) The Hankel function of the first kind is related with the Bessel function through

H(1)
a (z) =

i

sin aπ

(
e−iaπJa(z)− J−a(z)

)
. (8)

There is an even, holomorphic function hν such that the first Bessel function
has the representation

Ja(z) =
(z
2

)a

ha(z),

which shows that Ja is a z-Hahn holomorphic function with support in Z+ νZ.

This shows that λ 7→ H̃
(j)
a (λ, x) is a Hahn holomorphic function for a /∈ N0,
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with support contained in 2N0+2νN0. For a = n ∈ N0, one has to take the limit
a → n in (8), which leads to logarithmic terms. In this way one obtains that

λ 7→ H̃
(j)
n (λ, x) is z log z-Hahn holomorphic with support contained in Z× Z.

c) That Ga(·, x) is holomorphic and even in λ follows for non-integer a from

Ga(λ, x) =
1

sin aπ

(
ha(λ)h−a(λx)− h−a(λ)ha(λx)

)

as above and is the result of a lengthy computation in the case when a is an
integer. This can however also be derived more directly from the fact that
this function is the unique solution to an initial value problem for an ordinary
differential equations whose coefficients depend holomorphically on λ2. �

The spectral resolution of Ba is well known and given by the Weber transform,
which we recall now. Let f ∈ C∞

0 (1,∞). For any a ∈ R, define

Wa(f)(λ) =

∫ ∞

1

Ga(λ, x)

H
(1)
a (λ)H

(2)
a (λ)

f(x) x dx ∈ C∞
0 ((0,∞)).

It is well known that the Weber transform Wa extends continuously to a unitary
map

Wa : L
2([1,∞), x dx) → L2([0,∞), H(1)

a (λ)H(2)
a (λ)λ dλ) =: L.

Let η : L2((1, b), x dx) → L2((1, b), dx) by the isometry given by η(f)(x) :=√
xf(x). The Weber transform diagonalizes the operator Ba in the sense that

Waη
−1Ba(Waη

−1)−1f(λ) = λ2f(λ)

and the domain of Ba can be described as
{
f ∈ L2([1,∞), dx) | (λ 7→ λ2(Waη

−1f)(λ)) ∈ L
}
.

Thus Wa gives full control over the functional calculus of Ba.

The kernel of the resolvent (Ba − λ2)−1 can be constructed directly out of the
fundamental system of the Sturm-Liouville equation (5) and this results in

ra,λ(x, y) =

{
π
2

√
xGa(λ, x)H̃

(1)
a (λy), 1 ≤ x ≤ y

π
2

√
yGa(λ, y)H̃

(1)
a (λx), y < x <∞

(9)

Lemma 7.2. For any r > 0 and σ > 0 the resolvent (Ba − λ2)−1 extends, as a

function of λ, to a Hahn meromorphic function on D
[σ]
r with values in

B
(
L2((1,∞), e2rx dx), L2((1,∞), e−2rx dx)

)
.

In a neighborhood of zero this function is Hahn holomorphic.
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Proof. From this explicit description of its kernel and the asymptotics (7) one
easily deduces that away from zero the integral kernel is meromorphic and defines

the desired expression. It is therefore enough to show that H
(1)
a (λ)ra,λ(x, y) defines

a Hahn holomorphic family of operators with values in

B
(
L2((1,∞), e2rx dx), L2((1,∞), e−2rx dx)

)
.

If a is an integer then H
(1)
a (λx) can be written as (log λ)F1(λ, x) +F2(λ, x), where

both F1(λ, x) and F2(λ, x) are holomorphic in λ. If a is not an integer then,

similarly, H
(1)
a (λx) = λaF1(λ, x) + λ−aF2(λ, x) with F1 and F2 holomorphic in

λ. This splitting can be used to show that the resolvent kernel has the form
g1(λ)F1(λ)+g2(λ)F2(λ), where g1 and g2 are Hahn-meromorphic function with val-
ues in C and F1(λ) and F2(λ) is a holomorphic family of operators. One can check
directly, using the asymptotics (7), that in this case F1 and F2 are indeed holomor-
phic functions of λ with values in B

(
L2((1,∞), e2rx dx), L2((1,∞), e−2rx dx)

)
. �

7.2. The matrix valued case. Let H be a finite dimensional Hilbert space and
suppose A is a postive operator. On the Hilbert space L2((1,∞), dx)⊗ H define
operator

BA := − ∂2

∂x2
⊗ Id +

1

x2
⊗ (A2 − 1

4
Id).

on compactly supported functions on (1,∞) with values inM and Dirichlet bound-
ary conditions at x = 1. The operator BA is an unbounded selfadjoint operator on
the Hilbert space L2((1,∞), dx)⊗H. Of course, H = ⊕M

k=1Hk, where Hk are the
eigenspaces of A, and L2((1,∞), dx)⊗H = ⊕M

k=1L
2((1,∞), dx)⊗Hk. On each of

the spaces L2((1,∞), dx)⊗Hk the operator BA acts only on the first tensor factor
as Bak ⊗ Id. Therefore, BA can be written as a direct sum

BA = ⊕M
k=1Bak ⊗ Id

of self-adjoint operators. Of course then also the resolvent (BA − λ)−1 is a direct
sum

(BA − λ)−1 = ⊕M
k=1(Bak − λ)−1 ⊗ Id.

Then for any r > 0 and σ > 0 the resolvent (BA − λ2)−1 extends (as a function of

λ) to a Hahn holomorphic function on D
[σ]
r with values in

B
(
L2((1,∞), e2rx dx)⊗H, L2((1,∞), e−2rx dx)⊗H

)
.

References

[1] A. Jensen and T. Kato, Spectral properties of Schrdinger operators and time-decay of the

wave functions, Duke Math. J.,46 (1979) no 3, 583–611.
[2] C. Guillarmou and A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger

operators on asymptotically conic manifolds. II, Annales de l’institut Fourier, 59 (2009) no.4,
1553–1610.



HAHN HOLOMORPHIC FUNCTIONS 17

[3] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev.
Math. Phys. 13 (2001), 717-754.

[4] M. Murata, Asymptoticexpansions in time for solutions of Schrdinger-type equations, Jour-
nal of Functional Analysis, 49 (1982), Issue 1, 10-56.

[5] M. Reed and B. Simon, Methods of modern mathematical physics. I, Academic Press 1980
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