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The Approximate Sum Capacity of the Symmetric
GaussianK-User Interference Channel

Or Ordentlich, Uri Erez, and Bobak Nazer

Abstract—Interference alignment has emerged as a powerful
tool in the analysis of multi-user networks. Despite considerable
recent progress, the capacity region of the GaussianK-user
interference channel is still unknown in general, in part due
to the challenges associated with alignment on the signal scale
using lattice codes. This paper develops a new framework for
lattice interference alignment, based on the compute-and-forward
approach. Within this framework, each receiver decodes by first
recovering two or more linear combinations of the transmitted
codewords with integer-valued coefficients and then solving these
equations for its desired codeword. For the special case of
symmetric channel gains, this framework is used to derive the
approximate sum capacity of the Gaussian interference channel,
up to an explicitly defined outage set of the channel gains. The
key contributions are the capacity lower bounds for the weak
through strong interference regimes, where each receiver should
jointly decode its own codeword along with part of the interfering
codewords. As part of the analysis, it is shown that decoding
K linear combinations of the codewords can approach the sum
capacity of theK-user Gaussian multiple-access channel up to a
gap of no more than K

2
logK bits.

I. I NTRODUCTION

Handling interference efficiently is a major challenge in
multi-user wireless communication. Recently, it has become
clear that this challenge can sometimes be overcome via
interference alignment[1], [2]. For instance, consider the
K-user Gaussian interference channel, whereK transmitter-
receiver pairs wish to communicate simultaneously. Through
the use of clever encoding strategies, it is possible to align
the transmitted signals so that each receiver only observes
its desired signal along with a single effective interferer. As
a result, each user can achieve roughly half the rate that
would be available were there no interference whatsoever,
i.e., K/2 degrees-of-freedom (DoF) are available. However,
many schemes, such as the Cadambe-Jafar framework [2] and
ergodic interference alignment [3], require a large number
of independent channel realizations to achieve near-perfect
alignment. In certain settings, this level of channel diversity
may not be attainable; ideally, we would like to achieve
alignment over a single channel realization.

The capacity region of the (static) GaussianK-user interfer-
ence channel [4] is unknown in general, although significant
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progress has been made recently, in part due to the discovery
of interference alignment and the shift from exact capacity
results to capacity approximations [5]–[7]. It has been shown
by Motahariet al. thatK/2 degrees-of-freedom are achievable
for almost all channel realizations [8] but it is an open question
as to whether this result translates to real gains outside ofthe
very high signal-to-noise ratio (SNR) regime. One promising
direction is the use of lattice codes [9]–[11], as they can
enable alignment on the signal scale. By taking advantage of
the fact that the sum of lattice codewords is itself a lattice
codeword, a receiver can treat several users as one effective
user, thereby reducing the number of effective interferers. A
compelling example of this approach is the derivation of the
approximate capacity of the many-to-one interference channel
by Bresler, Parekh, and Tse [7]. For fully connected channels,
much less is known, owing to the difficulty of choosing lattices
that simultaneously align at several receivers.

In some cases, focusing on the special case of symmetric
channel gains has yielded important insights. For instance,
in the two-user case, Etkin, Tse, and Wang [5] used the
symmetric interference channel to develop the notion of gener-
alized degrees-of-freedom. This in turn revealed five operating
regimes, based on relative interference strength:

• Noisy: Each receiver treats interference as noise, which
is optimal for sufficiently weak interference [12]–[14].

• Weak and Moderately Weak:Each transmitter sends a
public and a private codeword following the scheme of
Han and Kobayashi [15]. Each receiver jointly decodes
both public codewords and its desired private codeword
while treating the interfering private codeword as noise.

• Strong: Each receiver jointly decodes both users’ code-
words. This regime and its capacity was discovered by
Sato [16] as well as Han and Kobayashi [15].

• Very Strong: Each receiver decodes and subtracts the
interference before recovering its desired codeword. This
regime and its capacity was discovered by Carleial [17].

Using these regimes as a guideline, they were able to approx-
imate the capacity region to within half a bit.

In this paper, we focus on the special case of the symmetric
GaussianK-user interference channel. Each receiver observes

yk = xk + g
∑

m 6=k

xm + zk

wherexk is the codeword sent by thekth transmitter,g is
the cross-channel gain, andzk is additive white Gaussian
noise. If each transmitter uses the same lattice codebook,
then each receiver observes an effective two-user multiple-
access channel (MAC). The first effective transmitter sendsthe
desired codeword and the second sends the sum of interfering
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codewords, which is itself a codeword. A natural approach is
to first decode and cancel this sum of codewords

∑

m 6=k xm,
leaving only the desired signal plus noise. In the very strong
interference regime, this approach is optimal [18] but it does
not suffice in general. In our setting, joint decoding must cope
with the fact that all users employ the same lattice codebook,
and distinct pairs of lattice codewords may result in the same
sum.

Our main contribution is the derivation of new achievable
rate regions for the weak, moderately weak, and strong inter-
ference regimes, for which no capacity approaching schemes
were known in the literature. This is enabled using a new tech-
nique, based on compute-and-forward [19], that allows each
receiver to jointly decode its desired codeword and the sum of
the interfering codewords. We also propose a generalization of
the two-user Han-Kobayashi scheme [15] in which each user
transmits a superposition of one private lattice codeword and
one public lattice codeword. Each receiver decodes its private
and public lattice codewords as well as linear combinations
of all interfering public lattice codewords while treatingthe
interfering private lattice codewords as noise. Using these new
tools, we can mimic the achievable scheme of [5], and obtain
an approximation of the sum capacity in all regimes. In the
weak interference regime, the approximation is valid for all
channel gains, whereas in the strong and moderately weak
interference regimes, it is valid for all channel gains except
for an outage set. The measure of this outage set can be made
as small as desired, but this comes at the expense of increasing
the gap between the inner and outer bounds on the capacity.
Our capacity approximation closely follows the basic shapeof
the generalized degrees-of-freedom (shown in Figure 3), which
was derived for this channel by Jafar and Vishwanath [20].
Their approach is inspired by the deterministic model [6], and
relies upon coding across an infinite number of signal levels.
As a result, their coding scheme cannot be directly translated
into a finite SNR result, as existing techniques for decoding
the sum of codewords incur a penalty for each additional
codeword layer [19].

In its original incarnation, compute-and-forward makes it
possible for relays in a network to decode integer combina-
tions of the transmitted codewords and send them towards a
destination [19]. The effective SNR at each relay is determined
by how closely the integer coefficients match the channel
coefficients. If together the relays recover a full-rank setof
linear combinations, the destination can recover all of the
messages. In our setting, each receiver decodestwo linear
combinations of the transmitted codewords,

a11xk + a12
∑

m 6=k

xm a21xk + a22
∑

m 6=k

xm ,

wherea11, a12, a21, anda22 are integer-valued coefficients. If
the vectorsa1 = [a11 a12]

T anda2 = [a21 a22]
T are linearly

independent, then each receiver can solve for its desired code-
word xk. Through this approach, we can derive closed-form
lower bounds on the performance of joint decoding. A direct
analysis of joint decoding, although possible [21], presents
additional difficulties that in turn lead to looser bounds.

As part of the derivation of our sum capacity bounds, we

develop a new decoding framework,the compute-and-forward
transform, that may be of independent interest. Consider a
GaussianK-user MAC where the encoders employ lattice
codes. Under our framework, the receiver attempts to recover
K linearly independent equations of the transmitted codewords
and then solve them for its desired messages. This transforms
the MAC into an effective multiple-input multiple-output
(MIMO) channel with an integer-valued channel matrix. A
striking phenomenon we discover is that while the computation
rate for each of theseK equations is very sensitive to the exact
channel gains, the sum of their computation rates is equal to
the sum capacity of the MAC up to a constant gap, independent
of the channel gains and the SNR (see Figure 1). To give
this an operational meaning, the computation rate for each
equation is associated with a single transmitter’s codeword.
The receiver successively decodes the equations, ordered by
decreasing computation rate. As we will show, each decoded
equation can be used to remove its associated codeword from
the receiver’s observation in a way that does not alter the
effective SNR for the remaining equations.
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Fig. 1. Computation rates for the best two linearly independent equations
vs. h for the channely = x1 + hx2 + z at SNR=40dB. The sum of these
computation rates is nearly equal to the multiple-access sum capacity. All
rates are normalized by this sum capacity1/2 log(1 + (1 + h2)SNR).

A. Related Work

Interference alignment has generated a great deal of excite-
ment, due to the promise of higher throughputs in wireless
networks [1], [2] as well as other applications, including
coding for distributed storage [22]. See the recent monograph
by Jafar for a comprehensive survey [23]. Of particular noteis
a series of recent papers that delineate the degrees-of-freedom
limits of linear beamforming strategies for alignment overa
finite number of channel realizations [24], [25]. Beamforming
strategies can only approach perfect alignment asymptotically,
whereas lattice-based schemes can achieveK/2 degrees-of-
freedom over a single channel realization [8]. However, lattice-
based alignment at finite SNR has to date been limited to
special cases, such as symmetric [18], [21], [26], integer [27],
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and many-to-one interference channels [7], [28]. Capacityap-
proximations are also available for one-to-many [7] and cyclic
interference channels [29], although these coding schemesdo
not employ alignment.

The results in this paper are connected to the recent work
of Niesen and Maddah-Ali [30], which proposes a finer-
grain deterministic model for interference networks that is
rich enough to capture the phenomenon of alignment. Via this
model, they derive the approximate capacity region of the two-
user Gaussian X-channel. As in our work, they characterize
the performance of joint decoding over a MAC where all
users employ the same linear code. While both approaches
yield “constant-gap” approximations, our framework naturally
yields achievable rate expressions that are easy to plot and
often much closer to the upper bound than the constant-gap
analysis suggests.

Bandemer and El Gamal have recently proposed a class of
three-user deterministic channels where the interfering signals
are passed through a function on their way to the receiver,
which, in a certain sense, models interference alignment [31].
They develop a new rate region based on interference decoding
for this model. In a recent paper, Wu, Shamai, and Verdú have
derived a general formula for the degrees-of-freedom of the
K-user Gaussian interference channel via Rényi’s information
dimension [32].

Nested lattice codes have been thoroughly studied as a
framework for efficient source and channel coding with side
information [9], [10], [33]. Recently, it has become clear
that the inherent linear structure of lattices can enable many
interesting new schemes, including distributed dirty paper
coding [34], distributed source coding of linear functions[35]–
[37], distributed antenna systems [38]–[40], and physical-layer
network coding [19], [41]–[44], to name a few. The origins
of these schemes can be traced to the work of Körner and
Marton [45], who showed that linear binning is optimal for the
distributed compression of the parity of a doubly symmetric
binary source.

The remainder of the paper is organized as follows. Section
II gives a formal problem statement as well as the approximate
sum capacity of the GaussianK-user interference channel.
Next, Section III provides a brief review of nested lattice codes
and the compute-and-forward strategy. Section IV shows how
the Gaussian multiple-access sum capacity can be approached
within a constant gap using compute-and-forward combined
with a type of successive interference cancellation. It also
shows how an effective multiple-access channel emerges in
the context of lattice interference alignment. The upper bounds
needed to establish our approximate sum capacity result are
reviewed in Section V. Afterwards, Section VI develops our
two achievable schemes and develops closed-form expressions
for each interference regime. Finally, Section VII derivesthe
degrees-of-freedom attained by our strategy.

II. SYMMETRIC GAUSSIAN K -USER INTERFERENCE

CHANNEL

A. Problem Statement

We begin with some notational conventions. We will denote
column vectors with boldface lowercase letters and matrices

with boldface uppercase letters. For instance,a ∈ Z
K and

A ∈ Z
K×K . Let ‖a‖ =

√

∑K
k=1 a

2
k denote theℓ2-norm of the

vectora. Also, let0 denote the zero vector andIK×K denote
the identity matrix of sizeK. We use⌊·⌉ to denote rounding to
the nearest integer,⌊·⌋ to denote the floor operation and⌈·⌉ for
the ceiling operation. In general, the lettersa and b are used
in this paper whenever the variables they describe are integer
valued. All logarithms are to base2. We also occasionally use
the notationlog+(x) , max(0, log(x)).

w1 E1 x1 1
g

g

w2 E2 x2 1
g

g
...

...

wK EK xK 1

g

g

z1

y1

z2

y2

zK

yK

D1 ŵ1

D2 ŵ2

DK ŵK

Fig. 2. Block diagram of a symmetric GaussianK-user interference channel.

There areK transmitter-receiver pairs that wish to simul-
taneously communicate across a shared channel overn time
slots, where the channel gains are constant over alln channel
uses. We assume a real-valued channel model throughout.

Definition 1 (Messages):Each transmitter has a
message wk drawn independently and uniformly over
{1, 2, . . . , 2nRSYM}.

Definition 2 (Encoders):Each transmitter is equipped with
an encoder, Ek : {1, 2, . . . , 2nRSYM} → R

n, that maps its
message into a length-n channel inputxk = Ek(wk) that
satisfies the power constraint,

‖xk‖2 ≤ nSNR

whereSNR > 0 is the signal-to-noise ratio.
Definition 3 (Channel Model):The channel output at each

receiver is a noisy linear combination of its desired signaland
the sum of the interfering terms, of the form

yk = xk + g
∑

m 6=k

xm + zk , (1)

where g > 0 parametrizes the interference strength andzk
is an i.i.d. Gaussian vector with mean0 and variance1. We
define theinterference-to-noise ratioto be

INR , g2SNR

and theinterference levelto be

α ,
log(INR)

log(SNR)
.

Remark 1:Note that our definition ofINR ignores the fact
that there areK − 1 interferers observed at each receiver.
This is for two reasons. First, this definition parallels that of
the two-user case [5], which will make it easier to compare
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the two rate regions. Second, the receivers will often be able
to treat the interference as stemming from a single effective
transmitter, via interference alignment.

Definition 4 (Decoders):Each receiver is equipped with a
decoder, Dk : R

n → {1, 2, . . . , 2nRSYM}, that produces an
estimateŵk = Dk(yk) of its desired messagewk.

Definition 5 (Symmetric Capacity):A symmetric rate
RSYM is achievableif, for any ǫ > 0 and n large enough,
there exist encoders and decoders that can attain probability
of error at mostǫ,

Pr
(

{ŵ1 6= w1} ∪ · · · ∪ {ŵK 6= wK}
)

< ǫ .

The symmetric capacityCSYM is the supremum of all achiev-
able symmetric rates.

Remark 2:Due to the symmetry of the channel, the sym-
metric capacity is equal to the sum capacity, normalized by
the number of users. To see this, assume that the users employ
different rates and that a rate tuple(R1, R2, . . . , RK) is
achievable. Since each transmitter-receiver pair sees thesame
effective channel, we can simply exchange the encoders and
decoders to achieve the rate tuple(Rπ(1), Rπ(2), . . . , Rπ(K))
for any permutationπ. By time-sharing across all permu-
tations, we find that each user can achieve1K

∑K
k=1 Rk,

corresponding to a symmetric rate. Thus, the sum of any
achievable rate tuple is upper bounded byKCSYM.

Definition 6 (Generalized Degrees-of-Freedom):The gen-
eralized degrees-of-freedom(GDoF) specifies the fraction of
the point-to-point Gaussian capacity that can be attained per
user for a given interference levelα ≥ 0 as SNR tends to
infinity,

d(α) = lim
SNR→∞

CSYM
1
2 log(1 + SNR)

.

B. Approximate Sum Capacity

As shown by Jafar and Vishwanath [20, Theorem 3.1], the
GDoF of the symmetricK-user interference channel is iden-
tical to that of the two-user channel, except for a singularity
at α = 1,

d(α) =







































1− α 0 ≤ α < 1
2 (noisy)

α 1
2 ≤ α < 2

3 (weak)

1− α
2

2
3 ≤ α < 1 (moderately weak)

1
K α = 1
α
2 1 < α < 2 (strong)

1 α ≥ 2 (very strong).

See Figure 3 for a plot. Notice that sinceSNR is taken to
infinity, the GDoF characterization treats all channel gains g
that do not scale withSNR as a single point atα = 1. A finer
view of this regime is possible at high SNR by simply setting
g to be some fixed value and then takingSNR to infinity,
corresponding to the standard notion of degrees-of-freedom.
Surprisingly, this degrees-of-freedom characterizationis ev-
erywhere discontinuous with respect tog [46]. This presents
an obstacle towards a clean capacity approximation at finite
SNR.

α212
3

1
2

d(α)
1

2
3

1
2

1
K

Fig. 3. Generalized degrees-of-freedom for the symmetric GaussianK-user
interference channel.

To overcome this difficulty, our approximations allow for the
possibility of anoutage set, which is explicitly characterized.
Specifically, in the regime aroundα = 1, our capacity results
take the following shape: for any constantc > 0, the capacity
is approximated within at mostc + 9 + logK bits over
the entire range ofSNR, and all channel gainsg, except
for a set of measureµ(c) which vanishes rapidly withc.
This type of capacity approximation has also been used by
Niesen and Maddah-Ali for the two-user Gaussian X channel
[30] and seems to arise from the capacity region itself, not
just the lower bound. That is, it appears that the capacity
may in fact simultaneously vary rapidly with the fine scale
of the channel gains (e.g., the distance to an appropriately
scaled integer) and slowly on the coarse scale (e.g., relative
interference strength). In the high SNR limit, this behavior
shows up as a discontinuity on the rationals but, at reasonable
SNRs, our achievable scheme shows that this variation is in
fact fairly smooth. The theorem below captures our capacity
approximations in a simple form.

Theorem 1:The symmetric capacity of the symmetric
GaussianK-user interference channel can be lower and upper
bounded as follows:

• Noisy Interference Regime,0 ≤ α < 1
2 ,

1

2
log

(

1 +
SNR

1 + INR

)

− 1

2
log(K − 1)

≤ CSYM <
1

2
log

(

1 +
SNR

1 + INR

)

+ 1

• Weak Interference Regime,1
2 ≤ α < 2

3 ,

1

2
log+(INR)− 7

2
− log(K) ≤ CSYM ≤ 1

2
log+(INR) + 1

for all channel gains.
• Moderately Weak Interference Regime,2

3 ≤ α < 1,

1

2
log+

(

SNR√
INR

)

− c− 8− log(K)

≤ CSYM ≤ 1

2
log+

(

SNR√
INR

)

+ 1
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(c) SNR = 50dB
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(d) SNR = 65dB

Fig. 4. Upper and lower bounds on the sum capacity of a3-user symmetric Gaussian interference channel with respect to the cross-gaing. The upper bound
(red line) is given by (42) and the lower bound (black line) isthe maximum of the achievable rates from Theorem 9 and Corollary 3, which were computed
numerically, and Theorem 10. The lower bounds from Theorem 1are not plotted in this figure. For reference, we have also plotted the rate achievable via
time-division (dotted blue line).

for all channel gains except for an outage set of measure
µ < 2−c for any c > 0.

