减小铂铑热电偶丝不均匀热电动势

徐 华

(海军驻重庆地区舰船配套军事代表室,重庆 40000)

摘要:为了减小铂铑热电偶丝不均匀热电动势,研究了自然凝固和浇铸快速凝固两种凝固方式下重熔次数对高 (中)频熔炼法制备的偶丝不均匀热电动势的影响.研究结果表明:两种凝固方式下,增加重熔次数均可以减小高 (中)频熔炼法制备的偶丝不均匀热电动势;凝固方式、重熔次数条件相同时,高(中)频熔炼法制备的偶丝不均匀 热电动势减小程度不同;采用浇铸快递凝固、中频熔炼法制备的偶丝,在适当的重熔次数下其不均匀热电动势明 显减小.

关键词:铂铑热电偶丝;不均匀热电动势;重熔次数;凝固方式 中图分类号:TGI46
文献标识码:A

不均匀热电动势会使铂铑热电偶丝的热电特性发生 变化,从而影响测温精度的一致性.因此,它是衡量铂铑热 电偶丝产品质量的一个重要指标.造成铂铑热电偶丝产生 不均匀热电动势的原因很多,其中最主要的是由于熔铸过 程中铂、铑两种元素的熔点、密度不同,从而导致合金成份 偏析所致.此外,偶丝加工制造过程中形成的物理缺陷、机 械损伤、杂质污染等都可能导致产生不均匀热电动势.因 此,铂铑热电偶丝不均匀热电动势的大小与熔铸工艺有极 为密切的关系.目前,国产偶丝在不均匀热电动势指标上 与国外同类产品相比仍有差距.我国在国标 GB/T 3772— 1998、GB/T 1598—1998、GB/T 2902—1998 中仍保留不均匀 热电动势指标(见表 1).而美、日等国则完全等效采用 IECS84 标准,在其国标中无此项指标,只是规定必须保证 两对取样热电偶的热电势值在规定的允差范围内^[1-3].

目前,国内普遍采用高频熔炼法和中频熔炼法两种工艺生产铂铑热电偶丝,偶丝不均匀热电动势较大.因此,有必要对上述两种工艺进行改进,并研究不同工艺条件对偶 丝不均匀热电动势的影响.

表1 铂铑热电偶丝单极不均匀热电动势允差

佃业刑口	不均匀热电动势(µV)										
雨丝型亏	标准级	级									
PtRh10	9	9	18								
PtRh13	10	10	20								
Pt	3	3	6								
PtRh30	10	10	20								
PtRh6	12	13	25								

1 实验

1.1 实验材料

采用纯度 99.995%的铂(Pt)和纯度 99.95%的铑 (Rh)进行实验.

文章编号:1006-0707(2009)05-0033-04

1.2 实验方法

将规定比例的铂和铑装入石英砂打结刚玉坩埚中(熔 炼 PtRh 30 合金采用石英砂打结氧化锆坩埚),在高(中)频 感应炉中加热.经反复多次升温熔化、断电自然凝固之后, 将熔融合金断电使其在坩埚中自然凝固或浇铸于水冷铜 模中快速凝固.凝固后的铂铑合金铸锭还需经反复中间退 火,最后拉拔成直径为 0.5 mm 的丝材.

测试时,采用自制不均匀热电动势连续测试装置,在 相同条件下(相同的退火温度、相同的测试炉沿丝材长度 方向的温度梯度场),用同名极比较法测量整卷偶丝任意 部位相对于标准同名极偶丝的热电动势值(EMF),每两个 测量点间距2m.整卷偶丝的不均匀热电动势(EMF)即为 最高相对热电动势值(EMFmax)和最低相对热电动势值 (EMFmin)之差.实验工艺流程如图1、图2所示.

2 结果及讨论

2.1 自然凝固条件下重熔次数对偶丝不均匀热电动势的 影响

采用图 1 所示工艺流程制备的铂铑热电偶丝不均匀热 电动势数据如表 2 所示. 从表 2 的数据可以看到,在自然凝 固的条件下,随着重熔次数的增加,采用高(中)频熔炼制

* 收稿日期:2009-03-01

7

作者简介:徐华(1972-),男,辽宁葫芦岛人,主要从事机电专业研究.

