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ON UNIFORM CONTINUOUS DEPENDENCE OF SOLUTION OF CAUCHY

PROBLEM ON A PARAMETER

V. YA. DERR

Abstract. Suppose that an n-dimensional Cauchy problem

dx

dt
= f(t, x, µ) (t ∈ I, µ ∈ M), x(t0) = x0

satisfies the conditions that guarantee existence, uniqueness and continuous dependence of solu-

tion x(t, t0, µ) on parameter µ in an open set M. We show that if one additionally requires that

family {f(t, x, ·)}(t,x) is equicontinuous, then the dependence of solution x(t, t0, µ) on parameter

µ ∈ M is uniformly continuous.

An analogous result for a linear n× n-dimensional Cauchy problem

dX

dt
= A(t, µ)X + Φ(t, µ) (t ∈ I, µ ∈ M), X(t0, µ) = X0(µ)

is valid under the assumption that the integrals
∫
I
‖A(t, µ1) − A(t, µ2)‖ dt and

∫
I
‖Φ(t, µ1) −

Φ(t, µ2)‖ dt can be made smaller than any given constant (uniformly with respect to µ1, µ2 ∈ M)

provided that ‖µ1 − µ2‖ is sufficiently small.

1. Introduction

Let I ⊂ R be an open interval, let X ⊂ R
n,M ⊂ R

m be domains (i.e. open connected subsets).

We set D
.
= I × X , G

.
= I ×M, O

.
= I × X ×M. Suppose that we are given f : O → R

n, t0 ∈

I, x0 ∈ X .

We consider Cauchy problem

(1.1)
dx

dt
= f(t, x, µ) (t ∈ I, µ ∈ M), x(t0) = x0.

The questions related to existence and uniqueness of solution of (1.1), its extension by continuity

up to the boundary of D (to the maximal interval of existence), and its continuous dependence on

a paramter µ ∈ M are discussed, e.g. in [1, p.53–73] (see also [2, p. 19–28,119]). The next theorem

contains a number of basic results on (1.1) that can be found in [1].

Theorem 1.1. Suppose that function f satisfies:

1) f is measurable on O;

2) f is continuous in (x, µ) ∈ X ×M for every fixed t ∈ I;

3) there exists a Lebesgue locally summable function m on I such that

‖f(t, x, µ)‖ ≤ m(t)
(
(x, µ) ∈ X ×M

)
;

4) for almost every t ∈ I and every µ ∈ M function f satisfies the Lipschitz condition in x:

‖f(t, x′, µ)− f(t, x′′, µ)‖ ≤ L‖x′ − x′′‖ x′, x′′ ∈ X ,

where Lipschitz constant L is independent of t and µ.

Then there exists a closed interval [a, b] ⊂ I such that for every µ ∈ M problem (1.1) has the

unique solution x(t, µ) on [a, b] that is absolutely continuous in variable t, and depends continuously

on µ ∈ M. (I is the maximal interval of existence of x.)

Key words and phrases. uniform continuity, equicontinuity.
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Here and below ‖ · ‖ denotes a norm in R
k. We use the same notation for norm of a matrix with

entries in R.

The study of ordinary differential equations in the space of Colombeau generalized functions

(see [3]) requires that the solution x of (1.1) depends on uniformly continuous (cf. Theorem 1.1,

where the dependence of x on µ is only continuous). We note that it is essential for our purposes

that M is an open subset (for a closed and bounded M the uniform continuous dependence of x

on µ would follow trivially from Cantor’s theorem).

That under the assumptions of Theorem 1.1 the dependence of x on µ is not necessarily uniformly

continuous is demonstrated by the following example. Consider Cauchy problem

dx

dt
= sin

1

µ
, x(0) = 0, t ∈ [0, 1], µ ∈ M

.
= (0, 1).

The assumptions of Theorem 1.1 are satisfied: indeed, given t > 0 and δ, denote

µ1 =
1

πn
, µ2 =

1

πn+ π
2

.