• Strong Interference Regime,1 ≤ α < 2,

1

4
log+(INR)− c

2
− 3 ≤ CSYM ≤ 1

4
log+(INR) + 1

for all channel gains except for an outage set whose mea-
sure is a fraction of2−c of the interval1 < |g| <

√
SNR,

for any c > 0.
• Very Strong Interference Regime,α ≥ 2,

1

2
log(1 + SNR)− 1 ≤ CSYM ≤ 1

2
log(1 + SNR)

III. PRELIMINARIES

In this section we give some basic definitions and results
that will be extensively used in the sequel.

A. K-user Gaussian MAC

Consider theK-user Gaussian MAC

y =

K
∑

k=1

hkxk + z, (2)

where the vectorh = [h1 · · · hK ]T ∈ R
K represents the

channel gains,xk ∈ R
n, k = 1, . . . ,K, are the channel inputs,

z ∈ R
n is additive white Gaussian noise (AWGN) with zero

mean and unit variance andy ∈ R
n is the channel output.

Without loss of generality, we assume allK users are subject
to the same power constraint1

‖xk‖2 ≤ nSNR, k = 1, . . . ,K. (3)

The capacity region of the channel (2) is known (see e.g., [47,
Theorem 15.3.6]) to be the set of all rate tuples(R1, . . . , RK)

1As otherwise the different powers can be absorbed into the channel gains.
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satisfying

∑

k∈S
Rk <

1

2
log

(

1 + SNR

∑

k∈S
|hk|2

)

(4)

for all subsetsS ⊆ {1, . . . ,K}. The achievability part
of the capacity theorem is established using i.i.d. Gaussian
codebooks for all users. Motivated by lattice interference
alignment, we are interested in establishing the achievability
of certain rate tuples under the constraint that the codebooks
employed by theK users form a chain of nested lattice codes.

B. Nested Lattice Codes

We employ the nested lattice framework originally proposed
in [10]. A lattice Λ is a discrete subgroup ofRn which is
closed under reflection and real addition. Formally, for any
t1, t2 ∈ Λ, we have that−t1,−t2 ∈ Λ andt1+ t2 ∈ Λ. Note
that by definition the zero vector0 is always a member of the
lattice. Any latticeΛ in R

n is spanned by somen×n matrix
G such that

Λ = {t = Gq : q ∈ Z
n}.

We say that a lattice is full-rank if its spanning matrixG is
full-rank.

We denote the nearest neighbor quantizer associated with
the latticeΛ by

QΛ(x) = argmin
t∈Λ

‖x− t‖. (5)

The Voronoi region ofΛ, denoted byV , is the set of all
points in R

n which are quantized to the zero vector, where
ties in (5) are broken in a systematic manner. The modulo
operation returns the quantization error w.r.t. the lattice,

[x] mod Λ = x−QΛ(x),

and satisfies the distributive law,
[

a[x] mod Λ + b[y] mod Λ
]

mod Λ = [ax+ by] mod Λ,

for all a, b ∈ Z.
A latticeΛ is said to be nested inΛ1 if Λ ⊆ Λ1. The coding

schemes presented in this paper utilize a chain ofK+1 nested
lattices satisfying

Λ ⊆ ΛK ⊆ · · · ⊆ Λ1. (6)

From these lattices, we constructK codebooks, one for each
user. Specifically, userk is allocated the codebookLk =
Λθ(k)∩V , whereV is the Voronoi region ofΛ and the function
θ(k) : {1, . . . ,K} → {1, . . . ,K} maps between users and
lattices. The rate of each codebookLk is

Rk =
1

n
log
∣

∣Λθ(k) ∩ V
∣

∣.

User k encodes its message into a lattice point from its
codebook,tk ∈ Lk. Each user also has a random2 dither vector
dk which is generated independently and uniformly overV .

2It can be shown that these random dithers can be replaced withdetermin-
istic ones, meaning that no common randomness is required.

These dithers are made available to the decoder. The signal
transmitted by userk is

xk = [tk − dk] mod Λ.

Remark 3:The nested lattice construction from [10] em-
ploys Construction A. To create each fine lattice, this proce-
dure first embeds codewords drawn from a linear code into
the unit cube, and then applies the generator matrix for the
coarse latticeΛ. As shown in [10], this ensemble of nested
lattice codes can approach the capacity of a point-to-point
Gaussian channel. If the integersZn are selected as the coarse
lattice, the resulting nested lattice code is equivalent toa
linear code coupled with a pulse amplitude modulation (PAM)
constellation. Furthermore, themod Λ operation simplifies to
the quantization error from rounding to the integers. It canbe
shown that the cost of this simplification is only the shaping
gain, which corresponds to at most1/2 log(2πe/12) ≃ 0.255
bits per channel use.

C. Compute-and-Forward

t1 E1
x1

h1

t2 E2
x2 h2

tK EK
xK

hK...

z

y
D v̂

v =

[ K
∑

k=1

aktk

]

mod Λ

Fig. 5. Compute-and-forward on a Gaussian multiple-accesschannel.
The transmitters send lattice pointstk and the receiver decodes an integer
combination of them, modulo the coarse latticeΛ. The rate is determined by
how closely the equation coefficientsak match the channel coefficientshk.

Our objective is to communicate over the MAC using
the compute-and-forward scheme from [19]. To this end, the
receiver first decodes a set ofK lattice equations with linearly
independent coefficient vectors. Afterwards, it solves this set
of equations for the transmitted lattice points. Assume the
receiver is interested in decoding the lattice equation

v =

[

K
∑

k=1

aktk

]

mod Λ

with coefficient vectora = [a1 · · · aK ]T ∈ Z
K . Following

the scheme of [19], the receiver scales the observationy by a
factor β, removes the dithers, and reduces moduloΛ to get

s =

[

βy +
K
∑

k=1

akdk

]

mod Λ

=

[

K
∑

k=1

akxk +
K
∑

k=1

akdk +
K
∑

k=1

(βhk − ak)xk + βz

]

mod Λ

= [v + zeff(h, a, β)] mod Λ, (7)
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where

zeff(h, a, β) =

K
∑

k=1

(βhk − ak)xk + βz (8)

is effective noise. From [19], we have thatzeff(h, a, β) is
statistically independent ofv and its effective variance, defined
as

σ2
eff(h, a, β) ,

1

n
E‖zeff(h, a, β)‖2 (9)

is

σ2
eff(h, a, β) = ‖βh− a‖2 · SNR+ β2. (10)

Let k∗ = mink:ak 6=0 θ(k) be the index of the densest lattice
participating in the lattice equationv. The receiver produces an
estimate forv by applying tos the lattice quantizer associated
with Λk∗ ,

v̂ = [QΛk∗
(s)] mod Λ. (11)

Let Vk∗ be the Voronoi region ofΛk∗ , and define the error
probability

Pr (v̂ 6= v) ≤ Pr (zeff(h, a, β) /∈ Vk∗) . (12)

The next theorem summarizes and reformulates relevant re-
sults from Sections IV.C, IV.D, and V.A of [19].

Theorem 2:For anyǫ > 0 andn large enough there exists
a chain ofn-dimensional nested latticesΛ ⊆ ΛK ⊆ · · · ⊆
Λ1 forming the set of codebooksL1, . . . ,LK having rates
R1, . . . , RK and satisfying the power constraint (3) such that:
(a) For all channel vectorsh ∈ R

K and coefficient vectors
a ∈ Z

K , the average error probability in decoding the
lattice equationv =

[

∑K
k=1 aktk

]

mod Λ of transmitted
lattice pointstk ∈ Lk can be made smaller thanǫ so long
as the message rates do not exceed the computation rate,

Rk < Rcomp(h, a, β) ,
1

2
log

(

SNR

σ2
eff(h, a, β)

)

, (13)

for all k such thatak 6= 0 and someβ ∈ R.
(b) The codebooksL1, . . . ,LK are isomorphic to some set

of linear codebooksC1, . . . , CK over the finite fieldZp,
wherep is a sufficiently large prime number.

(c) For the samep, the equation[p · t] mod Λ = 0 holds
∀t ∈ Λk, k = 1, . . . ,K.

Corollary 1: GivenK lattice equationsV = [v1 · · · vK ]
with coefficient vectorsA = [a1 · · · aK ]T , the lattice points
t1, . . . , tK can be recovered if[A] mod p is full-rank over
Zp.

Remark 4:Note that it is also possible to map both the
messages and the lattice equations into an appropriately chosen
finite field. That is, the messages can be written as vectors with
elements that take values in a prime-sized finite field, and the
equations are linear combinations of the messages over the
same finite field. See [19] for more details.

It follows from Theorem 2(a) that in order to maximize the
computation rateRcomp(h, a, β) for a given coefficient vector,
one has to minimizeσ2

eff(h, a, β) overβ. It is seen from (10)
that the expression forσ2

eff(h, a, β) is equal to the mean

squared error (MSE) for linear estimation ofX̃ =
∑K

k=1 akXk

from Y =
∑K

k=1 hkXk + Z where {Xk}Kk=1 are i.i.d.
random variables with zero mean and varianceSNR and Z
is statistically independent of{Xk}Kk=1 with zero mean and
unit variance. Hence the minimizing value ofβ is the linear
minimum mean squared error (MMSE) estimation coefficient
of X̃ from Y . This value ofβ was found in [19, Theorem 2]
and the MSE is given by

σ2
eff(h, a) , min

β∈R

σ2
eff(h, a, β)

= SNR

(

‖a‖2 − SNR(hTa)2

1 + SNR‖h‖2
)

= SNR aT
(

IK×K − SNR hhT

1 + SNR‖h‖2
)

a

= aT
(

SNR
−1IK×K + hhT

)−1
a (14)

=
∥

∥

∥

(

SNR
−1IK×K + hhT

)−1/2
a

∥

∥

∥

2

, (15)

where (14) can be verified using Woodbury’s matrix identity
(i.e., the Matrix Inversion Lemma) [48, Thm 18.2.8]. Accord-
ingly, we define

Rcomp(h, a) , max
β∈R

Rcomp(h, a, β)

=
1

2
log

(

SNR

σ2
eff(h, a)

)

. (16)

The following definition identifies theK linearly independent
coefficient vectors which yield the highest computation rates.

Definition 7: We say that an ordered set of linearly inde-
pendent integer coefficient vectors{a1, . . . , aK} with corre-
sponding computation ratesRcomp,k , Rcomp(h, ak) is optimal
if Rcomp,1 ≥ · · · ≥ Rcomp,K and for anyk = 1, . . . ,K and any
set of integer coefficient vectors{ã1, . . . , ãk} of rank k

min
ℓ=1,...,k

Rcomp(h, ãℓ) ≤ Rcomp,k,

or equivalently

max
ℓ=1,...,k

σ2
eff(h, ãℓ) ≥ σ2

eff(h, ak).

Note that this set is not unique. For example, if{a1, . . . , aK}
is an optimal set of coefficient vectors, so is the set
{−a1, . . . ,−aK}.

Remark 5:Several recent papers have proposed families
of constellations and codes that are well-suited for low-
complexity implementations of compute-and-forward [39],
[44], [49]–[52]. These codes could serve as building blocks
for a practical implementation of our alignment scheme.

D. Numerical Evaluations

The optimal coefficient vectors and computation rates from
Definition 7 play an important role in the achievable rate re-
gions derived in this paper. The problem of determining the op-
timal coefficient vectors is that of finding the set ofK linearly
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independentinteger-valuedvectors that minimizes the effec-
tive noise (15). This problem is equivalent to finding the short-
estK linearly independent lattice vectors in the lattice3 Λ(F)

spanned by the matrixF =
(

SNR
−1IK×K + hhT

)−1/2
.

It is shown in [19, Lemma 1] that only integer vectorsa ∈
Z
K that satisfy the condition

‖a‖2 < 1 + ‖h‖2SNR (17)

yield positive rates. Therefore, in our considerations it suffices
to enumerate all integer vectors (other than the zero vector)
that satisfy (17), and then exhaustively search over these
vectors in order to find the optimal set. At moderate values of
SNR this task is computationally reasonable. Nevertheless, it
is sometimes simpler to find a set of short linearly independent
lattice vectors inΛ(F), which is not necessarily optimal, in
order to obtain lower bounds on the set of optimal computation
rates. A simple low-complexity algorithm for computing a
short lattice basis (which forms a set ofK linearly independent
lattice vectors) is the LLL algorithm [53].4 In producing the
figures for this paper we have employed the LLL algorithm,
meaning that the plotted achievable rates in Figure 4 are in
fact lower bounds on the rates given by Theorems 9 and 11.

We note that a similar procedure for finding the optimal
coefficient vectors was also described in [44], where the
optimal coefficient vectors are termed dominated solutions.

IV. M ULTIPLE-ACCESS VIACOMPUTE-AND-FORWARD

This section introduces a new coding technique for reliable
communication over theK-user Gaussian multiple-access
channel. This technique is based on the receiver decodingK
linearly independent equations of the transmitted codewords,
and then solving them for obtaining the messages transmitted
by each user. We begin this section with a high-level overview
of the scheme, which is illustrated in Figures 6 and 7.

Each userk maps its message to a lattice pointtk in its
codebookLk and transmits a dithered version of it. TheK
lattice codebooks utilized by the different users form a chain
of nested lattices as in (6). Assume for now that the users
are ordered with descending ratesR1 ≥ R2 ≥ · · · ≥ RK , i.e.,
θ(k) = k for k = 1, . . . ,K. The receiver, which sees a noisy
real-valued linear combination of the transmitted codewords,
begins by decoding the integer-valued linear combination
v1 = [

∑

a1mtm] mod Λ which yields the highest computa-
tion rateRcomp,1. Using the compute-and-forward framework,
this is possible ifR1 < Rcomp,1. Then, it proceeds to decode
the equationv2 = [

∑

a2mtm] mod Λ which yields the second
highest computation rateRcomp,2. In general,t1 participates in
this equation and the condition for correct decoding ofv2 is
thereforeR1 < Rcomp,2. Nevertheless, this condition can be
relaxed using the first equationv1 that was already decoded.
Specifically, after appropriate scaling of the channel’s output
and dithers removal, the receiver has a noisy observation

s2 = [v2 + zeff(h, a2)] mod Λ

3Notice that thisK-dimensional lattice is induced by the channel matrix,
not then-dimensional coding scheme.

4Pseudocode for the LLL algorithm can be found, e.g., in [54].

of the desired equationv2. If t1 participates inv1, it
is possible to cancel outt1 from the second equation
by adding a scaled version ofv1 to s2. Namely, the re-
ceiver addsr21v1 to s2, where r21 is an integer chosen
such that [(a11 + r21a21)] mod p = 0, which assures that
[(a11 + r21a21)t1] mod Λ = 0 for any t1 ∈ L1. After
reducingmodΛ this yields

sSI
2 = [v2 + r21v1 + zeff(h, a2)] mod Λ

= [ṽ2 + zeff(h, a2)] mod Λ,

wheret1 does not participate iñv2. Since the effective noise
zeff(h, a2) is unchanged by this process, the receiver can
decode ṽ2 as long asR2 < Rcomp,2. Now, the receiver
can obtainv2 by subtractingr21v1 from ṽ2 and reducing
mod Λ.5 The receiver decodes the remaining equations in a
similar manner, i.e., before decoding thekth equationvk with
computation rateRcomp,k the receiver adds to

sk = [vk + zeff(h, ak)] mod Λ

an integer-valued linear combination
[

∑k−1
ℓ=1 rkℓvℓ

]

mod Λ of
the lattice equations that were already decoded. The coeffi-
cients in the linear combination are chosen such that the effect
of t1, . . . , tk−1 is canceled out fromvk. Assuming that such
coefficients{rk1, . . . , rk,k−1} exist, the receiver can decode

ṽk =
[

vk +
∑k−1

ℓ=1 rkℓvℓ

]

mod Λ as long asRk < Rcomp,k.
Lemma 2, stated in the sequel, establishes that for any set

of K linearly independent coefficient vectors{a1, . . . , aK}
there indeed always exist integer-valued coefficients{rij} such
that in eachkth decoding step the receiver can cancel out
k − 1 lattice points from the desired equationvk, using the
previously decoded equations{v1, . . . ,vk−1}. The procedure
for finding these coefficients is reminiscent of the Gaussian
elimination procedure of a full-rank matrix. One of the basic
operations in Gaussian elimination is row switching. In our
considerations, this would correspond to using an equation
that was not decoded yet for eliminating lattice points from
another equation. Since our successive cancelation procedure
only uses decoded equations, this is not possible. Therefore,
a major difference between our procedure for finding a good
set of coefficients{rij} and Gaussian elimination is that row
switching is not permitted. This incurs a constraint on the order
in which we cancel out users from equations. Nevertheless,
there always exists at least one order of successive cancelation
that is possible. In other words, we can always cancel out the
effect of k − 1 users fromvk using the decoded equation
{v1, . . . ,vk−1}, but we cannot always control which of the
K users to cancel. As a result, there always exists at least
one permutation vectorπ such that allK equations can be
decoded as long as

Rπ(k) < Rcomp,k, k = 1, . . . ,K. (18)

It follows that a sum-rate of
∑K

k=1 Rcomp,k is achievable over
theK-user MAC with our scheme, where all users are using

5The operation of extractingv2 from ṽ2 is in fact not necessary as the
receiver is only interested in decodingany set of K linearly independent
equations. We describe this step only to simplify the exposition of the scheme.
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nested lattice codebooks. As we shall see, this sum rate is
within a constant gap, smaller thanK/2 log(K) bits, from the
sum capacity of the MAC, for any channel gains and SNR.

A. The Compute-and-Forward Transform

We first introduce a transformation of a MAC to a multiple-
input multiple-output (MIMO) mod-Λ channel, where the
K × K channel matrix is integer-valued. This transforma-
tion, dubbed thecompute-and-forward transform, will play an
important role in our decoding scheme for the interference
channel.

Definition 8: Let {a1, . . . , aK} be a set of optimal integer
coefficient vectors (see Definition 7),β1, . . . , βK the cor-
responding optimal scaling factors, andRcomp,1 ≥ · · · ≥
Rcomp,K the corresponding optimal computation rates. We
define thecompute-and-forward transformof the MAC with
nested lattice codes as

S =







s1
...
sK






=











[

β1y +
∑K

k=1 a1kdk

]

mod Λ

...
[

βKy +
∑K

k=1 aKkdk

]

mod Λ











=






A







t1
...
tK






+ Zeff






mod Λ, (19)

where we have written the channel outputy, dithersdk, and
lattice codewordstk as length-n row vectors. We also denote
A = [a1 · · · aK ]T andZeff = [zTeff,1 · · · zTeff,K ]T .

Remark 6:The transform is not unique as the set of optimal
integer coefficient vectors is not unique. Nevertheless, the set
of optimal computation rates is unique. As we shall see, the set
of optimal computation rates dictates the rates attained over the
transformed channel. Therefore, we use the termthecompute-
and-forward transform of the channel, with the understanding
that although there may be multiple options for the transform,
they are all equivalent.

