Ni 基高温合金 Al-Si 涂层脆- 塑性转变温度 及其疲劳行为研究

张德堂

(北京航空材料研究院第4研究室,北京,100095)

INVESTIGATION ON THE BRITTLE-DUCTILITY TRANSFORMATION TEMPERATURE AND FATIGUE BEHAVIOR OF AI-SI COATING FOR NICKEL-BASE SUPERALLOY

Zhang Detang

(Fourth Laboratory, Beijing Institute of Aeronautical Materials, Beijing, 100095)

摘 要 利用高温金相显微镜改进加载装置,在动态下测定了 Al-Si 高温涂层的脆-塑性转变 温度及其影响因素。研究结果表明, Al-Si 涂层的脆-塑性转变温度随着 Al, Si 浓度的减少而降 低,通过热处理的方法使涂层的 Al, Si 浓度降低,可有效地降低涂层的显微硬度和脆-塑性转 变温度。另处,还系统研究了涂层与基体在不同温度下断裂失效的模式及其机制。

关键词 Al-Si涂层 Ni 基高温合金 脆- 塑性转变 疲劳行为

中图分类号 TG132.3

Abstract High temperature microscope with loading equipment has been used and the brittleductility transformation temperature of Al-Si coating has been measured. Research results show that brittle-ductility transformation temperature of Al-Si coating decreases with decreasing of Al and Si contents. Al and Si contents can be decreased by heat treatment which induces obviously a decrease of microhardness and brittle-ductility transformation temperature of coating. The fracture mode and mechanism for both nickel-base superalloy and coating at different temperatures have been investigated in this paper.

Key words Al-Si coating, nickel-base superalloy, brittle-ductility transformation temperature, fatigue behaviors

在高温下长期使用的高温合金, 经常采用表面涂层的方法提高材料的抗腐蚀能力。表面涂层是涂在基体合金表面的材料, 要求在物理性能和机械性能与基体合金具有较好的匹配性。据文献报道^[1~3], 涂有脆-塑性转变温度为 816 左右渗 Al 涂层的变形多晶 Unimet 700 合金疲劳性能试验结果表明, 该合金经涂层后在 760 以下的疲劳强度下降了 20%, 而在脆-塑性转变温度以上, 由于涂层本身塑性明显提高, 消除了涂层早期脆裂问题, 同时防止了试样表面产生早期晶间开裂的现象, 改善了材料的疲劳性能。

1 材料与涂层

本研究采用的 ASL-5 涂层,为水溶性扩散型料桨 Al-Si 涂层,其处理工艺将固渗与料 桨两种工艺的优点融为一体。研究用材料为定向凝固镍基高温合金。共选用 3 种不同 Al-Si 浓度的涂层,其处理工艺成分示于表 1。

涂层	ᇱᅖᅮᆓ	涂层细细		涂层的成分/wt%							出旦/0/	
赤层	处理工乙		冰层组织	Ni	Cr	Al	Тi	W	Mo	Co	Si	心里/ 70
Al	900 /1.5h 渗+ 1000 /2h		BNiAl, C, G,	60.43.4	2.4	. 4 31. 1	0. 2	1.3	1.2	5.1		102 7
		MC, M ₆ C	M C, M ₆ C		3.4							102. /
		内层 MC, M ₆ C	BNiAl, C, G,	58.8	5.4	27.9	0.8	1.8	1.8	5.3		100_0
			M C, M ₆ C									100. 0
Al-Si (ASL-5)	900 渗+ 870 / 32h	外层 BNiAl, C, MC, M6 ⁶	BNiAl, C, G,	65. 2	3.8	18.2	0. 7	1.5	0.9	4.5	2.5	97. 3
			M C, M ₆ C									
		内层 MC	BNiAl, C, G,	63.1	6.5	16.6	1.0	2.0	2.7	5.2	3.1	100. 2
			M C, M ₆ C									
Al-Si (ASL-5-1)	900 渗+	外层 BNiAl, C, G, MC	BNiAl, C, G,	68.3	6. 2	15.1	0.5	1.5	0.7	5.5	1.9	99. 7
	870/ 32h+		MC									
		ње	BNiAl, C, G,		6 6	14 6	0 0	2 4	1 2	- 7	2 2	00 (
	1030 / 2h	內层	MC	00. 0	0.0	14. 0	0.8	2.4	1.3	3. /	2. Z	99.0

