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1 Introduction

After well over a half-century, the equations of Hodge and Kodaira remain a
fruitful approach to the theory of conservative fields, which they endow with the
rich topological structure of de Rahm cohomology. See, e.g., Ch. 7 of [24], or
[31], for introductions. A solution to the Hodge–Kodaira equations is a k-form
ω which is closed (dω = 0) and co-closed (δω = 0) under the exterior derivative
d and its formal adjoint δ.

Most of the interesting classical fields are quasilinear. The nonlinear Hodge
theory conjectured by Bers and realized by Sibner and Sibner [34] introduces
Hodge-like equations which model conservative velocity fields associated with
steady, ideal compressible flow. Further extensions of this approach, specifically
to 2-forms, model nonlinear electromagnetic fields [23], Born-Infeld fields [39],
and certain twisted variants of these [26], [36]. In those extensions, the require-
ment of classical Hodge theory that the solution ω be co-closed under exterior
differentiation is weakened to the requirement that only the product of ω and a
possibly nonlinear term ρ must have this property.

Classical fields are frequently characterized by vortices. So although most
conservative field theories are quasilinear, most quasilinear field theories are not
strictly conservative, and it is reasonable to study the analytic properties of
equations in which the requirement that the solution be closed under exterior
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differentiation is also weakened. Thus in a recent paper [21] we studied the
invariantly defined system ([26], Sec. VI; [27], Sec. 4)

δ (ρ(Q)ω) = 0, (1.1)

dω = Γ ∧ ω (1.2)

for unknown ω ∈ Λk, k ∈ Z
+, and prescribed, continuously differentiable Γ ∈ Λ1.

Here Q = |ω|2 = ∗ (ω ∧ ∗ω) , where ∗ : Λk → Λn−k is the Hodge involution; ρ is
a positive, Hölder-continuously differentiable function of Q, which is generally
given by the physical or geometric context. We call (1.1), (1.2) nonlinear Hodge–
Frobenius equations, as they generalize the nonlinear Hodge equations

δ (ρ(Q)ω) = dω = 0 (1.3)

introduced in [34].
Equation (1.1) represents a rather generic field theory, as special cases of the

mass density ρ are ubiquitous in models of classical fields (Sec. 2). Equation (1.2)
represents the mildest natural weakening of the conservation hypothesis dω = 0
in eq. (1.3). The resulting field is no longer conservative, but is completely
integrable in the sense of Frobenius in the cases k = 1, n − 1, or for general k
if Γ is exact; see, e.g., [9], Sec. 4-2. The effect of replacing eqs. (1.3) by eqs.
(1.1), (1.2) is exactly analogous to the effect in ordinary differential equations
of replacing an exact differential equation with an equation that is exact when
multiplied by an integrating factor; see the discussions in Secs. 2.1 and 2.2 of
[21] and in Sec. 1 of [22].

Equations (1.1, 1.2) have an interpretation as the Euler-Lagrange equations
of the nonlinear Hodge energy

ENH =
1

2

∫

M

∫ Q

0

ρ(s)ds dM (1.4)

where, in general, M is an n-dimensional Riemannian manifold. But in that
interpretation, an extra term is introduced on the right-hand side of eq. (1.1),
leading to the expression

δ [ρ(Q)ω] = (−1)n(k+1) ∗ (Γ ∧ ∗ρ(Q)ω) ; (1.5)

see [21], Sec. 5.1. Both forms of the nonlinear Hodge–Frobenius equations – the
variational form (1.5), (1.2) and the original form (1.1), (1.2) – will be studied
in this paper. In addition, the linear form of the equations, which results from
taking ρ in (1.1) to be constant, will arise in Sec. 3.

Because of the close relation between the system (1.1), (1.2) and the nonlin-
ear Hodge equations (1.3), it is natural to ask whether decomposition theorems
exist for Hodge–Frobenius equations as they do for the nonlinear Hodge equa-
tions [35] and the equations for A-harmonic forms [15]. In Sec. 3 we derive
an approach that leads to decomposition theorems in a limited sense. These
decomposition theorems will be applied, not only to a priori arguments for the
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existence of solutions, but also to a variety of sufficient conditions for generating
them.

It turns out that Hodge–Frobenius equations provide a natural context for
generalizing the Bäcklund transformations of classical analysis. For a reference
on conventional Bäcklund transformations, see, e.g., [30]. The Hodge–Bäcklund
transformation was defined in [21] to be a map taking a solution a of a non-
linear Hodge–Frobenius equation having mass density ρA into a solution b of
a nonlinear Hodge–Frobenius equation having mass density ρB and vice-versa,
where B may equal A. Many of the superficially different models for classical
fields reviewed in the next section will be shown in Sec. 4 to be Hodge–Bäcklund
transforms of each other.