The kth outputsk of the transformed channel corresponds
to a lattice equation plus effective noise. Due to Theorem 2,
each such lattice equation can be reliably decoded as long
as all lattice points participating in it belong to codesLk of
rates smaller thanRcomp,k. We now lower bound the sum of
K optimal computation rates, and in the sequel we show that
this sum can be translated to a valid MAC sum rate.

Theorem 3:The sum of optimal computation rates is lower
bounded by

K
∑

k=1

Rcomp,k ≥ 1

2
log
(

1 + ‖h‖2SNR
)

− K

2
log(K) . (20)

We will need the following definition for the proof. Note that
the lattice referred to below is over theK dimensions induced
by the channel vectorh ∈ R

K , rather than then dimensions
used for coding.

Definition 9 (Successive minima):Let Λ(F) be a full-rank
lattice in R

K spanned by the matrixF ∈ R
K×K . For k =

1, . . . ,K, we define thekth successive minimum as

λk(F) , inf
{

r : dim
(

span
(

Λ(F)
⋂

B(0, r)
))

≥ k
}

whereB(0, r) =
{

x ∈ R
K : ‖x‖ ≤ r

}

is the closed ball of
radiusr around0. In words, thekth successive minimum of
a lattice is the minimal radius of a ball centered around0 that
containsk linearly independent lattice points.

The product of successive minima can be upper bounded us-
ing the following well-known theorem due to Minkowski [55,
Theorem 1.5].

Theorem 4 (Minkowski):For any latticeΛ(F) which is
spanned by a full-rankK ×K matrix F

K
∏

k=1

λ2
k(F) ≤ KK |det(F)|2 . (21)

We are now ready to prove Theorem 3.

Proof of Theorem 3: Let Λ(F) be a lattice spanned

by the matrix F =
(

SNR
−1IK×K + hhT

)−1/2
, and

let λ1(F), . . . , λK(F) be its K successive minima. Let
a1, . . . , aK denote the optimal coefficient vectors. By Defi-
nition 7, Definition 9 and (15) we have‖F ak‖ = λk(F) for
k = 1, . . . ,K. The sum of optimal computation rates is

K
∑

k=1

Rcomp,k =
K
∑

k=1

Rcomp(h, ak)

=
K
∑

k=1

1

2
log

(

SNR

σ2
eff(h, ak)

)

=
K

2
log (SNR)− 1

2
log

(

K
∏

k=1

‖F ak‖2
)

=
K

2
log (SNR)− 1

2
log

(

K
∏

k=1

λ2
k(F)

)

.

Applying Theorem 4 to the product
∏K

k=1 λ
2
k(F) yields

K
∑

k=1

Rcomp,k ≥ K

2
log (SNR)− 1

2
log
(

KK |det(F)|2
)

. (22)

Using Sylvester’s determinant identity (see e.g., [48])

det(IK×K + SNR hhT ) = det(1 + ‖h‖2SNR),
we have that

|det(F)|2 =
SNR

K

1 + ‖h‖2SNR . (23)

Substituting (23) into (22) proves the theorem.
Remark 7: It is possible to avoid the loss of the con-

stant factorK/2 logK in (20) using successive compute-and-
forward, as described in [56]. However, in this case the
operational interpretation of the sum of computation rates
becomes more complicated than that described in the sequel.
We will elaborate on this issue in future work.

Next, we give an operational meaning to theK optimal
computation rates.
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w1 L1
t1

−d1

mod Λ
x1

h1

w2 L2
t2

−d2

mod Λ
x2 h2

...
...

wK LK
tK

−dK

mod Λ
xK

hK

z

y

β1

β2

βK

A−1

∑

a1mdm

QΛ1 mod Λ
v̂1

mod Λ
t̂1 L−1

1
ŵ1

∑

a2mdm r21

QΛ2

−r21

mod Λ
v̂2

mod Λ
t̂2 L−1

2
ŵ2

...
... ...

...∑

aKmdm

∑

rKmv̂m

QΛK

−∑ rKmv̂m

mod Λ
v̂K

mod Λ
t̂K L−1

K
ŵK

Fig. 6. System diagram of the nested lattice encoding and decoding operations employed as part of the compute-and-forward transform. Each messagewk
is mapped to a lattice codewordtk according to codebookLk, dithered, and transmitted asxk . The multiple-access channel scales codewordk by hk and
outputs the sum plus Gaussian noisez. The decoder attempts to recoverK linearly independent equations with coefficientsA = {akm}. For the figure, we
have assumed thatR1 ≥ R2 ≥ · · · ≥ RK and thatRk < Rcomp(h, ak, βk). To decode the first equationv1 = [

∑

a1mtm] mod Λ, the receiver scalesy
by β1, removes the dithers, quantizes usingQΛ1

, and takesmod Λ. For the second equationv2 = [
∑

a2mtm] mod Λ, the decoder scales byβ2, removes
the dithers, and then eliminates the lattice pointt1 using the first equation̂v1 so that the rate of the remaining lattice points is at mostR2. It then quantizes
usingQΛ2

, adds back in̂v1, and takesmod Λ. Decoding proceeds in this fashion, using a form of successive interference cancellation to keep the rates
of the lattice points below the computation rates. Afterwards, the receiver solves for the original lattice points by multiplying by A−1 and taking mod Λ.
Finally, it maps these estimateŝtk of the transmitted lattice points back to the correspondingmessages.

w1 L1
t1

mod Λ
v1

w2 L2
t2

mod Λ
v2

...

wK LK
tK

mod Λ
vK

A A−1

zeff(h, a1, β1)

QΛ1 mod Λ
v̂1

mod Λ
t̂1 L−1

1
ŵ1

zeff(h, a2, β2) r21

QΛ2

−r21

mod Λ
v̂2

mod Λ
t̂2 L−1

2
ŵ2

...
... ...

...
zeff(h, aK , βK)

∑

rKmv̂m

QΛK

−∑ rKmv̂m

mod Λ
v̂K

mod Λ
t̂K L−1

K
ŵK

Fig. 7. Effective MIMO channel induced by the compute-and-forward transform of a Gaussian multiple-access channel. The channel outputy =
∑

hkxk+z

is converted intoK linearly independent lattice equationsvk = [
∑

akmtm] mod Λ plus effective noisezeff(h, ak, βk) = βkz+
∑

(βkhk − ak)xk . As
in Figure 6, these lattice equations can be decoded using a version of successive cancellation.

B. Multiple-Access Sum Capacity to within a Constant Gap

We now show that the compute-and-forward transform can
be used for achieving several rate tuples within a constant
gap from the boundary of the capacity region of theK-user
MAC. The main technique used for establishing this result is
successive cancelation. Namely, each decoded lattice equation
is used to cancel out the effect of one user from the lattice
equations that have yet to be decoded. We first illustrate the
coding scheme by an example, and then formalize our result
in Theorem 5.

Example 1:Consider the two-user MAC

y =
√
5x1 + x2 + z,

at SNR = 15dB. It can be shown using (15) and (16) that the
compute-and-forward transform of this channel is
(

s1
s2

)

=

[(

2 1
3 1

)(

t1
t2

)

+

(

zeff,1

zeff,2

)]

mod Λ

with Rcomp,1 ≃ 2.409 bits andRcomp,2 ≃ 1.372 bits. Note that
(Rcomp,1+Rcomp,2)/(1/2 log(1+‖h‖2SNR)) ≃ 0.998. We use

a chain of three nested latticesΛ ⊆ Λ2 ⊆ Λ1 that satisfy the
conditions of Theorem 2 in order to construct the codebooks
L1 = Λ1∩V with rateR1 arbitrarily close toRcomp,1 for user
1 andL2 = Λ2 ∩ V with rateR2 arbitrarily close toRcomp,2

for user2.

From Theorem 2(a), we know thatv1 = [2t1 + t2] mod Λ
can be decoded froms1 sinceR1 and R2 are smaller than
Rcomp,1. However, Theorem 2 does not guarantee that the
second lattice equationv2 = [3t1+t2] mod Λ can be decoded
from s2 since the first user employs a codebook with a rate
R1 ≈ Rcomp,1 which is higher than the second computation
rate Rcomp,2. To circumvent this issue, we use the decoded
equationv̂1 as side information in order to cancel out the
lattice point t1 ∈ Λ1 ∩ V from s2. Note that Theorem 2(c)
guarantees that[p · tk] mod Λ = 0, k = 1, 2 for some
sufficiently large prime numberp. Let 2−1 ∈ Z be an integer
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that satisfies[2−1 · 2] mod p = 1. The receiver computes

sSI
2 =

[

s2 − 3 · 2−1v̂1

]

mod Λ

(a)
=
[

(3− 3 · 2−1 · 2)t1 + (1− 3 · 2−1)t2 + zeff,2
]

mod Λ

(b)
=
[

[1− 3 · 2−1] mod p · t2 + zeff,2
]

mod Λ

= [ã12 · t2 + zeff,2] mod Λ, (24)

whereã12 = [1 − 3·2−1] mod p. Step(a) in (24) follows from
the distributive law. Step(b) follows since3−3·2−1·2 = M ·p
for someM ∈ Z. Thus,

[

(3− 3 · 2−1 · 2)t1
]

mod Λ = [M · p · t1] mod Λ

= [M · [p · t1] mod Λ] mod Λ

= 0,

where the last equality is justified by Theorem 2(c).
Now only t2 participates in the lattice equatioñv2 =

[ã12t2] mod Λ and, sinceR2 is smaller thanRcomp,2, The-
orem 2 guarantees that it can be decoded fromsSI

2 . This is
accomplished by quantizing ontoΛ2 and reducing moduloΛ,

ˆ̃v2 = [QΛ2(s
SI
2 )] mod Λ.

After decoding both lattice equationsv1 and ṽ2 the receiver
can solve for the transmitted lattice pointst1 andt2, as the two
equations are full-rank overZp. We have therefore shown that
the rate regionR1 < Rcomp,1 andR2 < Rcomp,2 is achievable.
In a similar manner, we can show that the rate regionR1 <
Rcomp,2 andR2 < Rcomp,1 is achievable with this scheme.

In order to formally characterize the achievable rate region,
we will need the following definition which identifies the
orders for which successive cancelation can be performed.

Definition 10: For a full-rank K × K matrix A with
integer-valued entries we define thepseudo-triangularization
process, which transforms the matrixA to a matrix
Ã which is upper triangular up to column permutation
π = [π(1) π(2) · · · π(K)]. This is accomplished by left-
multiplying A by a lower triangular matrixL with unit
diagonal, such that̃A = LA is upper triangular up to column
permutationπ. Although the matrixA is integer valued, the
matricesL and Ã need not necessarily be integer valued.
Note that the pseudo-triangularization process is reminiscent
of Gaussian elimination except that row switching and row
multiplication are prohibited.

Example 2:The 2× 2 matrix

A =

(

2 1
3 1

)

from Example 1 can be pseudo-triangularized with two differ-
ent permutation vectors

Ã =

(

1 0
− 3

2 1

)

·A

=

(

2 1
0 − 1

2

)

, π = [1 2],

or

Ã =

(

1 0
−1 1

)

·A

=

(

2 1
1 0

)

, π = [2 1].

Remark 8:Any full-rank matrix can be triangularized using
the Gaussian elimination process, and therefore any full-rank
matrix can be pseudo-triangularized with at least one permu-
tation vectorπ. In particular, since for any MAC the integer-
valued matrixA from the compute-and-forward transform is
full-rank, it can always be pseudo-triangularized with at least
one permutation vectorπ. There are full-rank matrices that can
be pseudo-triangularized with several different permutation
vectors, such asA from Example 2. However, there are also
full-rank matricesA that can be pseudo-triangularized with
only one permutation vectorπ. An example of such a matrix
is the identity matrixIK×K .

The next theorem gives an achievable rate region for the
MAC under the compute-and-forward transform. The proof
is given in Appendix A and follows along the same lines as
Example 1 .

Theorem 5:Consider the MAC (2). For anyǫ > 0 andn
large enough, there exists a chain ofn-dimensional nested
latticesΛ ⊆ ΛK ⊆ · · · ⊆ Λ1 forming the set of codebooks
L1, . . . ,LK with ratesR1, . . . , RK such that for allh ∈ R

K ,
if:

1) each userk encodes its message using the codebookLk,
2) the integer-valued matrix from the compute-and-forward

transform of the MAC (2) can be pseudo-triangularized
with the permutation vectorπ, and the optimal computa-
tion rates areRcomp,1 ≥ · · · ≥ Rcomp,K ,

3) all ratesR1, . . . , RK satisfy

Rk < Rcomp,π−1(k), for k = 1, . . . ,K (25)

whereπ−1 is the inverse permutation vector ofπ,
then all messages can be decoded with error probability
smaller thanǫ.

Combining Theorems 3 and 5 gives the following theorem.

Theorem 6:The sum rate achieved by the compute-and-
forward transform has a gap of no more thanK/2 logK bits
from the sum capacity of the MAC.

Proof: Let Rcomp,1 ≥ · · · ≥ Rcomp,K be the optimal
computation rates in the compute-and-forward transform of
the MAC (2). The integer-valued matrix from the compute-
and-forward transform can be pseudo-triangularized with at
least one permutation vectorπ. By Theorem 5, the rate tuple

Rk = Rcomp,π−1(k) − δ, for k = 1, . . . ,K (26)

is achievable for anyδ > 0. For this rate tuple we have
K
∑

k=1

Rk =
K
∑

k=1

(

Rcomp,π−1(k) − δ
)

=

K
∑

k=1

Rcomp,k −Kδ

≥ 1

2
log
(

1 + ‖h‖2SNR
)

− K

2
log(K)−Kδ, (27)
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where (27) follows from Theorem 3. Since this is true for any
δ > 0, the result follows.

C. Effective Multiple-Access Channel

A channel that often arises in the context of lattice interfer-
ence alignment is aK-user Gaussian multiple-access channel
(MAC) with integer-valued ratios between some of the channel
coefficients. Specifically, the output of such a channel can be
written as

y =

L
∑

ℓ=1

gℓ

(

∑

m∈Kℓ

bmxm

)

+ z, (28)

where K1, . . . ,KL are disjoint subsets of{1, . . . ,K}. We
assume that thebm ∈ Z are non-zero integers, which opens
up the possibility of lattice alignment.

The channel (28) may describe the signal seen by a receiver
in an interference network, perhaps after appropriate precoding
at the transmitters. In such networks, each receiver is only
interested in the messages from some of the users while
the others act as interferers. Hence, it is beneficial to align
several interfering users into one effective interferer, by taking
advantage of the fact that the sum of lattice codewords is itself
a lattice codeword.

Definition 11 (Effective users):For the MAC specified
by (28), we defineL effective users

xeff,ℓ ,
∑

m∈Kℓ

bmxm, ℓ = 1, . . . , L.

Definition 12 (Effective MAC):The K-user MAC (28) in-
duces theeffectiveL-user MAC

y =

L
∑

ℓ=1

gℓxeff,ℓ + z, (29)

with the vector of effective channel coefficientsg =
[g1 · · · gL]

T ∈ R
L. The effective channel is further char-

acterized by the effective users’ weights

b2eff,ℓ ,
∑

m∈Kℓ

b2m

for ℓ = 1, . . . , L, and the effective (diagonal) weight matrix

B , diag(b2eff,1, . . . , b
2
eff,L). (30)

Definition 13 (Effective lattice points):Let tm be the lat-
tice point transmitted by userm. We define theeffective lattice
point corresponding to effective userℓ as

teff,ℓ =

[

∑

m∈Kℓ

bmtm

]

mod Λ.

Let θeff(ℓ) = minm∈Kℓ
θ(m) (where θ(·) is the mapping

between users and fine lattices defined in Section III) be the
index of the densest lattice contributing toteff,ℓ. Since all
lattices are nested, it follows thatteff,ℓ ∈ Λθeff(ℓ).

Example 3 (SymmetricK-user interference channel):
Consider the symmetricK-user interference channel (1).
The channel seen by thekth receiver is of the form of (28)

with g1 = 1, g2 = g, K1 = {k}, K2 = {1, . . . ,K} \ k and
bm = 1 ∀m = 1, . . . ,K. If each of theK users transmits a
single codeword drawn from a common nested lattice code,
the channel becomes an effective two-user MAC as (29)

yk = xeff,k1 + gxeff,k2 + zk,

where the effective users arexeff,k1 = xk and xeff,k2 =
∑

m 6=k xm, and the effective users’ weights areb2eff,1 = 1 and
b2eff,2 = K−1. The effective lattice points areteff,k1 = tk and
teff,k2 = [

∑

m 6=k tm] mod Λ.

Our achievable schemes for the symmetricK-user in-
terference channel, developed in Section VI, are based on
transforming theK-user MAC seen by each receiver into an
effective MAC with less effective users. We will develop two
schemes: One transforms the channel into an effective two-
user MAC as in the example above. The other, which mimics
the Han-Kobayashi approach, transforms the channel into an
effective three-user MAC.

When lattice interference alignment schemes are designed
properly, the message intended for the receiver is mapped into
a unique effective user, while multiple interfering users are
folded into a smaller number of effective users. In this case, it
suffices for the receiver to decode only theL effective lattice
points corresponding to the effective users, rather than the K
lattice points transmitted by all users. In our considerations,
the effective lattice points are recovered by first decodingL
lattice equations of the type

v =

[

L
∑

ℓ=1

aℓ
∑

m∈Kℓ

bmtm

]

mod Λ

=

[

L
∑

ℓ=1

aℓteff,ℓ

]

mod Λ (31)

with linearly independent coefficient vectors, and then solving
for teff,1, . . . , teff,L.

