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The Approximate Sum Capacity of the Symmetric
Gaussiank’-User Interference Channel

Or Ordentlich, Uri Erez, and Bobak Nazer

Abstract—Interference alignment has emerged as a powerful progress has been made recently, in part due to the discovery
tool in the analysis of multi-user networks. Despite consiérable  of interference alignment and the shift from exact capacity
recent progress, the capacity region of the Gaussiank-user yeaqits to capacity approximations [S[-[7]. It has beerveho

interference channel is still unknown in general, in part dwe . .
to the challenges associated with alignment on the signal ale by Motahariet al.that K /2 degrees-of-freedom are achievable

using lattice codes. This paper develops a new framework for for almost all channel realizatioris/[8] but it is an open djioes
lattice interference alignment, based on the compute-anébrward  as to whether this result translates to real gains outsideeof
approach. Within this framework, each receiver decodes by fst  very high signal-to-noise ratio (SNR) regime. One promgsin
recovering two or more linear combinations of the transmitted direction is the use of lattice codeS| [9]=[11], as they can
codewords with integer-valued coefficients and then solvinthese . . : !

equations for its desired codeword. For the special case of enable alignment on the S'QUal scale. By ta"_'”g advantag_e of
Symmetric channel gains’ this framework is used to derive th the fact that the sum of lattice codewords is itself a lattice
approximate sum capacity of the Gaussian interference charel, codeword, a receiver can treat several users as one effectiv
up to an explicitly defined outage set of the channel gains. B yser, thereby reducing the number of effective interferars
key contributions are the capacity lower bounds for the weak compelling example of this approach is the derivation of the

through strong interference regimes, where each receiverhsuld imat itv of th ¢ interf bR
jointly decode its own codeword along with part of the interfering approximate capacity or the many-1o-one interierence eaan

codewords. As part of the analysis, it is shown that decoding Py Bresler, Parekh, and T<e [7]. For fully connected chamnel
K linear combinations of the codewords can approach the sum much less is known, owing to the difficulty of choosing latc
capacity of the K-use;{Gaussian multiple-access channel up to a that simultaneously align at several receivers.
gap of no more than 3 log K bits. In some cases, focusing on the special case of symmetric
channel gains has yielded important insights. For instance
|. INTRODUCTION in the tv_vo_—user case, Etkin, Tse, and Wang [_5] used the
_symmetric interference channel to develop the notion okgen

Handling interference efficiently is a major challenge Blized degrees-of-freedom. This in turn revealed five dpega
multi-user wireless communication. Recently, it has be@on?egimes based on relative interference strength:

clear that this challenge can sometimes be overcome via - . . . .
. . . . . « Noisy: Each receiver treats interference as noise, which
interference alignmen{l], [2]. For instance, consider the

2 ; is optimal for sufficiently weak interference [12]—[14].
K-user Gaussian interference channel, wh&réransmitter- .
. ) . ) ; o Weak and Moderately WealEach transmitter sends a
receiver pairs wish to communicate simultaneously. Thioug . . :
. i o . . public and a private codeword following the scheme of
the use of clever encoding strategies, it is possible tonalig ‘ RN
. . . Han and Kobayash[ [15]. Each receiver jointly decodes
the transmitted signals so that each receiver only observes . : . : .
. . . . . L both public codewords and its desired private codeword
its desired signal along with a single effective interferds . ; : . . :
. while treating the interfering private codeword as noise.
a result, each user can achieve roughly half the rate that . L ,
: . « Strong: Each receiver jointly decodes both users’ code-
would be available were there no interference whatsoever, . ; . . .
) : words. This regime and its capacity was discovered by
i.e., K/2 degrees-of-freedom (DoF) are available. However, . ;
Sato [16] as well as Han and Kobayaschil[15].
many schemes, such as the Cadambe-Jafar framework [2] and - ] :
S ) . « Very Strong:Each receiver decodes and subtracts the
ergodic interference alignment![3], require a large number

: o . interference before recovering its desired codeword. This
of independent channel realizations to achieve near-gterfe regime and its capacity was discovered by Carléia [17]
alignment. In certain settings, this level of channel dsitgr 9 pactty y ) '

may not be attainable; ideally, we would like to achiev_gsmg these regi_mes as a guid_eli_ne, they were able to approx-
alignment over a single channel realization. imate t.he capacity region to within h"fllf a bit. ,
The capacity region of the (static) Gaussisruser interfer- In this paper, we focus on the special case of the symmetric

ence channel[4] is unknown in general, although Signiﬁcaﬁaus&arﬁ(-user interference channel. Each receiver observes
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codewords, which is itself a codeword. A natural approach @&velop a new decoding framewotke compute-and-forward
to first decode and cancel this sum of codewd¥ds,_;, x, transform that may be of independent interest. Consider a
leaving only the desired signal plus noise. In the very groifGaussiank-user MAC where the encoders employ lattice
interference regime, this approach is optimall [18] but ieslo codes. Under our framework, the receiver attempts to recove
not suffice in general. In our setting, joint decoding mugieeo K linearly independent equations of the transmitted coddsvor
with the fact that all users employ the same lattice codepoand then solve them for its desired messages. This transform
and distinct pairs of lattice codewords may result in theesarthe MAC into an effective multiple-input multiple-output
sum. (MIMO) channel with an integer-valued channel matrix. A
Our main contribution is the derivation of new achievablstriking phenomenon we discover is that while the compoitati
rate regions for the weak, moderately weak, and strong-inteate for each of thes& equations is very sensitive to the exact
ference regimes, for which no capacity approaching schenamsnnel gains, the sum of their computation rates is equal to
were known in the literature. This is enabled using a new-tecihe sum capacity of the MAC up to a constant gap, independent
nique, based on compute-and-forward|[19], that allows eaoh the channel gains and the SNR (see Fidure 1). To give
receiver to jointly decode its desired codeword and the simthis an operational meaning, the computation rate for each
the interfering codewords. We also propose a generalizafio equation is associated with a single transmitter’s coddwor
the two-user Han-Kobayashi scheme][15] in which each usEne receiver successively decodes the equations, ordered b
transmits a superposition of one private lattice codewad adecreasing computation rate. As we will show, each decoded
one public lattice codeword. Each receiver decodes itafmiv equation can be used to remove its associated codeword from
and public lattice codewords as well as linear combinatiotise receiver’s observation in a way that does not alter the
of all interfering public lattice codewords while treatinige effective SNR for the remaining equations.
interfering private lattice codewords as noise. Using ehsswy
tools, we can mimic the achievable schemel of [5], and obte

an approximation of the sum capacity in all regimes. In tr 14 — —

- . . . . . — First Equation
weak interference regime, the approximation is valid fdr a | - - - Second Equation |
channel gains, whereas in the strong and moderately we £ 1.2 ——Sum
interference regimes, it is valid for all channel gains g@tce E 1 .
for an outage set. The measure of this outage set can be m 2 DA
as small as desired, but this comes at the expense of intgea: 3 ¢ g}
the gap between the inner and outer bounds on the capac &

Our capacity approximation closely follows the basic shafpe % 0.6/
the generalized degrees-of-freedom (shown in Figlire 3giwh - § RS S S LA UL SRS S 4
was derived for this channel by Jafar and Vishwanatfi [2( ‘g 04| , PRI TR W PRV AN
Their approach is inspired by the deterministic model [6da & N oy "‘ ) Y \
relies upon coding across an infinite number of signal leve = 0-2’,' v ‘-"
As a result, their coding scheme cannot be directly traedlat ! ‘ ‘ ‘ ‘ 1
into a finite SNR result, as existing techniques for decodir 00 0.2 0.4 0.6 0.8 1
h

the sum of codewords incur a penalty for each addition

codeword layerl[19]. ig.1. C tati tes for the best two linearly indeendequati
. . . . 1g. 1. omputation rates 1or e Des 0 liInearly inde uations
In its original incarnation, compute-and-forward makes ﬁsg.h o the Cf]anneb, e s 4w at SNRaoU. The@zﬂmqof thos

possible for relays in a network to decode integer combingmputation rates is nearly equal to the multiple-access sapacity. All
tions of the transmitted codewords and send them towardsgigs are normalized by this sum capadif2 log(1 + (1 + h*)SNR).
destination[[19]. The effective SNR at each relay is deteedi
by how closely the integer coefficients match the channel
coefficients. If together the relays recover a full-rank st

9 y H% Related Work

linear combinations, the destination can recover all of t
messages. In our setting, each receiver dectweslinear Interference alignment has generated a great deal of excite
combinations of the transmitted codewords, ment, due to the promise of higher throughputs in wireless
networks [1], [2] as well as other applications, including
11X, + 412 Z Xm coding for distributed storagé [22]. See the recent morpigra
m7k by Jafar for a comprehensive surveyl[23]. Of particular nste
wherea1, a12, a21, andag, are integer-valued coefficients. Ifa series of recent papers that delineate the degreesesfeine
the vectorsa; = [a1; a12])?7 anday = [ag1 ago]” are linearly limits of linear beamforming strategies for alignment oer
independent, then each receiver can solve for its desiréd-cofinite number of channel realizatioris [24], [25]. Beamfanmi
word xj. Through this approach, we can derive closed-forstrategies can only approach perfect alignment asymatiytic
lower bounds on the performance of joint decoding. A diregthereas lattice-based schemes can achi€ye degrees-of-
analysis of joint decoding, although possible|[21], présenfreedom over a single channel realizatioh [8]. Howevetidat
additional difficulties that in turn lead to looser bounds.  based alignment at finite SNR has to date been limited to
As part of the derivation of our sum capacity bounds, wepecial cases, such as symmeifric [18]] [21]] [26], inte@&t, [

21Xk + a22 E Xm
m#k
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and many-to-one interference channgls [7]] [28]. Capamgity with boldface uppercase letters. For instansec Z* and
proximations are also available for one-to-many [7] andicyc A c 7KxK | gt la] = ZkK_l a2 denote the’,-norm of the
interference channels [29], although these coding scheiwes,eciora. Also, let0 denote the zero vector adigr - denote
not employ alignment. the identity matrix of sizei’. We use|-] to denote rounding to
The results in this paper are connected to the recent WQffs nearest intege; | to denote the floor operation afid for
of Niesen and Maddah-AliL[30], which proposes a finefe ceiling operation. In general, the letterand b are used

grain deterministic model for interference networks that i, this paper whenever the variables they describe arednteg

rich enough to capture the phenomenon of alignment. Via thj§yed. All logarithms are to base We also occasionally use
model, they derive the approximate capacity region of the tw;,o notationlog ™ (z) £ max(0, log(z)).

user Gaussian X-channel. As in our work, they characterize
the performance of joint decoding over a MAC where all
users employ the same linear code. While both approaches
yield “constant-gap” approximations, our framework natyr @1 —| &1
yields achievable rate expressions that are easy to plot and
often much closer to the upper bound than the constant-gap
analysis suggests. w2 — &
Bandemer and ElI Gamal have recently proposed a class of
three-user deterministic channels where the interferigigats
are passed through a function on their way to the receiver,
which, in a certain sense, models interference alignmeift [3
They develop a new rate region based on interference degodix —| £x
for this model. In a recent paper, Wu, Shamai, and Verd( have
derived a general formula for the degrees-of-freedom of the
K-user Gaussian interference channel via Rényi's infoionat Fig. 2. Block diagram of a symmetric GaussiAnuser interference channel.

dimension[[32]. _ . . : :
Nested lattice codes have been thoroughly studied as 4 here areK transmitter-receiver pairs that wish to simul-

framework for efficient source and channel coding with sidén€ously communicate across a shared channelovgne
information [9], [10], [33]. Recently, it has become cleaflots, where the channel gains are constant over attiannel

that the inherent linear structure of lattices can enablaymalSes: We assume a real-valued channel model throughout.
Definition 1 (Messages)Each transmitter has a

interesting new schemes, including distributed dirty pape , )
coding [34], distributed source coding of linear functif@g]- MeSSage Wk, drawn independently and uniformly over
[37], distributed antenna systems [38]-[40], and physliapér {1,2, o 2nifom ], . . ) .
network coding [[19], [[41]4]44], to name a few. The origins Definition 2 (Encoders):Eacg transmitter is equipped \{wth
of these schemes can be traced to the work of Korner a@@ €ncoder & : {1,2,...,2n%m} — R", that maps its
Marton [45], who showed that linear binning is optimal foeth Message into a length-channel inputx;, = & (wy) that
distributed compression of the parity of a doubly symmetrg2tisfies the power constraint,
binary source. . . . lxx]|? < nSNR
The remainder of the paper is organized as follows. Section

[Mgives a formal problem statement as well as the approxémavhere SNR > 0 is the signal-to-noise ratio.
sum capacity of the Gaussiaki-user interference channel. Definition 3 (Channel Model)The channel output at each
Next, Sectiof Tll provides a brief review of nested lattioeles receiver is a noisy linear combination of its desired sigiad
and the compute-and-forward strategy. Sedfiah IV shows hdlae sum of the interfering terms, of the form
the Gaussian multiple-access sum capacity can be appmbache
within a constant gap using compute-and-forward combined Yk =Xk +9 Z Xm + Zk @)
with a type of successive interference cancellation. Ib als m#k
shows how an effective multiple-access channel emergeswhereg > 0 parametrizes the interference strength apd
the context of lattice interference alignment. The uppemats is an i.i.d. Gaussian vector with me&@nand variancel. We
needed to establish our approximate sum capacity result dedine theinterference-to-noise ratito be
reviewed in Sectio V. Afterwards, Sectién]VI develops our A o
two achievable schemes and develops closed-form expnsssio INR = g°SNR
for each interference regime. Finally, Section]VIl derithe gnd theinterference leveto be
degrees-of-freedom attained by our strategy.

0l log(INR)

Il. SYMMETRIC GAUSSIAN K-USERINTERFERENCE log(SNR) ~
CHANNEL

Dl — W1

Dy —w2

Dk =Wk

Remark 1:Note that our definition ofNR ignores the fact

A. Problem Statement that there areKX — 1 interferers observed at each receiver.
We begin with some notational conventions. We will denof€his is for two reasons. First, this definition parallelsttb&

column vectors with boldface lowercase letters and matricthe two-user case [5], which will make it easier to compare
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the two rate regions. Second, the receivers will often be abi S
to treat the interference as stemming from a single effectiv
transmitter, via interference alignment.

Definition 4 (Decoders)Each receiver is equipped with a
decoder Dy, : R* — {1,2,...,2"flsm} that produces an 2.
estimatew;, = Dy(yx) of its desired message;,. 3

Definition 5 (Symmetric CapacityA symmetric rate
Rsywm is achievableif, for any ¢ > 0 and n large enough,
there exist encoders and decoders that can attain prdiabili
of error at mosk,

1t
2

1
®T °
Pf({ﬁ}l#wl}U"'U{’lﬁK#w}{})<6. K
The symmetric capacitf’syym is the supremum of all achiev- — ; ;
able symmetric rates. 1 % 1 2 e

Remark 2:Due to the symmetry of the channel, the SYMgig. 3. Generalized degrees-of-freedom for the symmeteiasSiank -user
metric capacity is equal to the sum capacity, normalized Inyerference channel.
the number of users. To see this, assume that the users employ
different rates and that a rate tuplg?,, Rs,...,Rk) IS o o
achievable. Since each transmitter-receiver pair seesatme 10 overcome this difficulty, our approximations allow foeth
effective channel, we can simply exchange the encoders &@sibility of anoutage setwhich is explicitly characterized.
decoders to achieve the rate tupl, (1), Rr(2), - - -, Ru(x)) Specifically, in the regime around = 1, our capacity results
for any permutationr. By time-sharing across all permu-take the following shape: for any constant 0, the capacity
tations, we find that each user can achie&esz:l Ry, 1S appr_OX|mated within at most + 9 + logK bits over
corresponding to a symmetric rate. Thus, the sum of aHje €ntire range oSNR, and all channel gaing, except
achievable rate tuple is upper bounded B¢@syu. for. a set of meaSt_JreL(c) wh!ch yamshes rapidly withe.
Definition 6 (Generalized Degrees-of-Freedorifhe gen- 1hiS type of capacity approximation has also been used by
eralized degrees-of-freedo(@DoF) specifies the fraction of Niesen and Maddah-Ali for the two-user Gaussian X channel
the point-to-point Gaussian capacity that can be attaireed 0] and seems to arise from the capacity region itself, not
user for a given interference level > 0 as SNR tends to just the lower bound. That is, it appears that the capacity

infinity, may in fact simultgneously vary r.apidly with the fine sqale
of the channel gains (e.g., the distance to an appropriately

d(a) = lim IA ) scaled integer) and slowly on the coarse scale (e.g., velati

SNR—oo 7 log(1 4 SNR) interference strength). In the high SNR limit, this behavio

shows up as a discontinuity on the rationals but, at reasenab
B. Approximate Sum Capacity SNRs, our achievable scheme shows that this variation is in

As shown by Jafar and Vishwanath [20, Theorem 3.1], tgCt fairly smooth. The theorem below captures our capacity
GDOF of the symmetrick-user interference channel is iden@PProximations in a simple form. _
tical to that of the two-user channel, except for a singgari _ 1heorem 1:The symmetric capacity of the symmetric

ata =1, Gaussiank-user interference channel can be lower and upper
bounded as follows:
l-a ? sa< %2 (noisy) « Noisy Interference Regime,< o < 1,
1l < 2
?— < ; ; Z i f ((r\:g:(lgately weak) llog (1 + SNiR) — 1log(K -1
dlo)y=¢", % 37 2 1+ INR 2
o=l 1 SNR
o 1 <a<2 (strong) SCSYM<§IOg (1+m)+1
1 a > 2 (very strong).