2 A zoo of nonlinear Hodge densities

In this expository section we list some applications of the nonlinear Hodge equa-
tions (1.3). More detailed discussions of all these examples can be found in Sec.
2.7, and (especially) Chs. 5 and 6, of [29]. Initially, we restrict the degree k of
the differential form ω to be 1.

If n = 3, and we choose

ρ(Q) =

(

1− γ − 1

2
Q

)1/(γ−1)

, γ > 1, (2.1)

then eqs. (1.3) admit an interpretation as the continuity equations for a steady,
compressible, irrotational ideal flow with speed |ω|2 and adiabatic constant γ;
see, e.g., [34].

If n = γ = 2,a slight variation of this model can be used to represent the
passage to turbulence in shallow water of depth ρ; see Sec. 10.12 of [37].

If n = 2 and

ρ(Q) =
1√

1 +Q
, ω = df, (2.2)

then (1.3) are the equations for a nonparametric minimal surface in R
3, where

f is the graph of the surface; see, e.g., [35].
If n = 2 and

ρ(Q) =
1√

1−Q
, ω = df, Q < 1, (2.3)

then (1.3) are the equations for a maximal spacelike hypersurface in Minkowski
3-space, where the surface is the graph of the function f ; see, e.g., [8]. If the
denominator in (2.3) is replaced by

√
Q− 1 forQ > 1, then the extremal surfaces

are time-like.
If n = 2 and

ρ(Q) =
1

√

|1−Q|
, ω = df, Q 6= 1, (2.4)

then (1.3) are the equations for an elliptic-hyperbolic variational theory for ex-
tremal surfaces in Minkowski 3-space, where f is the graph of the surface; see,
e.g., [12].
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If n = 2 and

ρ(Q) =

∣

∣

∣

∣

1− τ2

Q

∣

∣

∣

∣

1/2

, Q > 0, (2.5)

then eqs. (1.3) are satisfied by the imaginary part of a complex eikonal equation
associated to a wave propagating through a medium of refractive index τ [17].

If n = 3 and ρ(Q) is a power of Q, then we obtain from eqs. (1.3) a qualitative
model for non-Newtonian pseudo-plastic flow ; see, e.g., [5].

Let n = 3. Assume that atmospheric conductivity, represented by ρ, de-
pends on the square Q of an atmospheric electric field. Then under appropriate
boundary conditions, eqs. (1.3) correspond to the Finkelstein–Rubinstein non-
linear conductivity model for ball lightning [10].

Letting n = 3 and choosing ρ to have quadratic dependence on the magnetic
field, eqs. (1.3) provide a model of ferromagnetism [23].

Of course, if ρ is constant, then eqs. (1.3) are Helmholtz’s original vector
formulation (“no sources or sinks”) of what later became the Hodge–Kodaira
equations for 1-forms; c.f. [13] and, e.g., [14].

If we now take ω to be a 2-form, then if n = 4 and ρ(Q) is taken to be
the minimal surface density (2.2) or the maximal spacelike hypersurface density
(2.3), then one obtains, respectively, the Euclidean or Lorentzian Born–Infeld
models for electromagnetism:

ρ(Q) =
1√

1±Q
, Q = |dA|2, (2.6)

where the 1-form A is an electromagnetic vector potential. This model was orig-
inally introduced in [7] to remove the fundamental singularity of conventional
electromagnetic theory, but has attained new interest in connection with brane
theories; for recent treatments see [11], [36] and [39]. (A somewhat different
equation results if Q itself is defined on a pseudo-Euclidean metric; see, e.g.,
[4].)

Regarding applications to Born–Infeld models, we recall that eqs. (1.5, 1.2)
are, formally, a variant of the Yang-Mills equations with connection 1-form −Γ,
in which the Yang-Mills curvature F is replaced by the k-form ρ(Q)ω. Thus in
particular, any Yang-Mills connection A is a solution to eqs. (1.5, 1.2) in the
special case ρ = 1, k = 2, n even, ω = FA, and Γ = −A. If on the other hand,
k = 2 and n = 4 in (1.5, 1.2) and the density ρ(Q) is taken to be either the
density in (2.2) or the density in (2.3), then we obtain, formally, a “twisted”
variant of the Born–Infeld equations having the form

D∗
A (ρ(Q)FA) = DAFA = 0, (2.7)

whereDA is the exterior covariant derivative in the direction of A, having formal
adjoint D∗

A, and A = −Γ; c.f. Sec. 1 of [26], Sec. 4 of [21] and Sec. 5.1 of
[28]. (The equations (2.7) themselves were introduced in [25].) These variants
are only meaningful geometrically if A is a Lie-algebra-valued 1-form. The
corresponding Lie group is the structure group of a principal bundle for which
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A is a connection 1-form and FA is its curvature. Boundary value problems for
this generalization of the Yang–Mills equations are non-standard, but can be
formulated along the lines of [19, 20].

