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Abstract.
Let R be a subset of a group G. We call a subgroup H of G the R-conjugate-permutable

subgroup of G, if HHx = HxH for all x ∈ R. This concept is a generalization of conjugate-
permutable subgroups introduced by T. Foguel. Our work focuses on the influence of R-conjugate-
permutable subgroups on the structure of finite groups in case when R is the Fitting subgroup or
its generalizations F ∗(G) (introduced by H. Bender in 1970) and F̃ (G) (introduced by P. Shmid
1972). We obtain a new criteria for nilpotency and supersoulbility of finite groups which generalize
some well known results.

1 Introduction

All groups considered here are finite. Recall [1] that the subgroups H and K of G are said to
permute if HK = KH , which is equivalent to that set HK is a subgroup of G.

The classic area of group theory is the study of subgroups of G which permute with every
subgroup of a dedicated system of subgroups of G. This trend goes back to O. Ore [2] who
introduced the concept of quasinormal (permutable) subgroup in 1939. Recall that subgroup H of
a group G is called quasinormal if it permutes with each subgroup of G. Every normal subgroup
is quasinormal. It is known that every quasinormal subgroup is subnormal. There are examples
showing that the converse need not hold.

Another important type of subgroups’ permutability was proposed by O. Kegel [3] in 1962. A
subgroup H of a group G is called S-permutable (S-quasinormal, π-quasinormal) subgroup of G, if
H permutes with every Sylow subgroup of G. Note that every S-permutable subgroup is subnormal.
The converse need not hold. Currently, the concept of quasinormal and S-permutable subgroups
and their generalizations have been studied intensively by many authors (see reviews [4], [5] and
the monograph [6]).

In 1997 T. Foguel [7] noted in the proof that a quasinormanal subgroup is subnormal, one only
needs to show that it is permutable with all of its conjugates. This led him to the following concept
of subgroups’ permutability.

Definition 1 [7]. A subgroup H of a group G is called the conjugate-permutable subgroup of
G, if HHx = HxH for all x ∈ G. Denoted by H <C-P G.

Clearly, every quasinormal subgroup is conjugate-permutable. In [7] there is an example show-
ing that the converse is not true. On the other hand, every 2-subnormal subgroup (i.e. subgroup
is a normal subgroup of some normal subgroup of the group) is a conjugate-permutable.

The concept of conjugate-permutable subgroups proved useful. A number of authors (for
example see [7], [8], [9], [10], [11]) studied the influence of conjugate-permutable subgroups on the
structure of the group. Particulary, some criteria of nilpotency of finite groups were obtained in
terms of the conjugate-permutable subgroups (see [7], [9]).
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Analyzing the proofs of some results of the works [7], [9], we have seen that a smaller number
of conjugate subgroups Hx which H must permute with can be considered for the conjugate-
permutable subgroup H . This observation led us to the following definition.

Definition 2. Let R be a subset of a group G. We shall call a subgroup H of G the R-
conjugate-permutable subgroup of G, if HHx = HxH for all x ∈ R. Denoted by H <R−C−P G.

Note that if R = G, then H is a conjugate-permutable, if R = 1, then any subgroup of G is
R-conjugate-permutable subgroup.

In this paper we study the influence of various systems of R-conjugate-permutable subgroups
on the structure of finite groups G, when R ∈ {F (G), F ∗(G), F̃ (G)}. Recall that

The Fitting subgroup F (G) is maximal normal nilpotent subgroup of G.
F̃ (G) is a generalization of the Fitting subgroup introduced by P. Schmid ( [12], p. 79, or [13]].

It is defined by Φ(G) ⊆ F̃ (G) and F̃ (G)/Φ(G) = Soc(G/Φ(G)).
A subgroup F ∗(G) is another generalization of the Fitting subgroup. It was introduced by H.

Bender [14] and defined by F ∗(G)/F (G) = Soc(CG(F (G)F (G)/F (G)).
As we will show that F (G) ⊆ F ∗(G) ⊆ F̃ (G) for every group G. If G is a solvable group, then

F̃ (G) = F ∗(G) = F (G).