« Weak Interference Regim§,§ a< 2,
See Figurd]3 for a plot. Notice that sin6&R is taken to

infinity, the GDoF characterization treats all channel gajn llong(lNR) _T_ log(K) < Csym < l10g+(|NR) +1
that do not scale witBNR as a single point at = 1. A finer 2 . 2
view of this regime is possible at high SNR by simply setting ~ for all channel gains.

g to be some fixed value and then takiS§iR to infinity, « Moderately Weak Interference Reginge< o < 1,
corresponding to the standard notion of degrees-of-freedo 1 SNR
Surprisingly, this degrees-of-freedom characterizai®rev- —log™" (—> —c—8—log(K)

2 VINR

erywhere discontinuous with respect §d46]. This presents
an obstacle towards a clean capacity approximation at finite < Osym < llog““ ( SNR > +1
- -2

SNR. VINR
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=
o
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T
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Sum-rate[bits/channel use]
(2]
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g g
(c) SNR = 50dB (d) SNR = 65dB

Fig. 4. Upper and lower bounds on the sum capacity 8fuser symmetric Gaussian interference channel with ré$pebe cross-gaiy. The upper bound
(red line) is given by[(42) and the lower bound (black line}fie maximum of the achievable rates from Theofém 9 and Goyd#, which were computed
numerically, and Theorefn 110. The lower bounds from Thedrkanelnot plotted in this figure. For reference, we have alsttquiathe rate achievable via
time-division (dotted blue line).

for all channel gains except for an outage set of measuke K-user Gaussian MAC
w<27¢foranyc> 0.

« Strong Interference Regimeé,< o < 2, Consider thef-user Gaussian MAC

K
L og  (INR) = £ = 3 < Coym < - log™(INR) + 1 y =) hxi+2, @
4 2 4 k=1
for all channel gains except for an outage set whose meghere the vectoh = [h; --- hg|’ € RX represents the
sure is a fraction o2~ of the intervall < |g| < v'SNR, channel gainsg; € R”, k = 1,..., K, are the channel inputs,
for anyc > 0. z € R" is additive white Gaussian noise (AWGN) with zero
« Very Strong Interference Regime,> 2, mean and unit variance angd € R" is the channel output.

Without loss of generality, we assume &ll users are subject

1 1
. log(1+ SNR) — 1 < Ceym < . log(1+ SNR) to the same power constraint

xx]|* <nSNR, k=1,...,K. (3)

[1l. PRELIMINARIES The capacity region of the channkl (2) is known (see é.gl, [47
Theorem 15.3.6]) to be the set of all rate tuplés, ..., Rx)

In this section we give some basic definitions and results
that will be extensively used in the sequel. LAs otherwise the different powers can be absorbed into there gains.
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satisfying These dithers are made available to the decoder. The signal
) transmitted by usek is
2
> Ry < 5 log <1+SNRZ|hk| ) (4) xj, = [t), — dj] mod A.
kes kes
for all subsetsS C {1,...,K}. The achievability part ~Remark 3:The nested lattice construction from [10] em-

of the capacity theorem is established using i.i.d. GanssiBloys Construction A. To create each fine lattice, this proce
codebooks for all users. Motivated by lattice interferencdre first embeds codewords drawn from a linear code into
alignment, we are interested in establishing the achiéitsabi the unit cube, and then applies the generator matrix for the
of certain rate tuples under the constraint that the codebogoarse latticel. As shown in [10], this ensemble of nested

employed by the¥ users form a chain of nested lattice coded@ttice codes can approach the capacity of a point-to-point
Gaussian channel. If the intege£8 are selected as the coarse

) lattice, the resulting nested lattice code is equivalentato

B. Nested Lattice Codes linear code coupled with a pulse amplitude modulation (PAM)

We employ the nested lattice framework originally proposezbnstellation. Furthermore, th@od A operation simplifies to
in [10]. A lattice A is a discrete subgroup d&™ which is the quantization error from rounding to the integers. It ban
closed under reflection and real addition. Formally, for arshown that the cost of this simplification is only the shaping
t1,t2 € A, we have that-t;, —t; € A andt; +t2 € A. Note gain, which corresponds to at madst2 log(2me/12) ~ 0.255
that by definition the zero vectdris always a member of the bits per channel use.
lattice. Any latticeA in R™ is spanned by some x n matrix

G such that
C. Compute-and-Forward
A={t=Gq:qeZ"}.
o o . . X
We say that a lattice is full-rank if its spanning matfix is ti—| & ! h
full-rank. 'z
We denote the nearest neighbor quantizer associated with xs 1 l y
the latticeA by to—| & 2 O, D=V
= i — . 5 h
Qa(x) = argmin ||x — t|| (5) : K . _
The Voronoi region ofA, denoted by, is the set of all ' v = [Zaktk mod A
points in R"™ which are quantized to the zero vector, where XK k=1
ties in [B) are broken in a systematic manner. The modulo tk—| €K
operation returns the quantization error w.r.t. the lattic
[x] mod A = x — Qx(x) Fig. 5.  Compute-and-forward on a Gaussian multiple-acogtsannel.
’ The transmitters send lattice pointg and the receiver decodes an integer
and satisfies the distributive law. combination of them, modulo the coarse lattite The rate is determined by

how closely the equation coefficients, match the channel coefficients,.
[a[x] mod A + b[y] mod A] mod A = [ax + by] mod A,

Our objective is to communicate over the MAC using
foralla,be . o ~ the compute-and-forward scheme from][19]. To this end, the
A lattice A is said to be nested i, if A C A;. The coding receiver first decodes a set &f lattice equations with linearly

schemes presented in this paper utilize a chai ef1 nested jndependent coefficient vectors. Afterwards, it solves et
lattices satisfying of equations for the transmitted lattice points. Assume the
ACAg C--CA (6) receiveris interested in decoding the lattice equation

K
From these lattices, we construkt codebooks, one for each _
user. Specifically, usek is allocated the codebook; = V= [Z aktk] mod A
AgryNV, whereV is the Voronoi region ofA and the function
(k) : {1,...,K} — {1,...,K} maps between users andvith coefficient vectora = [a; --- ax|" € Z*. Following
lattices. The rate of each codebogk is the scheme of [19], the receiver scales the observatiby a
factor 8, removes the dithers, and reduces modiullto get

k=1

1
Ry, = —log Mg N V.

K
User k encodes its message into a lattice point from 5™ BY+Zakdk] mod A
codebookt, € L. Each user also has a randbdither vector K k=1 K K
d; which is generated independently and uniformly over Zaka " Zakdk n Z(ﬁhk — ap)xp + Bz| mod A
k=1 k=1 k=1

2t can be shown that these random dithers can be replaceddafiégnmin-
istic ones, meaning that no common randomness is required. = [v + zeii(h, a, 8)] mod A, @)
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where squared error (MSE) for linear estimation®f= Zszl ap Xk
K from Y = SN hXp + Z where {X;}X | are iid.
zett(h, a, §) = Z(Bhk —ag)X, + Pz (8) random variables with zero mean and variaStdR and Z

k=1 is statistically independent ofX,}~_, with zero mean and

is effective noise. From [19], we have thags(h,a, 3) is unit variance. Hence the minimizing value gfis the linear
statistically independent of and its effective variance, definedMinimum mean squared error (MMSE) estimation coefficient
as of X from Y. This value of3 was found in[[19, Theorem 2]

and the MSE is given by

1
on(b.a,8) £ ~El|zer(h, a, 5)] (©) .
is oer(h,a) = glel]% oert(h, a, B)
SNR(h”a)?
oor(h,a, 8) = [|fh — al|* - SNR + 52, (10) =SNR (||31||2 - 1+SI(\|7R||h)|2>
Let k£* = ming.q, 20 0(k) be the index of the densest lattice - SNR hh?
participating in the lattice equation The receiver produces an =SNR a (IKxK 15 SNR|h||2) a
estimate forv by applying tos the lattice quantizer associated B 1
with Ag-, =a’ (SNR 'Ixxx +hh") "a (14)
_ —1/2 |2
Vv = [Qa,. (s)] mod A. (11) = H (SNR™ 'k x +hh") a} , (195)
Let Vi be the Voronoi region of\;-, and define the error ynere [T#) can be verified using Woodbury’s matrix identity
probability (i.e., the Matrix Inversion Lemmal) [48, Thm 18.2.8]. Accerd
Pr (v #v) < Pr(ze(h,a, ) € Vi) . (12) ingly, we define
The next theorem summarizes and reformulates relevant re- Reomp(h, a) £ max Reomp(h, a, )
sults from Sections IV.C, IV.D, and V.A of [19]. BeR
Theorem 2:For anye > 0 andn large enough there exists = 310 ( SNR ) _ (16)
a chain ofn-dimensional nested lattice§ C Ax C --- C 2 oéﬁ(h, a)
A; forming the set of codebooks,, ..., Lx having rates

Ry,.... Rk and satisfying the power constraifi (3) such tha:cl?he following definition identifies thé( linearly independent

K - coefficient vectors which yield the highest computatioresat
(a) For all channel vectorh € R™ and coefficient vectors

a € ZX, the average error probability in decoding the Definition 7: We say that an ordered set of linearly inde-

lattice equationv = |3,", axt)| mod A of transmitted Pendent integer coefficient vectofsy, ..., ax} with corre-
lattice pointst;, € £;, can be made smaller tharso long SPONding computation raté&omps. = Reomp(h, ay,) is optimal
as the message rates do not exceed the computation rht&comp1 = -+ > Reomp i @nd foranyk = 1,..., K and any
) SNR set of integer coefficient vectofdy, . ..,a;} of rank k
A
Btk < Rcomp(ha & B) 2 log (Ugff(ha a, ﬁ)) - (13 Efnllin L Rcomp(h, ﬁz) < Reompk;
for all k£ such thata;, £ 0 and some3 € R. o
(b) The codebook<,..., Ly are isomorphic to some setor equivalently
of linear codebookg';,...,Cx over the finite fieldZ,, ) ~ )
wherep is a sufficiently large prime number. fnax ogi(h, &) > ogr(h, ay).
(c) For the samep, the equation[p - t] mod A = 0 holds '
Ve eAg, k=1,..., K. Note that this set is not unique. For examplefaf, ..., ax}
Corollary 1: Given K lattice equationV = [v; --- vx| IS an optimal set of coefficient vectors, so is the set
with coefficient vectorsA = [a; --- ag]|”, the lattice points {—ai,...,—ax}.
t1,...,tx can be recovered ifA] mod p is full-rank over Remark 5:Several recent papers have proposed families
L. of constellations and codes that are well-suited for low-

Remark 4:Note that it is also possible to map both th€omplexity implementations of compute-and-forward[39],
messages and the lattice equations into an appropriatesech [44], [49]-[52]. These codes could serve as building blocks
finite field. That is, the messages can be written as vectais wior @ practical implementation of our alignment scheme.
elements that take values in a prime-sized finite field, aed th
equations are linear combinations of the messages over the ] i
same finite field. Seé [19] for more details. D. Numerical Evaluations

It follows from Theoreni Bfa) that in order to maximize the The optimal coefficient vectors and computation rates from
computation rateRcomp(h, a, 3) for a given coefficient vector, Definition[7 play an important role in the achievable rate re-
one has to minimize-2;(h, a, 3) over 3. It is seen from[{10) gions derived in this paper. The problem of determining e o
that the expression forZ:(h,a, ) is equal to the mean timal coefficient vectors is that of finding the setigflinearly
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independentnteger-valuedvectors that minimizes the effec-of the desired equation,. If t; participates invy, it
tive noise [(Ib). This problem is equivalent to finding thersho is possible to cancel out; from the second equation
estK linearly independent lattice vectors in the latice(F) by adding a scaled version of; to s.. Namely, the re-
spanned by the matrik = (SNR_llxxKJrhhT)*l/Q. ceiver addsra1vy t0 so, Wherery; is an integer chosen
It is shown in [19, Lemma 1] that only integer vectarss  Such that[(ai1 + ra1a21)] mod p = 0, which assures that

ZX that satisfy the condition [(a11 +ra1a21)t1] mod A = 0 for any t; € L. After
reducingmodA this yields
lal|? < 1+ ||h]*SNR (17) .
. N _ . _ . S5 = [va + 121V + Zeri(h, a2)] mod A
yield positive rates. Therefore, in our considerationsiffises — [%2 + ze(h, )] mod A
to enumerate all integer vectors (other than the zero vector - T2 fellih <2 ’
that satisfy [(1l7), and then exhaustively search over theskeret; does not participate iff,. Since the effective noise
vectors in order to find the optimal set. At moderate values @f;(h,a,) is unchanged by this process, the receiver can
SNR this task is computationally reasonable. Neverthelessdiécodev, as long asR, < Rcomp2. Now, the receiver
is sometimes simpler to find a set of short linearly indepehdecan obtainv, by subtractingro; vy from v, and reducing
lattice vectors inA(F), which is not necessarily optimal, inmod A The receiver decodes the remaining equations in a
order to obtain lower bounds on the set of optimal computatigimilar manner, i.e., before decoding thi equationv;, with
rates. A simple low-complexity algorithm for computing acomputation rateRcompx the receiver adds to
short lattice basis (which forms a set&flinearly independent
lattice vectors) is the LLL algorithni [Eiﬁ.ln producing the
figures for this paper we have employed the LLL algorithm, . . Tkt
meaning that the plotted achievable rates in Figure 4 are i integer-valued linear combinatioh_,_, T’“W(l mod A of

fact lower bounds on the rates given by Theoréins 9[@hd 1the lattice equations that were already decoded. The coeffi-
We note that a similar procedure for finding the optimaﬁients in the linear combination are chosen such that tleeteff

I’?g t1,...,tx_1 is canceled out fronv,. Assuming that such
coefficients{ryi,...,rcr—1} €exist, the receiver can decode

Vi = |V + 25;11 reeve| mod A as Iong asky < Rcompk-

|V M ULT|PLE'ACCESS V|ACOMPUTE‘AND'FORWARD Lemmﬂ, Stated in the Sequel, eStabliSheS that fOI‘ any Set
f K linearly independent coefficient vectofa,,...,ax}

This section introduces a new coding technique for reliab Bere indeed always exist integer-valued coefficignts} such

communlcat.|on over the_K-user Gaussian m_ultlple-acces§hat in eachkth decoding step the receiver can cancel out
channel. This technique is based on the receiver decdsﬁngk _ 1 lattice points from the desired equatien, using the

linearly independent equations of the transmitted coddsjor reviously decoded equatiofis, ..., vi_1}. The procedure

Emd thin SOIV'C\? t{)‘e”? f(t)r:_obtang tht(; missr?glles tlransm_n r finding these coefficients is reminiscent of the Gaussian
?t?\ac l:]ser. eh.eﬁm .I:S Stect'%n_W'F. ag é%% (;VWV'eelimination procedure of a full-rank matrix. One of the lgasi
of Ihe scheme, which 1S Tustrated in FIgutas o operations in Gaussian elimination is row switching. In our

Each userk maps its message to a lattice pointin its

. . . . considerations, this would correspond to using an equation
co@ebookﬁk and trqqsm|ts a d|thgred version of it Th.ié that was not decoded yet for eliminating lattice points from
lattice codebooks utilized by the different users form amhaanother equation. Since our successive cancelation puceed

dered with d di Be> o> > R | etgﬁly uses decoded equations, this is not possible. Thexefor
zrz Oi ere \2"7 1esce?{ "JI% ralss = iz —h'_'H— K5 1€ 3 major difference between our procedure for finding a good
(k) = or fi =1,..., 2. 1N€ TECEIVET, WNICN SEES a NOISY o f coefficientsr;;} and Gaussian elimination is that row
real-valued linear combination of the transmitted codelspr switching is not permitted. This incurs a constraint on treo
begins by decoding the integer-valued linear comblnatu?lq which we cancel out users from equations. Nevertheless,

:.’1 = [%:;mtm] rljlo.d Atr\]Nh'Ch yle![ds thdefhlghegtf Compmal;there always exists at least one order of successive cdiocela
tlr?'n rate CO%FI‘l‘_fRS'ng Re Com_rlf;: e-a_rtl Rk orwa; :argewo(; that is possible. In other words, we can always cancel out the
IS 1S POSSIDIE 111 < ficomp1. 1NEN, It PTOCEETS 10 UECOU€ ot of 1; — 1 users fromvy, using the decoded equation

the equation; = [} azmtym] mod A which yields the second {vi,...,ve_1}, but we cannot always control which of the

thf:ghest c?.mputa(tjlcirr: ratRcog?g. Ir; generalxtl dpartlg!pate?_|n K users to cancel. As a result, there always exists at least
IS eéquation and the condition Tor correct decodingvolls o permutation vector such that allK' equations can be

thereforeR1 < Rcomp2. Nevertheless, this condition can be

: i i tecoded as long as

relaxed using the first equation that was already decoded.

