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A CHARACTERIZATION OF ORDINARY MODULAR

EIGENFORMS WITH CM

RAJENDER ADIBHATLA AND PANAGIOTIS TSAKNIAS

Abstract. We show that a p-ordinary modular eigenform f of weight k ≥ 2, with
p-adic Galois representation ρf and mod pm reductions ρf,m, and with complex
multiplication(CM) is characterized by the existence of p-ordinary CM companion

forms hm modulo pm for all integersm ≥ 1 (in the sense that ρf,m ∼ ρhm,m⊗χk−1).
As an application we give an alternative proof of the well-known result that if f
has CM then the restriction of ρf to a decomposition group at p splits.

1. Introduction

For a rational prime p ≥ 3 let f be a primitive, modular eigenform with q-expansion
∑

n

an(f)q
n and associated p-adic Galois representation ρf . In this paper, we prove

some interesting arithmetic properties of such a form which, in addition, has complex
multiplication (CM). One of the reasons that CM forms have historically been an
important subclass of modular forms is that the simplicity with which they can
be expressed – they arise from algebraic Hecke characters of imaginary quadratic
fields – makes them ideal initial candidates to check deep conjectures in the theory
of modular forms on. For instance, Hecke showed that the L-function of a CM
form is precisely the L-function of the corresponding Grössencharacter. This can be
viewed as a precursor to the work of Eichler, Shimura, Deligne and Serre, almost
half a century later, on attaching Galois representations to eigenforms. Similarly,
Shimura established the modularity of CM elliptic curves over Q two decades before
the modularity theorem over Q was proven in full generality.

The specific arithmetic property we establish involves higher congruence compan-
ion forms which were introduced in [AM]. The precise definition and properties of
these forms are given in Section 2, but for now we will only remark that companion
forms mod pn are defined as natural analogues of the classical (mod p) companion
forms of Serre and Gross [Gro90].
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The main theorem of this work (Theorem 4.1, stated and proved in Section 4)
establishes that given a p-ordinary CM form f , one can always find a CM companion
form mod pm for any integer m ≥ 1. The proof explicitly finds the desired companion
forms in a Hida family of CM forms in which f specializes and thus circumvents the
deformation theory and modularity lifting approach of the companion form theorem
in [AM]. As an application of the main theorem, we show in Section 5 that the
converse is true as well: any p-ordinary form f which has CM companions mod pm

for each m ≥ 1 must necessarily have CM. We therefore have a complete arithmetical
characteriztion of p-ordinary CM forms and this allows us insight into another deep
and conjectural characterization of such forms – Greenberg’s local nonsemisimplicity
conjecture. This conjecture states that if the the restriction splits (i.e. is diagonal
w.r.t some basis) then f has CM. The converse of this conjecture is well-known to
be true and we apply the main theorem to give an alternative proof.

2. Higher companion forms

Let p ≥ 3 be a rational prime and let f be a primitive cusp form of weight

k ≥ 2, level N prime to p and q-expansion
∑

n

an(f)q
n . Here, f is primitive in

the sense that it is a normalised newform that is a common eigenform of all the
Hecke operators. For a place v|p in Kf , the number field generated by the an(f)’s,
let ρf : GQ −→ GL2(Kf,v) be a continuous, odd, irreducible Galois representation
that can be attached to f .We may, after conjugation, assume that ρf takes values
in the ring of integers of some finite extension of Qp. This allows us to consider
reductions of ρf modulo pm (for integers m ≥ 1) which, with the exception of the
mod p reduction ρ, we will denote by ρf,m. In fact, if ρ is absolutely irreducible
then there is no ambiguity in defining these reductions. We can, and will, define
congruences and reduction mod pm even when the elements don’t lie in Zp by using
the notion of congruence due to Wiese and Ventosa [TiVW10]. With f as above and
2 ≤ k ≤ pm−1(p− 1) + 1 we define a companion form of f .