We also note that coupled variants of the nonlinear Hodge equations arise in
Born–Infeld theory [39] and in nonlinear models of traffic flow [6].

Thus the nonlinear Hodge equations are reasonably generic: they apply,
under various additional hypotheses, to a wide variety of models and it is rea-
sonable to study their analytic properties, as we do here and in [21], without
focusing on any particular application.

2.1 The effects of replacing conservative fields by com-

pletely integrable ones

If the condition dω = 0 is replaced by condition (1.2), solutions will no longer
lie in a cohomology class but will generate a closed ideal.

The physical effect of replacing the condition dω = 0 in (1.3) by the Frobe-
nius condition (1.2) is different for each of the preceding examples, and the
replacement makes more sense in some cases than in others. In applications to
extremal surfaces Σ, the condition dω = 0 implies that ω is locally the differ-
ential of a scalar function ζ, and we take Σ to be the graph of ζ. If we assume
instead condition (1.2), then we are in effect multiplying that differential by a
conformal factor exp[η], where η is a scalar such that Γ = dη; see the discus-
sions in Sec. 2.1 of [21], Sec. 3.1 of [22], and Sec. 4.2 of [9]. Whereas integrals
in the conservative-field case are independent of path, in the Hodge–Frobenius
case only the integrals of e−ηω are independent of path. One may also say that
replacing the condition dω = 0 with (1.2) has the effect of replacing eq. (1.1)
for ω with the following equation for du:

δ (ρ̃(η, |du|)du) = 0 ,

with ρ̃ (η, |du|) ≡ eη ρ
(

e2η|du|2
)

; i.e., it has the effect of extending ρ to a more
general class of functions.

3 The existence and construction of solutions

3.1 Relation to A-harmonic forms

The Frobenius equation (1.2) emerges as a natural weakening of the conservation
hypothesis dω = 0 in the field theory represented by (1.1). The linear Hodge–
Frobenius equations – that is, (1.1), (1.2) with ρ ≡ 1 – also arise naturally from
the nonlinear Hodge equations (1.3) in a completely different way, as a kind
of dual, or conjugate form of the equations. The use of conjugate functions in
nonlinear Hodge theory goes back at least to [34], but the conjugates in this
section are not used in the same way that they are used in [34].

If u ∈ Λk−1 and v ∈ Λk+1, then the Cauchy-Riemann equations can be
written in the form du = δv. More generally, we may consider conjugate A-
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harmonic forms ; see, e.g., [1] for an exposition. We will call the differential
forms u ∈ Λk−1 and v ∈ Λk+1 A-harmonic if they satisfy the equation

A (x, du) = δv, (3.1)

where A : Ω× Λk(Ω) → Λk(Ω) is a differential operator and Ω is a domain of
R

n. In the literature, A is required to satisfy a host of structural assumptions;
and indeed, we will specify A to be given by (3.3) and impose further conditions
as we require them. We will also place conditions on Ω. Our immediate goal is
to define Hodge–Frobenius fields in terms of A-harmonic k-forms.

We say that the operator A : Ω×Λk(Ω) → Λk(Ω) is invertible if there exists
an operator B : Ω× Λk(Ω) → Λk(Ω) such that

B (x,A(x, ω)) = ω ,

A (x,B(x, ω̃)) = ω̃ ∀ω, ω̃ ∈ Λk(Ω)

(3.2)

Theorem 3.1. Let u ∈ Λk−1(Ω) and v ∈ Λk+1(Ω) be sufficiently smooth, con-
jugate A-harmonic forms satisfying (3.1) with

A (x, du) = A(du) = ρ(|du|2)du , (3.3)

for ρ ∈ C1(R+ ∪ {0}), ρ(|du|) > 0, on a domain Ω of Rn, n ≥ 2. Assume A to
be invertible and Ω to be bounded, with sufficiently smooth boundary (∂Ω ∈ C0

will do [24]). Then ω̃ ≡ A(du) ∈ Λk(Ω) is a solution to the Hodge–Frobenius
equations

{

δω̃ = 0
dω̃ = dη̃ ∧ ω̃

with η̃ = η̃(|ω̃|2) = log ρ(|B (ω̃) |2), where B ≡ A−1.