Example 1. Let G ≃ S4 be the symmetric group of degree 4. Let H be Sylow 2-subgroup of
G. Then H is a maximal subgroup of G which is not normal in G. Note that F̃ (G) = F ∗(G) =
F (G) ⊆ H . Hence H <F (G)−C−P G. By the theorem of Ore ( [1] p. 57) HHx 6= HxH for all
x ∈ G\H . Therefore H is not conjugate-permutable subgroup of G.

Theorem A. A group G is nilpotent if and only if every maximal subgroup of G is F̃ (G)-
conjugate-permutable.

The following example shows that we can not use F ∗(G) in place of F̃ (G) in theorem A.
Example 2. Let G ≃ A5 be the alternating group of degree 5, and K = F3 be a field composed

by three elements. We denoted by A = AK(G) the Frattini KG-module [15]. In view of [15], A
is an irreducible KG-module of the dimension 4. By known Gaschutz theorem, there exists a

Frattini extension A  R ։ G such that A
G
≃ Φ(R) and R/Φ(R) ≃ G. From the properties of

module A follows that F̃ (G) = R and F ∗(G) = Φ(R). Note that every maximal subgroup of G is
F ∗(G)-conjugate-permutable, but the group R is not nilpotent.

Corollary A.1 [7]. If every maximal subgroup a group G is conjugate-permutable then G is
nilpotent.

Corollary A.2. If G is a non-nilpotent group then there is an abnormal maximal subgroup
M of G such that F̃ (G) * M .

The reference system of subgroups of a group is the set of its Sylow subgroups, the knowledge of
the structure and embedding properties allows in many cases to reveal the structure of the group.
For example, recall the following well-known result: the group is nilpotent if and only if each of
its Sylow subgroup is subnormal.

Theorem B. The following statements for a group G are equivalent:
1) G is nilpotent;
2) every abnormal subgroup of G is F ∗(G)-conjugate-permutable subgroup of G;
3) normalizers of all Sylow subgroups of G are F ∗(G)-conjugate-permutable subgroups of G;
4) Sylow subgroups of G are F ∗(G)-conjugate-permutable subgroups of group G.
Corollary B.1. A group G is nilpotent if and only if the normalizers of all Sylow subgroups

of G contains F ∗(G).
Corollary B.2. A group G is nilpotent if and only if it satisfies one of the following conditions:
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1) Sylow subgroups of maximal subgroups of G are F ∗(G)-conjugate-permutable;
2) normalizers of Sylow subgroups in maximal subgroups of G are F ∗(G)-conjugate-permutable.
Theorem C. If all cyclic primary subgroups of G are F ∗(G)-conjugate-permutable then G is

nilpotent.
As follows from example 1.2 [7] the converse of theorem C is false.
Corollary C.1. A group G is nilpotent if cyclic subgroups of Sylow subgroups of maximal

subgroups of G are F ∗(G)-conjugate-permutable;

Note that theorems 2.3, 2.4 [9] and theorem 2.3 [7] follows from theorems A, B and C.
A group G is called dinilpotent [6, p. 100] if G = AB, where A and B are nilpotent subgroups of

G. By the theorem of Wielandt-Kegel every dinilpotent group is solvable. Examples of dinilpotent
groups are biprimary, supersoluble groups and other. Dinilpotent group studied by many authors
in different directions (see [6], Chapter 3). In this direction we obtain the following result.

Theorem D. Let G = AB be a dinilpotent group. The group G is nilpotent if and only if
G = AB, where A and B are F (G)-conjugate-permutable subgroups of G.

Corollary D.1 If the group G = AB is a dinilpotent group and F (G) ⊆ A ∩ B then G is
nilpotent.