Definition 2.1. A companion form g of f , modulo pm, is a normalised eigenform
of level prime to p and weight k′ where k′ ≥ 2 is the smallest integer such that
ρf,m ≃ ρg,m ⊗ χk−1 mod pm. An equivalent formulation of the above criterion in
terms of the Fourier expansions is: an(f) ≡ nk−1an(g) mod pm for (n, p) = 1.

We make the following remarks on companion forms.

• The equivalence between the Galois side and the coefficient side in the above
definition perhaps needs further justification. One direction is immediate if
we take the traces of Frobenii of the Galois representations. The other di-
rection follows from the absolute irreducibility of ρ, Chebotarev and [Car94,
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Théorème 1] which is essentially a generalization of the Brauer-Nesbitt the-
orem to arbitrary local rings.

• The weight k′ can be easily deduced from the definition and the determinant
condition on ρf to be the smallest integer such that k′ ≥ 2 and k′+k−2 ≡ 0
mod φ(pm).

• The companionship between f and g is symmetric in the sense that the
congruence between their associated representations may be written as ρg,m ≃
ρf,m ⊗ χk′−1 mod pm.

Example. For p = 7, let f be a newform of weight 3, level 12 and character of order
2. It has the following Fourier expansion,

q − 3q3 + 2q7 + 9q9 − 22q13 + 26q19 − 6q21 + 25q25 − · · ·
We find a companion form g modulo 49 of weight 41, level 12 and character of

order 2 with the Fourier expansion

q + 3486784401q3 − 153603710655044926q7 + 12157665459056928801q9 +
9249847954500085824674q13 − 60411291473254777931519326q19−

535583022247728139930999326q21+ 9094947017729282379150390625q25 · · ·
Note that we need only to check the congruence for coefficients up to the Sturm

bound
Following Wiles [Wil88], we say that f is ordinary at p (or simply p-ordinary) if

ap 6≡ 0 mod v for each prime v|p (in Kf). Then, by Wiles [Wil88], and Mazur-Wiles
[MW86], for every prime p|p we have

ρf |Gp
∼









χk−1ψ−1 ∗

0 ψ









where Gp is a decomposition group at p and ψ is an unramified character.
A natural question is to ask when the restriction(s) ρf |Gp

actually split. If ρf,℘ mod
℘ is absolutely irreducible then we note that the splitting behaviour of ρf,m|Gp

= ρf |Gp

mod ℘m is independent of the choice of a lattice used to define ρf .
The following proposition gives us a sufficient condition for ρf,m to split at p.

Proposition 2.2. If f is p-ordinary and has a p-ordinary companion form modulo

pm then ρf,m splits at p.

Proof. Let g be the p-ordinary companion form of f with weight k′. We know from
the preceding discussion that with respect to some basis ρf,m|Gp

is ‘upper-triangular’
as is ρg,m|Gp

. In fact,
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ρf,m|Gp
∼









χk−1ψ−1(ap(f)) ∗

0 ψ(ap(f))









, ρg,m|Gp
∼









χk′−1ψ−1(ap(g)) ∗

0 ψ(ap(g))









.

Since f and g are companion forms, ρf,m ≃ ρg,m ⊗ χk−1 mod pm. So,

ρg,m|Gp
⊗ χk−1 =









χk′+k−2ψ−1(ap(g)) ∗

0 χk−1ψ(ap(g))









≡









ψ−1(ap(g)) ∗

0 χk−1ψ(ap(g))









mod pm

since χk′+k−2 ≡ χφ(pm) ≡ 1 mod pm. After applying an appropriate change of
basis so that the unramified character ψ appears as the lower right entry we get,









χk−1ψ−1(ap(f)) ∗

0 ψ(ap(f))









≡









χk−1ψ(ap(g)) 0

∗ ψ−1(ap(g))









mod pm

and conclude that ∗ ≡ 0. (Note that when k = φ(pm) + 1, we need the additional

assumption that ap(g)
2 6= ψ(p) so that we can distinguish between ψ−1(ap(g)) and

ψ(ap(g)).) �

That the splitting at p of ρf,m implies the existence of a companion form mod pm

is considerably more difficult to prove. This was shown in [AM] but only under the
hypothesis that ρf has large image which was necessary to make the deformation
theory work. (Specifically, it was required that the Im(ρf ) contains SL2(kkk), where kkk
is a finite field of characteristic p.) However, when f has CM, Im(ρf) is necessarily
projectively dihedral. In the sequel we avoid the use of lifting theorems altogether and
exhibit the companion forms by working directly with the Hecke character associated
to the CM form and visualising them as part of a Hida family.