Specifically, after appropriate scaling of the channel'tpat Ry < Reompk, k=1,..., K. (18)

and dithers removal, the receiver has a noisy observation

S = [Vk + Zeff(h, ak)] mod A

coefficient vectors was also described [n][44], where t
optimal coefficient vectors are termed dominated solutions

It follows that a sum-rate oEszl Reompik IS achievable over
sz = [V2 + Zefi(h, az)] mod A the K-user MAC with our scheme, where all users are using

SNotice that thisK -dimensional lattice is induced by the channel matrix, 5The operation of extracting> from ¥ is in fact not necessary as the
not then-dimensional coding scheme. receiver is only interested in decodirany set of K linearly independent
4Pseudocode for the LLL algorithm can be found, e.g.[id [54]. equations. We describe this step only to simplify the exmsif the scheme.
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nested lattice codebooks. As we shall see, this sum rate iDefinition 9 (Successive minimalet A(F) be a full-rank
within a constant gap, smaller thdf21log(K) bits, from the lattice in RX spanned by the matriF ¢ RX*X, Fork =
sum capacity of the MAC, for any channel gains and SNR.1, ..., K, we define thesth successive minimum as

e (F) £ inf {T : dim (span (A(F) ﬂB(O,T))) > k}
whereB(0,r) = {x € RK : |x|| <r} is the closed ball of

We first introduce a transformation of a MAC to a multipleradiusr around0. In words, thekth successive minimum of

input multiple-output (MIMO) modA channel, where the g |attice is the minimal radius of a ball centered aroorttiat
K x K channel matrix is integer-valued. This transformacontainsk linearly independent lattice points.

Fion, dubbed th(le:ompute-and.-forward transforymil _play an The product of successive minima can be upper bounded us-
important role in our decoding scheme for the mterferen(fﬁg the following well-known theorem due to Minkowski [55,

A. The Compute-and-Forward Transform

channel. Theorem 1.5].

De.fir.1ition 8: Let {ay,... vaff}_ .be a set of optimal integer  Theorem 4 (Minkowski)For any lattice A(F) which is
coefficient vectors (see Definitionl 7),. ..,k the cor- spanned by a full-ranf x K matrix F
responding optimal scaling factors, aftomp: > -+ >

K
Reompx the corresponding optimal computation rates. We 2 < K 2
define thecompute-and-forward transforraf the MAC with IE Au(F) < KT [det(F)[ (21)
nested lattice codes as h

We are now ready to prove Theorérn 3.

K
S1 [ﬂ1y+ L=t alkdk} mod A Proof of Theoreni]3: Let A(F) be a lattice spanned
S=[  [= ; by the matrix F = (SNR 'Ix.x +hhT)71/2, and
SK {BKY‘FZszladek} mod A let Ai(F),...,Ax(F) be its K successive minima. Let
A ai,...,ax denote the optimal coefficient vectors. By Defi-
t1 nition [, Definition[® and[(d5) we havgF ai| = A (F) for
= |A : + Zesi | mod A, (19) k=1,...,K. The sum of optimal computation rates is
tx K K
. ) . Z Reompr = Z Rcomp(h7 ak)
where we have written the channel outpytdithersdy, and 1 1

lattice codewords;, as lengthr row vectors. We also denote

1 SNR
A=la - ag]” andZert = 255, - Zd i) - - Z Slog | 5 —5
] ’ ] ’ ) 1 2 O'eff(h, ak)

Remark 6: The transform is not unique as the set of optimal - X
integer coefficient vectors is not unique. Nevertheless st _ K log (SNR) — 110 H IF a Hz
of optimal computation rates is unique. As we shall see, ¢he s g% 2 8 Pt b
of optimal computation rates dictates the rates attained ine ;{
transformed channel. Therefore, we use _the tr@compute- _ _ E log (SNR) — llog H )\i(F) _
and-forward transform of the channel, with the understagdi 2 2 bl

that although there may be multiple options for the tranafor . K 9 .
they are all equivalent. Applying Theoreni# to the produdf,_, \7(F) yields

K
The kth outputsy, of the transformed channel correspondsz Reomnr = K log (SNR) — llog (KK |det(F)|2) . (22)
to a lattice equation plus effective noise. Due to Theorém 2 AP =9 2

each such lattice equation can be reliably decoded as |
as all lattice points participating in it belong to codég of
rates smaller thamRcompr. We now lower bound the sum of det(Ixxx +SNR hh') = det(1 + ||h/*SNR),
K optimal computation rates, and in the sequel we show that have that
this sum can be translated to a valid MAC sum rate.

%Qing Sylvester’s determinant identity (see elq.] [48])

2 SNR®
Theorem 3:The sum of optimal computation rates is lower [det(F)[" = 1+ [|h||2SNR ° (23)
bounded by Substituting [2B) into[{22) proves the theorem. (]
K ) % Remark 7:It is possible to avoid the loss of the con-
ZRcompk > 5 log (1 + Hh||25NR) -5 log(K) . (20) stant factork /2 logl_( in @) ysing successi\{e compute—and—
=1 forward, as described in_[56]. However, in this case the

operational interpretation of the sum of computation rates
We will need the following definition for the proof. Note thatbecomes more complicated than that described in the sequel.
the lattice referred to below is over tti€ dimensions induced We will elaborate on this issue in future work.
by the channel vectoh € RK, rather than the: dimensions Next, we give an 0perationa| meaning to the 0pt|ma|

used for coding. computation rates.
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—Clll Z a1mdm
t x | v t .
w1—| L, —1>®—> mod A ! hy By @O—{ @A, F—{mod A ! T > mod A E;l w1
_?2 T 2. a2 17”21 I_7'21
t X2 h | v t .
wWa—| Lo —2>®—>m0d1\ 2 2.0 Y 22 @ ®—| Qr, > ®—{mod A 2 A_1—>modA 2 2_1 W2
' hi, B
_CIK ' ZaKmdm ZTKW\A’W _Zer{’m
t X | ! ! v t .
wK»EK—K>®—>modA K O——@—| Qrx|>@—{mod A K > mod A E;(l WK

Fig. 6. System diagram of the nested lattice encoding anddileg operations employed as part of the compute-and-fontransform. Each message.

is mapped to a lattice codewotd. according to codebookK ., dithered, and transmitted as,. The multiple-access channel scales codewolay ;. and
outputs the sum plus Gaussian noiseThe decoder attempts to recovkr linearly independent equations with coefficiedts= {ay,, }. For the figure, we
have assumed tha; > Rz > --- > Rk and thatR), < Rcomp(h, ai, Bx). To decode the first equation; = [>_ a1mtm] mod A, the receiver scaleg

by 31, removes the dithers, quantizes usifg , , and takesmod A. For the second equationy = [> a2mt:m] mod A, the decoder scales 8, removes
the dithers, and then eliminates the lattice paintusing the first equatio®r; so that the rate of the remaining lattice points is at m®st It then quantizes
using Qx,, adds back inv1, and takesmod A. Decoding proceeds in this fashion, using a form of suceessiterference cancellation to keep the rates
of the lattice points below the computation rates. Aftedigarthe receiver solves for the original lattice points byitiplying by A—! and taking mod A.
Finally, it maps these estimatég of the transmitted lattice points back to the correspondirgssages.

t1 Vi L Vi E A
w1—{ L4 >mod A @ QAl —{mod A T > mod A L 1_1 w1
Zelff(haanBQ) 11"21 I_7’21
t v v t
Wo—| Lo 2 L inod A —>@ ®O—] Qn, > moa A2 L mod A2 2o
2 A AU Az AL 2 2

ZEff(hv ag, BK) Z TEmVm — Z TKmVm

t VK l l l A% E A
WKL K —>{mod A @ A— Qrx—=BO—{mod A K > mod A% £}—<1 —>WgK

Fig. 7. Effective MIMO channel induced by the compute-aadsard transform of a Gaussian multiple-access channel.channel outpuy = > hixy +2
is converted intoK linearly independent lattice equations, = [>_ axymtm] mod A plus effective noisezesi(h, ay, Bx) = Brz + >_(Brhr — ag)xk. As
in Figure[®, these lattice equations can be decoded usingsineof successive cancellation.

B. Multiple-Access Sum Capacity to within a Constant Gam chain of three nested latticasC A, C A; that satisfy the

We now show that the compute-and-forward transform c&Qnditions of Theorerll2 in order to construct the codebooks
be used for achieving several rate tuples within a constgnt = A1 NV with rate 2, arbitrarily close toRcomp: for user
gap from the boundary of the capacity region of tieuser 1 @andZ; = A, NV with rate R, arbitrarily close toRcomp2
MAC. The main technique used for establishing this result {8 user2.
successive cancelation. Namely, each decoded latticdiequa
is used to cancel out the effect of one user from the lattice
equations that have yet to be decoded. We first illustrate the

coding scheme by an example, and then formalize our result
in Theoren{b. From Theoreni]2{a), we know that = [2t; + t2] mod A

Example 1:Consider the two-user MAC can be decoded from; since R, and R, are smaller than
Rcomp1. However, Theoreni]2 does not guarantee that the
Yy = VEx1 + X3 + 2, second lattice equation, = [3t; +t2] mod A can be decoded

at SNR = 15dB. It can be shown using{IL5) arld[16) that th§Om s2 since the first user employs a codebook with a rate

compute-and-forward transform of this channel is R1 ~ Reomp1 Which is higher than the second computation
rate Reomp2. TO circumvent this issue, we use the decoded

S1) 21 2 Zeff,1 mod A equationv; as side information in order to cancel out the
31 )\t )"
82 2 Zeff,2 lattice pointt; € A; NV from s,. Note that Theorerh]2i(c)

With Reompi1 = 2.409 bits andRcomp2 =~ 1.372 bits. Note that guarantees thafp - ty) mod A = 0, k¥ = 1,2 for some
(Rcomp1+ Reomp2)/(1/2log(1+|/h|[?SNR)) ~ 0.998. We use sufficiently large prime numbeyr. Let 27! € Z be an integer
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that satisfied2=! - 2] mod p = 1. The receiver computes or

- 1 0
53'2[52—32_1\71]m0d/& A_<—1 1>A
@B -3-2712)t) + (1 — 327t + Zer 2] mod A _ < 2 1 ) r 2 1]
A1 0 ) o ’
® iy _g.9-1 .
B Ul 3:27Jmodp-t; + Zem} mod A Remark 8: Any full-rank matrix can be triangularized using
= [@12 - t2 + Zefr o] mod A, (24)  the Gaussian elimination process, and therefore any dnlkr

matrix can be pseudo-triangularized with at least one permu
tation vectorr. In particular, since for any MAC the integer-
valued matrixA from the compute-and-forward transform is
full-rank, it can always be pseudo-triangularized with esdt
1 one permutation vector. There are full-rank matrices that can
[(3-3-27"-2)ts] mod A= [M-p- ta] mod A be ppseudo—triangularized with several different pernioitat
=[M-[p-ti)mod Ajmod A yectors, such ad from Example2. However, there are also
=0, full-rank matricesA that can be pseudo-triangularized with

wherea;z = [1 — 3-27!] mod p. Step(a) in (24) follows from
the distributive law. Stegb) follows since3—3-271.2 = M -p
for someM € Z. Thus,

only one permutation vectar. An example of such a matrix
where the last equality is justified by Theor&tm?2(c). is the identity matrixI x .

Now only t, participates in the lattice equatiof. =  The pext theorem gives an achievable rate region for the

[@12t2] mod A and, sinceR, is smaller thanRcomp2, The-  \aC under the compute-and-forward transform. The proof
orem[2 guarantees that it can be decoded_f@‘n This is s given in AppendiXA and follows along the same lines as
accomplished by quantizing onto, and reducing modulad., Examplel .

Theorem 5:Consider the MAC[{R). For any > 0 andn
large enough, there exists a chain »fdimensional nested

. . . - . latticesA € Ax C --- C Ay forming the set of codebooks
After decoding both lattice equationg and v, the receiver Ci.... Lx with ratesR,. ... Ry such that for allh € RX,

can solve for the transmitted lattice poim{sandt., as the two "
equations are full-rank ove%,. We have therefore shown that'"
the rate regiomR?; < Rcomp1 and R < Rcomp2 iS achievable.
In a similar manner, we can show that the rate regiin<
Reomp2 and Ry < Rcomp1 IS achievable with this scheme.

Vo = [Qa, (sgl)] mod A.