备的偶丝不均匀热电动势逐渐减小,说明多次重熔有利于 合金成份均匀.但当重熔次数增加到一定值后,偶丝不均 匀热电动势下降并不明显,仍然较大,这主要是由于铂、铑

两种元素的熔炼、密度相差较大(见表 3),熔融合金在坩埚 中自然凝固时,冷却速度慢,有充分时间产生成分偏析所 致.

图 2 浇铸快速凝固条件下的实验工艺流程

_																
重熔次数		高频炸	容炼法													
	PtRh10	PtRh13	PtRh30	PtRh6	PtRh10	PtRh13	PtRh30	PtRh6								
0	25	30	23	40	22	20	20	35								
1	23	25	20	33	20	20	18	25								
2	20	21	18	25	18	16	16	20								
3	19	20	17	23	16	16	15	19								

表 2 自然凝固条件下重加	容次数对偶丝不均匀热电动势的影响
---------------	------------------

	表3 铂、铑的	熔点和密度
材料名称	熔点()	密度(20) (g/ cm ³)
Pt	1 769	21.46
Rh	1 960	12.41

从表 2 的数据还可以看到,在重熔次数相同的条件下, 采用中频熔炼法制备的偶丝其不均匀热电动势小于采用 高频熔炼法制备的同种偶丝的不均匀热电动势.其原因可 分析如下.

根据感应电流透入深度公式

= 5 095
$$\sqrt{\mu \cdot f}$$
 (cm)

式中,f为感应电流频率, μ 为被加热材料的导磁率,为 被加热材料的电阻系数.

由于高频感应电流频率大于 10⁵ Hz,因此透入深度小,

仅集中于表面层,从而产生集肤效应,电磁搅拌力极弱,不 利干合金成份均匀;而中频感应电流频率为10³ 比,其感应 电流透入深度大,电磁搅拌力强,有利于合金成份均匀^[4].

高(中)频 N 次重熔、自然凝固条件下制备的整卷偶丝 相对热电动势数据如表 4、表 5 所示.

从表 4、表 5 的数据可以看出,每种偶丝相邻两个检测 点之间的相对热电势值跳跃明显,整卷偶丝相对热电动势 值变化无规律可言,说明了高(中)频多次重熔虽然有助于 合金成分均匀,但由于自然凝固过程中冷却速度慢,合金 产生了成分偏析,从而造成偶丝不均匀热电动势较大.

2.2 浇铸快速凝固条件下重熔次数对偶丝不均匀热电动 势的影响

为了提高冷却速度,减少成分偏析,设计了哈符式水 冷铜模.高(中)频多次重熔铂铑合金,再将熔融合金浇铸 入水冷铜模进行快速凝固.采用此工艺流程制备的铂铑热 电偶丝不均匀热电动势数据如表 6 所示.

7

从表 6 的数据可以看出,在浇铸快速凝固条件下,随着 重熔次数的增加,采用高(中)频熔炼法制备的偶丝不均匀 热电动势逐渐减小.在重熔次数相同的条件下,采用中频 熔炼法制备的偶丝的不均匀热电动势小于采用高频熔炼 法制备的同种偶丝不均匀热电动势,特别是当重熔次数达 到一定值后,中频熔炼法制备的偶丝不均匀热电动势明显 减小,取得了理想的结果.这是由于中频多次重熔比高频 多次重熔更有利于合金成分均匀,熔炼完毕浇铸入水冷铜 模快速冷却,合金成分来不及偏析就凝固^[5].因此采用中 频多次重熔、浇铸快速凝固工艺制备的偶丝不均匀热电动 势将明显减小.

高(中)频N次重熔、浇铸快速凝固条件下制备的整卷 偶丝相对热电动数据如表7、表8所示.

从表 7、表 8 的数据可以看到,每种偶丝相邻两个检测 点之间的相对热电动势值跳跃明显减弱,整卷偶丝相对热 电动势值变化平缓;尤其是中频 N 次重熔、浇铸快速凝固 工艺制备的偶丝其相对热电动势值变化较小,说明浇铸快 速凝固能使合金成分偏析得到有效控制.