Then

|µ1 − µ2| =
1

πn(2n+ 1)
< δ

for a sufficiently large n, and

|x(t, µ1)− x(t, µ2)| =

∣∣∣∣t sin
1

µ1
− t sin

1

µ2

∣∣∣∣ = t.

The solution x(t, µ) = t sin 1
µ

(t ∈ [0, 1]), however, is not uniformly continuous on M = (0, 1).

The following question naturally arises: what additional assumptions are required (cf. Theorem

1.1) in order to ensure the uniform continuous dependence of solution x(t, µ) on parameter µ? Our

answer to this question is proposed below.

2. Nonlinear Cauchy problem

Suppose that we are given a map F : O → R
n×p. We say that the family {F (t, x, ·)}(t,x)∈D of

maps M → R
n×p is equicontinuous if

(2.2)

(∀ε > 0) (∃δ > 0)
(
∀(t, x) ∈ D, ∀µ1, µ2 ∈ M : ‖µ1 − µ2‖ < δ

) (
‖F (t, x, µ1)− F (t, x, µ2)‖ < ε

)
.

For example, if F (t, x, µ) = g(t, x)h(µ), where g : D → R
n×m, h : M → R

m×p, function g is

continuous and bounded on D, then {F (t, x, ·)}(t,x)∈D is equicontinuous if and only if function h

is uniformly continuous on M.

Lemma 2.1. Suppose that F satisfies Lipschitz condition in µ ∈ M uniformly with respect to

(t, x) ∈ D, i.e. ‖F
(
t, x, µ1

)
− F

(
t, x, µ2

)
‖ ≤ M‖µ1 − µ2‖ ((t, x) ∈ D), where M is independent of

t and x. Then {F (t, x, ·)}(t,x)∈D is equicontinuous.

Proof. Let ε > 0 be arbitrary, let µ1, µ2 ∈ M be such that ‖µ1−µ2‖ < δ
.
= ε

M
. Then ‖F

(
t, x, µ1

)
−

F
(
t, x, µ2

)
‖ ≤ M‖µ1 − µ2‖ < ε. �

Let us note that family {F (t, x, ·)}(t,x)∈D can be equicontinuous even if function F does not

satisfy the Lipschitz condition in variable µ. For instance, if in the example above we set m = p =

1, h(µ)
.
= µ sin π

µ
,M = (0, 1), then h and, consequently, F do not satisfy the Lipschitz condition in

variable µ on M, although h is uniformly continuous on (0, 1), hence the corresponding function

family is equicontinuous.

Theorem 2.2. Suppose that function f satisfies conditions 1) — 4) of Theorem 1.1 and, addi-

tionally, condition 5): family {f(t, x, ·)}(t,x)∈D is equicontinuous on M.

Then the dependence of the solution x(t, µ) of Cauchy problem (1.1) on µ ∈ M is uniform

continuous (uniformly with respect to variable t ∈ [a, b]).
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Proof. Let us fix an arbitrary ε > 0. Suppose that δ > 0 in accordance with condition (2.2), and

let µ1, µ2 ∈ M be such that ‖µ1 − µ2‖ < δ.

Since x(t, µi) = x0 +
t∫

t0

f
(
s, x(s, µi), µi

)
ds (i = 1, 2) then, assuming first that t > t0 and using

conditions 4) and 5), we obtain an estmiate

‖x(t, µ1)− x(t, µ2)‖ ≤

∫ t

t0

∥∥f
(
s, x(s, µ1), µ1

)
− f

(
s, x(s, µ2), µ2

)∥∥ ds ≤

≤

∫ t

t0

∥∥f
(
s, x(s, µ1), µ1

)
− f

(
s, x(s, µ2), µ1

)∥∥ ds+
∫ t

t0

∥∥f
(
s, x(s, µ1), µ2

)
− f

(
s, x(s, µ2), µ2

)∥∥ ds <

< L

∫ t

t0

‖x(t, µ1)− x(t, µ2)‖ ds+ ε(b− a).