1) each usek encodes its message using the codehfpk

2) the integer-valued matrix from the compute-and-forward
transform of the MAC[{R) can be pseudo-triangularized
with the permutation vector, and the optimal computa-

In order to formally characterize the achievable rate negio  tion rates areRcomp1 > - - > Reomp
we will need the following definition which identifies the 3) all ratesR,..., Ry satisfy
orders for which successive cancelation can be performed. Ry, < Reompr-1(k), TOrk=1,.... K (25)
Definition 10: For a full-rank K x K matrix A with
g\rt(t)ageesrs\'/al\lfvi?cﬁnt{rleelzs\;\;e”ggflrtlﬁethi:a;t?i;trltaong;Iarr;z;[trls(n then all messages can be decoded with error probability
A which is upper triangular up to column permutatior?maller thare.
= [r(1) ©(2) -+ x(K)]. This is accomplished by left- Combining Theorems|3 aid 5 gives the following theorem.
multiplying A by a lower triangular matrix. with unit Theorem 6:The sum rate achieved by the compute-and-
diagonal, such thaA = LA is upper triangular up to column forward transform has a gap of no more thigre log K bits
permutations. Although the matrixA is integer valued, the from the sum capacity of the MAC.
matricesL and A need not necessarily be integer valued. Proof: Let Reomp1 > -+ > Reompr be the optimal
Note that the pseudo-triangularization process is rememis computation rates in the compute-and-forward transform of
of Gaussian elimination except that row switching and rothe MAC (2). The integer-valued matrix from the compute-

wheren~! is the inverse permutation vector of

multiplication are prohibited. and-forward transform can be pseudo-triangularized with a
Example 2: The 2 x 2 matrix least one permutation vectar. By Theorenib, the rate tuple
A 2 1 RkZRcomnﬂ—l(k)—(S, fork=1,....K (26)
U3 1 is achievable for any > 0. For this rate tuple we have

from Exampld]L can be pseudo-triangularized with two differ iRk _
k=1

: R - -6
ent permutation vectors ( compm—* (k) )

Rcomgk - Ké

\
1> 71

B>
Il
7 N
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1

= log (1 + ||h[*SNR) — glog(K) - K¢, (27)
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where [27) follows from Theorefd 3. Since this is true for anwith g1 = 1, g0 = g, K1 = {k}, Ko = {1,..., K} \ k and

0 > 0, the result follows. B b,=1Ym=1,...,K. If each of theK users transmits a
single codeword drawn from a common nested lattice code,
C. Effective Multiple-Access Channel the channel becomes an effective two-user MAC[a$ (29)
A channel that often arises in the context of lattice interfe Vi = Xeft k1 + gXeft k2 + Zk,

ence alignment is & -user Gaussian multiple-access channel )
(MAC) with integer-valued ratios between some of the chann@here the effective users Aleft 1 = X and Xefr,k2 =
coefficients. Specifically, the output of such a channel can Bomx Xm. and the effective users’ weights aig , = 1 and

written as bao = K — 1. The effective lattice points any x1 = tx and
L teir,k2 = [D,,44 tm] mod A.
y=> g ( > bmxm> +z, (28)  Our achievable schemes for the symmetficuser in-
=1 meky terference channel, developed in Sectiod VI, are based on
where K1,..., K. are disjoint subsets of1,...,K}. We transforming thek-user MAC seen by each receiver into an
assume that thé,, € Z are non-zero integers, which opengffective MAC with less effective users. We will develop two
up the possibility of lattice alignment. schemes: One transforms the channel into an effective two-

The channel(28) may describe the signal seen by a receiuéer MAC as in the example above. The other, which mimics
in an interference network, perhaps after appropriatequieg  the Hgn-Kobayashl approach, transforms the channel into an
at the transmitters. In such networks, each receiver is or@ffective three-user MAC.

interested in the messages from some of the users whilgypen |attice interference alignment schemes are designed

the othe_zrs act_as mterfe_rers. Hence, !t is beneficial 'Fona“%roperly, the message intended for the receiver is mapped in
several interfering users into one effective interfergridking a unique effective user, while multiple interfering users a
advantage of the fact that the sum of lattice codewordsetf itS¢,|4ad into a smaller number of effective users. In this citse

a Iatti(_:e. _codeword. _ ~suffices for the receiver to decode only theeffective lattice
Definition 11 (Effective users)for the MAC specified points corresponding to the effective users, rather tharfth
by (28), we definel effective users lattice points transmitted by all users. In our considersi
a . the effective lattice points are recovered by first decoding
¥effit = Z b, £=1,.... L. lattice equations of the type

mek,
L
Definition 12_(Effective MAC)The K-user MAC [28) in- v = Zaf Z b,t,, | mod A
duces theeffectiveL-user MAC o1 mek,
L L
y = dexeff,z + z, (29) = [Z agteff7g‘| mod A (32)
=1 =1
with the vector of effective channel coefficients = with linearly independent coefficient vectors, and thewvisgl
[n -+ gr]t € RL. The effective channel is further char-for tefr.1s- . . befr. L.
acterized by the effective users’ weights As in Sectior(1l, in order to decode a lattice equation
2. B Z b2 the receiver first scales its observation by a fagtoremoves
eff,e — — m the dithers and reduces modulowhich yields
meiy
for ¢ =1,..., L, and the effective (diagonal) weight matrix L
B (diag ) 9 s = BY'i‘ZGZ medm] mod A
B é diangﬁJ, ceey bgﬁ,L)' (30) =1 mek,
L L
Definition 13 (Effective lattice points).et t,, be the lat- - {waem + Zaf Z byd,,
tice point transmitted by usen. We define thesffective lattice = =L mer,

point corresponding to effective uséras

terr,e = lz bmtml mod A.

mek,

+

M=

(Bge — ag)Xefr,e + Bz] mod A

o~
Il

1
= [V + Zewt(g, a, B, {bm })] mod A, (32)

Let Oeft(¢) = min,,ecx, (m) (where 0(-) is the mapping \here
between users and fine lattices defined in Sedfidn Ill) be the .
index of the densest lattice contributing tes .. Since all

) . ) bm}) = -
lattices are nested, it follows thads , € Ag,q0)- ze(g, 2, 5, {bm}) = By ; eXeft,l

Example 3 (Symmetrif-user interference channel):

L
Consider the symmetrick-user interference channell (1). = (Bge—ar) > bmXm + Pz (33)
The channel seen by thigh receiver is of the form of(28) =1 mek,
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is effective noise which is statistically independentvofits whereA = [a; ---ar]” andZex = [zgq , - - - zd 1 ]” -

effective variance is The next two theorems are simple extensions of Theoféms 3

L and[®. Their proofs are given in Appendix B.

o%i(g,a,8,B) = SNR > (Bgr — ar)b, + 5%, (34)
el ) ;( ¢ o) en Theorem 7:The sum of optimal computation rates for the

where B is defined in [(3D). Lett = ming.a, o fer(¢) be effective L-user MAC [29) is lower bounded by
the index of the densest lattice participating in the lattic L 1 1+SNRZL_ 92b2 I
equationv. Since all lattices are nested, thenc A-. The Y Reompe > 5 log det(é]?j)l Ly 5 log(L).
receiver produces an estimate foby applying tos the lattice ¢=1

guantizer associated with-,

R Theorem 8:Consider the effectivdl-user MAC [29), in-
v = [Q4,. (s)] mod A. (35) duced from theK-user MAC [28), characterized by the
It follows from Theoreni R that there exists a chainff+ 1 effective channel vectag and the effective weight matriB.

nested lattices which allows to decodevith a vanishing error For anye > 0 andn large enough there exists a chainrof
probability so long as dimensional nested lattices C Ay, C --- C A; forming the

SNR set of codebookg, ..., L, with ratesRq, ..., Ry, such that
————— ], (36) forall geRY andB, if:
Ugﬁ(gvaaBaB)> ( ) s

1
Rm < Rcomp(ga avﬂv B) = 5 log (
1) each userm € K, encodes its message using the

for all m € Ul:a_l?éo Ke. ) codebook’, or a codebook nested ifi,,
_ The expression fpbgﬁ(giavﬂv B) is equal to tge MSE for - 2y the integer-valued matrix from the compute-and-forward
linear estimation of’ = °," ; ae X, fromY =5 7/"; g, X+ transform of the effective MAC[{29) can be pseudo-
Z where {X,}_, are statistically independent random vari- triangularized with the permutation vectar, and the
ables with zero mean and varianégg ,SNR respectively and optimal computation rates aeomp1 > - - - > ReompL,
Z is statistically independent dfX,};_, with zero mean and  3) all ratesR,, ..., R, satisfy R '
unit variance. Hence, the minimizing value gfis the linear
MMSE estimation coefficient ok from Y. A straightforward Ry < Reompr-1(0), for £=1,.... L (41)
calculation shows that the minimizing value 6fis wherer~! is the inverse permutation vector of

5= E(XY)  SNR g’Ba then all effective lattice pointses  can be decoded with error

~ Var(Y) 1+SNRg”Bg probability smaller than.

and the MSE it achieves is Corollary 2 (Achievable symmetric rateConsider the ef-

fective L-user MAC [29), induced from th& -user MAC [28),

2 A 3 2
B) = B . - .
oen(g: 2, B) ?éﬁ”e“(g’a’ﬂ’ ) characterized by channel coefficiengs and the effective

SNR Bee''B weight matrixB. There exists a pair af-dimensional nested
—SNRa” (B— ——_ 88 = 37 : :
- a " 1+SNR-g”Bg (37) JatticesA C A forming the codeboolC of rate R such that
T (SNRTB 4+ gg” 1 (38) for all g € R* andB, if
-a gg’) a ) 1) all users encode their messages usih@or codebooks
- H(SNR*B—1 +geT) 2 aH , nested inc),

) N ) _ 2) The Lth optimal computation rate in the compute-and-
where again[(38) can be verified using Woodbury’s matrix ~ forward transform of[(29) iReomp L,

identity [48, Thm 18.2.8]. Accordingly, we define 3) R < ReompL,
1 SNR then, forn large enough, all effective lattice pointsg , can
R B) 2 -1 . 39 ’ ’ -+
comp(8, 2, B) 7 8 (o—gﬁ(g, a, B)) (39) be decoded with an arbitrarily small error probability.

As in SectiorTll, we define the set of optimalcoefficient ~ Remark 9:Corollary[2 is easily obtained from Theoréth 8.
vectors for the equivalent channdl[29) as thelinearly However, it can also be established without incorporativey t

independent vectorgay, . .., a.} that yield the highest com- compu'Fe-and-forward trans_form machinery_. Indeed, if atirg
putation rateSRcomp1 = Reomp(g;a1,B) > -+ > Reompr = transmit from the same lattice codebook Wlth rate smal!anth
Reompl(g, ar, B) (see Definitioril7). The compute-and-forwardicomp ., by Theoreni 2, each of the equations with optimal
transform of the induced.-user MAC is coefficient vectors can be decoded (without using successiv
I decoding as in the compute-and-forward transform appfoach
[ﬁly + 2 awe ZmE’Cz bmdm} mod A Then, the decoded equations can be solved for the effective
S = : lattice points.

L ' In Section[V] we introduce two achievable schemes for
[BLY + 201 AL Y ek, bmdm} mod A the K-user Gaussian interference channel. One of them is a
simple transmission scheme where all users transmit frem th
same nested lattice code. The result of Corolldry 2 suffices
to establish the rates achieved by this scheme. In the second
teff,L achievable scheme, which mimics the Han-Kobabyshi scheme

tef'f,l
= |A + Zeg| mod A, (40)
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for the two-user interference channel, each user transmdtsnmetric capacity of the channel, for all channel gajns

a superposition of codewords taken from two nested lattiegcept for an outage set of bounded measure. This outage set
codebooks. In this case Corollafy 2 does not suffice aislexplicitly characterized.

Theorem[8, which uses the compute-and-forward transformwWe begin by describing the two schemes and deriving their
machinery, is needed. achievable symmetric rates. These rates are given in terms

In Sectior[¥), we leverage the above results to lower bour?f the optimal computation rates corresponding to a certain

: . . . e(i!fective multiple access channel, i.e., the rates arengive
the capacity of the symmetric Gaussianuser interference ) T . N
channel. as a solution to an optimization problem. This optimization

problem, which amounts to finding the optimal coefficient
vectors, can be efficiently solved numerically, as desdribe
V. SYMMETRIC CAPACITY UPPERBOUNDS in SectionI-0. Figurd % shows our achievable rates for the
In this section we give upper bounds on the symmetriaree-user symmetric interference channel as a functigheof
capacity of the symmetri&’-user Gaussian interference chaninterference level, for several values of SNR. It is evident
nel. To We follow the same arguments given Inl[20] fothat the obtained rates significantly improve over timerisiga
showing that the symmetric capacity of the symmetkic even for moderate values of SNR.
user interference channel is upper bounded by that of thein order to establish the approximate optimality of these
symmetric two-user interference channel. Namely, elitimga schemes, we derive explicit lower bounds on the rates they
all but two users, say usefsand 2, the symmetric capacity achieve which depend only on tf\R and INR. As in the
is upper bounded by the results pf [5]. This is simply becausgo-user case, the symmetric capacity exhibits a different
removing interferers cannot decrease the symmetric rates hehavior for different regimes of interference strengthare
usersl and2. Thus, the upper bounds fromi [5] hold for theacterized by the parameter
symmetric rates of uset and 2 in the K-user symmetric  We now present the two achievable schemes. The first
interference channel. Repeating the same argument for eaghieves the approximate symmetric capacity in the noisy,
pair of users we see that the upper bound€’env developed strong and very strong interference regimes, while thersgco
in [B] for K = 2 continue to hold for allk’ > 2 as well. achieves the approximate symmetric capacity in the weak and
Therefore, the symmetric capacity of the symmetfiieuser moderately weak interference regimes.
Gaussian interference channel is upper boundedias [5]  First scheme - A single-layer lattice cad& pair of nested
lattices A C A; is utilized to construct the codeboak =

L SNR 2
3 log (1 +INR+ 1+INR) Osa<3 A1 N A of rate Rsym. All users encode their messages using
1log(1+SNR) + Llog (14 3NR.) 2 <y <1 this codebook. Since all interferers arrive at tile transmitter
Csym < {1 1 I+INR) 3 = ) ) . ) . .
Vi (1 + SNR + INR) l<a<? with the same gain, they will be aligned into one effective
411 & - lattice point. Thus, thd{-user MAC seen by thé&th receiver
3 log (1 +5NR) 25 o becomes an effective two-user MAC of the form defined in

(42)  sectionIV=C (see Examplé 3)

Since we are only after an approximate capacity charaeteriz

: = + + zp, 44
tion, we further upper boun@'syy for SNR > 1 as Vi = Heft kel T GXeff,k2 T Lk (44)

Where Xef p1 = X, Xeffk2 = D, 2k Xm are the effective

1 2SNR 1 . .
3 log (2 + 1+INR) Osa<sy userspz;, = 1, b%; , = K —1 are the effective users’ weights
flog(14+2INR) f<a<?2 andg = [1 g]T is the vector of channel gains.
Caym < ¢ 1 4SNR2) 2 _ _
sYm = 7log (1 +1mr) 3sa<l Transmit Equations Decoded by Receivers
1
zlog(1+2INR) 1<a<?2
4 —
0£1 e£1
Thus, for all values o6NR we have
1log (1 + 1i'\|‘,\'TR) +1 0<a<i Xo aixz + a2 er az1X2 + as2 er
0#£2 0#£2
Llog™ (INR) + 1 l<a<? Z =
1 + SNR 2
1 +
zlog™ (INR) + 1 1<a<?2
4
2 041 041

VI. ACHIEVABLE SCHEMES
. . . . . ig. 8. lllustration of the single-layer lattice schemecE#&ansmitter sends a
Thls section Inj[md_uces two simple achievable S_Chemes @%eword drawn from a common lattice. Each receiver dectwdegquations
reliable communication over the symmetidc-user interfer- of the codewords, which it can then solve for its desired mgss

ence channel which are based on nested lattice codes. These
schemes are then shown to approximately achi&yg,, the The next theorem gives an achievable rate region for the
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K-user interference channel when each receiver jointly d8econd scheme - Lattice Han-Kobayasfihis scheme em-
codes both the effective usgts ,; which carries the desired ploys a chain of nested lattices C A, C A; to construct
information, and the effective usete 2 Which carries the two codebooks’; and L, with ratesR; and Rs, respectively.
sum of interfering codewords. The theorem relies on degpdi&ach uselk splits its messagey;, into two messages, a public
two independent linear combinations of the effective datti messageuv,; that is mapped into codeboak, and a private
points. See Figurgl 8 for an illustration. This is in contrimst messagev;» that is mapped into codebodk. It is convenient
the successive decoding technique used_in [18], where fitsttreat each uset as two virtual users with codewords;;
the interference is decoded and removed, and only then #ra x;, that carry messages,; andwys, respectively. User

desired lattice point is decoded. k transmits a superposition of its virtual users’ codewords,
Theorem 9:Let Reompi > Reomp2 be the optimal com- Xp = /1_~2 ~ 2% + VX2,

putation rates for the effective MAQJ_(44) induced by the . o
symmetric K-user interference channéll (1). Any symmetriéor v € [0,1). The signal seen by theth receiver is

rate Rsym < Rcomp2 IS achievable for the symmetris-user
. = /1 —~2
interference channell(1). Yk Y Xkl + VXk2
. . . 1 — A2
Proof: Corollary[2 implies that for any symmetric rate tyvli-v E : Xm1 + 97 E , Xm2 + 2k, (45)

Rsym < Reompa2 there exists a pair of nested latticAsC A, m#k m#k

such that both effective lattice points can be decoded dt eaghich induces the effective four-user MAC

receiver. Since the first effective usegs ,; carries all the T
desired information for the&th receiver, it follows that any Yie = VI =7 Xeft k1 7 Xef k2
Rsym < Reomp2 is achievable. ] + 9V 1 — V2 Xeft k3 + 9V Xeft ks + Bk (46)

The next theorem gives an achievable rate region for thgth effective usersxes 1 = Xi1, Xefth2 = Xk2, Xeffh3 =
K-user interference channel when each receiver decodes OEX«L# Xm1 ANd Xeff ke = Y., Xm2. The effective users’
its desired codeword, while treating all other interferomle- eights areb; , = 1, b2, = 1, b2y 5 = K — 1 and b2y, =
words as noise. This theorem can be trivially proved using — 1, and " " "
i.i.d. Gaussian codebooks. Nevertheless, we prove thedheo T
using nested lattice codebooks for completeness. g = [\/1 -2 v gy/1—172 gy]

Theorem 10:Any symmetric rate satisfying

is the vector holding the channel gains.
R < 1 oo (14 SNR The receiver aims to decode the effective codewatgs;; .,
SM = 508 14 (K —1)g?SNR Xeff, k2 @NdXef k3 While treating the fourth effective codeword

: . . . as noise. The next lemma will be useful for the
is achievable for the symmetri&-user interference chan-ze“f’.’C4 . . . o
nel (). erivation of rates achieved by this scheme. Its proof iemiv

_ . in Appendix[C.
Proof. Decodingx; at the kth receiver of the sym- Lemma 1:Consider the effectivd.-user MAC [29), where
metric K-user interference channdll (1), while treating a '

; ; . . e decoder is only interested in the fifst- 1 effective lattice
other users as noise, is equivalent to decoding the equation

with coefficient vectora = [1 0] in the effective two- points teff=1""’teff_=L*1 and letr - 1/\/1+SNR9%Z’§H,L-
user MAC [4%). Therefore, any symmetric rate satisfyinqlny rate tuple achievable for decodingyy, . . ., tef, -1 Over
Rsym < Reomp(g,[1 0]T,B) is achievable. The effective the effective(L — 1)-user MAC
variance for decoding this equation is found using (37) to be L-1
SNR 1 > kgeXet s + 2 (47)
o2¢(g,[1 0]7,B) = SNR (1 + - ) , =1
L+ (K —1)g°SNR is also achievable for decoding the desifed 1 lattice points
which, using [(3P), implies that over [29).
. 1 SNR The next theorem gives the achievable rate region for the
Reomp(g, [1 0]7,B) = 3 log (1 + 15 (K = 1)gQSNR) . lattice Han-Kobayashi scheme.