It is well known that the product of two normal supersoluble subgroups of a group is not
necessarily supersoluble. This fact has been the starting point for a series of results about factorized
groups in which the factors satisfy certain permutability conditions. The first step in this direction
was taken by Baer [18]. He proved that if G = AB is the product of the supersoluble normal
subgroups A and B and G′ is nilpotent then G is supersoluble. We obtain the following result.

Theorem E. A group G is supersoluble if and only if G = AB, where A and B are supersoluble
F (G)-conjugate-permutable subgroups of G and G′ is nilpotent.

It is well known ( [21], p. 127) that if a group G contains two normal supersoluble subgroups
with coprime indexes in G then G is supersoluble. For F (G)-conjugate-permutable subgroups this
result is not true.

Example 3. Let G be the symmetric group of degree 3. By theorem 10.3B [1] there is a
faithful irreducible F7G-module V over the field F7 of 7 elements and the dimension of V is 2.
Let R be the semidirect product of V and G. Let A = V G3 and B = V G2 where Gp is a Sylow
p-subgroup of G, p ∈ 2, 3. Since 7 ≡ 1(modp) for p ∈ 2, 3, it is easy to check that subgroups A and
B are supersoluble. Since V is faithful irreducible module, F (R) = V . Therefore A and B are the
F (R)-conjugate-permutable subgroups of G. Note that R = AB but R is not supersoluble.

Theorem F. A group G is supersoluble if and only if G is metanilpotent and contains two
supersoluble F (G)-conjugate-permutable subgroups with coprime indexes.

Theorem G. A group G is supersoluble if and only if G = AB is the product of supersoluble
F (G)-conjugate-permutable subgroups A and B and G′ = A′B′.

2 Preliminaries

We use standard notation and terminology, which if necessary can be found in [6], [1], [12] and [18].
We recall some definitions, notions and results.

Let G be a group then Sylp(G) denote the set of all Sylow p-subgroups of G; H ≤ G means H
is a subgroup of G; |G| is the order of G; H ⊳G means H is a normal subgroup of G; H ⊳⊳G means
H is a subnormal subgroup of G; HG is the core of the subgroup H of G, i.e. maximal normal
subgroup of G contained in H ; CG(H) is the centralizer of the subgroup H in G; NG(H) is the
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normalizer of subgroup H in G; Z(G) is the center of G; Z∞(G) is the hypercenter of G; Soc(G)
is socle of G, i.e. the product of all minimal normal subgroups of G. We will use the symbol 1 to
denote the identity subgroup of a group.

We recall the following well-known definitions and results (see [1]):
Definition 2.1. The group is called nilpotent if all its Sylow subgroups are normal.
Theorem 2.2. For a group G the following statements are equivalent:
A) G is nilpotent;
2) G is a direct product of its Sylow subgroups;
3) every proper subgroup of G is distinct from its normalizer;
4) all maximal subgroups of G are normal;
5) all subgroups of G are subnormal.
Definition 2.3. A subgroup M of non-unit group G is the maximal subgroup of G if M is not

contained in any other subgroup distinct from G.
Definition 2.4. The Frattini subgroup of a G 6= 1 is the intersection of all maximal subgroups

of G. Denoted by Φ(G).
Set that Φ(1) = 1.
Theorem 2.5. Φ(G) is a normal nilpotent subgroup of G.
Theorem 2.6. Let D ⊳ K ⊳ G, D ≤ Φ(G) and D ⊳ G. If the quotient group K/D is nilpotent

then K is nilpotent.
Lemma 2.7 (Frattini). If K is a normal subgroup of a group G and P is a Sylow subgroup

of K then G = NG(G)K.
Definition 2.8. Let G be a group. A subgroup H is called pronormal in G if subgroups H

and Hx are conjugate in 〈H,Hx〉 for all x ∈ G.
Definition 2.9. Let G be a group. A subgroup H is called abnormal of G if x ∈ 〈H,Hx〉 for

all x ∈ G.
Lemma 2.10. If a subgroup H is pronormal in G then NG(H) is abnormal subgroup of G.
Lemma 2.11. Let H be an abnormal subgroup of a group G. From H ≤ U ≤ G and

H ≤ U
⋂
Ux follows that x ∈ U .