As in Section III, in order to decode a lattice equationv,
the receiver first scales its observation by a factorβ, removes
the dithers and reduces moduloΛ which yields

s =

[

βy +

L
∑

ℓ=1

aℓ
∑

m∈Kℓ

bmdm

]

mod Λ

=

[ L
∑

l=1

aℓxeff,ℓ +

L
∑

ℓ=1

aℓ
∑

m∈Kℓ

bmdm

+

L
∑

ℓ=1

(βgℓ − aℓ)xeff,ℓ + βz

]

mod Λ

= [v + zeff(g, a, β, {bm})] mod Λ, (32)

where

zeff(g, a, β, {bm}) = βy −
L
∑

ℓ=1

aℓxeff,ℓ

=

L
∑

ℓ=1

(βgℓ − aℓ)
∑

m∈Kℓ

bmxm + βz (33)
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is effective noise which is statistically independent ofv. Its
effective variance is

σ2
eff(g, a, β,B) = SNR

L
∑

ℓ=1

(βgℓ − aℓ)
2b2eff,ℓ + β2, (34)

whereB is defined in (30). Letℓ∗ = minℓ:aℓ 6=0 θeff(ℓ) be
the index of the densest lattice participating in the lattice
equationv. Since all lattices are nested, thenv ∈ Λℓ∗ . The
receiver produces an estimate forv by applying tos the lattice
quantizer associated withΛℓ∗ ,

v̂ = [QΛℓ∗
(s)] mod Λ. (35)

It follows from Theorem 2 that there exists a chain ofK + 1
nested lattices which allows to decodev with a vanishing error
probability so long as

Rm < Rcomp(g, a, β,B) =
1

2
log

(

SNR

σ2
eff(g, a, β,B)

)

, (36)

for all m ∈ ⋃ℓ:aℓ 6=0 Kℓ.
The expression forσ2

eff(g, a, β,B) is equal to the MSE for
linear estimation ofX̃ =

∑L
ℓ=1 aℓXℓ from Y =

∑L
ℓ=1 gℓXℓ+

Z where{Xℓ}Lℓ=1 are statistically independent random vari-
ables with zero mean and variancesb2eff,ℓSNR respectively and
Z is statistically independent of{Xℓ}Lℓ=1 with zero mean and
unit variance. Hence, the minimizing value ofβ is the linear
MMSE estimation coefficient of̃X from Y . A straightforward
calculation shows that the minimizing value ofβ is

β =
E(X̃Y )

Var(Y )
=

SNR gTBa

1 + SNR gTBg

and the MSE it achieves is

σ2
eff(g, a,B) , min

β∈R

σ2
eff(g, a, β,B)

= SNR aT
(

B− SNR BggTB

1 + SNR · gTBg

)

a (37)

= aT
(

SNR
−1B−1 + ggT

)−1
a (38)

=
∥

∥

∥

(

SNR
−1B−1 + ggT

)−1/2
a

∥

∥

∥

2

,

where again (38) can be verified using Woodbury’s matrix
identity [48, Thm 18.2.8]. Accordingly, we define

Rcomp(g, a,B) ,
1

2
log

(

SNR

σ2
eff(g, a,B)

)

. (39)

As in Section III, we define the set of optimalL coefficient
vectors for the equivalent channel (29) as theL linearly
independent vectors{a1, . . . , aL} that yield the highest com-
putation ratesRcomp,1 = Rcomp(g, a1,B) ≥ · · · ≥ Rcomp,L =
Rcomp(g, aL,B) (see Definition 7). The compute-and-forward
transform of the inducedL-user MAC is

S =











[

β1y +
∑L

ℓ=1 a1ℓ
∑

m∈Kℓ
bmdm

]

mod Λ

...
[

βLy +
∑L

ℓ=1 aLℓ

∑

m∈Kℓ
bmdm

]

mod Λ











=






A







teff,1
...

teff,L






+ Zeff






mod Λ, (40)

whereA = [a1 · · · aL]T andZeff = [zTeff,1 · · · zTeff,L]
T .

The next two theorems are simple extensions of Theorems 3
and 5. Their proofs are given in Appendix B.

Theorem 7:The sum of optimal computation rates for the
effectiveL-user MAC (29) is lower bounded by

L
∑

ℓ=1

Rcomp,ℓ ≥
1

2
log

(

1 + SNR
∑L

ℓ=1 g
2
ℓ b

2
eff,ℓ

det(B)

)

− L

2
log(L).

Theorem 8:Consider the effectiveL-user MAC (29), in-
duced from theK-user MAC (28), characterized by the
effective channel vectorg and the effective weight matrixB.
For anyǫ > 0 andn large enough there exists a chain ofn-
dimensional nested latticesΛ ⊆ ΛL ⊆ · · · ⊆ Λ1 forming the
set of codebooksL1, . . . ,LL with ratesR1, . . . , RL such that
for all g ∈ R

L andB, if:
1) each userm ∈ Kℓ encodes its message using the

codebookLℓ or a codebook nested inLℓ,
2) the integer-valued matrix from the compute-and-forward

transform of the effective MAC (29) can be pseudo-
triangularized with the permutation vectorπ, and the
optimal computation rates areRcomp,1 ≥ · · · ≥ Rcomp,L,

3) all ratesR1, . . . , RL satisfy

Rℓ < Rcomp,π−1(ℓ), for ℓ = 1, . . . , L (41)

whereπ−1 is the inverse permutation vector ofπ,
then all effective lattice pointsteff,ℓ can be decoded with error
probability smaller thanǫ.

Corollary 2 (Achievable symmetric rate):Consider the ef-
fectiveL-user MAC (29), induced from theK-user MAC (28),
characterized by channel coefficientsg and the effective
weight matrixB. There exists a pair ofn-dimensional nested
latticesΛ ⊆ Λ1 forming the codebookL of rateR such that
for all g ∈ R

L andB, if
1) all users encode their messages usingL (or codebooks

nested inL),
2) The Lth optimal computation rate in the compute-and-

forward transform of (29) isRcomp,L,
3) R < Rcomp,L,

then, forn large enough, all effective lattice pointsteff,ℓ can
be decoded with an arbitrarily small error probability.

Remark 9:Corollary 2 is easily obtained from Theorem 8.
However, it can also be established without incorporating the
compute-and-forward transform machinery. Indeed, if all users
transmit from the same lattice codebook with rate smaller than
Rcomp,L, by Theorem 2, each of theL equations with optimal
coefficient vectors can be decoded (without using successive
decoding as in the compute-and-forward transform approach).
Then, the decoded equations can be solved for the effective
lattice points.

In Section VI we introduce two achievable schemes for
the K-user Gaussian interference channel. One of them is a
simple transmission scheme where all users transmit from the
same nested lattice code. The result of Corollary 2 suffices
to establish the rates achieved by this scheme. In the second
achievable scheme, which mimics the Han-Kobabyshi scheme
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for the two-user interference channel, each user transmits
a superposition of codewords taken from two nested lattice
codebooks. In this case Corollary 2 does not suffice and
Theorem 8, which uses the compute-and-forward transform
machinery, is needed.

In Section VI, we leverage the above results to lower bound
the capacity of the symmetric GaussianK-user interference
channel.

V. SYMMETRIC CAPACITY UPPERBOUNDS

In this section we give upper bounds on the symmetric
capacity of the symmetricK-user Gaussian interference chan-
nel. To We follow the same arguments given in [20] for
showing that the symmetric capacity of the symmetricK-
user interference channel is upper bounded by that of the
symmetric two-user interference channel. Namely, eliminating
all but two users, say users1 and 2, the symmetric capacity
is upper bounded by the results of [5]. This is simply because
removing interferers cannot decrease the symmetric rates for
users1 and2. Thus, the upper bounds from [5] hold for the
symmetric rates of user1 and 2 in the K-user symmetric
interference channel. Repeating the same argument for each
pair of users we see that the upper bounds onCSYM developed
in [5] for K = 2 continue to hold for allK > 2 as well.
Therefore, the symmetric capacity of the symmetricK-user
Gaussian interference channel is upper bounded as [5]

CSYM ≤























1
2 log

(

1 + INR+ SNR

1+INR

)

0 ≤ α < 2
3

1
4 log (1 + SNR) + 1

4 log
(

1 + SNR

1+INR

)

2
3 ≤ α < 1

1
4 log (1 + SNR+ INR) 1 ≤ α < 2
1
2 log (1 + SNR) 2 ≤ α.

(42)

Since we are only after an approximate capacity characteriza-
tion, we further upper boundCSYM for SNR > 1 as

CSYM ≤



































1
2 log

(

2 + 2SNR

1+INR

)

0 ≤ α < 1
2

1
2 log (1 + 2INR) 1

2 ≤ α < 2
3

1
4 log

(

1 + 4SNR
2

1+INR

)

2
3 ≤ α < 1

1
4 log (1 + 2INR) 1 ≤ α < 2
1
2 log (1 + SNR) 2 ≤ α.

Thus, for all values ofSNR we have

CSYM ≤



































1
2 log

(

1 + SNR

1+INR

)

+ 1 0 ≤ α < 1
2

1
2 log

+ (INR) + 1 1
2 ≤ α < 2

3
1
2 log

+
(

SNR√
INR

)

+ 1 2
3 ≤ α < 1

1
4 log

+ (INR) + 1 1 ≤ α < 2
1
2 log (1 + SNR) 2 ≤ α.

. (43)

VI. A CHIEVABLE SCHEMES

This section introduces two simple achievable schemes for
reliable communication over the symmetricK-user interfer-
ence channel which are based on nested lattice codes. These
schemes are then shown to approximately achieveCSYM, the

symmetric capacity of the channel, for all channel gainsg,
except for an outage set of bounded measure. This outage set
is explicitly characterized.

We begin by describing the two schemes and deriving their
achievable symmetric rates. These rates are given in terms
of the optimal computation rates corresponding to a certain
effective multiple access channel, i.e., the rates are given
as a solution to an optimization problem. This optimization
problem, which amounts to finding the optimal coefficient
vectors, can be efficiently solved numerically, as described
in Section III-D. Figure 4 shows our achievable rates for the
three-user symmetric interference channel as a function ofthe
interference levelg, for several values of SNR. It is evident
that the obtained rates significantly improve over time-sharing
even for moderate values of SNR.

In order to establish the approximate optimality of these
schemes, we derive explicit lower bounds on the rates they
achieve which depend only on theSNR and INR. As in the
two-user case, the symmetric capacity exhibits a different
behavior for different regimes of interference strength, char-
acterized by the parameterα.

We now present the two achievable schemes. The first
achieves the approximate symmetric capacity in the noisy,
strong and very strong interference regimes, while the second
achieves the approximate symmetric capacity in the weak and
moderately weak interference regimes.
First scheme - A single-layer lattice code: A pair of nested
latticesΛ ⊆ Λ1 is utilized to construct the codebookL =
Λ1 ∩ Λ of rateRSYM. All users encode their messages using
this codebook. Since all interferers arrive at thekth transmitter
with the same gain, they will be aligned into one effective
lattice point. Thus, theK-user MAC seen by thekth receiver
becomes an effective two-user MAC of the form defined in
Section IV-C (see Example 3)

yk = xeff,k1 + gxeff,k2 + zk, (44)

where xeff,k1 = xk, xeff,k2 =
∑

m 6=k xm are the effective
users,b2eff,1 = 1, b2eff,2 = K−1 are the effective users’ weights
andg = [1 g]T is the vector of channel gains.

Transmit Equations Decoded by Receivers

x1 a11x1 + a12
∑

ℓ 6=1

xℓ a21x1 + a22
∑

ℓ 6=1

xℓ

x2 a11x2 + a12
∑

ℓ 6=2

xℓ a21x2 + a22
∑

ℓ 6=2

xℓ

...
...

...

xK a11xK + a12
∑

ℓ 6=1

xℓ a21xK + a22
∑

ℓ 6=1

xℓ

Fig. 8. Illustration of the single-layer lattice scheme. Each transmitter sends a
codeword drawn from a common lattice. Each receiver decodestwo equations
of the codewords, which it can then solve for its desired message.

The next theorem gives an achievable rate region for the
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K-user interference channel when each receiver jointly de-
codes both the effective userxeff,k1 which carries the desired
information, and the effective userxeff,k2 which carries the
sum of interfering codewords. The theorem relies on decoding
two independent linear combinations of the effective lattice
points. See Figure 8 for an illustration. This is in contrastto
the successive decoding technique used in [18], where first
the interference is decoded and removed, and only then the
desired lattice point is decoded.

Theorem 9:Let Rcomp,1 ≥ Rcomp,2 be the optimal com-
putation rates for the effective MAC (44) induced by the
symmetricK-user interference channel (1). Any symmetric
rateRSYM < Rcomp,2 is achievable for the symmetricK-user
interference channel (1).

Proof: Corollary 2 implies that for any symmetric rate
RSYM < Rcomp,2 there exists a pair of nested latticesΛ ⊆ Λ1

such that both effective lattice points can be decoded at each
receiver. Since the first effective userxeff,k1 carries all the
desired information for thekth receiver, it follows that any
RSYM < Rcomp,2 is achievable.

The next theorem gives an achievable rate region for the
K-user interference channel when each receiver decodes only
its desired codeword, while treating all other interferingcode-
words as noise. This theorem can be trivially proved using
i.i.d. Gaussian codebooks. Nevertheless, we prove the theorem
using nested lattice codebooks for completeness.

Theorem 10:Any symmetric rate satisfying

RSYM <
1

2
log

(

1 +
SNR

1 + (K − 1)g2SNR

)

is achievable for the symmetricK-user interference chan-
nel (1).

Proof: Decoding xk at the kth receiver of the sym-
metric K-user interference channel (1), while treating all
other users as noise, is equivalent to decoding the equation
with coefficient vectora = [1 0]T in the effective two-
user MAC (44). Therefore, any symmetric rate satisfying
RSYM < Rcomp(g, [1 0]T ,B) is achievable. The effective
variance for decoding this equation is found using (37) to be

σ2
eff(g, [1 0]T ,B) = SNR

(

1 +
SNR

1 + (K − 1)g2SNR

)−1

,

which, using (39), implies that

Rcomp(g, [1 0]T ,B) =
1

2
log

(

1 +
SNR

1 + (K − 1)g2SNR

)

.

For the two-user case, it is known that in the weak and
moderately weak interference regimes each receiver should
decode only part of the message transmitted by the other
user [5]. A natural extension of this Han-Kobayashi [15]
approach to theK-user case is for each receiver to decode
linear combinations that only include parts of the interfering
messages. This is enabled by using a superposition of two
lattice codewords at each transmitter, as we describe next.See
Figure 9 for an illustration.

Second scheme - Lattice Han-Kobayashi: This scheme em-
ploys a chain of nested latticesΛ ⊆ Λ2 ⊆ Λ1 to construct
two codebooksL1 andL2 with ratesR1 andR2, respectively.
Each userk splits its messagewk into two messages, a public
messagewk1 that is mapped into codebookL1 and a private
messagewk2 that is mapped into codebookL2. It is convenient
to treat each userk as two virtual users with codewordsxk1

andxk2 that carry messageswk1 andwk2, respectively. User
k transmits a superposition of its virtual users’ codewords,

xk =
√

1− γ2xk1 + γxk2,

for γ ∈ [0, 1). The signal seen by thekth receiver is

yk =
√

1− γ2xk1 + γxk2

+ g
√

1− γ2
∑

m 6=k

xm1 + gγ
∑

m 6=k

xm2 + zk, (45)

which induces the effective four-user MAC

yk =
√

1− γ2xeff,k1 + γxeff,k2

+ g
√

1− γ2xeff,k3 + gγxeff,k4 + zk, (46)

with effective usersxeff,k1 = xk1, xeff,k2 = xk2, xeff,k3 =
∑

m 6=k xm1 and xeff,k4 =
∑

m 6=k xm2. The effective users’
weights areb2eff,1 = 1, b2eff,2 = 1, b2eff,3 = K − 1 and b2eff,4 =
K − 1, and

g =
[

√

1− γ2 γ g
√

1− γ2 gγ
]T

is the vector holding the channel gains.
The receiver aims to decode the effective codewordsxeff,k1,

xeff,k2 andxeff,k3 while treating the fourth effective codeword
xeff,k4 as noise. The next lemma will be useful for the
derivation of rates achieved by this scheme. Its proof is given
in Appendix C.

Lemma 1:Consider the effectiveL-user MAC (29), where
the decoder is only interested in the firstL−1 effective lattice
points teff,1, . . . , teff,L−1 and let κ = 1/

√

1 + SNRg2Lb
2
eff,L.

Any rate tuple achievable for decodingteff,1, . . . , teff,L−1 over
the effective(L − 1)-user MAC

L−1
∑

ℓ=1

κgℓxeff,ℓ + z (47)

is also achievable for decoding the desiredL−1 lattice points
over (29).

The next theorem gives the achievable rate region for the
lattice Han-Kobayashi scheme.

Theorem 11:Let κ(γ) = 1/
√

1 + SNRg2γ2(K − 1) and
consider the effective MAC

yk = κ(γ)
√

1− γ2xeff,k1 + κ(γ)γxeff,k2

+ κ(γ)g
√

1− γ2xeff,k3 + zk, (48)

with effective channel vector

g =
[

κ(γ)
√

1− γ2 κ(γ)γ κ(γ)g
√

1− γ2
]T

,

and effective users’ weightsb2eff,1 = 1, b2eff,2 = 1, and
b2eff,3 = K − 1. Let {a1(γ), a2(γ), a3(γ)} andRcomp,1(γ) ≥
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Transmit Equations Decoded by Receivers

x11 x12 a11x11 + a12x12 + a13

∑

m6=1

xm1 a21x11 + a22x12 + a23

∑

m6=1

xm1 a31x11 + a32x12 + a33

∑

m6=1

xm1

x21 x22 a11x21 + a12x22 + a13

∑

m6=2

xm1 a21x21 + a22x22 + a23

∑

m6=2

xm1 a31x21 + a32x22 + a33

∑

m6=2

xm1

...
...

...
...

...

xK1 xK2 a11xK1 + a12xK2 + a13

∑

m6=K

xm1 a21xK1 + a22xK2 + a23

∑

m6=K

xm1 a31xK1 + a32xK2 + a33

∑

m6=K

xm1

Fig. 9. Illustration of the lattice Han-Kobayashi scheme. Each transmitter sends a public (blue) and a private (red) lattice codeword. Each receiver decodes
three equations of the public codewords as well as its desired private codeword while treating the other private codewords as noise. From these equations,
the receivers can infer their desired public and private messages.

Rcomp,2(γ) ≥ Rcomp,3(γ) be the optimal coefficient vectors
and computation rates. Any symmetric rate satisfying

RSYM < max
γ∈[0,1)

Rcomp,2(γ) +Rcomp,3(γ)

is achievable for the symmetricK-user interference chan-
nel (1).

Proof: The receiver is only interested in the effective
lattice pointsteff,k1, teff,k2. Nevertheless, we require that it
decodes the three effective lattice pointsteff,k1, teff,k2 and
teff,k3. Due to Lemma 1, any rate tuple that is achievable
over the effective channel (48) is also achievable for de-
coding teff,k1, teff,k2 and teff,k3 from the original effective
channel (46) induced by the lattice Han-Kobayashi scheme.

Note that teff,k1 and teff,k3 are points from the same
codebookL1 with rate R1, and teff,k2 is a codeword from
L2 with rateR2.

Consider a compute-and-forward transform coefficient ma-
trix A(γ) = [a1(γ) a2(γ) a3(γ)]

T for (48). For any such
full-rank, integer-valued matrix, there exists at least one order
of pseudo-triangularization. Therefore, there exists a pseudo-
triangularization ofA(γ) with at least one permutation vector
π.

Consider first the case whereπ(3) = 2, i.e., the effective
lattice pointteff,2 is the last to be removed in the successive
cancelation decoding procedure of the compute-and-forward
transform. According to Theorem 8, for anyR1 < Rcomp,2(γ)
andR2 < Rcomp,3(γ) there exists a chainΛ ⊆ Λ2 ⊆ Λ1 such
thatteff,k1, teff,k2 andteff,k3 can be decoded from the effective
channel (48) via the compute-and-forward transform.