3. Hecke characters and CM forms

In this section we describe the connection between forms with complex multipli-
cation (CM forms) and Hecke characters of imaginary quadratic fields. The material
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in this section is well known. The interested reader may consult [Rib77, §3] and
[Neu99, Chapter VII, §3].

Let K be a number field, O = OK its ring of integers and m an ideal of K. We
denote by Jm the group of fractional ideals of OK that are coprime to m.

Definition 3.1. A Hecke character ψ of K, of modulus m, is then a group homo-
morphism ψ : Jm → C∗ such that there exists a character ψf : (OK/m)∗ → C∗ and
a group homomorphism ψ∞ : K∗

R → C∗, where KR := K ⊗Q R, such that:

(3.1) ψ((α)) = ψf (α)ψ∞(α) for all α ∈ K.

We refer to ψf and ψ∞ as the finite and the infinite type of ψ respectively. The
conductor of ψ is the conductor of ψf and we will call ψ primitive if the conductor
is equal to its modulus.

We now specialize to the imaginary quadratic field case. Let K = Q(
√
−d), where

d is a square free positive integer. We will denote by D its discriminant and by (D|.)
the Kronecker symbol associated to it. The only possible group homomorphisms ψ∞

are then of the form σu, where σ is one of the two conjugate complex embeddings of
K and u is a non negative integer. The following well known theorem due to Hecke
and Shimura then associates a modular form to the Hecke character ψ of K ([Miy06,
Theorem 4.8.2]):

Theorem 3.2. Given a Hecke character ψ of infinity type σu and finite type ψf with

modulus m, assume u > 0 and let Nm be the norm of m. We then have that

f =
∑

n

(
∑

a=n

ψ(a))qn

is a cuspidal eigenform in Su+1(N, ǫ), where N = |D|Nm and ǫ(m) = (D|m)ψf (m)
for all integers m.

The eigenform associated with the Hecke character is new if and only if ψ is
primitive. (See Remark 3.5 in [Rib77].)

An important feature of forms which arise in this way is that coincide with CM
forms whose definition we recall.

Definition 3.3. A newform f is said to have complex multiplication, or just
CM, by a quadratic character φ : GQ −→ {±1} if a(q, f) = φ(q)a(q, f) for almost all
primes q. We will also refer to CM by the corresponding quadratic extension.

It is clear that the cusp form f in the above Theorem has CM by (D|.). Indeed,
the coefficient aq(f) in the Fourier expansion of f is 0 if no ideal of K has norm equal
to q. Since (D|q) = −1 exactly when this holds for q, aq(f) = (D|q)aq(f) and f
has CM. On the other hand, Ribet [Rib77] shows that if f has CM by an imaginary
quadratic field K then it is induced from a Hecke character on K.
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4. The main theorem

Theorem 4.1. Let p ≥ 3 be a rational prime, and f =
∑

n

an(f)q
n a p-ordinary

CM eigenform of weight k ≥ 2 and level N prime to p. Then for every integer

m ≥ 1, there exists a p-ordinary CM eigenform hm =
∑

n

an(hm)q
n of weight km that

is a companion form for f mod pm, where km is the smallest integer ≥ 2 such that

k + km ≡ 2 mod φ(pm).