Theorem 2.12. Let Φ(G) = E. Then Z∞(G) = Z(G).
Theorem 2.13 [19]. The hypercenter is the intersection of all the normalizers of all Sylow

subgroups.
Theorem 2.14. Let G be a group. The Fitting subgroup F (G/Φ(G)) = F (G)/Φ(G) and is

equal to the direct product of abelian minimal normal subgroups of G/Φ(G).
The idea of lemma’s 2.15 proof was proposed by L. Shemetkov.
Lemma 2.15. F ∗(G) ⊆ F̃ (G) for any group G.
Proof. Let a group G be the minimal order counterexample for lemma 2.15. If Φ(G) 6= 1 then for

G/Φ(G) the statement is true. From F ∗(G)/Φ(G) ⊆ F ∗(G/Φ(G)) and F̃ (G/Φ(G)) = F̃ (G)/Φ(G)
we have that F ∗(G) ⊆ F̃ (G). It is a contradiction with the choice of G.

Let Φ(G) = 1. Now F̃ (G) = Soc(G). By 13.14.X [16] F ∗(G) = E(G)F (G). Note Φ(E(G)) = 1.
Since 13.7.X [16] E(G)/Z(E(G)) is the direct product of simple nonabelian groups, Z(E(G)) =
F (E(G)). From it and theorem 10.6.A.c [1] we conclude that E(G) = HZ(E(G)) where H is the
complement to Z(E(G)) in E(G). Now H is the direct product of simple nonabelian groups. Since
HcharE(G) ⊳ G, we have H ⊳ G. From lemma 14.14.A [1] follows H ⊆ Soc(G). Since Z(E(G)) ⊆
F (G) ⊆ F̃ (G) and H ⊆ Soc(G), it follows that E(G) ⊆ F̃ (G). Now F ∗(G) = E(G)F (G) ⊆ F̃ (G).
It is a contradiction with the choice of G. Lemma is proved.

The subgroups F̃ (G), F ∗(G) and F (G) have the following useful properties [1], [12], [16].
Lemma 2.16. Let G be a group. Then
1) F̃ (G/Φ(G)) = F̃ (G)/Φ(G);
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2) CG(F̃ (G)) ⊆ F (G).
3) if G is soluble CG(F (G)) ⊆ F (G);
4) CG(F

∗(G)) ⊆ F (G);
5) F (G) ⊆ F ∗(G) ⊆ F̃ (G).
Lemma 2.17. Let G = AB be a product of the normal nilpotent subgroup A and subnormal

supersoluble subgroup B. Then G is supersoluble.
Proof. Follows from theorem 15.10 [12].
Definition 2.18. A group G is called quasinilpotent if G = CG(H/K)H for any chief factor

H/K of G.
Theorem 2.19. A group G is quasinilpotent if and only if G/Z∞(G) is quasinilpotent.
Follows from theorem 13.6 [16].
Definition 2.20. A group is said to be supersoluble whenever its chief factors are all cyclic.
Definition 2.21. The commutator subgroup of a supersoluble group is nilpotent.
Theorem 2.22. If G is the product of two subnormal supersoluble subgroups with coprime

indexes in G then G is supersoluble.
Theorem 2.20 follows from theorem 3.4 (p. 127 [21]) and the induction by the order of G.

3 Properties of R-conjugate-permutable Subgroups

Lemma 3.1 [7]. Let H <C−P G then H ⊳ ⊳G.
Lemma 3.2. Let H <R−C−P G, R ≤ G and RH = HR. Then H ⊳ ⊳HR.
Proof. Let k ∈ HR. Then k = hr, where h ∈ H and r ∈ R. Since H <R−C−P G, HHk =

HHhr = HHr = HrH = HhrH = HkH . Therefore H <C−P HR. Now the result follows from
lemma 3.1. Lemma is proved.