Otherwise,π(1) = 2 or π(2) = 2, which means that the
effective lattice pointteff,2 is either removed first or second
from the proceeding equations in the successive cancelation
decoding procedure of the compute-and-forward transform.
According to Theorem 8 for anyR1 < Rcomp,3(γ) and
R2 < Rcomp,2(γ) there exists a chainΛ ⊆ Λ2 ⊆ Λ1 such
thatteff,k1, teff,k2 andteff,k3 can be decoded from the effective
channel (48) via the compute-and-forward transform.

SinceRSYM = R1 + R2, andγ can be chosen such as to
maximizeRSYM, the theorem is proved.

The problem of optimizing the power allocationγ between
the private and public codewords, played a major role in the
approximation of the two-user interference channel capacity
[5]. Here, we follow this approach and chooseγ such that, at
each unintended receiver, the received power of each private
codeword is equal to that of the additive noise. Specifically,
in the sequel we setγ2 = 1/(g2SNR). While this choice
of γ may be sub-optimal, it suffices to develop our capacity
approximations in closed form. The achievable symmetric rate
for γ2 = 1/(g2SNR) is given in the following corollary to
Theorem 11.

Corollary 3: Assumeg2SNR > 1 and consider the effective
MAC

yk =

√

g2SNR− 1

K · g2SNRxeff,k1 +

√

1

K · g2SNRxeff,k2

+ g

√

g2SNR− 1

K · g2SNRxeff,k3 + zk, (49)

with effective channel vector

g =

[
√

g2SNR− 1

K · g2SNR

√

1

K · g2SNR g

√

g2SNR− 1

K · g2SNR

]T

,

(50)

and effective users’ weightsb2eff,1 = 1, b2eff,2 = 1, andb2eff,3 =

K− 1. Let {aHK
1 , aHK

2 , aHK
3 } andRHK

comp,1 ≥ RHK
comp,2 ≥ RHK

comp,3
be the optimal coefficient vectors and computation rates for
this effective MAC. Any symmetric rate

RSYM < RHK
comp,2 +RHK

comp,3

is achievable for the symmetricK-user interference chan-
nel (1).

Computing the achievable rates given by Theorem 9 and
Corollary 3 requires finding the optimal computation rates for
the effective MACs (44) and (49), which involves solving an
integer least-squares optimization problem (see Section III-D).
In the remainder of this section, we derive lower bounds on
these achievable rates that depend only on the values ofSNR

and INR and can therefore be directly compared to the upper
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bounds (43). To simplify the exposition, we assumeg > 0 in
the sequel, although all results easily follow forg < 0 as well.

A. Very Strong Interference Regime

The sum capacity in this regime was characterized exactly
by Sridharanet al. [18] using a lattice encoding scheme very
similar to the one used in Theorem 9. The key difference is
that in [18] each receiver decodes successively: it first decodes
the sum of interfering codewords and then subtracts it in order
to get a clean view of the desired signal. Recall that in our
scheme, each receiver decodes two linear combinations of its
signal and the interference.

We now proceed to lower bound the achievable rate of
Theorem 9 for the caseα ≥ 2, i.e., g2 ≥ SNR. We do this,
rather than directly using the results of [18], for two reasons.
The first is that the results of [18] only apply for

g2 ≥ (SNR+ 1)2

SNR
, (51)

whereas we need the result to be valid for anyg2 ≥ SNR.
The second is to show that our lattice encoding and decoding
framework suffices to achieve the approximate capacity in all
regimes.

Using the single-layer scheme presented above, the channel
seen by each receiver is converted to an effective two-user
MAC (44). Applying Theorem 7 to this effective MAC, we
find that the sum of the optimal computation rates is lower
bounded by

Rcomp,1 +Rcomp,2 ≥ 1

2
log

(

1 + SNR(1 + g2(K − 1))

K − 1

)

− 1.

(52)

Let Rcomp(g, [0 1]T ,B) be the computation rate for decoding
the lattice equation with coefficient vectora = [0 1]T over the
effective MAC (44) withg = [1 g] andB = diag(1,K − 1).
The effective variance for the equationa = [0 1]T , which is
calculated using (37), is given in (53) at the top of the next
page. Substitutingσ2

eff(g, [0 1]T ,B) into (36) gives

Rcomp(g, [0 1]T ,B) =
1

2
log

(

1 + SNR
(

1 + g2(K − 1)
)

(K − 1)(1 + SNR)

)

.

(54)

For SNR > 1 we can lower bound (54) as

Rcomp(g, [0 1]T ,B) >
1

2
log

(

g2(K − 1)SNR

(K − 1)(1 + SNR)

)

>
1

2
log(g2)− 1

2
. (55)

We would like to find a lower bound onRcomp,2. Consider
two cases. If the coefficient vectora = [0 1]T is optimal, i.e.,
Rcomp,1 = Rcomp(g, [0 1]T ,B), we have

Rcomp,2 = Rcomp,1 +Rcomp,2 − Rcomp(g, [0 1]T ,B)

≥ 1

2
log(1 + SNR)− 1,

where we have used (52) and (54) for the last inequality. If
the coefficient vectora = [0 1]T is not optimal, we must have

Rcomp,2 ≥ Rcomp(g, [0 1]T ,B)

>
1

2
log(g2)− 1

2
,

where the last inequality follows from (55). Taking the mini-
mum of the two bounds above we obtain

Rcomp,2 ≥ min

(

1

2
log(1 + SNR)− 1,

1

2
log(g2)− 1

2

)

=
1

2
log(1 + SNR)− 1, (56)

for any SNR > 1 andg2 ≥ SNR. Since for anySNR ≤ 1 the
bound (56) is negative, the restrictionSNR > 1 is redundant.
Applying Theorem 9, we conclude that forg2 ≥ SNR any
symmetric rate satisfying

RSYM <
1

2
log(1 + SNR)− 1 (57)

is achievable, and is within1 bit of the outer bound (43) in
this regime.

B. Strong Interference Regime

The strong interference regime corresponds to1 ≤ α < 2,
or equivalently1 ≤ g2 < SNR. As in the previous subsection,
we lower boundRcomp,2 in order to obtain a closed-form
expression for the achievable symmetric rate. In contrast to
the very strong interference regime, where the lower bound
on Rcomp,2 is valid for anyg2 ≥ SNR, here we must exclude
certain channel gains in order to get a constant gap from the
outer bound (43). That is, the lower bounds we derive for
the strong interference regime are only valid for a predefined
subset of the intervalg2 ∈ [1, SNR). As we increase the
measure of this subset, our approximation gap worsens. This
somewhat strange behavior is to be expected from the existing
literature. The results of [8] and [46] show that for theK-user
interference channel the DoF are everywhere discontinuous.
The notion of DoF corresponds toα ≈ 1. Since the strong
interference regime contains values ofα near 1, we cannot
expect to achieve rates which are a constant gap from the
upper bounds of [5] for all values ofg. Instead, we show that
these upper bounds can be approached up to a constant gap for
all 1 ≤ g2 < SNR except for some outage set whose measure
can be controlled at the price of increasing the gap. We will
see a similar phenomenon when we analyze the moderately
weak interference regime.

Substitutingg = [1 g] andB = diag(1,K − 1) into (34),
the optimal computation rate for the effective MAC (44) can
be written as

Rcomp,1 =
1

2
log(SNR)− 1

2
log(σ2

g) (58)

σ2
g = min

β,a1,a2

(

(

(β − a1)
2 + (βg − a2)

2(K − 1)
)

SNR+ β2

)

,

whereσ2
g is the effective noise variance and the minimization

is overβ ∈ R, anda = [a1 a2] ∈ Z
2 \0. From (52) combined
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σ2
eff(g, [0 1]T ,B) = SNR ·

[

0 1
]









[

1 0
0 K − 1

]

−
SNR

[

1 0
0 K − 1

] [

1
g

]

[

1 g
]

[

1 0
0 K − 1

]

1 + SNR
[

1 g
]

[

1 0
0 K − 1

] [

1
g

]









[

0
1

]

= SNR · (K − 1)(1 + SNR)

1 + SNR+ (K − 1)g2SNR
(53)

with (58), we have

Rcomp,2 ≥ 1

2
log

(

1 + SNR(1 + g2(K − 1))

K − 1

)

− 1−Rcomp,1

>
1

2
log
(

g2SNR
)

− 1−Rcomp,1

=
1

2
log
(

g2
)

+
1

2
log
(

σ2
g

)

− 1,

and combining with Theorem 9 we see that any symmetric
rate satisfying

RSYM <
1

2
log
(

g2
)

+
1

2
log
(

σ2
g

)

− 1, (59)

is achievable over theK-user interference channel. Thus, in
order to obtain a lower bound onCSYM it suffices to lower
boundσ2

g . The effective noiseσ2
g can be bounded as

σ2
g ≥ min

β,a1,a2

(

(

(β − a1)
2 + (βg − a2)

2
)

SNR+ β2

)

. (60)

We first holdβ constant and minimize overa1, a2. If |β| ≥
1/(2g), the optimal choices for the integersa1, a2 are

a1 = ⌊β⌉, a2 = ⌊βg⌉. (61)

If |β| < 1/(2g), rounding the gains will set botha1 anda2 to
zero, which is not allowed. Sinceg ≥ 1, the optimal choice is

a1 = 0, a2 = sign(β). (62)

Now, we are left with the problem of minimizing (60) over
β. Instead of performing this minimization problem, we give
a lower bound on its solution. We do that by splitting the real
line into three intervals, and lower boundσ2

g for all values of
β within each one. Then, we take the minimum over these
three bounds.

Interval 1 : 0 < |β| ≤ 1/(2g)
In this interval it is optimal to seta2 = sign(β). Moreover,

|βg| ≤ 1/2, and therefore|βg − a2| > 1/2. Combining this
with (60) gives

σ2
g ≥ SNR

4
. (63)

Interval 2 : 1/(2g) < |β| ≤ 1/2
Here, it is optimal to seta1 = ⌊β⌉ = 0. Substitutinga1 = 0

in (60) gives

σ2
g ≥ β2

SNR >
SNR

4g2
>

1

4|g|SNR
1/2, (64)

where the last inequality follows sinceg2 < SNR in the strong
interference regime.

Interval 3 : 1/2 < |β|

Since |β| > 1/2, we can always decomposeβ into a sum
of a nonzerointeger q and a real numberϕ ∈ [−1/2, 1/2)
giving

σ2
g ≥ min

ϕ,q,a1,a2

(

(ϕ+ q − a1)
2
SNR

+ (qg − a2 + ϕg)2SNR+ (ϕ+ q)2
)

≥ min
ϕ,q,a2

(

(

ϕ2 + (qg − a2 + ϕg)2
)

SNR+
q2

4

)

. (65)

The minimization of (65) with respect toϕ (where the
constraintϕ ∈ [−1/2, 1/2) is ignored) can be obtained by
differentiation. The minimizing value ofϕ is

ϕ∗ = − g

1 + g2
(qg − a2).

Substitutingϕ∗ into (65) gives

σ2
g ≥ min

q,a2

(

1

1 + g2
(qg − a2)

2
SNR+

q2

4

)

, (66)

which, using the fact thatg2 ≥ 1, can be further bounded by

σ2
g ≥ 1

4
min
q,a2

max

(

1

g2
(qg − a2)

2
SNR, q2

)

. (67)

We would like to obtain a lower bound onσ2
g which is valid for

all g /∈ S, whereS is an outage set with bounded measure.
Assume first thatg ∈ [b, b + 1) for some integer1 ≤ b <√
SNR. Let

qmax,b ,
1

√

b+ 1/2
SNR

1/4−δ/2, (68)

for someδ > 0 to be defined later, and note thatqmax,b is not
necessarily an integer. Define

Φb ,
√

b+ 1/2 SNR
−1/4−δ/2 (69)

and letSb be the set of all values ofg ∈ [b, b + 1) such that
the inequality

|qg − a2| < Φb (70)

has at least one solution with integersq anda2, whereq is in
the range0 < q ≤ qmax,b. Let S̄b = [b, b+1)\Sb. By (67), (68)
and (69), we have that for allg ∈ S̄b

σ2
g ≥ 1

4
min

(

min
0<q≤⌊qmax,b⌋,a2

max

(

1

g2
(qg − a2)

2
SNR, q2

)

,

min
⌈qmax,b⌉≥q,a2

max

(

1

g2
(qg − a2)

2
SNR, q2

))

≥ 1

4
min

(

1

g2
Φ2

bSNR, q
2
max,b

)

=
1

4
min

(

b+ 1/2

g2
SNR

1/2−δ,
1

b + 1/2
SNR

1/2−δ

)

. (71)
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Fig. 10. An illustration of the setsTb(1), Tb(2), Tb(3) and their unionSb.
In this illustrationqmax,b = 3 andΦb = 1/16.

Sinceb ≥ 1, we have that

g

2
< b +

1

2
< 2g.

Thus, (76) can be further bounded by

σ2
g ≥ 1

8
√

g2
SNR

1/2−δ. (72)

We now turn to upper bound the Lebesgue measure of the set
Sb. Let I = [−1, 1) and define the set

Tb(q) =
[{

b, b+
1

q
, · · · , b+ q − 1

q

}

+
Φb

q
I
]

mod [b, b+ 1),

where the sum of the two sets is a Minkowski sum. Writ-
ing (70) as

∣

∣

∣

∣

g − a2
q

∣

∣

∣

∣

<
Φb

q
, (73)

we see that for a givenq and g ∈ [b, b + 1) the inequality
admits a solution if and only ifg ∈ Tb(q). It follows that

Sb =

⌊qmax,b⌋
⋃

q=1

Tb(q). (74)

See Figure 10 for an illustration of the setsTb(q) andSb. Thus,
the Lebesgue measure ofSb can be upper bounded by

µ(Sb) = Vol (Sb)

≤
⌊qmax,b⌋
∑

q=1

Vol (Tb(q))

≤
⌊qmax,b⌋
∑

q=1

q · 2Φb

q

≤ 2qmax,bΦb

= 2SNR−δ. (75)

Setting δ = (c + 1)/ log(SNR) and substituting into (72)
and (75) gives

σ2
g ≥ 2−c

16|g|SNR
1/2 (76)

for all g ∈ [b, b + 1) up to an outage setSb of measure not
greater than2−c.

Combining the three bounds (63), (64) and (76) gives

σ2
g ≥ min

(

SNR

4
,

1

4|g|SNR
1/2,

2−c

16|g|SNR
1/2

)

≥ 2−c

16|g|SNR
1/2 (77)

for all g ∈ [b, b + 1) up to an outage setSb of measure not
greater than2−c.

Combining (59) and (77) we see that for allg ∈ [b, b + 1)
up to an outage setSb of measure not greater than2−c any
symmetric rate satisfying

RSYM <
1

4
log(g2SNR)− c

2
− 3

=
1

4
log(INR)− c

2
− 3 (78)

is achievable. We conclude that the symmetric rate (78) is
achievable for all channel gains in the strong interference
regime except for an outage set whose measure is a fraction
of 2−c of the interval1 ≤ |g| <

√
SNR, for any c > 0.

Remark 10:We note that for anyc > 0 the set of channel
coefficients that fall in the outage setS can be easily deter-
mined.

C. Moderately Weak Interference Regime

The moderately weak interference regime is characterized
by 2/3 ≤ α < 1, or equivalently,SNR−1/3 ≤ g2 < 1. As
in the strong interference regime, we show the achievability
of symmetric rates which are a constant gap from the upper
bound for a certain fraction of the channel gains. As opposed
to the very strong and strong interference regimes, where a
single-layered lattice scheme suffices to achieve the approxi-
mate capacity, here we will need the second scheme, which
employs two layers of lattice codes at each transmitter.

As mentioned in the description of the second scheme,
we set the power of the private lattice codewords so that
they are perceived at noise level at the unintended receivers.
The achievable rate for this choice is given by Corollary 3
and we now turn to lower bounding this achievable rate in
closed form. Letg1, g2 and g3 be the channel gains in the
effective three-user MAC (49) from Corollary 3, and recall
that, for this effective channel, the effective weight matrix is
B = diag(1, 1,K − 1). We begin by applying Theorem 7 to
the effective channel (49) to get the following lower bound on
the sum of optimal computation rates,

3
∑

i=1

RHK
comp,i

≥ 1

2
log

(

1 + SNR(g21 + g22 + (K − 1)g23)

K − 1

)

− 3

2
log(3)

>
1

2
log
(

SNR(g21 + g22)
)

− 1

2
log
(

33(K − 1)
)

=
1

2
log (SNR)− 1

2
log (27K(K − 1)) . (79)
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The optimal computation rate can be written as

RHK
comp,1 =

1

2
log(SNR)− 1

2
log(σ2

HK) (80)

whereσ2
HK is given in (81) at the top of the next page. The

minimization in (81) is performed over allβ ∈ R andaHK
1 =

[a1 a2 a3] ∈ Z
3 \ 0. Applying Corollary 3, we see that any

symmetric rate satisfying

RSYM <
1

2
log(σ2

HK)−
1

2
log (27K(K − 1)) (82)

is achievable for theK-user interference channel. Therefore, it
suffices to lower bound the effective varianceσ2

HK . Substituting

β =

√

Kg2SNR

g2SNR− 1
β̃

in (81), which is allowed sinceβ can take any value inR,
gives

σ2
HK = min

β̃,a1,a2,a3

(

β̃2 · Kg2SNR

g2SNR− 1
+ (β̃ − a1)

2
SNR

+

(

β̃
√

g2SNR− 1
− a2

)2

SNR+ (K − 1)(β̃g − a3)
2
SNR

)

.

(83)

In the sequel, we assume6 SNR > 4. With this assumption,
√

g2SNR− 1 > 1 for all g2 ≥ SNR
−1/3, i.e., for all values

of g in the moderately weak interference regime. We will also
use the fact that the inequality

√

g2SNR− 1 > 1 continues
to hold for all g2 ≥ SNR

−1/2, i.e., for all values ofg in the
weak interference regime. Since

√

g2SNR− 1 > 1 implies
g2SNR > 2, we also haveg2SNR/(g2SNR − 1) > 1 and
hence (83) can be lower bounded as

σ2
HK ≥ min

β̃,a1,a2,a3

(

Kβ̃2 + (β̃ − a1)
2
SNR

+

(

β̃
√

g2SNR− 1
− a2

)2

SNR+ (K − 1)(β̃g − a3)
2
SNR

)

.

(84)

We first holdβ̃ constant, and minimize overa1, a2, a3. If |β̃| ≥
1/2, the optimal choices for the integersa1, a2, a3 are

a1 = ⌊β̃⌉, a2 =
⌊

β̃/
√

g2SNR− 1
⌉

, a3 = ⌊β̃g⌉. (85)

If |β̃| < 1/2 all three integersa1, a2, a3 from (85) are zero
and thus are invalid. Therefore, for these values ofβ̃ one of
the integers must take the value1 or −1. Since forSNR > 4
andSNR−1/2 ≤ g2 < 1 we have

max

(

|β̃|, |β̃/
√

g2SNR− 1|, |β̃g|
)

= |β̃|,

the optimal choices ofa1, a2, a3 for values of|β̃| < 1/2 are

a1 = sign(β̃), a2 = 0, a3 = 0 . (86)

6This assumption is valid, since forSNR ≤ 4 the symmetric capacity is
upper bounded by1/2 log(1+4) = 1.161bits. Our capacity approximations
in this subsection, and also in the next subsection, exhibita constant gap
greater than7/2 bits, and therefore hold forSNR < 4.