Now, using Gronwall-Bellman inequality [2, p. 37] we obtain

‖x(t, µ1)− x(t, µ2)‖ < ε(b− a)eL(b−a).

In the case t < t0 the argument is analogous. The obtained inequality immediately yields the

uniform continuous dependence of x on µ ∈ M (uniformly with respect to t ∈ [a, b]). �

Using Lemma 2.1, we obtain

Corollary 2.3. Suppose that function f satisfies conditions 1)–4) of Theorem 1.1 and a Lipschitz

condition ∥∥f(t, x, µ1)− f(t, x, µ2)
∥∥ ≤ M‖µ1 − µ2‖

(
(t, x) ∈ D, µ1, µ2 ∈ M

)
,

where M is independent of t and x. Then the assertion of Theorem 2.2 holds.

By the remark above the additional assumption 5) of Theorem 2.2 is weaker than the additional

assumption of Corollary 2.3. Indeed, for the Cauchy problem

dx

dt
= µ sin

1

µ
, x(0) = 0, t ∈ [0, 1], µ ∈ M

.
= (0, 1)

the assumptions of Theorem 2.2 are satisfied, while the assumptions of Corollary 2.3 are not.

3. Linear Cauchy problem

We now consider the linear variant of problem (1.1):

(3.3)
dx

dt
= A(t, µ)x+ ϕ(t, µ) (t ∈ I, µ ∈ M), x(t0) = x0.

The solution of (3.3) exists on the whole interval I and is possibly unbounded. Thus, in general

one can not expect that family

{f(t, x, ·)}(t,x)∈D = {A(t, ·)x+ ϕ(t, ·)}(t,x)∈D

is equicontinuous. Of course, we can restrict this family to a closed subinterval [a, b] ⊂ I; then

solution x of (3.3) is bounded on [a, b] and we can apply Theorem 2.2 and Corollary 2.3. It is,

however, desirable to have a sufficient condition that ensures the uniform continuous dependence

of x on a parameter, when the argument t varies in the whole interval I.

It will be convenient to consider a matrix-valued analogue of problem (3.3):

(3.4)
dX

dt
= A(t, µ)X +Φ(t, µ) (t ∈ I, µ ∈ M), X(t0, µ) = X0(µ),

where A, Φ : I × M → R
n×n are summable in t over I for every µ ∈ M, X : I × M → R

n×n

is absolutely continuous in t over I for every µ ∈ M, and X0 : M → R
n×n is continuous and

bounded on M.
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Let X be the set of absolutely continuous on I for all µ ∈ M n × n-matrices X(t, µ) endowed

with metric

ρ
(
X(t, µ1), X(t, µ2)

) .
= ρ̂(µ1, µ2)

.
= ‖X(t0, µ1)−X(t0, µ2)‖+

∫

I

‖Ẋ(t, µ1)− Ẋ(t, µ2)‖ dt.

This is a complete metric space. We denote by Xt0 ⊂ X the subspace of non-degenerate n × n-

matrices X(t, µ) normed at point t0 by the condition X(t0, µ) = E, where E is the identity matrix.

The induced metric in Xt0 is given by the formula

ρ
(
X(·, µ1), X(·, µ2)

) .
= ρ̂(µ1, µ2)

.
=

∫

I

‖Ẋ(t, µ1)− Ẋ(t, µ2)‖ dt.

Further, let A be the set of summable on I for all µ ∈ M n × n matrices A(t, µ) endowed with

norm

n(A) =
(
n̂(µ)

)
=

∫

I

‖A(t, µ)‖ dt,

let A0 be the space of bounded and continuous onM n×nmatrices with norm ‖X0‖
.
= sup

µ∈M

‖X0(µ)‖.

Clearly, spaces A, A0 are Banach. It follows from Theorems 1.1 and 2.2 that Cauchy problem (3.4)

determines a continuous map F(µ) : A × A × A0 → X that depends continuously on µ ∈ M.