Lemma 3.3. Let H <C−P G and H is pronormal in G. Then H ⊳ G.
Proof. Since H <C−P , then by lemma 3.1 H ⊳⊳G. Consider NG(H). By Lemma 2.10 NG(H) is

abnormal subgroup of G. Since H ⊳⊳G, NG(H) ⊳ ⊳G. Assume that NG(H) 6= G. Then there exists
x not in NG(H) such that NG(H)x = NG(H). Then x does not belong to 〈NG(H)x;NG(H)〉. This
contradicts the fact that NG(H) is abnormal subgroup of G. It remains to assume that NG(H) = G
and H ⊳ G. The lemma is proved.

Proposition 3.4. Let H <R−C−P G, R ≤ G and RH = HR, then H ⊳ ⊳HR. In particular, if
H pronormal subgroup of HR, then H ⊳ HR.

Proof. This follows from Lemmas 3.2 and 3.3.
Corollary 3.4.1. Let P <R−C−P G, P ∈ SylpG, R ≤ G and PR = RP . Then P ⊳ PR.
Corollary 3.4.2. Let M <R−C−P G, R ≤ G, MR = RM and M is maximal in MR. Then

M ⊳ PR.
Lemma 3.5. Let H <C−P G and K ⊳ G. Then HK <C−P G.

4 Results

Proof of Theorem A. Let G be a nilpotent group. Then F̃ (G) = G. By 4) Theorem 2.2 every
maximal subgroup of G is normal in G, hence, F̃ (G)-conjugate-permutable.

Conversely. Assume the result is false and G be a counterexample of minimal order. Then G
is the non-nilpotent group and all maximal subgroups of G are F̃ (G)-conjugate-permutable.
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Suppose that Φ(G) 6= 1. Consider the quotient G/Φ(G). We have F̃ (G/Φ(G)) = F̃ (G)/Φ(G).
It is easily seen that all maximal subgroups of G/Φ(G) are F̃ (G/Φ(G))-conjugate-permutable.
Since |G| > |G/Φ(G)|, we have G/Φ(G) is nilpotent. From Theorem 2.6. follows that G is
nilpotent, a contradiction.

Assume that Φ(G) = 1. Then F̃ (G) = Soc(G).
Assume now that F̃ (G) is not nilpotent. By 2) theorem 2.2 there is a subgroup S ∈ Sylp(F̃ (G))

such that S is not normal in F̃ (G). Let P ∈ Sylp(G) and P ∩ F̃ (G) = S. Note that Sx = P x ∩
F̃ (G)x = P ∩ F̃ (G) = S for every x ∈ NG(P ). It means that NG(P ) ⊆ NG(S). Since NG(S) 6= G,
we have NG(P ) 6= G. Let M be a maximal subgroup of G such that NG(S) ⊆ M . By lemmas 2.10
and 2.11 M is the abnormal subgroup of G. By lemma 2.7 NG(S)F̃ (G) = MF̃ (G) = G. Since M
is the F̃ (G)-conjugate-permutable subgroup, M is normal in G by Corollary 3.4.2, a contradiction.

Therefore we have that F̃ (G) is nilpotent. Then F̃ (G) = F (G) = Soc(G) = N1 × ... × Nt

where Ni runs over all minimal normal subgroup of G. From Φ(G) = 1 and Theorem 2.14, it
follows that Ni is an abelian subgroup for all i = 1, ..., t. Then there is a maximal subgroup
Mi such that NiMi = G for all i = 1, ..., t. Note that MiF̃ (G) = G. Since Mi <F̃ (G)−C−P G ,
Mi is normal in G for all i = 1, ..., t by Corollary 3.3.2. Since Ni is abelian subgroup, we have
Ni ⊆ CG(Ni) and Ni ∩ Mi = 1. Then Mi ⊳ G implies Mi ⊆ CG(Ni) for all i = 1, ..., t. We show
that G = MiNi ⊆ CG(Ni) for every i = 1, ..., t. Therefore Ni ⊆ Z(G) for all i = 1, ..., t. Then
F̃ (G) ⊆ Z(G). Hence G ⊆ CG(F̃ (G)) ⊆ F (G). Thus G is nilpotent, a contradiction. Theorem A
is proved.