Now, the problem of lower boundingσ2
HK reduces to min-

imizing (84) over β̃. Rather than solving this cumbersome
minimization problem, we split the real line into four intervals,
and lower boundσ2

HK for all values of β̃ within each one.
Then, we take the minimum over these four lower bounds.
In a similar manner to the previous subsection, we define
δ = (2c + 8)/ log(SNR), wherec > 0 is some constant. The
lower bounds below are derived in Appendix D-A.

Interval 1 : 0 < |β̃| ≤ 1/2

σ2
HK ≥ SNR

4
. (87)

Interval 2 :1/2 < |β̃| ≤
√

|g|SNR1/4−δ/2/2 7

For all values ofSNR−1/3 < |g| ≤ 1 except for an outage
set with measure not greater than2−c we have

σ2
HK >

2−2c

4 · 28
SNR

1/2

√

g2
. (88)

Interval 3 :
√

|g|SNR1/4−δ/2/2 < |β̃| ≤ SNR
1/4/

√

8|g|

σ2
HK ≥ 2−2c

4 · 28
SNR

1/2

√

g2
. (89)

Interval 4 : SNR1/4/
√

8|g| < |β̃|

σ2
HK ≥ 1

8

SNR
1/2

√

g2
. (90)

Combining the four lower bounds (87), (88), (89) and (90)
we have

σ2
HK ≥ min

(

1

4
SNR,

2−2c

210
SNR

1/2

√

g2
,
1

8

SNR
1/2

√

g2

)

=
2−2c

210
SNR

1/2

√

g2

for all SNR−1/3 ≤ g2 < 1 up to an outage set of measure not
greater than2−c. Thus, substituting our lower bound forσ2

HK
into (82), we find that any symmetric rate satisfying

RSYM <
1

2
log

(

SNR
1/2

√

g2

)

− c− 5− 1

2
log(27)− 1

2
log(K2)

<
1

2
log

(

SNR
1/2

√

g2

)

− c− 8− log(K)

=
1

2
log

(

SNR√
INR

)

− c− 8− log(K) (91)

is achievable over the symmetricK-user interference channel
for all SNR−1/3 ≤ g2 < 1 up to an outage set of measure not
greater than2−c.

7If
√

|g|SNR
1/4−δ/2/2 < 1/2 this interval is empty, and we skip to

interval 3.



SUBMITTED TO IEEE TRANS. INFO THEORY 21

σ2
HK = min

β,aHK
1



β2 +





(

β

√

g2SNR− 1

K · g2SNR − a1

)2

+

(

β

√

1

K · g2SNR − a2

)2

+ (K − 1)

(

βg

√

g2SNR− 1

K · g2SNR − a3

)2


 SNR





(81)

D. Weak Interference Regime

This regime is characterized by1/2 ≤ α < 2/3, or equiva-
lently,SNR−1/2 ≤ g2 < SNR

−1/3. As in the moderately weak
interference regime, we develop a closed-form lower bound on
the achievable symmetric rate of Corollary 3. A key difference
is that the bound derived here is valid for all channel gains,
rather than up to an outage set.

We first note that equations (82) and (84) continue to hold
in this regime as well as in the moderately weak interference
regime, and the optimal choices ofa1, a2, a3 are also as in (85)
and (86). As before, we divide the real line into four intervals,
give lower bounds onσ2

HK which hold for all values ofβ̃ in
each one, and conclude thatσ2

HK is lower bounded by the
minimum of these four bounds. The lower bounds below are
derived in Appendix D-B

Interval 1 : 0 < |β̃| ≤ 1/2

σ2
HK ≥ SNR

4
. (92)

Interval 2 : 1/2 < |β̃| ≤ 1/(2|g|)

σ2
HK ≥ g2SNR

4
. (93)

Interval 3 : 1/(2|g|) < |β̃| ≤
√

g2SNR/8

σ2
HK ≥ 1

4g4
. (94)

Interval 4 :
√

g2SNR/8 < |β̃|

σ2
HK >

g2SNR

4
. (95)

Combining the four lower bounds (92), (93), (94) and (95)
we have

σ2
HK ≥ 1

4
min

(

SNR, g2SNR, g−4

)

=
g2SNR

4
, (96)

where (96) is true sinceSNR−1/2 ≤ g2 < SNR
−1/3. It follows

by substituting (96) into (82) that any symmetric rate satisfying

RSYM <
1

2
log

(

g2SNR

4

)

− 1

2
log(27)− 1

2
log(K2)

<
1

2
log
(

g2SNR
)

− 7

2
− log(K)

=
1

2
log (INR)− 7

2
− log(K) (97)

is achievable for the symmetricK-user interference channel
with SNR

−1/2 ≤ g2 < SNR
−1/3.

E. Noisy Interference Regime

The noisy interference regime is characterized byα < 1/2,
or equivalentlyg2 < SNR

−1/2. In this regime, each receiver
decodes its desired codeword while treating all interfering
codewords as noise. Lattice codes are not necessary in this
regime in order to approximate the symmetric capacity: ran-
dom i.i.d. Gaussian codebooks suffice. Nevertheless, the same
performance can be achieved with lattice codes as shown in
Theorem 10 which states that any symmetric rate

RSYM <
1

2
log

(

1 +
SNR

1 + (K − 1)g2SNR

)

is achievable. It follows that any symmetric rate satisfying

RSYM <
1

2
log

(

1 +
SNR

1 + g2SNR

)

− 1

2
log(K − 1)

=
1

2
log

(

1 +
SNR

1 + INR

)

− 1

2
log(K − 1) (98)

is achievable.

VII. D EGREES-OF-FREEDOM

We have shown that the compute-and-forward transform can
approximate the capacity of the symmetricK-user interference
channel up to a constant gap for all channel gains outside
a small outage set. Ideally, we would like to use a similar
approach to approximate the capacity of the general (non-
symmetric) interference channel. In contrast to the symmetric
case, where all interferers are automatically aligned (if they
all use the same lattice codebook), the interferers will be
observed through different channel gains. A linear combination
of lattice codewords is a codeword only if all of the coefficients
are integers. Thus, in order to induce alignment, all of the
interfering gains should be steered towards integers, which is
an overconstrained problem.

Recently, Motahariet al. [8] introduced a precoding scheme
which achievesK/2 DoF for almost every channel realization
of a K-user Gaussian interference channel. Their technique
relies on symbol-level alignment. Namely, each user encodes
its message into several layers. Each symbol in a layer belongs
to the one-dimensional latticeZ. Each user superimposes its
layers in a clever way, such that at each unintended receiver
symbols from different layers are received aligned with those
transmitted by other interfering users. The resulting effective
channel at each receiver is an effective multiple access channel
of the type introduced in Section IV-C. When the numbers
of layers is large, roughly half of the effective users at each
receiver carry valuable information while the other half are
effective interferers. Through the use of techniques drawn
from Diophantine approximation, they showed that each of
theL effective users achieves essentially1/L DoF. Thus, each
receiver obtains1/2 useful DoF.
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In this section, we show that the same asymptotic results
can be achieved using the compute-and-forward transform.
Specifically, we show that nested lattice codes allows each
of theL effective users in the effective MAC (29) introduced
in Section IV-C to achieve1/L degree of freedom for almost
all channel realizations. Therefore, the one-dimensionallattice
used in [8] can be replaced withn-dimensional lattice codes
while maintaining the same asymptotic performance. The ben-
efit of using nested lattice codes combined with the precoding
scheme of [8] is that one can obtain an achievable rate region
at any SNR rather than only a DoF characterization. We begin
by analyzing the DoF offered by theK optimal computation
rates in theK-user MAC. Then, we translate the results to the
effectiveL-user MAC.

Theorem 3 in Section IV guarantees that the sum of the
optimal computation rates is close to the sum capacity of the
MAC. However, the theorem does not tell us how the sum rate
is divided between theK rates. We now show that, in a DoF
sense, the sum is equally split between allK rates for almost
every channel realization. Recall the definition for DoF:

dcomp,k = lim
SNR→∞

Rcomp,k(SNR)
1
2 log(1 + SNR)

. (99)

First, we upper bounddcomp,1, the DoF provided by the best
lattice equation.

Theorem 12:Let f1, . . . , fK be functions fromR
m to R

satisfying
1) fk for k = 1, . . . ,K is analytic inRm,
2) 1, f1, . . . , fK are linearly independent overR,

and define the manifold

M =
{

[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ R
m
}

. (100)

For almost everyh ∈ M the DoF offered by the best lattice
equation is upper bounded by

dcomp,1 ≤ 1

K
. (101)

The proof is given in Appendix E, and is based on showing
that restricting the scaling coefficientβ from (7) to the form
β = q/h1 for q ∈ Z incurs no loss from a DoF point of view.
This way, the first coefficient ofβh is an integer. Then, a result
from the field of Diophantine approximation which is due to
Kleinbock and Margulis [57] is used in order to lower bound
the error in approximating the remainingK− 1 channel gains
with integers.

Remark 11:The manifoldM from Theorem 12, which
appears in all of our DoF results in this paper, is the same
manifold used in [8] to prove the achievability ofK/2 DoF
for theK-user interference channel. Thus, all achievable DoF
results from [8] are also achievable using the compute-and-
forward transform.

As a special case of Theorem 12 we may choose the
manifoldM asRK which implies the following corollary.

Corollary 4: For almost everyh ∈ R
K the DoF offered by

the best lattice equation is upper bounded by

dcomp,1 ≤ 1

K
.

Remark 12:Niesen and Whiting [58] studied the DoF of-
fered by the best lattice equation and showed that

dcomp,1 ≤
{

1/2 K = 2
2/(K + 1) K > 2

(102)

for almost everyh ∈ R
K . Our bound therefore agrees with

that of [58] forK = 2 and improves it forK > 2.

The next corollary shows that allK optimal computation
rates offer 1/K DoF for almost everyh satisfying mild
conditions.

Corollary 5: Let M be a manifold satisfying the conditions
of Theorem 12. For almost everyh ∈ M the DoF provided
by each of theK optimal computation rates isdcomp,k = 1/K.

Proof: Theorem 3 implies that
∑K

k=1 dcomp,k ≥ 1. Using
the fact thatdcomp,k is monotonically decreasing ink and that
dcomp,1 ≤ 1/K for almost everyh ∈ M, the corollary follows.

The corollary above implies that in the limit of very high
SNR not only is the sum of computation rates close to the sum
capacity of the MAC, but each computation rate scales like the
symmetric capacity of the MAC for almost all channel gains.
Note that our analysis (as well as that of [58]) is within the
context of the achievable computation rates stemming from
Theorem 2.

The next corollary follows from Corollary 5 and Theorem 5.

Corollary 6: Let M be a manifold satisfying the conditions
of Theorem 12. The DoF attained by each user in theK-
user MAC under the compute-and-forward transform is1/K
for almost everyh ∈ M. In particular, the DoF attained by
each user in theK-user MAC under the compute-and-forward
transform is1/K for almost everyh ∈ R

K

The next theorem shows that for almost every effective
L-user multiple access channel of the form introduced in
Section IV-C each of the effective users achieves1/L degree
of freedom. The proof is given in Appendix F.

Theorem 13:Let f1, . . . , fL be functions fromR
m to R

satisfying
1) fℓ for ℓ = 1, . . . , L is analytic inRm,
2) 1, f1, . . . , fL are linearly independent overR,

and define the manifold

M =
{

[

f1(g̃) · · · fL(g̃)
]

: g̃ ∈ R
m
}

.

For almost everyg ∈ M the DoF offered by each of theL
optimal computation rates for the effective MAC (29) is

dcomp,ℓ = lim
SNR→∞

Rcomp,ℓ(SNR)
1
2 log(1 + SNR)

=
1

L
. (103)

VIII. D ISCUSSION

In this paper, we have developed a new decoding framework
for lattice-based interference alignment. We used this frame-
work as a building block for two lattice-based interference
alignment schemes for the symmetric real GaussianK-user
interference channel. These schemes perform well starting
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from the moderate SNR regime, and are within a constant gap
from the upper bounds on the capacity for all channel gains
outside of some outage set whose measure can be controlled.

A natural question for future research is how to extend
the results above to the general GaussianK-user interference
channel. The main problem is that, in the general case, the
interfering lattice codewords are not naturally aligned, as their
gains are not integer-valued. Therefore, in order to successfully
apply lattice interference alignment, some form of precoding,
aimed towards forcing the cross channel gains to be integers,
is required. Unfortunately, simple power-backoff strategies do
not suffice, even in the three-user case.

One option for overcoming this problem is to use many
layers at each transmitter, as in [8], and create partial alignment
between interfering layers. While this achieves the optimal
DoF, it performs poorly at reasonable values of SNR, as there
will be a rate loss for each additional layer. As a result the
rate region obtained by combining the compute-and-forward
transform with the precoding scheme of [8] is inferior to
that obtained by time-sharing, for values of SNR of practical
interest. Another option is to precode not only using power-
backoff, but also over time, which may partially compensate
for the lack of sufficient free parameters. An example for such
a precoding scheme is the power-time code introduced in [21].

A positive feature of the compute-and-forward framework
is that it does not require perfect alignment of the lattice
points participating in the equations. Namely, the effect of
not perfectly equalizing the channel gains to integers is an
enhanced effective noise. For the general interference channel,
this suggests that it may suffice to find precoding schemes that
only approximately force the cross-channel gains to integers.

Another issue left for future work is extending the ca-
pacity approximation for the real symmetric GaussianK-
user interference channel to the complex symmetric case.
The achievable rate region, as given by Theorems 9 and
Corollary 3, naturally extends to the complex case using the
results of [19] for the complex case. An open question is
whether the lower bounds on these achievable rate regions,
which depend only onSNR and INR, also extend to the
complex case. The answer seems positive since the bounds
mainly rely on volume considerations that seem to remain
valid in the complex case.

APPENDIX A
PROOF OFTHEOREM 5

We begin with two lemmas which will be useful for the
proof of Theorem 5.

Lemma 2:Let A be aK ×K matrix with integer entries
of magnitudes bounded from above by some constantamax. If
there exists a lower triangular matrixL with unit diagonal such
that Ã = LA is upper triangular up to column permutation
π, then for a primep > K(K!)2(Kamax)

2Kamax there also
exists a lower triangular matrixL(p) with elements from
{0, 1, . . . , p− 1} and unit diagonal such that̃A(p) =

[

L(p)A
]

mod p is upper triangular up to column permutationπ.

Proof: Assume that there exists a lower triangular matrix
L with unit diagonal such that̃A = LA is upper triangular

up to column permutationπ. We begin by showing that all
elements in theith (i > 1) row of L can be written as rational
numbers with the same denominator1 ≤ qi ≤ K!(Ka2max)

K .
To see this note that if̃A is triangular up to column permu-
tation vectorπ, then itsith row contains at leasti− 1 zeros,
namelyãij = 0 for j = π(1), . . . , π(i − 1). SinceL is lower
triangular, the following equations must hold

ãij =
i
∑

m=1

ℓimamj = 0, for j = π(1), . . . , π(i− 1). (104)

By definition ℓii = 1, therefore (104) can be written as

i−1
∑

m=1

ℓimamj = −aij , for j = π(1), . . . , π(i− 1). (105)

Define the vectors ℓ(i) = [ℓi1 · · · ℓi,i−1]
T ,

a(i,π) = −[ai,π(1) · · · ai,π(i−1)]
T and the matrix

A(i,π) =







a1π(1) . . . ai−1π(1)

...
. . .

...
a1π(i−1) . . . ai−1π(i−1)






.

We have,

A(i,π)ℓ(i) = a(i,π). (106)

From the fact thatA can be pseudo-triangularized with per-
mutation vectorπ we know that the system of equations (106)
has a solution. Assume that

rank
(

A(i,π)
)

= u ≤ K.

It follows that there areu linearly independent columns in
A(i,π). Let U ⊆ {1, . . . ,K} be a set of indices corresponding
to u such linearly independent columns, andŪ be its comple-
ment. LetA(i,π)

U ∈ Z
K×u be the matrix obtained by taking

the columns ofA(i,π) with indices inU . Since (106) has a
solution, we havea(i,π) ∈ span

(

A
(i,π)
U

)

. Thus, we can set

ℓ(i)(k) = 0 for all k ∈ Ū , and (106) will still have a solution.
Letting ℓ

(i)
U ∈ R

u×1 be the vector obtained by taking fromℓ(i)

only the entries with indices inU , it follows that

A
(i,π)
U ℓ

(i)
U = a(i,π) (107)

has a solution. Now, multiplying both sides of (107) by
(

A
(i,π)
U

)T

gives

A′(i,π)ℓ(i)U = a′(i,π), (108)

where A′(i,π) =
(

A
(i,π)
U

)T

A
(i,π)
U ∈ Z

u×u is a full-rank

matrix and a′(i,π) =
(

A
(i,π)
U

)T

a(i,π) ∈ Z
u×1. Note that

all entries ofA′(i,π) as well as all entries ofa′(i,π) have
magnitude bounded from above byãmax , ua2max. We have

ℓ
(i)
U =

(

A′(i,π)
)−1

a′(i,π).

Letting qi = | det(A′(i,π))| and applying Cramer’s rule for
matrix inversion (see e.g. [48]) we see that all elements of
ℓ
(i)
U can be expressed as rational numbers with denominatorqi.
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Recall the Leibnitz formula (see e.g., [48]) for the determinant
of an n× n matrix G

det(G) =
∑

σ∈Sn

sign(σ)

n
∏

i=1

Gi,σi
, (109)

where Sn is the set of all permutations of{1, . . . , n}. It
follows thatdet

(

A′(i,π)) must be an integer and in addition
1 ≤ | det

(

A′(i,π)) | ≤ u!(ãmax)
u. Thus,1 ≤ qi ≤ u!(ãmax)

u.
Moreover, Cramer’s rule also implies that the numerator of
each element inℓ(i)U is an integer not greater thanu!(ãmax)

u

in magnitude. Sinceu ≤ K, and since each element of
ℓ(i) is either zero or corresponds to an element inℓ(i)U ,
each elementℓij , j ≤ i of L can be written as a rational
number ℓij = mij/qi with 1 ≤ qi ≤ K!(Ka2max)

K and
|mij | ≤ K!(Ka2max)

K for i = 1, . . . ,K.
Now, define the matrix̃L = diag(q1, . . . , qK)L and note

that L̃ ∈ Z
K×K due to the above. Let̃A′(p) = [L̃A] mod p.