表1 涂层的成分和处理工艺

2 脆- 塑性转变温度的测量

涂层的组织结构主要为 BNiAl 相, 属于 BCC 结构的金属间化合物, 具有在低温下以脆 性方式断裂, 而在较高温度下变成以塑性方式断裂的特征。由脆性向塑性转变的温度取决于 涂层的成分、组织结构及热处理工艺。至今, 国内外介绍测定涂层脆-塑性转变温度的方式 极少。文献[4]介绍了 Pt-Al 涂层的脆-塑性转变温度的测量方法, 采用声发射监视裂纹的 方法测量涂层的脆-塑性转变温度。但由于声发射方法不能判断裂纹产生的部位, 故此方法 无法真实地反映各个温度区域涂层的断裂行为。

根据涂层的力学性质随温度变化的特点,采用了在不同温度下观察涂层由伸长到断裂 动态行为的方法测量涂层的脆-塑性转变温度。对高温金相显微镜拉伸装置的加载方式进 行改装,使其以一定的加载速率均匀连续加载,确保试样在缓慢连续加载的过程中产生均匀 的变形。拉伸试样为板材试样,试样均匀涂层后,将其表面进行仔细地磨制和磨光。

在试验过程中,先将试样加热至某一温度保温 30min,然后开始以 2.94N/min 的加载 速度对试样进行连续加载,同时利用 0.01mm 的引伸计测量试样的伸长量。边拉伸边观察, 直至观察到涂层开始产生裂纹为止,以此时的伸长量,通过下列公式可计算出涂层在该温度 下的最大应变量 E

 $E= (\$L/L) \times 100\%$

式中: \$L为每一根试样涂层最早产生裂纹时的 伸长量; L为试样原始的有效长度加上加热至 试验温度时热膨胀的长度。

3 结果与讨论

ASL-5 Al-Si 涂 层 的 脆 塑 转 变 温 度 (BDTT)和涂层显微硬度随温度的变化曲线示 于图 1。

通常将曲线分为 3 个区域。第 1 个区域从 室温至 550 ,涂层早期产生脆裂,如图 2(a)所 示。第 2 个区域从 550~670 ,由于此温度范 © 1994-2010 China Academic Journal Electro

图 1 ASL-5 涂层脆- 塑性转变温度与

显微硬度的变化关系 blishing House. All rights reserved.

632

围涂层的显微硬度值与合金基体接近,因此涂 层与基体均有裂纹产生,如图 2(b)所示。第3 个区域(即 670 以上)的断裂特征发生了根本 的变化,裂纹优先始于基体内的枝晶间、疏松孔 洞或碳化物,而涂层不产生裂纹,如图 2(c)所 示。在这个区域里,由于涂层的塑性远远超过了 合金基体的塑性,随着变形量的增加,当基体开 始产生显微裂纹时,涂层仍具有良好的塑性变 形能力,变形量继续增加,裂纹不断地连接并渐 渐向涂层表面扩展,最后导致断裂。

图 2 涂层的断裂行为光学金相图 (a) 室温;(b)600 ;(c) 700

3 种涂层的脆-塑性转变曲线示于图 3。 15 从表 2 可以看出, A I-Si 涂层的显微硬度随 AI, Si 浓度的下降而降低, 即涂层的 BDTT 随 着涂层显微硬度的降低而降低。由此表明, 涂层 的显微硬度可与涂层的脆-塑性转变温度建立 定性关系, 为估计涂层的脆-塑性转变温度提 (4) 0 (4) 0 (5)

测量结果表明: Al-Si 涂层具有一个明显的 特点, 即外层显微硬度明显的低于内层, 其原因

主要是由于涂层在热处理过程中 Si 向内层扩散, 少量 Si 溶于 BNiAl 相, 部分 Si 形成富 Si 的第 2 相质点(G 相)弥散分布于 BNiAl 相基体之中, 还有一部分 Si 溶于 C相和以固溶状 态的形式溶解在 M₆C 碳化物相中, 导致内层的显微硬度有所提高。

疲劳试验结果表明,降低涂层的显微硬度和脆-塑性转变温度,可改善材料的使用寿命,因为 BDTT 较低的涂层,在材料使用的温度范围内具有良好的塑性变形能力,其力学性质与材料基体保持相应的匹配性,可防止涂层过早的产生裂纹,试验结果见表 3。