Proof. Having defined the operator B to be the inverse of A on Ω, (3.2), (3.3)
imply

B (δv) = du =
1

ρ(|du|2)A(du) = η(|δv|2)δv , (3.4)

where η(|δv|2) is (well) defined by the formula η(|δv|2)ρ(|B (δv) |2) = 1. We
conclude that η(|δv|) > 0, as ρ(|du|) > 0 by hypothesis. Having set ω̃ ≡
A(du) = δv, (3.4) becomes the identity ηω̃ = du, implying

0 = d2u = d (ηω̃) = dη ∧ ω̃ + ηdω̃ .

As η(|δv|2) > 0, this is equivalent to the Frobenius equation (1.2) for ω̃ in the
form

dω̃ = dη̃ ∧ ω̃ , (3.5)

with
η̃(|ω̃|2) ≡ − log η(|ω̃|2) = log ρ(|B (δv) |2) .
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Because
0 = δ2v = δω̃ , (3.6)

we have recovered the Hodge–Frobenius equations (1.1, 1.2) for ω̃, having the
form (3.5), (3.6), with η̃

(

|ω̃|2
)

= log ρ
(

|B
(

ω̃|2
))

. This is a dual form of the
nonlinear Hodge equations (1.3) for ω.

Remark 3.1. We proved Theorem 3.1 under the hypothesis that the oper-
ator A is invertible, in which case we were able to determine the function

η = η(|δv|2) = 1

ρ(|B (δv) |2) .

It is possible to weaken this hypothesis by assuming that there exists an exact
form du (not necessarily unique), such that A(du) ≡ ρ(|du|2)du = δv ≡ ω̃ with
ρ(|du|2) > 0. Under that assumption,

dω̃ = dρ(|du|2) ∧ du = ρ−1(|du|2)dρ(|du|2) ∧ ρ(|du|2)du = d log ρ(|du|2) ∧ ω̃ ,

and one can regard η̃ = η̃(x) = log ρ(|du|2(x)) as a function of x if du(x), and
thus |du|2(x), is known. In fact, one can no longer write η̃ as a function of |δv|2
because log ρ

(

|du|2
)

would depend on the particular choice of du such that

ρ
(

|du|2
)

du = δv . (3.7)

Remark 3.2. If a solution to (3.7) exists, two such solutions, say du1 and
du2, would satisfy

ρ
(

|du1|2
)

du1 = ρ
(

|du2|2
)

du2 ,

thus the condition |du1|2 = |du2|2 would be sufficient to guarantee du1 = du2.
For this reason, taking the absolute values in both sides of (3.7) and squaring
yields a function, namely the function Φ(t) in (3.10), the invertibility of which
is related to the invertibility of A in the sense of Theorem (3.2).

3.2 Existence of solutions on the elliptic range

The invertibility of A gives a well-defined η̃ for the dual problem. Conversely,
knowing η̃ for the dual problem yields the invertibility of A, using the idea
contained in Remark 3.2. In this way we obtain a constructive method for
finding explicit solutions to (1.1). In Theorem 3.2 we will apply this idea to
the more general case of a k-form ω which is not necessarily closed. That more
general result will allow us to construct explicit solutions to eqs. (1.1–1.3).

Theorem 3.1 assumes the existence of the conjugates ω = du and ω̃ = δv.
However, if we assume alternatively that the k-form ω satisfies the nonlinear
Hodge system of equations (1.3) on a contractible domain Ω, then the Poincarè
Lemma implies the local existence of a (k − 1)-form u such that ω = du, as well
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as the local existence of a (k + 1)-form v such that A(du) = ρ(|du|2)du = δv. If
we impose the ellipticity condition

0 < ρ2(Q) + 2Qρ′(Q)ρ(Q) , (3.8)

then, given a Dirichlet or Neumann problem for a nonlinear Hodge system
having density ρ on a suitable domain Ω, a solution ω = du exists by the
decomposition theorems of [35], Secs. 1 and 5. These are briefly reviewed in
Appendix A. See also [15] for the A-harmonic case. This yields by Remark 3.1
a solution ω̃ = ρ(|ω|2)ω = δv to the Hodge–Frobenius equations in the form
(3.5, 3.6), with η̃ = η̃(x) ≡ log ρ(|du(x)|2). Homogeneous Dirichlet boundary
conditions require the tangential component (du)T to vanish on ∂Ω. In that
case, eqs. (3.1), (3.3) imply the identities