Since multiplying a row in a matrix by a constant leaves its
zero entries unchanged, the entries of the matrix

Ã′(p) = [L̃A] mod p

= [diag(q1, . . . , qK)LA] mod p

= [diag(q1, . . . , qK)Ã] mod p, (110)

are zero whenever the entries ofÃ are equal to zero. More-
over, since all elements ofL are bounded in magnitude by
K!(Ka2max)

K and all elements ofA are bounded in magnitude
by amax, all elements ofÃ = LA are bounded in magnitude
by KK!(Ka2max)

Kamax. Combining with the fact that1 ≤
qi ≤ K!(Ka2max)

K , we have|ã′(p)ij | ≤ K(K!)2(Kamax)
2Kamax

for all i = 1, . . . ,K, j = 1, . . . ,K. Therefore, for a prime
numberp > K(K!)2(Kamax)

2Kamax the modulo reduction
in (110) does not change any of the non-zero entries of
diag(q1, . . . , qK)Ã to zero.

Recall that ifA can be pseudo-triangularized with a matrix
L and permutation vectorπ then ãi,π(i) 6= 0, and hence

also ã
′(p)
i,π(i) 6= 0 for i = 1, . . . ,K. We have therefore

shown that forp large enough there exists a lower-triangular
matrix L̃(p) = [diag(q1, . . . , qK)L] mod p with elements from
{0, 1, . . . , p − 1} such thatÃ′(p) = [L̃(p)A] mod p is upper-
triangular up to column permutationπ. In order to complete
the proof, it is left to transform̃L(p) to a lower-triangular
matrix with elements from{0, 1, . . . , p−1} andunit diagonal.
Let (qi)−1 be an integer that satisfies[(qi)−1qi] mod p = 1.
Such an integer always exists sinceqi is an integer different
than zero, andp is prime. It is easy to verify that the matrix
L(p) = [diag

(

(q1)
−1, . . . , (qK)−1

)

L̃(p)] mod p is a lower-
triangular matrix with elements from{0, 1, . . . , p−1} and unit
diagonal, and̃A(p) =

[

L(p)A
]

mod p is upper triangular up
to column permutationπ.

Lemma 3:Let t1, . . . , tk be lattice points from a chain
of nested lattices satisfying the conditions of Theorem 2.
Let v = [

∑K
k=1 aktk] mod Λ and u = [

∑K
k=1 bktk] mod Λ

be integer-valued lattice equations of these points. Then

[v + u] mod Λ =

[

K
∑

k=1

(

(ak + bk) mod p
)

tk

]

mod Λ.

Proof: Due to the distributive property of the modulo
operation we have

[v + u] mod Λ =

[

K
∑

k=1

(ak + bk)tk

]

mod Λ.

=

[

K
∑

k=1

[(ak + bk) mod p+Mk · p]tk
]

mod Λ

=

[ K
∑

k=1

(

(ak + bk) mod p
)

tk

+
K
∑

k=1

Mk · [p · tk] mod Λ

]

mod Λ (111)

where {Mk}Kk=1 are some integers. Utilizing the fact that
[p · tk] mod Λ = 0 for all lattice points in the chain, which
follows from Theorem 2(c), the lemma is established.

We are now ready to prove Theorem 5.

Proof of Theorem 5: Let T = [tT1 · · · tTK ]T and
V = [vT

1 · · · vT
K ]T = [AT] mod Λ. The compute-and-

forward transform of the MAC (2) can be written as

S =






A







t1
...
tK






+ Zeff






mod Λ

= [AT+ Zeff] mod Λ

= [V + Zeff] mod Λ.

Assume there exists a pseudo-triangularization ofA with
permutation vectorπ, i.e., there exists a lower triangular matrix
L with unit diagonal such that̃A = LA is upper triangular up
to column permutationπ. Lemma 2 implies that there exists a
lower triangular matrixL(p) with elements from{0, 1, . . . , p−
1} and unit diagonal such that̃A(p) =

[

L(p)A
]

mod p is
upper triangular up to column permutationπ. SinceL(p) has
a unit diagonal it can be written asL(p) = I+R whereI is
the identity matrix andR has non-zero entries only below the
main diagonal.

Assume the receiver had access to the side information
v1, . . . ,vK−1. As the entries ofR are non-zero only below
the main diagonal, the receiver can computeR ·V, add it to
S and reduce moduloΛ, giving rise to

SSI = [S+R ·V] mod Λ

= [AT+RAT+ Zeff] mod Λ

= [(I+R)AT+ Zeff] mod Λ

=
[

L(p)AT+ Zeff

]

mod Λ

=
[

[L(p)A] mod p ·T+ Zeff

]

mod Λ (112)

=






Ã(p)







t1
...
tK






+ Zeff






mod Λ

where (112) follows from Lemma 3. Let̃V = [Ã(p)T] mod Λ
and recall that̃A(p) is upper-triangular up to column permuta-
tion π, thusã(p)j,π(k) = 0 for all j = π(k)+1, . . . ,K. It follows
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that for anyk < K the lattice pointtπ(k) does not participate
in any of the lattice equations̃vk+1, . . . , ṽK

Assume the mapping function between users and lattices
is chosen asθ(k) = π−1(k), i.e., each userk employs the
codebookLk = Λπ−1(k) ∩ Λ. In this case, the densest lattice
participating in lattice equatioñvk is Λk. The decoder uses
sSI
k in order to produce an estimate

ˆ̃vk =
[

QΛk
(sSI

k )
]

mod Λ (113)

for each one of the lattice equations̃vk. It follows from
Theorem 2 that there exists a chain of nested latticesΛ ⊆
ΛK ⊆ · · · ⊆ Λ1 forming the set of codebooksL1, . . . ,LK

with ratesR1, . . . , RK such that all equations̃v1, . . . , ṽK can
be decoded with a vanishing error probability as long as the
rates of all users satisfy the constraints of (25).

We have shown that if the receiver has access to
v1, . . . ,vK−1 it can decode the set of equationsṼ. We now
show a sequential decoding procedure which guarantees that
the receiver has the right amount of side information at each
step. First, note that

sSI
k =

[

sk +

k−1
∑

m=1

rkmvm

]

mod Λ, (114)

thus the necessary side information for decodingṽk is only
v1, . . . ,vk−1. In particular, sSI

1 = s1 and hencev1 can
be decoded with a vanishing error probability with no side
information. After decodingv1 the receiver has it as side
information, and can therefore computesSI

2 and decodẽv2.
As ṽ2 = [r21v1 + v2] mod Λ and the receiver knowsv1, it
can use it in order to recoverv2. Now, the receiver hasv1

andv2 as side information and can use it to computesSI
3 . The

process continues sequentially until all equationsṽ1, . . . , ṽK

are decoded.
When the process ends we are left withK noiseless

equations







ṽ1

...
ṽK






=











Ã(p)











t1
t2
...
tK





















mod Λ. (115)

SinceÃ(p) is upper-triangular up to column permutation, and
in particular full-rank modulop, the original lattice points
t1, . . . , tK each user transmitted can be recovered.

APPENDIX B
PROOF OFTHEOREMS7 AND 8

Proof of Theorem 7: The proof is identical to that of

Theorem 3 withF =
(

SNR
−1B−1 + ggT

)−1/2
.

Proof of Theorem 8:Let

S =






A







teff,1
...

teff,L






+ Zeff






mod Λ

be the compute-and-forward transform of the effectiveL-user
MAC, and assume thatA can be pseudo-triangularized with

permutation vectorπ. Repeating the proof of Theorem 5 it
easy is to see that for any set of rates

Rℓ < Rcomp,π−1(ℓ), ℓ = 1, . . . , L

there exists a chain of nested latticesΛ ⊆ ΛL ⊆ · · · ⊆ Λ1

inducing the codebooksLℓ = Λπ−1(ℓ)∩V with ratesRℓ, such
that if teff,ℓ ∈ Lℓ for all ℓ = 1, . . . , L, all effective lattice
points can be decoded fromS.

If each of the usersm ∈ Kℓ that comprise effective userℓ
uses the lattice codebookLℓ (or any codebook nested inLℓ),
thenteff,ℓ ∈ Lℓ and all effective lattice points can be decoded.

APPENDIX C
PROOF OFLEMMA 1

In order to decode the desired effective lattice points, it
suffices to decodeL−1 linearly independent lattice equations
of them, in which teff,L does not participate. Let̄a =
[ā1 · · · āL−1 0] be some coefficient vector for such an
equation. The effective rate for computing the lattice equation
v̄ = [

∑L−1
ℓ=1 āℓteff,ℓ] mod Λ with the coefficient vector̄a over

the channel (29) is

Rcomp(g, ā,B) =
1

2
log

(

SNR

σ2
eff(g, ā,B)

)

, (116)

where

σ2
eff(g, ā,B) = min

β̄∈R

SNR

L−1
∑

ℓ=1

(β̄gℓ − āℓ)
2b2eff,ℓ

+ β̄2(1 + SNRg2Lb
2
eff,L)

= min
β∈R

SNR

L−1
∑

ℓ=1

(βκgℓ − āℓ)
2b2eff,ℓ + β2, (117)

where (117) follows by substitutinḡβ = βκ. The effective
variance and computation rate for computing an equation with
coefficient vectorā = [ā1 · · · āL−1 0] over the effective
channel (29) are therefore the same as those of computing
an equation witha = [ā1 · · · āL−1] over the effective
channel (47). Thus, for purposes of computing equations with
the effective lattice pointsteff,1, . . . , teff,L−1 the two channels
are equivalent. Since this is all we need in order to decode
teff,1, . . . , teff,L−1, the lemma follows.

APPENDIX D
DERIVATION OF THE UPPER BOUNDS ONσ2

HK WITHIN THE

DIFFERENT INTERVALS

A. Moderately weak interference regime

We upper boundσ2
HK for all values ofβ̃ within each of the

four intervals. Recall that in the moderately weak interference
regimeSNR−1/3 ≤ g2 ≤ 1. Defineδ = (2c + 8)/ log(SNR),
wherec > 0 is some constant.

Interval 1 : 0 < |β̃| ≤ 1/2

In this interval the choicea1 = sign(β̃) is optimal due
to (86). Therefore, for all|β̃| ≤ 1/2 we have(β̃−a1)

2 ≥ 1/4.
Thus,

σ2
HK ≥ SNR

4
.
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Interval 2 :1/2 < |β̃| ≤
√

|g|SNR1/4−δ/2/2

Since |β̃| > 1/2 we can express it as̃β = q + ϕ with
q ∈ Z \ 0 andϕ ∈ [−1/2, 1/2). We can further lower bound
σ2

HK as

σ2
HK > min

ϕ,q,a1,a3

(

(

(ϕ+ q − a1)
2 + (qg − a3 + ϕg)2

)

SNR

)

= min
ϕ,q,a3

(

(

ϕ2 + (qg − a3 + ϕg)2
)

SNR

)

. (118)

The minimizing value ofϕ (ignoring the constraintϕ ∈
[−1/2, 1/2)) is found by derivation to be

ϕ∗ = − g

1 + g2
(qg − a3).

Substitutingϕ∗ into (118) gives

σ2
HK > min

q,a3

(

1

1 + g2
(qg − a3)

2
SNR

)

≥ 1

2
min
q,a3

(

(qg − a3)
2
SNR

)

. (119)

For b = 1, 2, . . . , ⌈1/3 log(SNR)⌉ we define the sets

Gb =
{

g : g ∈
[

2−b, 2−b+1
)}

, (120)

and the quantities

qmax,b ,
√
2−b+1SNR

1/4−δ/2,

Φb ,
1√

2−b+1
SNR

−1/4−δ/2.

LetSb be the set of all values ofg ∈ Gb such that the inequality

|qg − a3| < Φb (121)

has at least one solution with0 < |q| ≤ qmax,b and a3 ∈ Z.
Note that sinceq = β̃+ϕ and we assume in this interval that
1/2 < |β̃| ≤

√

|g|SNR1/4−δ/2/2, we have

|q| <
√

|g|SNR1/4−δ/2.

Thus, for allg ∈ Gb andβ̃ in the considered interval, we have

|q| < qmax,b.

Let S̄b = Gb\Sb. Using (119), we have that for allg ∈ S̄b and
β̃ in the considered interval

σ2
HK ≥ 1

2
Φ2

bSNR

≥ 1

2

SNR
1/2−δ

2−b+1

≥ 1

4

SNR
1/2−δ

√

g2
. (122)

The condition (121), which defines the setSb, can be written
equivalently as

|q · 2bg − 2ba3| < 2bΦb. (123)

Define g̃ = 2b · g, and note that for allg ∈ Gb we have
g̃ ∈ [1, 2). With this notation, (123) becomes

∣

∣

∣

∣

g̃ − 2ba3
q

∣

∣

∣

∣

< 2b
Φb

q
. (124)

Define

Tb(q) =
[{

0

q
,
1 · 2b
q

,
2 · 2b
q

, . . . ,

⌊

2q−1
2b

⌋

· 2b
q

}

+ 2b
Φb

q
I
]

mod [0, 2), (125)

whereI = [−1, 1) and the sum in (125) is a Minkowski sum.
It is easy to verify that

Sb ⊆ 2−b

⌊qmax⌋
⋃

q=1

Tb(q). (126)

Since
⌊

2q−1
2b

⌋

= 0 for all 0 < q < 2b−1, for all values ofq in
this range we have

Tb(q) =
[

2b
Φb

q
I
]

mod [0, 2)

⊆
[

2bΦbI
]

mod [0, 2)

= Tb(1). (127)

Therefore,

Sb ⊆ 2−b









2b−1−1
⋃

q=1

Tb(q)



 ∪





⌊qmax⌋
⋃

q=2b−1

Tb(q)









= 2−b



Tb(1) ∪





⌊qmax⌋
⋃

q=2b−1

Tb(q)







 . (128)

The Lebesgue measure ofSb is bounded by

µ(Sb) = Vol (Sb)

≤ 2−b



Vol (Tb(1)) +
⌊qmax,b⌋
∑

q=2b−1

Vol (Tb(q))





≤ 2−b



2 · 2bΦb +

⌊qmax,b⌋
∑

q=2b−1

⌈

2q

2b

⌉

· 2 · 2bΦb

q





≤ 2Φb + 2Φb

⌊qmax,b⌋
∑

q=2b−1

2
2q

2b
1

q

≤ 2Φb + 8 · 2−bΦbqmax,b

= 2Φb + 8 · 2−b
SNR

−δ

=
√
2 · 2b/2SNR−1/4−δ/2 + 8 · 2−b

SNR
−δ. (129)

We can now upper bound the measure of the outage set

S =

⌈1/3 log(SNR)⌉
⋃

b=1

Sb,

of all values ofSNR−1/3 ≤ g < 1 for which (122) does not



SUBMITTED TO IEEE TRANS. INFO THEORY 27

necessarily hold, as

µ(S) =
⌈1/3 log(SNR)⌉

∑

b=1

µ(Sb)

<
√
2SNR−1/4−δ/2

1/3 log(SNR)+1
∑

b=1

(
√
2)b

+ 8SNR−δ

1/3 log(SNR)+1
∑

b=1

2−b.

Using the identity

B
∑

b=1

ρb =
ρ

ρ− 1
(ρB − 1),

which is valid for allρ 6= 1, and the fact that
∑∞

b=1 2
−b < 1,

we have

µ(S) <
√
2SNR−1/4−δ/2

√
2√

2− 1

√
2SNR1/6 + 8SNR−δ

< 7SNR−δ/2 + 8SNR−δ

< 16SNR−δ/2. (130)

Substitutingδ = (2c+ 8)/ log(SNR) into (122) and (130) we
see that in the interval1/2 < |β̃| ≤

√

|g|SNR1/4−δ/2/2 for
all values ofSNR−1/3 < |g| ≤ 1 except for an outage set with
measure not greater than2−c we have

σ2
HK >

2−2c

4 · 28
SNR

1/2

√

g2
.

Interval 3 :
√

|g|SNR1/4−δ/2/2 < |β̃| ≤ SNR
1/4/

√

8|g|
SinceSNR−1/3 ≤ g2 < 1 and we assumedSNR > 4, we

have

g2SNR− 1 >
g2SNR

2
. (131)

Note that (131) continues to hold for allg2 > SNR
−1/2. This

will be useful in the weak interference regime. For all values
of |β̃| in this interval

∣

∣

∣

∣

∣

β̃
√

g2SNR− 1

∣

∣

∣

∣

∣

≤ SNR
1/4/

√

8|g|
√

g2SNR− 1

<
SNR

1/4

√

8|g| · g2SNR

2

≤ 1

2
|g|−3/2

SNR
−1/4

≤ 1

2
,

and hence, using (85), the optimal value ofa2 is

a2 =
⌊

β̃/
√

g2SNR− 1
⌉

= 0.

Therefore, using the fact thatδ = (2c+8)/ log(SNR), we can
upper bound (84) as

σ2
HK ≥ β̃2SNR

g2SNR− 1
≥ 2−2c

4 · 28
SNR

1/2

√

g2
.

Interval 4 : SNR1/4/
√

8|g| < |β̃|
In this interval

σ2
HK ≥ Kβ̃2 ≥ 1

8

SNR
1/2

√

g2
.

B. Weak Interference Regime

We upper boundσ2
HK for all values ofβ̃ within each of the

four intervals. Recall that in this regimeSNR−1/2 ≤ g2 <
SNR

−1/3.

Interval 1 : 0 < |β̃| ≤ 1/2

As a1 6= 0, in this interval(β̃ − a1)
2 > 1/4. Thus,

σ2
HK ≥ SNR

4
.

Interval 2 : 1/2 < |β̃| ≤ 1/(2|g|)
In this intervala3 = ⌊β̃g⌉ = 0. Thus,

σ2
HK ≥ (β̃g)2SNR ≥ g2SNR

4
.

Interval 3 : 1/(2|g|) < |β̃| ≤
√

g2SNR/8
Under our regular assumption thatSNR > 4, for all values

of |β̃| in this interval we have
∣

∣

∣

∣

∣

β̃
√

g2SNR− 1

∣

∣

∣

∣

∣

≤
√

g2SNR/8
√

g2SNR− 1

<

√

g2SNR/8
√

g2SNR/2

≤ 1

2
,

where the second inequality follows from (131). Thus, the
optimal choice fora2 is

a2 =
⌊

β̃/
√

g2SNR− 1
⌉

= 0. (132)

Therefore, (84) can be lower bounded by

σ2
HK ≥ β̃2

g2SNR
SNR ≥ 1

4g4
.

Interval 4 :
√

g2SNR/8 < |β̃|
In this interval

σ2
HK ≥ Kβ̃2 >

g2SNR

4
.

APPENDIX E
PROOF OFTHEOREM 12

For the proof we will need a key result from the field of
Diophantine approximation which is due to Kleinbock and
Margulis. The following theorem is a special case of [57,
Theorem A].

Theorem 14:Let f1, f2, · · · , fK be real analytic functions
in h̃ ∈ U , U a domain inRm, which together with1 are
linearly independent overR, and define the manifold

M =
{

[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ U
}

.
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For almost everyh ∈ M and anyδ > 0 the inequality

max
ℓ=1,...,K

|qhℓ − aℓ| ≤ |q|− 1
K

−δ (133)

has at most finitely many solutions(q, a) ∈ Z× Z
K .