Similarly, Cauchy problem

(3.5)
dX

dt
= A(t, µ)X (t ∈ I, µ ∈ M), X(t0, µ) = X0(µ)

can be viewed as a continuous (bijective) map F0(µ) : A × A0 → Xt0 that depends on µ ∈ M

continuously. Our goal is to establish the conditions under which these maps depend on µ uniformly

continuously on M.

We say that B ∈ A is integrally uniformly continuous onM if the following condition is satisfied:

(∀ε > 0) (∃δ > 0) (∀µ1, µ2 ∈ M : ‖µ1 − µ2‖ < δ)

(∫

I

‖B(t, µ1)−B(t, µ2)‖ dt < ε

)
.

Theorem 3.1. Suppose that

1) functions n̂, ϕ, η : M → [0,+∞), where ϕ(µ) =

∫

I

‖Φ(t, µ)‖ dt, η(µ)
.
= ‖X0(µ)‖, are

bounded on M;

2) function X0 ∈ A0 is uniformly continuous, and functions A, Φ ∈ A are integrally uniformly

continuous on M.

Then the solution Y (t, µ) of problem (3.4) is uniformly continuous in µ ∈ M (uniformly with

respect to t ∈ I), and maps F0(µ)(A, X
0) and F(µ)(A, Φ, X0) are uniformly continuous on M

(uniformly with respect to t ∈ I).

Proof. We choose a constant K > 0 such that the following inequalities are satisfied:

(3.6) n̂(µ) ≤ K, ϕ(µ) ≤ K, η(µ) ≤ K, ξ
.
= ‖E‖ ≤ K.

Denote

a(µ1, µ2)
.
=

∫

I

‖A(t, µ1)−A(t, µ2)‖ dt, f(µ1, µ2)
.
=

∫

I

‖Φ(t, µ1)− Φ(t, µ2)‖ dt,

x(µ1, µ2)
.
= ‖X0(µ1)−X0(µ2)‖.

In the next four lemmas we obtain a number of estimates needed to complete the proof of the

theorem. Some of these lemmas (e.g. Lemmas 3.3 and 3.5) are interesting in their own right.

Let C(t, s, µ) = X(t, µ)X−1(s, µ) be the Cauchy matrix of the homogeneous system of differen-

tial equations (3.5) (let X(t, µ) be its fundamental matrix normed at point t0).
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Lemma 3.2. The following estimates hold:

(3.7) ‖X(t, µ)‖ ≤ ξen̂(µ) ≤ KeK (t ∈ I, µ ∈ M);

(3.8) ‖X−1(t, µ)‖ ≤ ξen̂(µ) ≤ KeK (t ∈ I, µ ∈ M);

(3.9) ‖X(t, µ1)−X(t, µ2‖ ≤ ξ3e2n̂(µ1)+n̂(µ2)

∫

I

‖A(s, µ1)−A(s, µ2)‖ ds ≤ K3e3Ka(µ1, µ2)

(t ∈ I, µ1, µ2 ∈ M);

(3.10) ‖X−1(t, µ1)−X−1(t, µ2‖ ≤ ξ3e2n̂(µ1)+n̂(µ2)

∫

I

‖A(s, µ1)−A(s, µ2)‖ ds ≤ K3e3Ka(µ1, µ2)

(t ∈ I, µ1, µ2 ∈ M);

(3.11) ‖C(t, s, µ)‖ ≤ ξ2e2n̂(µ) ≤ K2e2K (t, s ∈ I, µ ∈ M),

(3.12) ‖C(t, s, µ1)− C(t, s, µ2)‖ ≤

≤ ξ4e2n̂(µ1)+n̂(µ2)
(
en̂(µ1) + en̂(µ2)

) ∫

I

‖A(s, µ1)−A(s, µ2)‖ ds ≤ 2K4e4Ka(µ1, µ2),

where t, s ∈ I, µ1, µ2 ∈ M.