Theorem 11:Let k(y) = 1/4/1+SNRg>y%(K — 1) and
B consider the effective MAC
For the two-user case, it is known that in the weak and
! — /1 — A2
moderately weak interference regimes each receiver should Vi = K1)V = 7 Xeft k1 + K (7)7Xef k2
decode only part of the message transmitted by the other + k(7)9V'1 — V2 Xeit k3 + 2k, (48)
user [5]. A natural extension of this Han-Kobayashi [15\]\/. .
. . ith effective channel vector
approach to the<-user case is for each receiver to decode

. . . . . . T

linear comb|na_t|0_ns that only mclude parts of the _|r_1terfgr g = [,i(,y) /T=72 k(y)y w&(Y)gV/1— 72} 7
messages. This is enabled by using a superposition of two

lattice codewords at each transmitter, as we describe Segt. and effective users’ weightz;, = 1, by, = 1, and

Figure[9 for an illustration. bgfﬁ?, = K — 1. Let {a1(7),a2(7),a3(y)} and Reomp1(7y) >
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Transmit Equations Decoded by Receivers

X11 X12 a11X11 + @12X12 + a13 Z Xm1 a21X11 + @22X12 + @23 Z Xmil a31X11 + @32Xi2 + ass Z Xm1
m#1l m#1 m#1l

X21 X22 a11X21 +@12X22 + a13 Z Xmi a21X21 +@22X22 + a23 Z Xmi a31X21 + @32X22 + ass Z Xmi
m#£2 m#2 m#£2

XK1| | XK2 a11XK1 + @G12XK2 + a13 Z Xmi | | a21XKk1 + @22XK2 + a23 Z Xmi | | a31X K1 + @32XK2 + a33 Z Xmi
m#K m#K m#K

Fig. 9. lllustration of the lattice Han-Kobayashi schemaclk transmitter sends a public (blue) and a private (retifdéatodeword. Each receiver decodes

three equations of the public codewords as well as its dbgrivate codeword while treating the other private codelsaas noise. From these equations,
the receivers can infer their desired public and private sagss.

Reomp2(7) > Reomps(7y) be the optimal coefficient vectors The problem of optimizing the power allocatianbetween

and computation rates. Any symmetric rate satisfying

nel ().

Note that terr 1 and ter s are points from the same
codebook£; with rate R;, and tef k2 iS a codeword from
Lo with rate Rs.

Consider a compute-and-forward transform coefficient ma-

trix A(y) = [a1(y) az(y) az(y)]? for (@8). For any such

Rsym < ma)i) Rcomp2(7) + Rcomp3(7)

€[o,

the private and public codewords, played a major role in the

approximation of the two-user interference channel capaci
[5]. Here, we follow this approach and choogesuch that, at
each unintended receiver, the received power of each privat
is achievable for the symmetri&’-user interference chan-codeword is equal to that of the additive noise. Specifically
in the sequel we set? = 1/(g2SNR). While this choice
Proof: The receiver is only interested in the effectivéf v may be sub-optimal, it suffices to develop our capacity
lattice pointSter 1, ter 2. Nevertheless, we require that itapproximations in closed form. The achievable symmettie ra
decodes the three effective lattice points 1, terre and for 72 = 1/(g°SNR) is given in the following corollary to
teff k3. Due to Lemmdll, any rate tuple that is achievabitheorenl1lL.
over the effective channe[[(48) is also achievable for de- Corollary 3: Assumeg?SNR > 1 and consider the effective
coding tefr k1, tefik2 and tefrx3 from the original effective MAC
channel[(4B) induced by the lattice Han-Kobayashi scheme.

Y =

g®SNR — 1

K - g°SNR

1
Xeff,k1 1 4 / mxeﬁ,m
[g?SNR — 1
+9 mxeﬁ,% + zg, (4

full-rank, integer-valued matrix, there exists at least @nder with effective channel vector

of pseudo-triangularization. Therefore, there exists eude-
triangularization ofA () with at least one permutation vector

.

B g>SNR — 1
~ |\ K- g2SNR

Consider first the case wherg3) = 2, i.e., the effective

lattice pointtes 2 iS the last to be removed in the successive
cancelation decoding procedure of the compute-and-f(mrwfrn
transform. According to Theoref 8, for ayy < Rcomp2(7)

T
1 92SNR — 1
VE-g2SNR I\ K- g2SNR |

(5

9)

0)

i " wei _ 2 2
d effecuveHlf(serSK WﬁlthﬂéﬁJ = Kl, bat " Kl, and belglf 8=
K—1. Let {al yag , as } andRcompl 2 Rcomp2 2 Rcomp3

and Ry < Reomps(7) there exists a chain C Ay C A, such be the optimal coefficient vectors and computation rates for
thatte k1, tefr, k2 aNdtef 3 Can be decoded from the effectivdhis effective MAC. Any symmetric rate

channel[(4B) via the compute-and-forward transform.

Otherwise,n(1) = 2 or 7(2) = 2, which means that the
effective lattice pointter » is either removed first or secondis achievable for the symmetri&’-user interference chan-
from the proceeding equations in the successive cancelatit®! @.
decoding procedure of the compute-and-forward transform.Computing the achievable rates given by Theofém 9 and
According to Theorem []8 for any?; < Rcomp3(y) and Corollary[3 requires finding the optimal computation ratas f
Ry < Recomp2(7) there exists a chaih C Ay C A; such the effective MACs[(44) and_(49), which involves solving an
thatter 11, tefr,k2 andter x3 can be decoded from the effectiveinteger least-squares optimization problem (see Sedidn)!

channel[(4B) via the compute-and-forward transform.

HK HK
Rsym < Reompa + Beomps

In the remainder of this section, we derive lower bounds on

Since Rsym = R1 + R2, and~ can be chosen such as tahese achievable rates that depend only on the valu8slBf
B andINR and can therefore be directly compared to the upper

maximize Rsywm, the theorem is proved.
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bounds[(4B). To simplify the exposition, we assugne 0 in where we have used (62) arld{(54) for the last inequality. If
the sequel, although all results easily follow fpr: 0 as well. the coefficient vectoa = [0 1]7 is not optimal, we must have

Rcome > Rcomp(ga [0 1]T1 B)
A. Very Strong Interference Regime 1 9 1
L . . > S log(g”) — 5,
The sum capacity in this regime was characterized exactly 2 2
by Sridhararet al. [18] using a lattice encoding scheme veryhere the last inequality follows fromh (55). Taking the mini
similar to the one used in Theordrh 9. The key difference tigsum of the two bounds above we obtain
that in [18] each receiver decodes successively: it firsbdes 1 1 1
the sum of interfering codewords and then subtracts it ieord ~ Rcomp2 > min (5 log(1 +SNR) — 1, B log(g?) — 5)
to get a clean view of the desired signal. Recall that in our 1
scheme, each receiver decodes two linear combinations of it = —log(1+ SNR) — 1, (56)
signal and the interference. 2
We now proceed to lower bound the achievable rate &dr any SNR > 1 andg? > SNR. Since for anySNR < 1 the
Theoren(® for the casa > 2, i.e., g> > SNR. We do this, bound [56) is negative, the restricti®R > 1 is redundant.
rather than directly using the results bf[18], for two reaso Applying Theoreni D, we conclude that fgf > SNR any
The first is that the results of [18] only apply for symmetric rate satisfying

2>(SNR+1)2
= SNR

whereas we need the result to be valid for affy> SNR.
The second is to show that our lattice encoding and decodi
framework suffices to achieve the approximate capacitylin al
regimes. . B. Strong Interference Regime
Using the smgle-lfayer.scheme presented above_, the channellhe strong interference regime correspondd g o < 2,
seen by each receiver is converted to an effective tWO'U%‘?re Uivalentivl < ¢2 < SNR. As in the previous subsection
MAC #4). Applying Theoreni]7 to this effective MAC, we 9 y'=9 o bre '
. . . ) we lower boundRcomp2 in order to obtain a closed-form
find that the sum of the optimal computation rates is lower ; < .
expression for the achievable symmetric rate. In contmast t
bounded by : 4
the very strong interference regime, where the lower bound
1+ SNR(1 + ¢g?(K — 1)) 0N Reomp2 is valid for anyg? > SNR, here we must exclude
K —1 ) — 1. certain channel gains in order to get a constant gap from the
(52) outer bound[(43). That is, the lower bounds we derive for
the strong interference regime are only valid for a preddfine
Let Reomp(g, [0 1]7, B) be the computation rate for decodingsubset of the intervah®> € [1,SNR). As we increase the
the lattice equation with coefficient vectar= [0 1]7 over the measure of this subset, our approximation gap worsens. This
effective MAC [44) withg = [1 ¢] and B = diag(1, K — 1). somewhat strange behavior is to be expected from the existin
The effective variance for the equatian= [0 1]7, which is literature. The results of [8] and [46] show that for theuser
calculated using[{37), is given il {53) at the top of the nextterference channel the DoF are everywhere discontinuous

1
(51) Rsym < 3 log(1+SNR) —1 (57)

is achievable, and is within bit of the outer bound(43) in
is regime.

1
Reomp1 + Reomp2 > 5 log <

page. Substituting2;(g, [0 1]7, B) into (38) gives The notion of DoF corresponds @ ~ 1. Since the strong
) interference regime contains values @fnear 1, we cannot

Reomp(g, [0 1]7,B) = llog (1 +SNR (1 +¢*(K — 1)) ~ expect to achieve rates which are a constant gap from the
’ ’ 2 (K —1)(14+SNR) upper bounds of |5] for all values gf. Instead, we show that

(54) these upper bounds can be approached up to a constant gap for
all 1 < g2 < SNR except for some outage set whose measure

For SNR > 1 we can lower bound_(54) as can be controlled at the price of increasing the gap. We will
1 2(K — 1)SNR see a similar phenomenon when we analyze the moderately
Reomp(g, [0 1]7,B) > = log g (K -1 weak interference regime.
cOmPS ’ 2 (K —1)(1+ SNR)

1 1 Substitutingg = [1 g] andB = diag(1, K — 1) into (34),
> ~log(g%) — =. (55) the optimal computation rate for the effective MACK44) can
2 2 be written as

We would like to find a lower bound ofRcomp2. Consider 1 1
two cases. If the coefficient vectar= [0 1)7 is optimal, i.e., fcomp1 = 5 10g(SNR) — 5 log(a7) (58)
Rcompl = Rcomp(g, [0 1]T, B), we have )
02 = min (((/3 —a1)? + (Bg — a2)2(K — 1))SNR + 52),
Rcome = Rcomgl + Rcome — Rcomp(gv [O 1]T7 B) Bra1,a2

> llog(l 4+ SNR) — 1 whereo is the effective noise variance and the minimization
2 ’ is overg € R, anda = [a; az] € Z*\ 0. From [52) combined



SUBMITTED TO IEEE TRANS. INFO THEORY 18

1o }_SNRHKOAHH :

ox(g, [0 1]",B) =SNR-[ 0 1 ] [o K1

(K —1)(14+SNR)

=SNR - 53
1+SNR+ (K — 1)g2SNR (3)
with (&8), we have Since|3| > 1/2, we can always decompogeinto a sum
1 14+ SNR(1 + g2(K — 1)) of a nonzerointegerq and a real numbep € [-1/2,1/2)
Rcomp2 > ~log —-1- Rcompl giving
2 K-1
1 2 : . 2
> 5 log (9”SNR) — 1 — Reomp1 0 2, min ((cp +4¢—a1)"SNR
1 1
= 5 log (¢°) + 5 log (o7) — 1, + (g9 — a2 + ¢g)*SNR + (i + CJ)2>
and combining with Theoreml 9 we see that any symmetric . 2 2 s
rate satisfying = s (90 + (a9 — a2 + ¢g) )SNR ) (65)
1 5 1 5 The minimization of [(Eb) with respect t@ (where the
Rsym < 5 log (9°) + 108 (og) = 1, (59)  constrainty € [~1/2,1/2) is ignored) can be obtained by
is achievable over thé -user interference channel. Thus, iflifferentiation. The minimizing value o is
order to obtain a lower bound ofisyy it suffices to lower o= — > (qg — a2).
boundo?. The effective noiser2 can be bounded as l+g

Substitutinge* into (G3) gives

. 1 2
02 > min <1 Tl - a2)>SNR + %) . (66)

q,a2

B,a1,a2

02> min (((ﬁ—al)Q—l—(Bg—ag)Q)SNR—i—BQ). (60)

We first hold 3 constant and minimize overy,as. If |8] >
1/(2g), the optimal choices for the integets, a; are

1 1
a1 = | 8], as = |Bg]. (61) 03 > 1 min max (g—z(qg — ag)QSNR,qQ). (67)

q,a2

which, using the fact thag® > 1, can be further bounded by

If || < 1/(2g), rounding the gains will set botly, anda, to  We would like to obtain a lower bound erf which is valid for
zero, which is not allowed. Singg> 1, the optimal choice is all ¢ ¢ S, whereS is an outage set with bounded measure.
Assume first thay € [b,b + 1) for some integerl < b <

a1 = 0, az = sign(f). (62) \/SNR. Let
Now, we are left with the problem of minimizing_(60) over Gmaxy 2 1 SNRL/4-6/2 (68)
5. Instead of performing this minimization problem, we give b+1/2 ’

a lower bound on its solution. We do that by splitting the reghr somes > 0 to be defined later, and note thatay, is not
line into three intervals, and lower bourd for all values of necessarily an integer. Define '

S within each one. Then, we take the minimum over these

three bounds. ®, £ \/b+1/2 SNR™V/A70/2 (69)
Intervall : 0 < |B| < 1/(29) and letS, be the set of all values of € [b,b+ 1) such that
In this interval it is optimal to set, = sign(/3). Moreover, the inequality

|B_g| < 1/2,_ and thereforéSg — az| > 1/2. Combining this lqg — as| < @y (70)

with (€0) gives ] o o

has at least one solution with integgrandasz, whereg is in
02 > SNR (63) the range) < g < gmaxy- LetS, = [b,b+1)\S. By (67), [(68)
g 4 and [69), we have that for all € S,

Interval2 : 1/(2¢g) < |8] <1/2 21 . . 1 2 2
— - — L > — — — NR
Here, it is optimal to set; = [3] = 0. Substitutinga; = 0 Tg =yt 0<q§ILIq1;§bj,a2 max g2 (49 = a2)"SNR, " |,

in (60) gives 1
SNR ) mig max <—2(qg — a3)?SNR, q2> )
7y 2 FPSNR > o > 1 SNRY?, (64) ) N
g g > min <—2<1>§SNR, q,?qaxb>
where the last inequality follows sing& < SNR in the strong g
interference regime. _ Ll (b + 21/2SNR1/2—5’ 1 SNR1/2‘5), (71)
Interval3 : 1/2 < |3] 4 g b+1/2
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7,(1) [ ]
b b+1
7i(2) [ - i
b b+ 3 b+1
)Y | I v N I
b b+ 3 b+ 2 b+1
S [ I o . =
[ T I I |
b btz b+s b+3 b+1

Fig. 10. An illustration of the set$;, (1), 75(2), 75(3) and their unionS,.
In this illustration gmax, = 3 and ®, = 1/16.