Proof. Let K = Q(
√
−d) be the imaginary quadratic field by which f has CM, D be

the discriminant of K and σ : K →֒ C one of its two complex embbedings which we
fix for the rest of this section. Let g be the (p-old) eigenform of level Np and weight
k, whose p-th coefficient has p-adic valuation equal to k − 1 and whose q-expansion
agrees with that of f at all primes n coprime to p. Clearly g has CM by K as
well. Let ψ be the Hecke character over K, of conductor m and infinity type σk−1

associated with the CM form g. The p-distinguishedness of f implies that p = pp̄ is
split in K. If r is a rational prime coprime to m that splits in K, say r = rr̄, then
we have:

ar(g) = ψ(r) + ψ(r̄)

In the proof of Proposition 7.1 in [Col96] Coleman shows how to obtain a p-ordinary
(CM) p-adic eigenform h2−k of weight 2− k such that

θk−1(h2−k) = g,

where θ is the operator q
d

dq
on q-expansions. It can be easily seen that θk−1 has the

following effect on q-expansions:

θk−1(
∑

cnq
n) =

∑

nk−1cnq
n.

Therefore,

(4.1) an(f) = nk−1an(h2−k)

Clearly, then, it is enough to find classical forms hkm , of weight km, that are congruent
to h2−k mod Pm, where P is the ideal above p in an appropriate finite extension of
Qp.

By Proposition 7.1 in [Col96]

h2−k =
∑

a

ψ̄−1(a)qNa

where the sum runs over all the integral ideals ofK away fromm. Ghate in [Gha05,
pp 234-236], following Hida, shows how to construct a p-adic CM family admitting a
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specific CM form as a specialization. We outline the construction. Let λ be a Hecke
character of conductor p and infinity type σ. We have that O×

E
∼= µE ×WE, where

WE is the pro-p part of O×

E . Let 〈〉 denote the projection from O×

E to WE. One then
one gets (part of) the family mentioned above by

G(w) :=
∑

a

ψ̄−1(a)〈λ(a)〉w−(2−k)qNa.

For any integer w ≥ 2, ψw(a) = ψ̄−1(a)〈λ(a)〉w−(2−k) defines a Hecke character of
infinity type w − 1, so that by Theorem 3.1, G(w) a p-adic CM eigenform of weight
w. Moreover all of them are p-ordinary ([Gha05, pp 236]) and therefore classical for
weight w ≥ 2 ([Hid86, Theorem I]). Clearly G(2 − k) = h2−k. Notice also that all
the ψw have coefficients in the field generated by the field of coefficients of ψ and λ.
We will denote by L the extension of Qp generated by the coefficients of ψ and all
the ψw and by P its prime ideal above p. We will also denote by E the extension of
Qp in which λ takes its values. In this setting K ⊂ L.

Let kE, kL be the residue fields of E and L respectively and consider the compo-
sition O×

E → k×E → k×L , where the first map is the obvious surjection and the second
one is the obvious injection. The image has prime-to-p order so the kernel contains
WE . In particular 〈λ〉 ≡ 1 mod P. This implies:

〈λ(a)〉w−w′ ≡ 1 mod P for all w,w′ ∈ Zp.

It then follows easily that if w ≡ w′ mod φ(pm) then:

〈λ(a)〉w−w′ ≡ 1 mod Pm.

Consider the members of the family with weight km where km is the smallest integer
greater than 2 such that k + km ≡ 2 mod φ(pm). The previous identity then gives:

(4.2) 〈λ(a)〉km−(2−k) ≡ 1 mod Pm.

Since G(w) =
∑

n

(

∑

a=n

ψ̄−1(a)〈λ(a)〉w−(2−k)
)

qn, the r-th coefficient of G(w) (for r a

rational prime is):

ar(G(w)) = ψ̄−1(r)〈λ(r)〉w−(2−k) + ψ̄−1(r̄)〈λ(r̄)〉w−(2−k).

The identity rr̄ = r along with (4.2) then shows that aq(G(km)) ≡ aq(h2−k) mod Pm.
For the primes r that are inert in K the above equivalence is trivially true since

in this case ar(G(km)) = 0 = ar(h2−k). We thus get that for all primes r away from
Np the following holds:

ar(G(km)) ≡ ar(h2−k) mod Pm.
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As we mentioned before, all the members of G with weight w ≥ 2 are classical
forms so every hm := G(km) is classical. Finally the last identity implies that hm is
congruent to h2−k modulo Pm almost everywhere, as required.