Proof of Lemma 3.2. From differential equations Ẋ(t, µi) = A(t, µi)X(t, µi) (i = 1, 2) we obtain

the following differential equation (Cauchy problem)

(3.13)
d
(
X(t, µ1)−X(t, µ2)

dt
= A(t, µ1)

(
X(t, µ1)−X(t, µ2)

)
+
(
A(t, µ1)−A(t, µ2)

)
X(t, µ2),

(
X(t0, µ1)−X(t0, µ2)

)
= 0

which we may consider as a non-homogeneous matrix differential equation with respect to the

unknown function Y
.
= X(t, µ1)−X(t, µ2), having A(t, µ1) as its matrix, with the right-hand side(

A(t, µ1)−A(t, µ2)
)
X(t, µ2), and having zero initial value. Using Cauchy formula, we obtain

Y (t) =

∫ t

t0

X(t, µ1)X
−1(s, µ1)

(
A(s, µ1)−A(s, µ2)

)
X(s, µ2) ds,

which implies that

(3.14) ‖Y ‖ ≤ ‖X(t, µ1)‖

∫ t

t0

‖X−1(s, µ1)‖ · ‖A(s, µ1)−A(s, µ2)‖ · ‖X(s, µ2)‖ ds.

Now, sinceX(t, µ1) = E+
t∫

t0

A(s, µ1)X(s, µ1) ds, we have ‖X(t, µ1)‖ ≤ ξ+

∫ t

t0

‖A(s, µ1)‖·‖X(s, µ1)‖ ds.

By Gronwall-Bellman inequality (see, e.g. [2, p. 37])

‖X(t, µ1)‖ ≤ ξ exp

(∫ t

t0

‖A(s, µ1)‖ ds

)
≤ ξ exp

(∫

I

‖A(s, µ1)‖ ds

)
≤ ξen̂(µ1) (t ∈ I).

Since
dX−1(t, µ1)

dt
= −X−1(t, µ1)A(t, µ1),

we can apply the above argument to function X−1(t, µ1), thus arriving to estimate (3.8).

Using (3.7), (3.8), (3.14), we obtain estimate (3.9). A similar argument gives us (3.10).

Now, it follows from (3.7)–(3.8) that

‖C(t, s, µ)‖ ≤ ‖X(t, µ)‖ · ‖X−1(s, µ)‖ ≤ ξ2e2n̂(µ) (t, s ∈ I).
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Furthermore, using estimates (3.9) and (3.10) we get

‖C(t, s, µ1)−C(t, s, µ2)‖=‖X(t, µ1)
(
X−1(s, µ1)−X−1(s, µ2)

)
−
(
X(t, µ1)−X(t, µ2)

)
X−1(s, µ2)‖≤

≤ ‖X(t, µ1)‖ · ‖X
−1(s, µ1)−X−1(s, µ2)‖+ ‖X(t, µ1)−X(t, µ2)‖ · ‖X

−1(s, µ2)‖ ≤

≤ ξ4e2n̂(µ1)+n̂(µ2)
(
en̂(µ1) + en̂(µ2)

) ∫

I

‖A(s, µ1)−A(s, µ2)‖ ds (t, s ∈ I).

The proof of Lemma 3.2 is complete. �

In the next lemma we esimate from above the distance ρ
(
X(·, µ1), X(·, µ2)

)
= ρ̂(µ1, µ2).

Lemma 3.3.

ρ̂(µ1, µ2) ≤ ξen̂(µ1)
(
n̂(µ1)ξ

2en̂(µ1)+n̂(µ2)+1
)∫

I

‖A(s, µ1)−A(s, µ2)‖ ds ≤
(
K4e3K+KeK

)
a(µ1, µ2)

(µ1, µ2 ∈ M).