Sinceb > 1, we have that

g 1
S <b+ =< 2g.
2 +2 g

Thus, [Z6) can be further bounded by

_L_snRY/2s,

8v/g?

2
UgZ

(72)

19

for all g € [b,b+ 1) up to an outage sef, of measure not
greater thar2—¢.

Combining the three bounds {63), {64) ahd](76) gives

SNR 1 9-c
o2 > min (— — _SNRY2, —SNRW)
7 4 " 4g| 16]g|
> 2" gNR!/2 (77)

~ 16]g]

for all g € [b,b+ 1) up to an outage sef, of measure not
greater thar2—¢.

Combining [59) and[{47) we see that for alke [b,b+ 1)
up to an outage sef, of measure not greater th&t¢ any
symmetric rate satisfying

1

Rsym < 1 log(g”SNR) - g ~3
C

3
2

is achievable. We conclude that the symmetric raig (78) is
achievable for all channel gains in the strong interference
regime except for an outage set whose measure is a fraction
of 27¢ of the intervall < |g| < v/SNR, for anyc > 0.

1
=1 log(INR) (78)

Remark 10:We note that for any: > 0 the set of channel
coefficients that fall in the outage s8tcan be easily deter-

We now turn to upper bound the Lebesgue measure of the gghed.

Sy. LetZ = [—1,1) and define the set

1 -1 P
Tolq) = Hb,b+a,~-~ b+ qT}Jr?bI} mod [b,b+ 1),

C. Moderately Weak Interference Regime
The moderately weak interference regime is characterized

where the sum of the two sets is a Minkowski sum. Wridy 2/3 < a < 1, or equivalently,SNR™'/% < ¢? < 1. As

ing (Z70) as

; (73)
q q

we see that for a givep andg € [b,b + 1) the inequality

admits a solution if and only i € 75(q). It follows that

a P
’__2<_b

| gmax,b |

S= |J Tile)

q=1
See Figuré 0 for an illustration of the s§igq) andS,. Thus,
the Lebesgue measure §f can be upper bounded by
/L(Sb) = Vol (Sb)

I_Qmax,bJ

< ) Vol(Ti(g))
q=1
I_Qmax,bJ

Dy
<3 g2
q=1 q
< 2‘]max,b(1)b
= 2SNR™°.

(74)

(75)

Settingd = (¢ + 1)/log(SNR) and substituting into[(72)
and [7%) gives

(76)

in the strong interference regime, we show the achievgbilit
of symmetric rates which are a constant gap from the upper
bound for a certain fraction of the channel gains. As opposed
to the very strong and strong interference regimes, where a
single-layered lattice scheme suffices to achieve the appro
mate capacity, here we will need the second scheme, which
employs two layers of lattice codes at each transmitter.

As mentioned in the description of the second scheme,
we set the power of the private lattice codewords so that
they are perceived at noise level at the unintended receiver
The achievable rate for this choice is given by Corollaly 3
and we now turn to lower bounding this achievable rate in
closed form. Letg;, go and g3 be the channel gains in the
effective three-user MAC[(49) from Corollafy 3, and recall
that, for this effective channel, the effective weight mats
B = diag(1,1, K — 1). We begin by applying Theorefj 7 to
the effective channel (49) to get the following lower boumd o
the sum of optimal computation rates,

3
HK
Z Rcompi
i=1

i ) oo

log (SNR(g7 + g3)) — % log (3°(K — 1))

1+ SNR(g? + g3 + (K —1)g3)
K—1

>

—_

>

NN V]

log (SNR) — %log (2TK(K —1)). (79)



SUBMITTED TO IEEE TRANS. INFO THEORY

The optimal computation rate can be written as
1 1
Reomp1 = 5 10g(SNR) — = log (o) (80)

whereo? is given in [81) at the top of the next page. Th
minimization in [81) is performed over alt € R andal® =

[a1 as az] € Z3\ 0. Applying Corollary[3, we see that any

symmetric rate satisfying

1 1
Rsym < 3 log(otik) — 3 log (27K (K — 1)) (82)

20

Now, the problem of lower bounding?, reduces to min-
imizing (84) over 3. Rather than solving this cumbersome
minimization problem, we split the real line into four intars,
and lower bounds?, for all values of 3 within each one.

E\rhen, we take the minimum over these four lower bounds.

In a similar manner to the previous subsection, we define
d = (2c + 8)/log(SNR), wherec > 0 is some constant. The
lower bounds below are derived in Appendix D-A.

Intervall : 0 < |3] < 1/2

is achievable for thé<-user interference channel. Therefore, it

suffices to lower bound the effective variangg . Substituting

| Kg?SNR
b= gQSNR—lﬁ

in 1), which is allowed since can take any value iiR,
gives

: - Kg?SNR _
= ’ ENR_1 —a1)*SNR
7K 5,a11r.,1¢11121,a3 <B g2SNR — 1 + (B —a1)
B

- a2> SNR + (K —1)(Bg — a3)2SNR> :

a
(83)

In the sequel, we assufh&NR > 4. With this assumption,
V9?SNR—1 > 1 for all g> > SNR™Y/3, i.e., for all values

v/g2SNR — 1

SNR

) (87)

oK =
Interval 2 :1/2 < |3] < \/[g|SNRY/*%/2 /21

For all values ofSNR™!/® < |g| < 1 except for an outage
set with measure not greater than® we have

, _ 272¢ SNRYZ
TS g

Interval 3 : 1/[g[SNRY/479/2/2 < | 3| < SNRY/*//8]g]

2% SNR'/?

(88)

of g in the moderately weak interference regime. We will also |nterval 4 - SNR1/4/ 8lg] < |B|

use the fact that the inequalityg2SNR — 1 > 1 continues
to hold for all g2 > SNR™'/2, i.e., for all values ofg in the
weak interference regime. Sincgg2SNR — 1 > 1 implies
g*SNR > 2, we also havey?’SNR/(g?SNR — 1) > 1 and
hence[(8B) can be lower bounded as

ofk > _ min

B,a1,az2,a3
! (

We first hold constant, and minimize over , as, as. If | 5| >
1/2, the optimal choices for the integeds, as, as are

a1 = 8] a2 = |B/V@PSNR=1|, a3 = [Bg].  (89)

If |B| < 1/2 all three integersiy, aq, a3 from (88) are zero
and thus are invalid. Therefore, for these valueg3afne of
the integers must take the valtieor —1. Since forSNR > 4

andSNR™'/2 < ¢2 < 1 we have

max (|3|, B/v/aSNR— 1], |Bg|) _ 13l

the optimal choices ofi;, as, as for values of|3| < 1/2 are
(86)

<K32 + (B —a1)?SNR

B
v g?SNR — 1

2
- a2> SNR + (K —1)(Bg — a3)*SNR |.
(84)

a1 = sign(B), a2 =0, a3 =0 .

8This assumption is valid, since f&NR < 4 the symmetric capacity is
upper bounded by /21og(1 +4) = 1.161bits. Our capacity approximations
in this subsection, and also in the next subsection, exlaibibnstant gap
greater tharv/2 bits, and therefore hold fd8NR < 4.

2

Ohk = WW (89)
1/2

9 1SNR (90)

Combining the four lower bounds (87), {8d), (89) ard](90)
we have

for all SNR™Y/® < ¢2 < 1 up to an outage set of measure not
greater tharz—¢. Thus, substituting our lower bound fefi,
into (82), we find that any symmetric rate satisfying

1
§log<

2-2¢SNR'/? 1 SNR'/?

P S

1
ofk > min (ZSNR’

2-2¢ SNR'/?

SNR'/?

1 1
Rsym < ) —c—5— 3 log(27) — 3 log(Kz)

(91)

is achievable over the symmetri¢-user interference channel
for all SNR™Y/® < ¢2 < 1 up to an outage set of measure not
greater thar2—¢.

If /]g|SNRY/4=%/2 /2 < 1/2 this interval is empty, and we skip to
interval 3.
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2 2 2
2 . 5 g*°SNR—-1 1 B 3 g°SNR -1
S (B\/KgQSNR o) P\ E R 2] TE D9 asng — ) | SNR

(81)

D. Weak Interference Regime E. Noisy Interference Regime

This regime is characterized Hy2 < a < 2/3, or equiva-  The noisy interference regime is characterizechby 1/2,
lently, SNR™'/2 < ¢2 < SNR™'/3. As in the moderately weak or equivalentlyg> < SNR™'/2. In this regime, each receiver
interference regime, we develop a closed-form lower bound decodes its desired codeword while treating all interfgrin
the achievable symmetric rate of Corollaly 3. A key differen codewords as noise. Lattice codes are not necessary in this
is that the bound derived here is valid for all channel gainegime in order to approximate the symmetric capacity: ran-
rather than up to an outage set. dom i.i.d. Gaussian codebooks suffice. Nevertheless, the sa

We first note that equations_(82) arid](84) continue to hofterformance can be achieved with lattice codes as shown in
in this regime as well as in the moderately weak interferendéeorenID which states that any symmetric rate
regime, and the optimal choices®f, as, a3 are also as i (85) 1 SNR
and [86). As before, we divide the real line into four intdsya Rsym < = log <1 + 5 >
give lower bounds om? which hold for all values of3 in 2 1+ (K —1)g°SNR
each one, and conclude thag, is lower bounded by the is achievable. It follows that any symmetric rate satisfyin

minimum of these four bounds. The lower bounds below are 1 SNR 1
derived in Appendm RSYM < 5 10g (1 + m) — 5 10g(K — 1)
Intervall: 0 < |5] < 1/2 1 SNR 1
) SNR = ilog <1+71—|—|NR) —§log(K—1) (98)
OHK = ——- (92)
4 is achievable.

Interval2 : 1/2 < |B] < 1/(2|g])

VIl. DEGREESOF-FREEDOM

2
ok > gSﬂ. (93) We have shown that the compute-and-forward transform can
4 approximate the capacity of the symmetkieuser interference
. 3 /3ENR /R channel up to a constant gap for all channel gains outside
Interval3 : 1/(2lgl) < 18] < v/g"SNR/8 a small outage set. Ideally, we would like to use a similar
2 1 approach to approximate the capacity of the general (non-
OfKk = —- (94) o .
4g* symmetric) interference channel. In contrast to the symimet
- case, where all interferers are automatically aligned hgyt
Interval4 : \/g>SNR/8 < || all use the same lattice codebook), the interferers will be
observed through different channel gains. A linear comimna
9 g?SNR of lattice codewords is a codeword only if all of the coeffiti
OHK > 1 (95) are integers. Thus, in order to induce alignment, all of the

interfering gains should be steered towards integers, wisic
Combining the four lower bounds (92, {93). [94) arid](95n overconstrained problem.

we have Recently, Motaharet al. [8] introduced a precoding scheme
) 1 ) . which achieved</2 DoF for almost every channel realization

Ohg 2 7 min (SNR,Q SNR, g~ ) of a K-user Gaussian interference channel. Their technique

25NR relies on symbol-level alignment. Namely, each user engode
= 9T7 (96) its message into several layers. Each symbol in a layer gelon

to the one-dimensional latticé. Each user superimposes its
where [96) is true sincBNR /2 < g < SNR™Y/3 It follows layers in a clever way, such that at each unintended receiver

by substituting[(96) intd (§2) that any symmetric rate $gitigg  Symbols from different layers are received aligned withstho
transmitted by other interfering users. The resulting atife

2
Rsym < llog <g SNR> _ 110g(27) _ llog(KQ) channel at each receiver is an effective multiple accessreia
2 4 2 2 of the type introduced in Sectidn IV*C. When the numbers
< llog (QQSNR) . Z ~log(K) of Ia_yers is large, rough!y half of the e_ffective users atheac
2 2 receiver carry valuable information while the other halé ar
- %log(lNR) _ g — log(K) (97) effective interferers. Through the use of techniques drawn

from Diophantine approximation, they showed that each of
is achievable for the symmetrik-user interference channelthe L effective users achieves essentidl{f. DoF. Thus, each
with SNR™'/2 < ¢2 < SNR™Y/2, receiver obtaind /2 useful DoF.
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In this section, we show that the same asymptotic results

can be achieved using the compute-and-forward transformgemark 12:Niesen and Whiting[[58] studied the DoF of-

Specifically, we show that nested lattice codes allows eafd}ed by the best lattice equation and showed that
of the L effective users in the effective MAC (R9) introduced 12 Ko

in Section IV-CQ to achieve /L degree of freedom for almost d {

all channel realizations. Th{arefore, the one-dimensitaitite L= 2/(K+1) K> 2

used in [8] can be replaced wittrdimensional lattice codes for almost everyh € RX. Our bound therefore agrees with

while maintaining the same asymptotic performance. The baRat of [58] for K = 2 and improves it fork > 2.

efit of using nested lattice codes combined with the preapdin

scheme ofl[B] is that one can obtain an achievable rate regi%l

at any SNR rather than only a DoF characterization. We be

by an_alyzmg the DoF offered by the optimal computation Corollary 5: Let M be a manifold satisfying the conditions

reaf;eeail\?etlh;eli{s-:rsﬁ/lr AI\Q:AC' Then, we translate the results to tth Theoren{IR. For almost evety € M the DoF provided
TheoremB in Sectiofi IV guarantees that the sum of fhy each of the" optimal computation rates o = /K.

optimal computation rates is close to the sum capacity of the

MAC. However, the theorem does not tell us how the sum rate  Proof: TheoreniB implies tha} "}, deompr, > 1. Using

is divided between thél rates. We now show that, in a DoFthe fact thatdcomp is monotonically decreasing ib and that

sense, the sum is equally split betweenZdlrates for almost dcomp1 < 1/K for almost everyh € M, the corollary follows.

(102)

The next corollary shows that alk optimal computation
es offer1/K DoF for almost everyh satisfying mild
Bnditions.

every channel realization. Recall the definition for DoF: u
R (SNR) The corollary above implies that in the limit of very high
deompk = compk (99) SNR not only is the sum of computation rates close to the sum

lim ——m———— .
1
SNR—o 5 log(1 + SNR) capacity of the MAC, but each computation rate scales like th

First, we upper boundcomp1, the DoF provided by the bestsymmetric capacity of the MAC for almost all channel gains.

lattice equation. Note that our analysis (as well as that bf[[58]) is within the
Theorem 12:Let fi,..., fx be functions fromR™ to R context of the achievable computation rates stemming from
satisfying Theoren{P.
1) fi for k=1,..., K is analytic inR™, The next corollary follows from Corollaf 5 and Theoreim 5.
2) 1, f1,..., fx are linearly independent ové, Corollary 6: Let M be a manifold satisfying the conditions
and define the manifold of TheoremIR. The DoF attained by each user in fe
~ ~ ~ user MAC under the compute-and-forward transformi /igC
M= {[fl(h) fK(h)] the Rm}' (100) for almost everyh € M. Iﬁ particular, the DoF attainé‘d by
For almost everyh € M the DoF offered by the best lattice€ach user in thé-user MAC under the compute-and-forward
equation is upper bounded by transform is1/K for almost everyh € R¥
1 The next theorem shows that for almost every effective
deomp1 < K (101)  r-user multiple access channel of the form introduced in

Section IV-C each of the effective users achievg¢s degree

The proof is given in Appendik]E, and is based on showin(gf freedom. The proof is given in Appendiz F

that restricting the scaling coefficieptfrom (7) to the form

53 = q/hy for ¢ € Z incurs no loss from a DoF point of view. | €orem 13:Let fi,..., fi be functions fromR™ to R
This way, the first coefficient ofh is an integer. Then, a resultSatisfying

from the field of Diophantine approximation which is due to 1) fe for £=1,..., L is analytic inR™,

Kleinbock and Margulis[[57] is used in order to lower bound 2) 1, f1,..., fi are linearly independent ovét,

the error in approximating the remainidg— 1 channel gains and define the manifold
with integers. _ - 1 = m
Remark 11:The manifold M from Theorem[IR, which M= {[fl(g) /u@] : geR }
appears in all of our DoF results in this paper, is the sanm@r almost everys ¢ M the DoF offered by each of the

manifold used in[[8] to prove the achievability /2 DoF optimal computation rates for the effective MAC [29) is
for the K-user interference channel. Thus, all achievable DoF
RcompZ(SNR) - l

results from [[8] are also achievable using the compute-and- deompe = _lim = (103)
forward transform. SNR—oo 5log(1 +SNR) L
As a special case of Theorem]12 we may choose the VIII. DISCUSSION

manifold M asRX which implies the following corollary.