For the proof of Theorem 12 we will need a corollary of
Theorem 14.

Corollary 7: Let f1, f2, . . . , fK be functions fromR
m to

R satisfying the following conditions:

1) fi for i = 1, . . . ,K is analytic inRm,
2) 1, f1, . . . , fK are linearly independent overR.

Let D =
{

h̃ ∈ R
m : f1(h̃) = 0

}

andD(ǫ) = D + B(0, ǫ),
where the sum is a Minkowski sum andB(0, ǫ) is an m-
dimensional closed ball with some radiusǫ > 0. Define the set
U(ǫ) = R

m \D(ǫ), the set of functions̃fk(h̃) = fk(h̃)/f1(h̃)
from U(ǫ) to R for k = 2, . . . ,K, and the manifold

M̄(ǫ) =
{

[

f̃2(h̃) · · · f̃K(h̃)
]

: h̃ ∈ U(ǫ)
}

. (134)

For all ǫ > 0, almost everyh̄ ∈ M′(ǫ), and anyδ > 0 the
inequality

max
ℓ=1,...,K−1

∣

∣qh̄ℓ − aℓ
∣

∣ ≤ |q|− 1
K−1−δ (135)

has at most finitely many solutions(q, a) ∈ Z× Z
K−1.

Proof of Corollary 7: We would like to apply Theorem 14
for the set of functions̃f2, . . . , f̃K from U(ǫ) to R. To that end
we have to show that for allǫ > 0 the functionsf̃2, . . . , f̃K are
analytic inU(ǫ) and together with1 are linearly independent
overR.

The reciprocal of an analytic function that is nowhere zero
is analytic. Thus, for anyǫ > 0 the function 1/f1(h̃) is
analytic in U(ǫ). In addition the product of two analytic
functions is analytic. Therefore, for anyǫ > 0 the functions
f̃k = fk(h̃) · (1/f1(h̃)) are analytic inU(ǫ) for k = 2, . . . ,K.

We show that the functions1, f̃2, . . . , f̃K fromU(ǫ) toR are
linearly independent for allǫ > 0 by contradiction. Assume
they are linearly dependent. Thus, there a exists a measurable
setS ∈ U(ǫ) and a set of coefficients{t1(ǫ), . . . , tK(ǫ)} ∈ R

not all zero such that∀h̃ ∈ S

t1(ǫ) · 1 + t2(ǫ) ·
f2(h̃)

f1(h̃)
+ · · ·+ tK(ǫ) · fK(h̃)

f1(h̃)
= 0.

This implies that∀h̃ ∈ S

0 · 1 + t1(ǫ) · f1(h̃) + t2(ǫ) · f2(h̃) + · · ·+tK(ǫ) · fK(h̃) = 0,

in contradiction to the assumption that the functions
1, f1, . . . , fK from R

m to R are linearly independent overR.
We can therefore apply Theorem 14 to the set of functions

f̃2, . . . , f̃K from U(ǫ) to R for all ǫ > 0, and the corollary
follows.

We are now ready to prove Theorem 12. Define the setsD,
D(ǫ) andU(ǫ) as in Corollary 7, and the manifold

M̃(ǫ) =
{

[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ U(ǫ)
}

.

We begin by showing that for anyǫ > 0 the number of DoF
offered by the first computation rate is upper bounded by

dcomp,1 ≤ 1

K
(136)

for almost everyh ∈ M̃(ǫ). Then we takeǫ to zero in order
to show that this holds for almost every

h ∈ M =
{

[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ R
m
}

.

Consider the manifoldM̃(ǫ) for some ǫ > 0. Note that
h1 = f1(h̃) 6= 0 for any h ∈ M̃(ǫ), and we can therefore
defineh̄ = h/h1. We havēh1 = 1 and [h̄2 · · · h̄K ] ∈ M̄(ǫ),
whereM̄(ǫ) is the manifold from (134) in Corollary 7.

The channel (2) is equivalent to the channel

ȳ =
1

h1
y = x1 +

∑

k 6=1

h̄kxk +
1

h1
z. (137)

Let a be a vector of integer coefficients, andβ be the scaling
factor used by the receiver in order to compute the lattice
equation v = [

∑K
k=1 aktk] mod Λ, see Section III. The

effective noise for computing the equationv with coefficient
vectora is

zeff(h, a, β) = (β − a1)x1 +
∑

k 6=1

(βh̄k − ak)xk +
β

h1
z,

and its effective variance is given by

σ2
eff(h, a, β) = (β − a1)

2
SNR

+
∑

k 6=1

(βh̄k − ak)
2
SNR+

β2

|h1|2
. (138)

Recall that

Rcomp,1 = max
a,β

1

2
log

(

SNR

σ2
eff(h, a, β)

)

=
1

2
log (SNR)− 1

2
log

(

min
a,β

σ2
eff(h, a, β)

)

. (139)

Thus, in order to obtain an upper bound onRcomp,1 we need
to lower boundσ2

eff(h, a, β) for all values ofβ ∈ R anda ∈
Z
K \ 0. Let

h̄∗ = max
k=1,...,K

h̄k,

and
k∗ = arg max

k=1,...,K
h̄k.

Note that if |β| < 1/(2h̄∗) the minimizing corresponding
choice of integersa1, . . . , aK in (138) is ak∗ = sign(β),
and ak = 0 for all k 6= k∗. This in turn, implies that for
|β| < 1/(2h̄∗) we have

σ2
eff(h, a, β) > (βh̄∗ − sign(β))2SNR >

SNR

4
, (140)

which meansdcomp,1 = 0. Thus, in order to obtain a positive
number of DoF,|β| must be greater than1/(2h̄∗).

If 1/(2h̄∗) ≤ |β| ≤ 1/2, then the minimizing value of
a1 in (138) is a1 = 0. This implies that for all values of
1/(2h̄∗) ≤ |β| ≤ 1/2 we have

σ2
eff(h, a, β) > β2

SNR >
SNR

4
(

h̄∗)2
, (141)
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which also meansdcomp,1 = 0. Thus, in order to obtain a
positive number of DoF,|β| must be greater than1/2.

Hence, in order to lower bound (138) in the limit of very
high SNR, it suffices to limit the optimization space ofβ to
|β| > 1/2. For such values,β can be written in the form
β = q + ϕ whereϕ ∈ [−1/2, 1/2), and q ∈ Z \ 0 is the
nearest integer toβ.

For any|ϕ| < 1/2, q ∈ Z \ 0 anda ∈ Z
K\0 we have

σ2
eff(h, a, q, ϕ)

= (ϕ+ q − a1)
2
SNR

+max
k 6=1

(

qh̄k − akϕh̄k

)2
SNR+

(q/2)2

|h1|2

≥ ϕ2
SNR+max

k 6=1

(

qh̄k − ak + ϕh̄k

)2
SNR+

(q/2)2

|h1|2

= max
k 6=1

(

(

ϕ2 + (qh̄k − ak + ϕh̄k)
2
)

SNR+
q2

|2h1|2
)

(142)

We further bound (142) by substituting the minimizing value
of ϕ for eachk 6= 1. It follows by simple differentiation that
for eachk 6= 1 the minimum is obtained at

ϕ∗(k) =
−h̄k

1 + h̄2
k

(qh̄k − ak).

Substitutingϕ∗(k) into (142) yields

σ2
eff(h, a, q, ϕ) ≥ max

k 6=1

(

1

1 + h̄2
k

(qh̄k − ak)
2
SNR+

q2

|2h1|2
)

>
1

1 + maxk 6=1 h̄2
k

·max
k 6=1

|qh̄k − ak|2SNR+
q2

|2h1|2

= c0(h) ·max
k 6=1

|qh̄k − ak|2SNR+
q2

|2h1|2
, (143)

wherec0(h) > 0 is some constant independent of theSNR.
Consider the limit ofSNR → ∞, and assume|q| is upper

bounded by some finite integerq0 > 0. Then, for almost every
h ∈ M̃(ǫ) there exists a constantc1(h, q0) > 0, independent
of the SNR, for which

max
k 6=1

|qh̄k − ak| > c1(h, q0) (144)

for all 0 < |q| ≤ q0 and a ∈ Z
K−1. Note thath does not

satisfy (144) only if all elements of̄h are rational. Substi-
tuting (144) into (143) givesσ2

eff(h, a, q, ϕ) > c2(h, q0)SNR
which means that the DoF is zero. Therefore, in order to get
a positive DoF,q must tend to infinity when the SNR tends
to infinity.

Any positive integer|q| can be expressed as|q| = SNR
γ for

someγ > 0. From Corollary 7 we know that for anyǫ > 0,
for almost everȳh ∈ M̄(ǫ) and anyδ > 0, for q large enough
we have

max
k 6=1

|qh̄k − ak| > |q|− 1
K−1−δ = SNR

− γ
K−1−γδ. (145)

Thus, for |q| large enough and almost everyh ∈ M̃(ǫ) we
have

σ2
eff(h, a, q, ϕ) ≥ max

(

c20(h)SNR
1− 2γ

K−1−2γδ, c3(h)SNR
2γ

)

,

(146)

wherec3(h) > 0 is a constant independent of theSNR.
Minimizing (146) with respect toγ gives

γ =
K − 1

2(K + δK − δ)
.

Hence, for allq ∈ Z, ϕ ∈ [−1/2, 1/2), a ∈ Z
K\0 and almost

everyh ∈ M̃(ǫ)

σ2
eff(h, a, q, ϕ) > c4(h)SNR

K−1
K+δ(K−1) , (147)

wherec4(h) > 0 is also a constant independent of theSNR.
Substituting into (139) gives

Rcomp,1 <
1 + δ(K − 1)

K + δ(K − 1)
· 1
2
log(SNR)− 1

2
log(c4(h))

(148)

for any δ > 0. Taking δ → 0, it follows that the number of
DoF the best equation offers is upper bounded by

lim
SNR→∞

Rcomp,1
1
2 log (1 + SNR)

≤ 1

K
, (149)

for almost everyh ∈ M̃(ǫ). Since this holds for allǫ > 0
we can now takeǫ to zero (note that the bound does not
depend onǫ). The setD has measure zero sincef1 is analytic
on R

m and is not identically zero (otherwise, the set of
functions1, f1, . . . , fK is not linearly independent). Note that
the measure ofD(ǫ) goes to zero asǫ → 0, and furthermore
D = ∩ǫ>0D(ǫ). Therefore, the claim holds for almost every
h ∈ M.

APPENDIX F
PROOF OFTHEOREM 13

Consider the referenceL-user MAC

yref =
L
∑

ℓ=1

gℓxℓ + z, (150)

wherez is AWGN with zero mean and unit variance and all
users are subject to the power constraint‖xℓ‖2 ≤ nSNR. Ap-
plying Corollary 5 to this channel implies that for almost every
g ∈ M the DoF that each optimal computation rate offers is
1/L. Let Rref

comp(g, a) be the computation rate corresponding
to the coefficient vectora over the reference MAC (150).
We now show the computation rate of the same coefficient
vectorRcomp(g, a,B) over the effective MAC (29) is within
a constant number of bits fromRref

comp(g, a).
For the reference channel (150) the effective noise variance

for a givena andβ is

σ2
ref(g, a, β) = SNR‖βg − a‖2 + β2,

while for the effectiveL-user MAC (29) the effective variance
for the samea andβ is

σ2
eff(g, a, β,B) = SNR

L
∑

ℓ=1

(βgℓ − aℓ)
2b2eff,ℓ + β2.

Letting b∗ = maxℓ=1,...,L b2eff,ℓ and noting thatb∗ ≥ 1 gives

σ2
ref(g, a, β) ≤ σ2

eff(g, a, β,B) ≤ b∗σ2
ref(g, a, β).
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Since the above inequalities are valid for any value ofβ, in
particular they hold true for the optimal value ofβ and it
follows that

Rref
comp(g, a)−

1

2
log(b∗) ≤ Rcomp(g, a,B) ≤ Rref

comp(g, a).

As b∗ is independent of theSNR it follows that the DoF
of each computation rate over the reference and effective
MACs (150) and (29) offer are equal, and, in particular, this
is the case for the optimal computation rates, thus the theorem
follows.

REFERENCES

[1] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communi-
cation over MIMO X channels: Interference alignment, decomposition,
and performance analysis,”IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3457–3470, August 2008.

[2] V. R. Cadambe and S. A. Jafar, “Interference alignment and the degrees
of freedom for the K-user interference channel,”IEEE Transactions on
Information Theory, vol. 54, no. 8, pp. 3425–3441, August 2008.

[3] B. Nazer, M. Gastpar, S. A. Jafar, and S. Vishwanath, “Ergodic interfer-
ence alignment,”IEEE Transactions on Information Theory, Submitted
August 2011, available online http://arxiv.org/abs/0901.4379.

[4] A. B. Carleial, “Interference channels,”IEEE Transactions on Informa-
tion Theory, vol. 24, no. 1, pp. 60–70, January 1978.

[5] R. H. Etkin, D. N. C. Tse, and H. Wang, “Gaussian interference channel
capacity to within one bit,”IEEE Transactions on Information Theory,
vol. 54, no. 12, pp. 5534–5562, December 2008.

[6] S. Avestimehr, S. Diggavi, and D. Tse, “Wireless networkinformation
flow: A deterministic approach,”IEEE Transactions on Information
Theory, vol. 57, no. 4, pp. 1872–1905, April 2011.

[7] G. Bresler, A. Parekh, and D. Tse, “The approximate capacity of the
many-to-one and one-to-many Gaussian interference channels,” IEEE
Transactions on Information Theory, vol. 56, no. 9, pp. 4566–4592,
September 2010.

[8] A. S. Motahari, S. O. Gharan, M.-A. Maddah-Ali, and A. K. Khandani,
“Real interference alignment: Exploiting the potential ofsingle antenna
systems,”IEEE Transactions on Information Theory, Submitted Novem-
ber 2009, available online http://arxiv.org/abs/0908.2282.

[9] R. Zamir, S. Shamai (Shitz), and U. Erez, “Nested linear/lattice codes
for structured multiterminal binning,”IEEE Transactions on Information
Theory, vol. 48, no. 6, pp. 1250–1276, June 2002.

[10] U. Erez and R. Zamir, “Achieving1
2
log (1 + SNR) on the AWGN

channel with lattice encoding and decoding,”IEEE Transactions on
Information Theory, vol. 50, no. 10, pp. 2293–2314, October 2004.

[11] R. Zamir, “Lattices are everywhere,” inProceedings of the 4th Annual
Workshop on Information Theory and its Applications (ITA 2009), La
Jolla, CA, February 2009.

[12] A. S. Motahari and A. K. Khandani, “Capacity bounds for the
Gaussian interference channel,”IEEE Transactions on Information The-
ory, vol. 55, no. 2, pp. 620–643, February 2009.

[13] X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-
interference sum-rate capacity for Gaussian interferencechannels,”IEEE
Transactions on Information Theory, vol. 55, no. 2, pp. 689–699,
February 2009.

[14] V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference net-
works: Sum capacity in the low-interference regime and new outer
bounds on the capacity region,”IEEE Transactions on Information
Theory, vol. 55, no. 7, pp. 3032–3050, July 2009.

[15] T. S. Han and K. Kobayashi, “A new achievable rate regionfor
the interference channel,”IEEE Transactions on Information Theory,
vol. 27, no. 1, pp. 49–60, January 1981.

[16] H. Sato, “The capacity of the Gaussian interference channel under strong
interference,”IEEE Transactions on Information Theory, vol. 27, no. 6,
pp. 786–788, November 1981.

[17] A. B. Carleial, “A case where interference does not reduce capacity,”
IEEE Transactions on Information Theory, vol. 21, no. 5, pp. 569–570,
September 1975.

[18] S. Sridharan, A. Jafarian, S. Vishwanath, and S. A. Jafar, “Capacity of
symmetric K-user Gaussian very strong interference channels,” in Pro-
ceedings of the IEEE Global Communications Conference (GLOBECOM
2008), New Orleans, LA, December 2008.

[19] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing inter-
ference through structured codes,”IEEE Transactions on Information
Theory, vol. 57, no. 10, pp. 6463–6486, October 2011.

[20] S. A. Jafar and S. Vishwanath, “Generalized degrees of freedom of the
symmetric Gaussian K-user interference channel,”IEEE Transactions
on Information Theory, vol. 56, no. 7, pp. 3297–3303, July 2010.

[21] O. Ordentlich and U. Erez, “Interference alignment at finite SNR for
time-invariant channels,”IEEE Transactions on Information Theory,
Submitted April 2011, available online http://arxiv.org/abs/1104.5456.

[22] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,”Proceedings of the IEEE, vol. 99,
no. 3, pp. 476–489, March 2011.

[23] S. A. Jafar, “Interference alignment - a new look at signal dimensions
in a communication network,” inFoundations and Trends in Communi-
cations and Information Theory. NOW Publishes, 2011, vol. 7, no. 1,
pp. 1–134.

[24] G. Bresler and D. N. C. Tse, “3-user interference channel: Degrees of
freedom as a function of channel diversity,” in47th Annual Allerton
Conference on Communications, Control, and Computing, Monticello,
IL, September 2009.

[25] C. Wang, T. Gou, and S. A. Jafar, “Subspace alignment chains and
the degrees of freedom of the three-user MIMO interference channel,”
IEEE Transactions on Information Theory, Submitted September 2011,
available online: http://arxiv.org/abs/1109.4350.

[26] S. Sridharan, A. Jafarian, S. Vishwanath, S. A. Jafar, and S. Shamai
(Shitz), “A layered lattice coding scheme for a class of three-user
Gaussian interference channels,” in46th Annual Allerton Conference on
Communications, Control, and Computing, Monticello, IL, September
2008.

[27] A. Jafarian and S. Vishwanath, “Achievable rates for K-user Gaussian
interference channels,”IEEE Transactions on Information Theory, to
appear 2012.

[28] S. Saha and R. Berry, “Sum-capacity of a class of K-user Gaussian
interference channels within O(K) bits,” in49th Annual Allerton Con-
ference on Communications, Control, and Computing, Monticello, IL,
September 2011.

[29] L. Zhou and W. Yu, “On the capacity of the K-user cyclic Gaussian
interference channel,” inProceedings of the IEEE International Sympo-
sium on Information Theory (ISIT 2011), St. Petersburg, Russia, July
2011.

[30] U. Niesen and M. A. Maddah-Ali, “Interference alignment: From
degrees-of-freedom to constant-gap capacity approximations,” IEEE
Transactions on Information Theory, Submitted December 2011, avail-
able online: http://arxiv.org/abs/1112.4879.

[31] B. Bandemer and A. El Gamal, “Interference decoding fordeterministic
channels,”IEEE Transactions on Information Theory, vol. 57, no. 5, pp.
2966–2975, May 2011.

[32] Y. Wu, S. Shamai (Shitz), and S. Verdú, “Degrees of freedom of
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