Proof of Lemma 3.3. Using estimates (3.13), (3.14) and (3.9) we obtain

ρ̂(µ1, µ2) =

∫

I

‖Ẋ(t, µ1)− Ẋ(t, µ2)‖ dt =

=

∫

I

‖A(t, µ1)
(
X(t, µ1)−X(t, µ2)

)
+
(
A(t, µ1)−A(t, µ2)

)
X(t, µ2)‖ dt ≤

∫

I

‖A(t, µ1)‖ ‖(X(t, µ1)−X(t, µ2)‖ dt+

∫

I

‖A(t, µ1)−A(t, µ2)‖ ‖X(t, µ2)‖ dt ≤

≤ ξen̂(µ1)
(
n̂(µ1)ξ

2en̂(µ1)+n̂(µ2) + 1
)∫

I

‖A(s, µ1)−A(s, µ2)‖ ds

This completes the proof of Lemma 3.3. �

Next, we obtain estimates for the solution Y = Y (t, µ) of non-homogeneous Cauchy problem

(3.4).

Lemma 3.4. We have the following estimates:

(3.15) ‖Y (t, µ)‖ ≤ ‖X0(µ)‖ ξen(µ)+ ξ2e2n(µ) ·

∫

I

‖Φ(s, µ)‖ ds ≤ K2eK +K3e2K (t ∈ I, µ ∈ M).

(3.16) ‖Y (t, µ1)− Y (t, µ2)‖ ≤ ξen(µ2) ‖X0(µ1)−X0(µ2)‖+

+ ξ3e2n(µ1)+n(µ2)

(
‖X0(µ1)‖+ ξen(µ1) + en(µ2)

∫

I

‖Φ(s, µ1)‖ ds

)∫

I

‖A(s, µ1)−A(s, µ2)‖ ds+

+ ξ2e2n(µ2) ·

∫

I

‖Φ(s, µ1)− Φ(s, µ2)‖ ds ≤

≤ K1x(µ1, µ2) +K2a(µ1, µ2) +K3f(µ1, µ2) (t ∈ I, µ1, µ2 ∈ M),

where K1 = KeK , K2 = K4e3K(1 +K + eK), K3 = K2e2K

Proof of Lemma 3.4. Using Cauchy formula we obtain

(3.17) Y (t, µ) = X(t, µ)X0(µ) +

∫ t

t0

C(t, s, µ)Φ(s, µ) ds (t ∈ I, µ ∈ M).

Further, according to (3.7) and (3.11) we have the estimate

‖Y (t, µ)‖ ≤ ‖X(t, µ)‖ ‖X0(µ)‖+

∫ t

t0

‖C(t, s, µ)‖ · ‖Φ(s, µ)‖ ds ≤

≤ ‖X0(µ)‖ ξen(µ) + ξ2e2n(µ) ·

∫

I

‖Φ(s, µ)‖ ds (t ∈ I, µ ∈ M).
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Now, in virtue of (3.7), (3.11), (3.9) and (3.12) we have

‖Y (t, µ1)− Y (t, µ2)‖ ≤ ‖X(t, µ1)−X(t, µ2)‖ ‖X
0(µ1)‖+ ‖X(t, µ2)‖ ‖X

0(µ1)−X0(µ2)‖+

+ max
(t,s)∈=I2

‖C(t, s, µ1)− C(t, s, µ2)‖ ·

∫

I

‖Φ(s, µ1)‖ ds+

+ max
(t,s)∈=I2

‖C(t, s, µ2)‖ ·

∫

I

‖Φ(s, µ1)− Φ(s, µ2)‖ ds ≤

≤ ‖X0(µ1)‖ ‖E‖3e2n(µ1)+n(µ2)

∫

I

‖A(s, µ1)−A(s, µ2)‖ ds+ ‖X0(µ1)−X0(µ2)‖ · ξe
n(µ2)+

+ ξ4e2n(µ1)+n(µ2)
(
en(µ1) + en(µ2)