表 4 高频 N 次重熔、自然凝固条件下制备的偶丝相对热电动势数据

	检测点	1 #	2 #	3 #	4 #	5 #	6#	7 #	8#	9 #	10 #	11 #	12 #	13 #	14 #	15 #	16 #	17 #	18 #
相对	PtRh10	-15	74	10	1	7	3	9	13	19	3	7	17	11	18	3	9	13	8
热电	PtRh13	7	- 9	- 3	V 0	8	2	9	- 7	- 2	8	0	11	- 4	- 7	0	3	8	5
动势	PtRh30	2	V 9	15	16	2	17	13	6	8	14	15	2	9	16	3	10	12	4
(µV)	PtRh6	13	2	10	- 7	- 2	10	6	- 3	5	- 8	8	2	- 7	- 10	2	10	0	5
	检测点	19 #	20 #	21 #	22 #	23 #	24 #	25 #	26 #	27 #	28 #	29 #	30 #	31 #	32 #	33 #	34 #	35 #	36 #
相对	PtRh10	3	17	8	12	3	9	17	10	5	9	15	3	10	17	2	19	10	7
热电	PtRh13	9	- 7	- 2	- 9	- 3	8	- 2	7	2	- 3	- 7	4	- 2	6	0	- 5	9	2
动势	PtRh30	15	3	13	7	2	9	14	6	0	12	2	10	3	11	13	0	5	2
(µV)	PtRh6	6	- 8	8	2	- 7	8	- 9	- 1	8	10	0	- 7	2	- 8	8	- 2	3	7

表 5 中频 N 次重熔、自然凝固条件下制备的偶丝相对热电动势数据

	检测点	1 #	2 #	3 #	4#	5 #	6#	7#	8#	9#	10 #	11 #	12 #	13 #	14 #	15 #	16#	17 #	18 #
相对	PtRh10	8	2	- 3	- 6	5	8	- 3	8	3	- 5	2	5	7	- 2	4	- 3	5	8
热电	PtRh13	5	14	6	2	- 1	10	13	2	0	8	12	8	- 2	10	10	14	2	5
动势	PtRh30	- 7	- 2	5	- 6	0	4	5	0	- 5	2	3	- 3	- 7	0	8	2	- 3	0
(µV)	PtRh6	10	1	- 7	6	- 3	5	- 8	7	2	- 8	2	- 7	- 9	- 7	2	- 5	- 5	8
	检测点	19 #	20 #	21 #	22 #	23 #	24 #	25 #	26 #	27 #	28 #	29 #	30 #	31 #	32 #	33 #	34 #	35 #	36 #
相对	PtRh10	- 2	4	7	3	- 8	3	6	0	- 2	7	3	0	- 5	6	2	5	0	- 4
热电	PtRh13	9	3	7	13	0	4	10	7	3	2	11	3	10	6	1	8	7	2
动势	PtRh30	- 7	4	0	3	- 5	0	5	1	- 6	- 2	3	- 4	0	4	8	5	- 3	- 5
(µV)	PtRh6	2	- 4	7	2	- 5	0	4	- 3	- 9	4	8	- 1	6	0	- 2	4	- 3	8

表 6 浇铸快速凝固条件下重熔次数对偶丝不均匀热电动势的影响

_		不均匀热电动势(µV)														
重熔次数		高频炸	密炼法													
	PtRh10	PtRh13	PtRh30	PtRh6	PtRh10	PtRh13	PtRh30	PtRh6								
0	20	18	16	23	15	13	12	18								
1	18	18	14	21	11	11	10	15								
2	15	16	12	18	9	9	8	12								
3	12	12	11	16	7	5	6	9								