633

	成分	'/ wt%		显微	BDT T/		
	位置	Al	S	HV/			
Al-Si(ASL-5)	外层	18.2	2.5	外层	6340	700	
	内层	16.6	3.1	内层	7900	700	
Al-Si(ASL-5-1)	外层	15.1	1.9	外层	5680	650	
	内层	14.6	2.2	内层	7130		

表 2 涂层成分显微硬度与 BDTT 的关系

表 3 疲劳试验结果

涂层	在 104 周次下	观察涂层裂纹	疲劳寿命/ 周次			
ASL-5				9. 612 × 10 ⁵		
	室温	有	室温	1. 383 × 10 ⁵		
				3. 424 × 10 ⁵		
	750			7. 847 × 10 ⁶		
		无	750	2. 107 × 10^6		
				1. 973 × 10 ⁶		
ASL-5-1				1. 909 × 10 ⁵		
	室温	有	室温	1. 567 × 10 ⁵		
				1. 671 × 10 ⁵		
	700			2. 235 × 10^6		
		无	700	2. 025 × 10^6		
				2.083 × 10^6		

试验结果表明:带有涂层的疲劳试样,在低于 BDTT 温度下进行疲劳试验时,涂层产生 早期裂纹(裂纹深度为涂层的厚度),随后试样便带着裂纹进行试验,随着循环周次的增加, 裂纹不断扩展。从垂直于断口的平面可明显地看出,疲劳裂纹从涂层表面快速形成,裂纹在 涂层-基体交界处终止,随着循环周次的不断增加,裂纹沿着合金基体的滑移带向基体内部 扩展,此滑移面的取向大致与正应力呈 45 角,裂纹沿着最大切应力方向的滑移面扩展,如 图 4(a)所示。对试样断口表面观察结果表明,裂纹沿着一定的结晶学方向传播,如图 4(b)所示。

图 4 T < BDT T 时疲劳断裂特征 © 1994-2010 China Academ (a) 我常命属相图; of h) 扫描电镜图g House. All rights reserved. http:// 为了研究涂层-基体之间的断裂关系,对反复弯曲的板材疲劳试样进行了跟踪观察试验,其结果示于图 5。在 T < BDTT 时,涂层呈现出脆性断裂行为,当 N 4.8×10⁴ 时,涂层 以极快的速度产生裂纹,此裂纹在涂层-基体交界面处终止(见图 5 中 T < BDTT 曲线 a 点),此裂纹在一段时间内不扩展,当 N 1×10⁵ 时,裂纹开始沿着基体的滑移带渐渐向基体内部扩展,最后导致断裂。

在 T> BDTT 时,涂层的强度极限随着温度的升高而降低,当 N 6.7×10⁵ 时,由于涂 层的强度极限明显地低于基体,发现在涂层表面的薄弱之处优先产生裂纹(如缺陷或凸凹不 平等处),但远不如在 T< BDTT 时所产生的裂纹明显,如图 5 中 T> BDTT 曲线 a 点所示, 此裂纹保持相当一段时间不扩展。随着循环周次的不断增加,在合金基体内的枝晶间、显微 疏松或碳化物处优先产生裂纹,直至 N> 1×10⁶ 时,枝晶间的裂纹开始互相连接并扩展,由 基体内部渐渐地向涂层表面扩展直至最后断裂。

参考文献

- 1 Well C H, Sullivan C P. Low-cycle fatigue of u dimet 700 at 1700F. ASM Trans, 1968, 61: 149 ~ 155.
- 2 Goward G O W. Current research on the surface protection of superalloys for gas turbine engines. J Metals, 1970, 10: 38.
- 3 Holems D R, Rahmel A. Materials and Coating to resist high temperature corrosion. Applied Science Publishers, Ltd, 1978. 233 ~ 236.
- 4 David J V. Determination of the ductile to brittle transition temperature of platinum-aluminide gas turbine blade coating: [dissertation]. Monterey, Californaia: Naval Postgraduate School, 1985. 28 ~ 32.
- 5 Paskiet G F, Boon D H, Sullivan C P. The effect of aluminide coating on high-cycle fatigue behavior in nickel-base superalloy. J Inst Metal, 1972, 100(2): 58.