Corollary 4: For almost eversh € R¥ the DoF offered by fo
the best lattice equation is upper bounded by

In this paper, we have developed a new decoding framework
r lattice-based interference alignment. We used thisvéa
work as a building block for two lattice-based interference
1 alignment schemes for the symmetric real Gausdiaunser
dcompl < —. . .

' K interference channel. These schemes perform well starting
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from the moderate SNR regime, and are within a constant gayp to column permutatiom. We begin by showing that all
from the upper bounds on the capacity for all channel gaietements in théth (i > 1) row of L. can be written as rational
outside of some outage set whose measure can be controlfeanbers with the same denominatorx ¢; < K!(Ka?,)¥.
A natural question for future research is how to extenitb see this note that ifA is triangular up to column permu-
the results above to the general Gausdiaiser interference tation vectorr, then itsith row contains at least— 1 zeros,
channel. The main problem is that, in the general case, themelya,;; = 0 for j = n(1),...,7(i — 1). SinceL is lower
interfering lattice codewords are not naturally alignesitreeir triangular, the following equations must hold
gains are not integer-valued. Therefore, in order to sisfalhg i
apply lattice interference alignment, some form of prengdi -  _ , - - _
aimed towards forcing the cross channel gains to be integersa” mz:l bimam; =0, for j=n(l),...,x(i = 1). (104)
is required. Unfortunately, simple power-backoff stragsglo
not suffice, even in the three-user case.
One option for overcoming this problem is to use many iZ!
layers at each transmitter, aslin [8], and create partigihaient > limam; = —ai;,for j=mx(1),...,7(i—1). (105)
between interfering layers. While this achieves the optima ™=!

By definition ¢;; = 1, therefore[(104) can be written as

DoF, it performs poorly at reasonable values of SNR, as thanefine the vectors (@) = [ - gm;l]T,
will be a rate loss for each additional layer. As a result thgém) — —[ai,ﬂu) ai,ﬁ(ifl)]T and the matrix

rate region obtained by combining the compute-and-forward

transform with the precoding scheme 6ff [8] is inferior to Aim(1) -+ Gielw(1)

that obtained by time-sharing, for values of SNR of prattica A — : : :

interest. Another option is to precode not only using power-
backoff, but also over time, which may partially compensate
for the lack of sufficient free parameters. An example fomsud/Ve have,
a precoding scheme is the power-time code introduced in [21] AG™ p(@) — g6, (106)
A positive feature of the compute-and-forward framework
is that it does not require perfect alignment of the latticerom the fact thatA can be pseudo-triangularized with per-
points participating in the equations. Namely, the effett énutation vectorr we know that the system of equatiofis (IL06)
not perfectly equalizing the channel gains to integers is &&s a solution. Assume that
enhanced effective noise. For the general interferencengia K (A(”)) —u<K
. . . . . ran =u < K.
this suggests that it may suffice to find precoding schemés tha
only approximately force the cross-channel gains to imgelt follows that there areu linearly independent columns in
Another issue left for future work is extending the caA (™) Let/ C {1,..., K} be a set of indices corresponding
pacity approximation for the real symmetric GaussiBR to v such linearly independent columns, ddde its comple-
user interference channel to the complex symmetric caggent. LetAg’”) € ZK*u pe the matrix obtained by taking
The achievable rate region, as given by Theoréms 9 afié columns ofA(“™ with indices inZ{. Since [I0B) has a
Corollary[3, naturally extends to the complex case using tag|ution, we havea™™ ¢ span (Agﬂf))_ Thus, we can set

results of [19] for the complex case. An open question i D1y - o .
whether the lower bounds on these achievable rate regioﬁs (k) = 0 for all & &/, and [10B) will still have a solution.

which depend only orSNR and INR, also extend to the Letting 4, € R"*" be the vector obtained by taking froff?

complex case. The answer seems positive since the bouRHQ’ the entries with indices itt, it follows that
mainly rely on volume considerations that seem to remain Agﬂ)gz(;’) — (™) (107)
valid in the complex case.

Air(i—1) -+ Qi—1x(i—1)

has a solution. Now, multiplying both sides df _(107) by

APPENDIXA (AS’”))T gives
PROOF OFTHEOREM[E
We begin with two lemmas which will be useful for the A’(“”)ES) =a'(hm), (108)
proof of Theoreni 5. - G T i)
(3,m) 1,7 1,7 uxXu i _
Lemma 2:Let A be aK x K matrix with integer entries where A - (AU ) A% €z is a full-rank
of magnitudes bounded from above by some constagt If  matrix and a’™ — Ag"”) al™) ¢ 7ux1 Note that

i,7)

there exists a lower triangular matdxwith unit diagonal such . o . i)
that A — LA is upper triangular up to column permutatior®!l entries of A as well as all 92”'952 ob™"™ have
7, then for a primep > K (K)2(K amax)?* amax there also magnitude bounded from above Byax = uag,,,. We have
exists a lower triangular matrid.(?) with elements from () i\ L i)

{0,1,...,p—1} and unit diagonal such th&(») = [L(»A] b = (A ' ) arr

mod p is upper triangular up to column permutatien Letting ¢; — | det(A’™)| and applying Cramer's rule for

Proof: Assume that there exists a lower triangular matrigatrix inversion (see e.g. [48]) we see that all elements of
L with unit diagonal such thaA = LA is upper triangular éz(j) can be expressed as rational numbers with denomipator
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Recall the Leibnitz formula (see e.d., [48]) for the detaranit Proof: Due to the distributive property of the modulo
of ann x n matrix G operation we have
n MK
det(G) = Z sign(o) H Gios (109) [v 4+ u] mod A = Z(ak + bk)tk] mod A.
cEeS, i=1
k=1
where §,, is the set of all permutations ofl,...,n}. It [ K
follows thatdet (A’>™)) must be an integer and in addition = Z[(ak + by) mod p + My, - plts, | mod A
1 < [det (AG™) | < ul(@may)®. Thus,1 < g; < ul(@max)" Lk=1
Moreover, Cramer’s rule also implies that the numerator of r K
each element i) is an integer not greater tharl(éma)" = Z ((ax + br) mod p)ty,

r
b
Il

in magnitude. Sinceu < K, and since each element of 1

¢ is either zero or corresponds to an elementfﬁ?,
each element;;, j < i of L can be written as a rational
numberé;; = m;;/q with 1 < ¢ < K!(Ka2,)% and
Imij] < KNKa2qa)™ fori=1,..., K. where {M;}X | are some integers. Utilizing the fact that

Now, define the matrid, = diag(qi,...,qx)L and note [p-tx] mod A = 0 for all lattice points in the chain, which
thatL, € ZE*X due to the above. LeA’(P) — [iA] mod p. follows from Theoreni2{c), the lemma is established. m
Since multiplying a row in a matrix by a constant leaves its We are now ready to prove Theorémn 5.

]~

+ ) My [p-tx] mod A] mod A (1112)

B

=1

zero entries unchanged, the entries of the matrix Proof of Theorenils: Let T = [t7 --- t%]7 and
A'®) = [LA] mod p V = [vi .-+ vE]T = [AT]mod A. The compute-and-
— [diag(qr, .. ., qx)LA] mod p forward transform of the MAC[{2) can be written as
= [diag(q1, .., qx)A] mod p, (110) t
L S=|A : Z dA
are zero whenever the entries Af are equal to zero. More- : + Leff | MO
over, since all elements df are bounded in magnitude by tx
K!(Ka%a)"™ and all elements oA are bounded in magnitude = [AT + Zeg] mod A
by amax all elements ofA = LA are bounded in magnitude = [V + Zef] mod A.

by KK!(Ka?2,)" amax. Combining with the fact that < _ _ o _
g < KI(Ka2,)", we have|d’i§.”)| < K(K1)2(K amax)?X amax Assume there exists a pseudo-triangularizationAofwith

foralli =1,....K, j = 1,..., K. Therefore, for a prime permutation vector, i.e., there exists a lower triangular matrix
numberp > K (K!)2(K ama)?X amax the modulo reduction L with unit diagonal such thaA = LA is upper triangular up

in (II0) does not change any of the non-zero entries tgr column permutatiom. Lemma2 implies that there exists a
diag(q1, - - -, qx)A to zero. lower triangular matrix.(® with elements fron{0,1,...,p—
Recall that ifA can be pseudo-triangularized with a matrix} @nd unit diagonal such thad?) = [LWA] mod p is

L and permutation vector then d, .;y # 0, and hence upper triangular up to column peartgu)tatimn SinceL(® has

~1(p) . ' a unit diagonal it can be written d5'?) = I+ R wherel is
also aivi(“ 7 0fori = 1. K We have the.refore e identit?/ matrix andR has non-zero entries only below the
shown that forp large enough there exists a Iower—tnangulaﬁain diagonal

matrix L(®) = [diag(q1, . . ., qx)L] mod p with elements from _ o .
{0,1,...,p— 1} such thatA’® — [£.) A] mod p is upper- Assume the receiver had access to the side information
vi,...,Vik_1. As the entries ofR are non-zero only below

triangular up to column permutation In order to complete th in di L th . eV add it t
the proof, it is left to transfornL(?) to a lower-triangular € main diagonal, the receiver can compiite v, add it o
S and reduce moduld, giving rise to

matrix with elements fror{0, 1, ..., p—1} andunit diagonal

Let (¢;)~! be an integer that satisfiééy;)~'¢;] mod p = 1. SS'=[S+R-V]mod A

Such an mteger_ alwgys eX|_sts singeis an integer dlfferen_t — [AT + RAT + Zeg] mod A

than zero, ang is prime. It is easy to verify that the matrix

L® = [diag ((¢1)7",..., (qx) ") L®] mod p is a lower- = [_(I +R)AT + Zefr] mod A

triangular matrix with elements frof0, 1, ..., p—1} and unit = [L®AT + Zeﬁ} mod A

diagonal, andA ") = [L®» A] mod p is upper triangular up .

to column permutation. = = |[LPA]mod p-T + Zeff:| mod A (112)
Lemma 3:Let tq,...,t; be lattice points from a chain [ t1

of nested lattices satisfying the conditions of Theoriem 2. — |A® : + Zet | mod A

Let v = [ZkK:I aktk] mod A and u = [ZkK:I bktk] mod A t'

be integer-valued lattice equations of these points. Then L K

K where [IIR) follows from Lemnid 3. L& = [A(P)T] mod A

[v+u] mod A = Z ((akr + bx) mod p)ty | mod A. and recall thatA () is upper-triangular up to column permuta-

k=1 tion m, thusdﬁ.ﬁ(k) =0forallj =n(k)+1,..., K. It follows
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that for anyk < K the lattice pointt ;) does not participate permutation vectorr. Repeating the proof of Theoreim 5 it
in any of the lattice equation&1,...,vg easy is to see that for any set of rates

Assume the mapping function between users and lattices B
is chosen a®/(k) = 7 1(k), i.e., each usek employs the Re < Roompr—i0), €= 1,00 L
codebookl = A.-1(;) NA. In this case, the densest latticdhere exists a chain of nested latticksC A, C --- C Ay
participating in lattice equatiofr;, is A;. The decoder usesinducing the codebooks, = A -1, NV with ratesR,, such

sff in order to produce an estimate that if tery € L, for all ¢ = 1,..., L, all effective lattice
N si points can be decoded fros
Vi = [QAIC (sk )] mod A (113) If each of the usersn € K, that comprise effective usér

for each one of the lattice equations,. It follows from Uses the lattice codeboak (or any codebook nested ify),
Theorem[2 that there exists a chain of nested lattites thenterr o € £, and all effective lattice points can be decoded.
Ag C --- C Ay forming the set of codebooks,, ..., Lk u
with ratesRy, ..., Rk such that all equation®,, ..., vk can APPENDIX C
be decoded with a vanishing error probability as long as the

rates of all users satisfy the constraints[of] (25). PROOF OFLE_MMAE] . . . .
We have shown that if the receiver has access toln order to decode the desired effective lattice points, it

Vi,...,Vi_1 it can decode the set of equatiohs We now Suffices to decodé —1 linearly independent lattice equations

show a sequential decoding procedure which guarantees #lathem, in which te;, does not participate. Leh =

the receiver has the right amount of side information at eath -~ @r—1 0] be some coefficient vector for such an
step. First, note that equation. The effective rate for computing the lattice diqua

V= [Zf;ll aster,¢] mod A with the coefficient vectoa over

k—1 h
oS = |8+ Z Tkam] mod A, (114) the channel{29) is
m=1 Rcomp(gaéaB) = l1Og ( 2 SL? ) s (116)
thus the necessary side information for decodingis only 2 Tei(g:a, B)
Vi,...,Vk_1. In particular,s?' = s; and hencev; can Wwhere
be decoded with a vanishing error probability with no side L-1
information. After decodingv; the receiver has it as side oZ(g,a, B) = min SNR 2(394 — ag)*b .
information, and can therefore comput® and decodevs. BeR =1
As Vo = [ro1vi + vo] mod A and the receiver knows, it + B%(1 + SNRg7 b3 1)
can use it in order to recover,. Now, the receiver has; L—1
andv, as side information and can use it to compsiie The = min SNR Z(ﬁngz —ag)?b% , + B2, (117)
process continues sequentially until all equatiéns. .., vx BER —1 ’
are decoded. _ _ where [11V) follows by substituting = Sx. The effective
When the process ends we are left witii noiseless \qrance and computation rate for computing an equation wit

equations coefficient vectora = [a; --- ar_; 0] over the effective

- 1 channel [[2B) are therefore the same as those of computing

Vi ~ to an equation witha = [a; --- ap—_1] over the effective

: = |[A® . mod A. (115) channel[(4F7). Thus, for purposes of computing equationis wit
Vi : the effective lattice pointse 1, . .., tef,—1 the two channels
tx are equivalent. Since this is all we need in order to decode

Since A is upper-triangular up to column permutation, anfefi1: - - - - tefi,L—1, the lemma follows.

in particular full-rank modulop, the original lattice points

t tx each user transmitted can be recovered [ | APPENDIXD
Lre-oh BK ) DERIVATION OF THE UPPER BOUNDS ONrZ WITHIN THE
DIFFERENT INTERVALS
APPENDIXB

A. Moderately weak interference regime

PROOF OFTHEOREMSZIAND [§] .
We upper bound? for all values of3 within each of the

Proof of Theoreni]7: The proof is identical to that of

) e \—1/2 four intervals. Recall that in the moderately weak intexfare
Theoren{B withF = (SNR™'B~! + gg’) . B regimeSNR™/3 < ¢2 < 1. Defined = (2¢ + 8)/log(SNR),
Proof of Theorerﬁ]8: Let wherec > 0 is some constant.
¢ Intervall: 0 < |3] < 1/2
eff,1 — s . ~o . .
} In this interval the choicei; = sign(8) is optimal due
S=|A : + Zerr| mod A to (88). Therefore, for all3| < 1/2 we have(3 —a;)? > 1/4.
teff, L Thus,
be the compute-and-forward transform of the effectivaser o2 > SNR
MAC, and assume thaA can be pseudo-triangularized with HK ="y
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Interval 2 :1/2 < |B] < /[g[SNRY/479/2 /2
Since|B| > 1/2 we can express it as = q + ¢ with

g€ Z\0andy € [-1/2,1/2). We can further lower bound

ofk as

ok > min
¥,q,a1,a3

( ((p+q—a1)’ + (a9 — as + p9)*) SNR)

(118)

= min
¥,q,a3

( (> + (g9 — a3 + ¢g)?) SNR).