) ∫

I

‖A(s, µ1)−A(s, µ2)‖ ds ·

∫

I

‖Φ(s, µ1)‖ ds+

+ ξ2e2n(µ2) ·

∫

I

‖Φ(s, µ1)− Φ(s, µ2)‖ ds = ξen(µ2) ‖X0(µ1)−X0(µ2)‖+

+ ξ3e2n(µ1)+n(µ2)

(
‖X0(µ1)‖+ ξen(µ1) + en(µ2)

∫

I

‖Φ(s, µ1)‖ ds

)∫

I

‖A(s, µ1)−A(s, µ2)‖ ds+

+ ξ2e2n(µ2) ·

∫

I

‖Φ(s, µ1)− Φ(s, µ2)‖ ds (t ∈ I, µ1, µ2 ∈ M),

which concludes the proof of Lemma 3.4. �

Now, we estimate from above the distance ρ
(
Y (·, µ1), Y (·, µ2)

)
= ρ̂(µ1, µ2).

Lemma 3.5.

(3.18) ρ̂(µ1, µ2) ≤

≤ K̃1 ‖X
0(µ1)−X0(µ2)‖ + K̃2

∫

I

‖A(t, µ1)−A(t, µ2)‖ dt+ K̃3

∫

I

‖Φ(t, µ1)− Φ(t, µ2)‖ dt,

where K̃1 = 1 +K2eK , K̃2 = K2eK(1 +KeK +K3e2K + 2K3e3K), K̃3 = 1 +K3e2K .

Proof of Lemma 3.5. According to (3.4) we have

ρ̂(µ1, µ2) = ‖X0(µ1)−X0(µ2)‖+

∫

I

‖Ẏ (t, µ1)− Ẏ (t, µ2)‖ dt ≤ x(µ1, µ2)+

+

∫

I

‖A(t, µ1)‖ ‖Y (t, µ1)− Y (t, µ2)‖ dt+

∫

I

‖A(t, µ1)−A(t, µ2)‖ ‖Y (t, µ2)‖ dt+ f(µ1, µ2) ≤

≤ x (µ1, µ2) +K
(
KeKx (µ1, µ2) +K4e3K(1 + 2eK)a(µ1, µ2) +K2e2K f (µ1, µ2)

)
+

+K2
(
eK +Ke2K

)
a (µ1, µ2) + f(µ1, µ2) = K̃1x (µ1, µ2) + K̃2a(µ1, µ2) + K̃3f(µ1, µ2),

as needed. �

Now, we are ready to complete the proof of Theorem 3.1. Let ε > 0 be arbitrary. By our

assumptions there is δ > 0 such that if ‖µ1 − µ2‖ < δ, then

x(µ1, µ2) <
ε

3K1
, a(µ1, µ2) <

ε

3K2
, f(µ1, µ2) <

ε

3K3
,

x(µ1, µ2) <
ε

3K̃1

, a(µ1, µ2) <
ε

3K̃2

, f(µ1, µ2) <
ε

3K̃3

.

This esimate, combined with Lemma 3.4 (estimates (3.16)) and 3.5), implies that

‖Y (t, µ1)− Y (t, µ)‖ < ε (t ∈ I), ρ
(
Y (·, µ1), Y (·, µ2)

)
< ε.

The proof of Theorem 3.1 is complete. �
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Theorem 3.6. The assertion of Theorem 3.1 remains true if we replace in its formulation n̂, ϕ, a, f

with, respectively,

n̂q(µ)
.
=

(∫

I

‖A(µ)‖q dt

) 1

q

, ϕq(µ)
.
=

(∫

I

‖Φ(µ)‖q dt

) 1

q

,

ap(µ1, µ2)
.
=

(∫

I

‖A(t, µ1)−A(t, µ2)‖
p dt

) 1

p

, fp(µ1, µ2)
.
=

(∫

I

‖Φ(t, µ1)− Φ(t, µ2)‖
p dt

) 1

p

(
1 < p < +∞, 1

p
+ 1

q
= 1

)
,

Proof. In the proof of Theorem 3.1, in the estimates of the integrals of products one has to apply

Hölder inequality. �
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