�

Note that the Fourier coefficient version of Definition 2.1 was used to show com-
panionship in the above proof. As noted in the remarks following the definition, this
formulation can be reconciled with the Galois representation formulation if one knows
that ρf is absolutely irreducible. For f as in the theorem above, ρf is reducible be-
cause it has projectively dihedral image. Absolute irreducibility then follows because
ρf is odd and p ≥ 3.

5. Applications

As an immediate application, we use Theorem 4.1 to in fact prove its converse;
thereby giving a complete arithmetic characterization of p-ordinary CM forms.

Theorem 5.1. Let f be a p-ordinary cuspidal eigenform such that for every m ≥ 1
there exists a CM cuspidal eigenform hm which is a companion of f modulo pm.
Then f has CM.

Proof. Assume that f has CM companions hm for all m 1 and assume that hm is CM
with respect to a non-trivial quadratic character ǫm : (Z/DmZ)

× −→ {±1} ⊂ C×.
The companionship property between f and each of the hm’s enforces the following
compatibility congruences:

hm1
≡′ hm2

mod pm1 for all m2 ≥ m1

ǫm1
≡′ ǫm2

mod pm1 for all m2 ≥ m1

where ≡′ means “away from p”. The second compatibility congruence, combined
with the fact that the characters ǫm are valued in ±1 and p ≥ 3, implies that ǫm = ǫ
for all m ≥ 1. In particular ǫ is also a non-trivial quadratic character.

Furthermore by Theorem 4.1 each of the hm’s has companions everywhere and, in
particular, there exist CM forms fm, such that:

fm ≡′ f mod pm for all m.

Each of the fm has CM w.r.t the same character ǫ for all m ≥ 1. This, combined
with the previous congruence implies that:

aℓ, (f) = aℓ, (f)ǫ(ℓ) for all (ℓ, cp) = 1.

If p|c then it is clear that f has complex multiplication by ǫ as well. If (c, p) = 1 then
let ǫ′ : (Z/cpZ)× −→ C× be the quadratic character that is trivial on (Z/pZ)× and ǫ
on (Z/cZ)×. Then it is also clear that f has complex multiplication with respect to
ǫ′. �



A CHARACTERIZATION OF ORDINARY MODULAR EIGENFORMS WITH CM 9

A second application provides insight into a deep conjectural equivalence between
f having CM and ρf being split at p. In one direction we have Greenberg’s local
non-semisimplicity conjecture.

Conjecture 5.2. If f is ordinary at p and ρf |Gp
splits then f has complex multipli-

cation.

This is known for classical p-ordinary eigenforms of weight 2. The converse to this
conjecture is well-known to be true. For instance, the reader may refer to Ghate’s
paper [Gha04] for a proof as well as a survey of results for the weight 2 case. We
apply our main theorem to give an alternative proof of the converse.

Theorem 5.3. Let f be a p-ordinary cuspidal eigenform of weight k ≥ 2 and level

N prime to p. If f has CM then ρf |Gp
splits.

Proof. As stated in Section 2, since f is p-ordinary, ρf |Gp
is “upper-triangular”.

Specifically, we fix a basis under which it has the following shape.

ρf |Gp
∼









χk−1ψ−1 ∗

0 ψ









By Theorem 4.1, since f has CM, it has companions hm for each m. In particular,
ρf,m ∼ ρhm,m ⊗ χk−1. By Proposition 2.2 this implies that ρf,m|Gp

splits for each m.
Finally the observation that ρf |Gp

≡ ρf,m|Gp
mod pm finishes off the proof. �

We conclude with the following picture which summarizes the relationship, known
and conjectural, between CM forms and higher companions forms on the one hand
and local splitting behaviour of their associated Galois representations on the other.

ρf |Gp splits

��

GLNC //
f has CM

Theorem 4.1

��

Theorem 5.3
oo

ρf,m|Gp

splits for
each m

OO

essentially [AM, Main Theorem]
// f has a companion

for each mProposition 2.2
oo

OO
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