The minimizing value ofp (ignoring the constrainty €
[-1/2,1/2)) is found by derivation to be

g
1+g2
Substitutinge* into (118) gives

or=— (qg9 — a3).

2 : )2
Ok > min (1 T (g9 — a3) SNR)
> - mln <(qg — ag)QSNR>. (119)
q,a3
Forb=1,2,..., [1/3 log(SNR)] we define the sets
Go={g:9€[27"27"")}, (120)

and the quantities

s & VITFISNRI/ 52
1 SNR-1/4-8/2

P, &
b \V2-b+1

Let S, be the set of all values @f € G, such that the inequality

lqg — as| < Py (121)

has at least one solution with < |¢| < gmaxs andas € Z.

26

Define
0 1-20 2.20 247L) . b
%(q): ) ) 7"'7L2bJ
9 9 q q
b Po
+2°227| mod [0,2),  (125)
q
whereZ = [—1,1) and the sum in[{125) is a Minkowski sum.

It is easy to verify that

[ gmax]
Sc27 | Tila) (126)
q=1
Since |24 | =0 for all 0 < g < 2°~1, for all values ofg in

this range we have

Tilg) = P%I] mod 02

C [2°®4Z] mod [0,2)

Note that since = 3+ ¢ and we assume in this interval that

1/2 < |B| < /]g|SNRY47%/2 /2 we have

lq] < V/|g|SNRY/4=072,

Thus, for allg € G, andﬁ~ in the considered interval, we have

|Q| < gmaxb-

Let Sy = G\ Sp. Using [119), we have that for ajl € S, and
[ in the considered interval

2
Ohk =

1

5<1>§SNR

1 SNRY/27°

9 9—b+l1
1SNR!/27°

>-2

4 /g2
The condition [[I211), which defines the s&, can be written
equivalently as

(122)

lg- 2% — 2bas| < 2°®,,. (123)

Define § = 2° - g, and note that for ally € G, we have
g € [1,2). With this notation,[(I23) becomes
2 P
‘g—ﬁ <2b2% (124)
q q

= Ty(1). (127)
Therefore,
2b—-1_1 LQmaxJ
Ssc2 (| U wlo|u| U Tl
q=1 q=2b—1
\_‘ZmaxJ
=2 mu| U T (128)
q=2b-1
The Lebesgue measure 8f is bounded by
14(Sp) = Vol (&)
Lqmabe
<27 | Vol (T5(1 Z Vol (Ty(q
2b 1
LQmabe q)
<27t (2. 20+ Y { w 9.0b "2
q= 2b 1 q
LQmabe 2 1
<28, +2B, Y 255
q= 217 1 q
<20, + 8 27 Py gmaxs
= 2P, +8-27°SNR™?
=/2.20/2SNR™YV/479/2 L g .9 PSNRTS. (129)

We can now upper bound the measure of the outage set

[1/310og(SNR)]

U

b=1

S= Sb7

of all values ofSNR™/% < ¢ < 1 for which (IZ2) does not
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necessarily hold, as Interval 4 : SNRY*/,/8[¢[ < ||
[1/31log(SNR)] In this interval

wS) = > uS) 2 S s 1 SNRY/2
P o = K" 2 5=
1/31og(SNR)+1

< VOSNR—1/4-0/2 Z (V2)?

b=1

B. Weak Interference Regime

1/31log(SNR)+1 We upper bound?, for all values ofﬁ~ within each of the
+8SNR™ Y 27t four intervals. Recall that in this regimeNR ™'/ < ¢2 <
=1 SNR™Y/3,
Using the identity Interval1: 0 < |3] < 1/2
B ) As a; # 0, in this interval(§ — a1)? > 1/4. Thus,
Zpbz—_l(pB—l), , _ SNR
b=1 P Ofhk = T

which is valid for allp # 1, and the fact thap_,2, 27 < 1, -
Interval2 : 1/2 < |8] < 1/(2]|g])

we have =
NG In this intervalas = | 8g] = 0. Thus,
u(S) < V2SNR™/479/2_XZ_\/9SNRY/6 4 8SNR™? )
V2-1 2 > (3g)?SNR > I2NR
—(5/2 5 UHK — (ﬁg) — 4 °
< 7SNR + 8SNR

< 16SNR™9/2, (130)  Interval3 : 1/(2|g]) < |3] < /9?SNR/8

Substtutings — (2 +8)/ 1og(SNR) nto (L22) and[T30) we. U7er O egUlr assumpton TR >, for al values
see that in the interval/2 < |3| < \/]g|SNRY/*79/2/2 for
all values ofSNR™/% < |¢| < 1 except for an outage set with | 3 V/g2SNR/8

measure not greater tha&t¢ we have V@?SNR—1|~ /g2SNR—1
—2¢ 1/2
0'|%|K > 2 8SNR ) < \/QQSNR/S
4.28 |\ /[g? g?SNR/2

Interval 3 : 1/g[SNRY/479/2/2 < | 3] < SNR'/*/,/8]g] < %,
SinceSNR™? < 42 < 1 and we assumelNR > 4, we

where the second inequality follows froh (131). Thus, the
optimal choice foras is

(131) as = |B/V/aSNR—1| = 0. (132)

Note that [I31) continues to hold for gt > SNR™'/2. This Therefore, [(84) can be lower bounded by
will be useful in the weak interference regime. For all value

have

2
S2SNR— 1 > IONR

of | 3] in this interval P 252 s> L
3 1/4 g>SNR 4q
B | SNRYY/\Elg] )
V@2SNR — 1|~ /g>SNR — 1 Interval4 : /g2SNR/8 < |3
SNR!/4 In this interval
—— 2
2 2 22 g SNR
8g| - LR ot > KB > 2.
1 —3/2 —-1/4
< 5ldl /2SNR™Y APPENDIX E
< 1 PROOF OFTHEOREM[1Z
-2 For the proof we will need a key result from the field of
and hence, using (85), the optimal valueagfis Diophantine approximation which is due to Kleinbock and

Margulis. The following theorem is a special case [of! [57,

az = {3/\/ 9*SNR — 1} =0. Theorem A].

Therefore, using the fact that= (2c+8)/log(SNR), we can  Theorem 14:Let fi, f»,--- , fx be real analytic functions
upper bound[{84) as in h € U, YU a domain inR™, which together withl are
, A2SNR 9-2c GNR/2 linearly independent oveR, and define the manifold

UHKZQQSNR_124.28 N M:{[ﬁ(fl) o fr(m)] fleu}'
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For almost everth € M and anys > 0 the inequality We begin by showing that for any> 0 the number of DoF
s offered by the first computation rate is upper bounded by
Jnax |ghe —ad < g7 %" (133) 1
T dcomgl < E (136)

has at most finitely many solutior{g, a) € Z x ZX. - )
for almost everyh € M(e). Then we take: to zero in order

For the proof of Theorerh 12 we will need a corollary ofg show that this holds for almost every

Theoren{1H. N . _
, he/\/lz{[fl(h) e fr(®)] heRm}.
Corollary 7: Let fi, fo,..., fx be functions fromR™ to
R satisfying the following conditions: Consider the manifold\ (¢) for somee > 0. Note that
1) fi fori=1,..., K is analytic inR"™, hi = fi(h) # 0 for anyh € M(e), and we can therefore
2) 1, f1,..., fx are linearly independent ovék. defineh = h/hy. We haveh; =1 and[hy --- hi] € M(e),

Let D — {fl ER™ : fi(h) = 0} andD(c) = D + B(0, ¢), where M (e) is the manifold from[(134) in Corollary] 7.

where the sum is a Minkowski sum arg(0,¢) is an m- The channel[{2) is equivalent to the channel
dimensional closed ball with some radius- 0. Define the set y = iy —x; + Z P + iz. (137)
U(e) = R™\ D(e), the set of functiong(h) = fx(h)/f1(h) hy s hy

from () toR for k =2,..., K, and the manifold Let a be a vector of integer coefficients, afidoe the scaling

-\ _ 15 A factor used by the receiver in order to compute the lattice
M(e) = h) --- h)] : hel . 134
© {[f2( ) fie(h)] (6)} (134) equationv =[5 apty] mod A, see Sectiorilll. The

For all ¢ > 0, almost everyh € M’(¢), and anyd > 0 the effective noise for computing the equatienwith coefficient
inequality vectora is

7 B
max ’qﬁg — al‘ < |q|7ﬁié (135) Zeff(h7 a7 /8) = (/B - al)xl + Z(ﬁhk - CLk)Xk + h_z’
=1, K—1 = | 1

has at most finitely many solutiodg, a) € Z x Z5-1, and its effective variance is given by

Proof of Corollarny[T: We would like to apply Theorein 14 oei(h,a, B) = (B — a1)*SNR

for the set of functiong, .. ., fx from/(e) toR. To that end R B2

we have to show that for adl > 0 the functionsfs, ..., fx are + I;(Bhk ar)"SNR + [h]2 (138)
analytic inl{(e) and together withl are linearly independent #

overR. Recall that

The reciprocal of an analytic function that is nowhere zero — max 1 log ( SNR )

is analytic. Thus, for any > 0 the function1/f;(h) is CompL T s 2 02¢(h,a,j3)

analytic in U(e). In addition the product of two analytic 1 1 o,

functions is analytic. Therefore, for ary> 0 the functions =5 log (SNR) — 5108 (12151 oeii(h, a, ﬁ)) - (139)

fr = fx(h) - (1/f1(h)) are analytic irid(e) fork = 2,..., K.
We show that the functionis fs, . .., fx fromi(e) to R are

linearly independent for akk > 0 by contradiction. Assume

Thus, in order to obtain an upper bound Bgmp1 We need
to lower boundsZ(h, a, 3) for all values of3 € R anda €

; _ ZEJK \ 0. Let
they are linearly dependent. Thus, there a exists a medsura B~ max
setS € U(e) and a set of coefficientt (¢),...,tx(e)} € R T ey
not all zero such thath € S and
I i k* = arg max hy.
h h g k
ti(e) - 1 +ta(e) - f2(~) +-Ftx(e) - fK(N) = 0. ) k=1,..K
fi(h) fi(h) Note that if |[3] < 1/(2h*) the minimizing corresponding
This implies thatvh € S choice of integersuy,...,ax in (@38) is ap- = sign(B),

) 3 ) anda, = 0 for all k& # k*. This in turn, implies that for
0-1+ti(e) - fi(h) +t2(€) - fo(h) + - +tk(e) - fx(h) =0, |B] <1/(2h*) we have

in contradiction to the assumption that the functions o2 (h,a,B) > (Bh* — sign(8))*SNR > SN_R’ (140)
1, f1,..., fx from R™ to R are linearly independent ové. ) ) 4 ) -
_We can therefore apply Theordm] 14 to the set of functio¥dich meansicomp: = 0. Thus, in order to obtain a positive

for..., fx from U(e) to R for all € > 0, and the corollary NUmMber of DoF,|3| must be greater thab/(2h").
follows. - If 1/(2h*) < |B] < 1/2, then the minimizing value of
ay in (I38) isa; = 0. This implies that for all values of
We are now ready to prove Theorém 12. Define the Bgts 1/(2h*) < |8 < 1/2 we have
D(e) andlU(e) as in Corollanfy, and the manifold SNR
ogi(h,a,B) > BSNR > —— (141)

4 (h*)*

Mie) = {[fiB) - fie(B)] : heu}.
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which also meansicomp: = 0. Thus, in order to obtain a wherecz(h) > 0 is a constant independent of tBa&lR.
positive number of DoF,3| must be greater thah/2. Minimizing (@48) with respect toy gives

Hence, in order to lower boun@ (138) in the limit of very K1
high SNR, it suffices to limit the optimization space ¢f to v = m
|8] > 1/2. For such valuesg can be written in the form
B = q+ ¢ wherep € [-1/2,1/2), andq € Z\ 0 is the Hence, for ally € Z, p € [-1/2,1/2), a € Z¥\0 and almost
nearest integer t@. everyh € M(e)

For any|p| < 1/2, ¢ € Z\ 0 anda € ZX\0 we have K1
oai(h,a,¢,¢) > ca(h)SNRFTET (147)

ar(t 2, 0,) herecy(h) > 0 is al tant independent of BRR
— (0 +q—a)?SNR wherecy(h) > 0 is also a constant independent o .
(ptg-a) Substituting into[(139) gives

- 2 (¢/2)?
+ max (ghx — axphi)” SNR + _
k#1 ( ) |hq]? Reomp1 < LK” . llog(SNR) _ llog(04(h))
B o (q/2)2 K+4§K-1) 2 2
> ©?SNR + max (qhi — ar + ohi) " SNR + Il (148)
1
) B _ ¢ for any § > 0. Takingé — 0, it follows that the number of
= max < (¢ + (ghi — ar + ©hi)?) SNR + W) DoF the best equation offers is upper bounded by
142 R
- (e i Rl < (149)
We further bound[(142) by substituting the minimizing value SNR—oo 5log (14+SNR) = K

of ¢ for eachk # 1. It follows by simple differentiation that

for eachk + 1 the minimum is obtained at for almost everyh € M(e). Since this holds for alk > 0

we can now take: to zero (note that the bound does not

o (k) = — k (qhs — az)- depend or¥). The setD has measure zero singe is analytic
1+h2 on R™ and is not identically zero (otherwise, the set of
Substitutingy* (k) into (I42) yields functionsl, f1, ..., fx is not linearly independent). Note that

5 the measure oD(e) goes to zero as — 0, and furthermore
o2:(h,a,q, p) > max ( 1 (ghi, — ar)*SNR + q_) D = Ne>oD(e). Therefore, the claim holds for almost every

k21 \ 1+ h3 |2h1 |2 he M.
SR S h 26NR 4+ L
1+ maxy£1 h? '%17%?'(1 b a * |20 |2 APPENDIXF
_ ) ¢ PROOF OFTHEOREM[L3
= co(h)- rilif('qhk — ak["SNR + |2h1 2 (143) Consider the referenck-user MAC
wherecy(h) > 0 is some constant independent of $ilgR. L
Consider the limit ofSNR — oo, and assuméy| is upper Yret = 3 geXe + 2, (150)

bounded by some finite integeg > 0. Then, for almost every £=1
h € M(e) there exists a constant(h, go) > 0, independent wherez is AWGN with zero mean and unit variance and all
of the SNR, for which users are subject to the power constrdigg|> < nSNR. Ap-

(144) plying Corollary[® to this channel implies that for almosegy

g € M the DoF that each optimal computation rate offers is
for all 0 < |g| < qo anda € Z¥~1. Note thath does not 1/L. Let Rigmy(g,a) be the computation rate corresponding
satisfy [14%) only if all elements oh are rational. Substi- t0 the coefficient vectorn over the reference MACL(I50).
tuting (143) into [(14B) givesZ(h,a,q, ) > ca(h,q)SNR We now show the computation rate of the same coefficient
which means that the DoF is zero. Therefore, in order to gé&ctor Reomp(g, a, B) over the eff?ctive MACI[(29) is within
a positive DoF,g must tend to infinity when the SNR tends? constant number of bits frofigo,,(g, a).
to infinity. For the reference chann€&l (150) the effective noise vagianc

Any positive integetq| can be expressed &g = SNR” for for a givena and 3 is

some~y > 0. From Corollary[ ¥ we know that for any > 0, 2 — SNR 2 A2
for almost everyh € M(e) and anys > 0, for g large enough Trer(8: 2. 6) 15 —all” + 5%,

we have while for the effectiveL-user MAC [29) the effective variance
I?Qf'qﬁk —ap| > |g| T — SNRTKLITI. (145) for the samea and 3 is

hi — h
I]Icliidq & —ak| > ci(h, go)

L
Thus, for|¢| large enough and almost evely e M e) we oen(ga, 8,B) = SNRY " (Bgr — ar)’baq , + 5.
have =1

2y

oAb g e) > e (G SNR' #7777, (SR ).
(146) U?ef(ga a, ﬁ) < Ugff(ga a, Ba B) < b*ol?ef(gv a, B)

Letting b* = maxy—1 ... 1, bgw and noting that* > 1 gives

.....
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Since the above inequalities are valid for any valuespin
particular they hold true for the optimal value ¢f and it
follows that

1o
R(r:%fmp(g’ a) — 3 log(b*) < Reomp(g; a,B) < Rgmp(gaa)-

As b* is independent of th&NR it follows that the DoF

of each computation rate over the reference and effecti
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