四川兵工学报

表 7 高频 N 次重熔、浇铸快速凝固条件下制备的偶丝相对热电动势数据

	检测点	1 #	2 #	3#	4 #	5#	6#	7#	8#	9#	10 #	11 #	12 #	13 #	14 #	15 #	16#	17 #	18 #
相对	PtRh10	7	5	2	3	0	1	0	0	2	3	1	0	- 1	- 3	- 2	- 4	- 2	- 5
热电	PtRh13	3	3	21	3	1	0	1	2	0	- 2	- 4	- 3	- 5	- 5	- 4	- 6	- 8	
动势	PtRh30	- 20	- 18	- 16	- 15	- 14	- 15	- 16	- 15	- 13	- 11	- 10	- 9	- 9	- 11	- 13	- 12	- 10	- 11
(µV)	PtRh6	- 11	- 10	- 10	- 8	- 9	- 7	- 6	- 6	- 4	- 3	- 1	1	1	2	3	2	3	5
	检测点	19 #	20 #	21 #	22 #	23 #	24 #	25 #	26 #	27 #	28 #	29 #	30 #	31 #	32 #	33 #	34 #	35 #	36 #
相对	PtRh10	- 5	- 2	- 3	- 1	- 2	0	1	2	1	3	2	4	3	\bigcirc_2	4	6	5	6
热电	PtRh13	- 7	- 6	- 7	- 9	- 8	- 9	- 6	- 5	- 6	- 4	- 6	- 4	- 4	- 3	- 4	- 5	- 6	- 5
动势	PtRh30	- 12	- 14	- 13	- 14	- 14	- 15	- 16	- 14	- 15	- 16	- 14	- 15	- 16	- 17	- 17	- 16	- 17	- 16
(µV)	PtRh6	4	5	4	3	2	3	4	3	2	- 1	- 2	- 4	- 3	- 5	- 4	- 6	- 7	- 8

表 8 中频 N 次重熔、浇铸快速凝固条件下制备的偶丝相对热电动势数据

	检测点	1 #	2#	3 #	4 #	5#	6#	7#	8#	9#	10 #	11 #	12 #	13 #	14 #	15 #	16#	17 #	18 #
相对	PtRh10	3	3	2	3	2	1	2	1	0	0	1	- 1	- 1	0	- 1	- 2	0	- 1
热电	PtRh13	- 3	- 2	- 3	- 2	- 3	- 2	- 3	- 3	- 2	- 3	- 2	- 1	- 3	- 2	- 2	- 1	- 1	0
动势	PtRh30	- 17	- 18	- 11	- 19	- 20	- 19	- 18	- 20	- 21	- 21	- 20	- 19	- 20	- 22	- 23	- 22	- 23	- 21
(µV)	PtRh6	- 1	- 3	- 2	- 3	- 4	- 5	- 5	- 4	- 6	- 6	- 7	- 6	- 7	- 8	- 8	- 7	- 6	- 6
	检测点	19 #	20 #	21 #	22 #	23 #	24 #	25 #	26 #	27 #	28 #	29 #	30 #	31 #	32 #	33 #	34 #	35 #	36 #
相对	PtRh10	- 1	- 2	- 3	- 2	- 3	- 2	- 3	- 3	- 4	- 3	- 4	- 4	- 3	- 2	- 2	- 3	- 3	- 1
热电	PtRh13	0	1	0	- 1	0	1	2	1	1	2	1	2	1	0	- 1	0	- 1	1
动势	PtRh6	- 21	- 20	- 19	- 20	- 20	- 21	- 22	- 20	- 19	- 19	- 20	- 21	- 20	- 20	- 19	- 18	- 19	- 20
(µV)	PtRh6	- 5	- 6	- 6	- 5	- 6	- 6	- 7	- 8	- 7	- 8	- 9	- 9	- 10	- 10	- 9	- 8	- 9	- 7

3 结论

0

在自然凝固的条件下,增加重熔次数可使高(中)频熔 炼法制备的铂铑热电偶丝不均匀热电动势减小;但当重熔 次数增加至一定值后,采用高(中)中频熔炼法制备的偶丝 不均匀热电动势减小并不明显;在重熔次数相同的条件 下,采用中频熔炼法制备的偶丝不均匀热电动势小于高频 熔炼法制备的偶丝不均匀热电动势.

在浇铸快速凝固的条件下,增加重熔次数同样可使高 (中)频熔炼法制备的铂铑热电偶丝不均匀热电动势减小; 但当重熔次数达到一定值后,采用中频熔炼法制备的偶丝 不均匀热电动势明显减小,取得了令人满意的结果.

参考文献:

- [1] GB/T 3772—1998, Platinum 10 % rhodium/ Platinum thermocouple wires(铂铑 10 - 铂热电偶丝)[S].
- [2] GB/T 1598—1998, Platinum 13 % rhodium/ Platinum thermocouple wires(铂铑 13 铂热电偶丝)[S].
- [3] CB/T 2902—1998, Platinum 30% rhodium/ Platinum 6% rhodium thermocouple wires(铂铑 30 铂铑 6 热电偶丝) [S].
- [4] 黎鼎鑫,张永俐,袁弘鸣.贵金属材料[M].长沙:中南 工业大学出版社,1991:12-18.