Proof of Theorem B. Prove that 1) implies 2). Since G is nilpotent, F ∗(G) = G. Any
subgroup of G is subnormal by 5) theorem 2.2. It means that the subgroup G is the only one
abnormal and subnormal subgroup in G. It is clear that G is the F ∗(G)-conjugate-permutable
subgroup. Thus 1) implies 2).

Normalizers of all Sylow subgroups are abnormal subgroups by lemma 2.10. Therefore 2)
implies 3).

Assume the validity of 3). Let P be a Sylow subgroup of G. Since NG(P ) is the F ∗(G)-
conjugate-permutable subgroup and NG(P ) is pronormal in G, we have NG(P ) ⊳ NG(P )F ∗(G) by
lemmas 3.2 and 3.3. By Lemma 2.10 NG(P ) is abnormal in G. Therefore NG(P ) is abnormal in
NG(P )F ∗(G). Then NG(P ) = NG(P )F ∗(G). Which implies that P is normal in NG(P )F ∗(G).
Hence P is the F ∗(G)-conjugate-permutable subgroup of G. Thus 3) implies 4).

Finally we show that 4) implies 1). Assume that 1) is not true and G is a counterexample of
least order.

Let P be a Sylow subgroup of G. Since P is the F ∗(G)-conjugate-permutable subgroup, we see
that P ⊳PF ∗(G) by Corollary 3.4.1. It follows that F ∗(G) ⊆ NG(P ). Now we have that F ∗(G) lies
in the intersection of all the normalizers of all Sylow subgroups of G. Therefore F ∗(G) ⊆ Z∞(G)
by Theorem 2.13. Note that F (G) = F ∗(G) = Z∞(G).

Assume that Φ(G) 6= E. Let H/Φ(G) = F ∗(G/Φ(G)). Show that H/Φ(G) = F ∗(G)/Φ(G). It
is clear that F ∗(G)/Φ(G) ⊆ H/Φ(G). Suppose that H/Φ(G)/F ∗(G)/Φ(G) ≃ H/F ∗(G) 6= 1. Note
that H/Φ(G) and F ∗(G)/Φ(G) are quasinilpotent. It follows that H/F ∗(G) is quasinilpotent.
Now H/Z∞(G)/Z∞(H)/Z∞(G) ≃ H/Z∞(H) is quasinilpotent. By theorem theorem 2.19 H is
the normal quasinilpotent subgroup of G. Hence H ⊆ F ∗(G). We have the contradiction with
H/F ∗(G) 6= E. Thus F ∗(G/Φ(G)) = F ∗(G)/Φ(G).

Let S/Φ(G) be a Sylow subgroup of G/Φ(G). There is a Sylow subgroup P of G such
that PΦ(G)/Φ(G) = S/Φ(G). From F ∗(G/Φ(G)) = F ∗(G)/Φ(G) it follows that S/Φ(G) is
the F ∗(G/Φ(G))-conjugate-permutable subgroup of G/Φ(G). By minimality of G we have that
G/Φ(G) is nilpotent. Hence G is nilpotent by theorem 2.6, a contradiction.
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Suppose now that Φ(G) = 1. By theorem 2.12 we have Z∞(G) = Z(G). Therefore F ∗(G) =
Z(G). Now we have G = CG(F

∗(G)) ⊆ F ∗(G). Thus G is nilpotent. This is the final contradiction.
Theorem B is proved.

Proof of Theorem C. Let P ∈ Sylp(G) and x ∈ P . Then the subgroup 〈x〉 is the F ∗(G)-
conjugate-permutable subgroup. By lemmas 3.1 and 3.2 〈x〉⊳⊳〈x〉F ∗(G). Note that 〈x〉⊳⊳P . Since
〈x〉 ≤ P

⋂
〈x〉F ∗(G) , by theorem 1.1.7 ( [6] p.3) 〈x〉 is the subnormal subgroup in the product

P (〈x〉F ∗(G)). Since P is generated by its cyclic subnormal in PF ∗(G) subgroups, by theorem
( [12] p. 70) we have that P ⊳ ⊳PF ∗(G). Then P ⊳ PF ∗(G) by lemma 3.3. Thus F ∗(G) ⊆ NG(P ).
Now theorem C immediately follows from theorem B.

Proof of Theorem D. Assume the result is not true and G is a minimal counterexample to
theorem D. Then G = AB is the non-nilpotent dinilpotent group where subgroups A and B are
F (G)-conjugate-permutable. By well-known theorem of Wielandt-Kegel group G is solvable.

Assume that Φ(G) 6= E. Since F (G/Φ(G)) = F (G)/Φ(G), we have that AΦ(G)/Φ(G) and
BΦ(G)/Φ(G) are the F (G/Φ(G))-conjugate-permutable nilpotent subgroups of G/Φ(G). Now
G/Φ(G) = AΦ(G)/Φ(G)BΦ(G)/Φ(G). By minimality of G we have that G/Φ(G) is nilpotent.
Hence G is nilpotent by theorem 2.6, a contradiction.

Assume that Φ(G) = 1. Let R = AF (G). Then A ⊳ ⊳R by lemma 3.2. Since A and F (G)
are nilpotent, we have that R is nilpotent. By analogy T = BF (G) is nilpotent. Since G is not
nilpotent, there is an abnormal maximal subgroup M of G such that F (G) * M by Corollary A.2.

Note that G/MG = RMG/MGTMG/MG. By lemma 4 of [17] without loss of generality we
can assume that AMG/MG is p-group, and BMG/MG is p′-group. Now RMG/MG

⋂
TMG/MG =

MG/MG. It means RMG

⋂
TMG = MG. Now it follows that F (G) ⊆ R

⋂
T ⊆ MG. But then

F (G) ⊆
⋂

MG, where M runs over all maximal subgroups M such that MF (G) 6= G. By the
theorem of [20] we have F (G) ⊆ Φ(G) = 1. This is the final contradiction. Theorem D is proved.

Proof of Theorem E. Since G′ is nilpotent, G is soluble. Since F (G) is nilpotent, K = AF (G)
is supersoluble by lemma 2.17. By analogy R = BF (G) is supersoluble. Now K/F (G)R/F (G) =
G/F (G) is abelian, since G/G′ is abelian and G′ is nilpotent. Therefore K/F (G) and R/F (G)
are normal in G/F (G). Now K and R are normal in G. Now our theorem follows from Baer’s
theorem [18].

Proof of Theorem F. Since G is metanilpotent, G is soluble. Since F (G) is nilpotent,
K = AF (G) is supersoluble by lemma 2.17. By analogy R = BF (G) is supersoluble. Now
K/F (G)R/F (G) = G/F (G) is nilpotent. By 3) theorem 2.2 K/F (G) and R/F (G) are subnormal
subgroups of G/F (G). Therefore K and R are subnormal subgroups of G. By theorem 2.20 G is
supersoluble.

Proof of Theorem G. Since F (G) is nilpotent, K = AF (G) is supersoluble by lemma 2.17.
By analogy R = BF (G) is supersoluble. Since A ≤ K and B ≤ R, we see that A′ ≤ K ′ and
B′ ≤ R′. By G′ = A′B′ = R′K ′ is the product of nilpotent subgroups R′ and K ′ because the
commutant of a supersoluble group is nilpotent. Note that K ′ <F (G)−C−P K and R′ <F (G)−C−P R.
Since G′ ⊳ G, F (G′) ≤ F (G). So G′ is the product of two nilpotent F (G′)-conjugate-permutable
subgroups. From theorem D it follows that G′ is nilpotent. This and theorem E immediately
combine to yield.
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