(

ρ(|du|2)du
)

T
= (A (du))T = (δv)T = (ω̃)T = 0,

and homogeneous Dirichlet conditions for the system (1.3) become homogeneous
Dirichlet conditions for the system (3.5, 3.6). An exactly analogous argument
applies to homogeneous Neumann boundary conditions, which require the nor-
mal component (du)N to vanish of ∂Ω. See, e.g., [35] for details. Thus the
decomposition theorems for nonlinear Hodge equations in [35], which imply the
existence of solutions to suitably defined boundary value problems for the sys-
tem (1.3) in the elliptic regime, also imply the existence of solutions to analogous
boundary value problems for the linear Hodge–Frobenius equations, on smooth,
simply connected subdomains of Rn.

3.3 “Transonic” solutions

We now want to use the operator

A ≡ ρ(|ω|2)ω, ω ∈ Λk(Ω)

to prove results which are independent of type. The following assertions are
applicable to the elliptic, hyperbolic and, in various cases, elliptic-hyperbolic
regimes for the nonlinear Hodge or Hodge–Frobenius equations. In what follows,
the k-forms ω are not assumed to be exact.

Theorem 3.2. Let A : Λk(Ω) → Λk(Ω), be defined via the formula

A(ω) ≡ ρ(|ω|2)ω , (3.9)

where in this case ρ : R
+ ∪ {0} → R

+ is a fixed, prescribed, C1 function.
Assume that ρ is such that the function

φ(t) ≡ tρ2(t) , (3.10)

when restricted to the connected interval (t1, t2), satisfies

dφ

dt
> 0 or

dφ

dt
< 0 . (3.11)
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Let Λk(Ω)t1,t2 denote the set of differential k-forms ω such that t1 ≤ |ω|2 ≤ t2,
and let (r1, r2) be the image under φ of the interval (t1, t2). Then the operator
A satisfies

A|Λk(Ω)t1,t2
: Λk(Ω)t1,t2 → Λk(Ω)r1,r2 , (3.12)

and its restriction to Λk(Ω)t1,t2 is invertible with inverse

B : Λk(Ω)r1,r2 → Λk(Ω)t1,t2 (3.13)

ω̃ → ω̃

ρ(ψ(|ω̃|2)) , (3.14)

where
ψ : (r1, r2) → (t1, t2) , (3.15)

is the (smooth) inverse of the function φ|(t1,t2) .

Proof. Condition (3.11) implies by monotonicity that there exists an inverse
ψ : (r1, r2) → (t1, t2) of the map φ defined in (3.10) on the interval (t1, t2) .
Condition (3.12) is satisfied because

|A(ω)|2 ≡ |ρ(|ω|2)ω|2 = ρ2(|ω|2)|ω|2 ≡ φ(|ω|2) ,

with t1 ≤ |ω|2 ≤ t2, and φ : (t1, t2) → (r1, r2). Similarly, for k-forms ω̃ ∈
Λk(Ω)τ1,τ2 one has

|B (ω̃) |2 =
|ω̃|2

ρ2 (ψ (|ω̃|2)) =
|ω̃|2ψ

(

|ω̃|2
)

ρ2 (ψ (|ω̃|2))ψ (|ω̃|2) . (3.16)

Because ψ is the inverse of φ on (τ1, τ2) , for every τ ∈ (τ1, τ2) there is a unique
t ≡ ψ(τ) ∈ (t1, t2) such that tρ2(t) = τ. Thus

ψ
(

|ω̃|2
)

ρ
(

ψ
(

|ω̃|2
))

= |ω̃|2

and (3.16) becomes |B (ω̃) |2 = ψ
(

|ω̃|2
)

∈ (t1, t2) . That is, eq. (3.13) is satisfied.
For k-forms ω ∈ Λk(Ω)t1,t2 we have

B (A(ω)) =
A(ω)

ρ(ψ(|A(ω)|2)) =

ρ(|ω|2)ω
ρ(ψ(ρ2(|ω|2)|ω|2)) =

ρ(|ω|2)ω
ρ(ψ(φ(|ω|2))) = ω .

Likewise, for k-forms ω̃ ∈ Λk(Ω)r1,r2 one has

A (B(ω̃)) = ρ(|B(ω̃)|2)B(ω̃) = ρ

( |ω̃|2
ρ2(ψ(|ω̃|2))

)

ω̃

ρ(ψ(|ω̃|2)) = ω̃ ,

as
|ω̃|2 = φ

(

ψ(|ω̃|2)
)

= ρ2(ψ(|ω̃|2)ψ(|ω̃|2) ;
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dividing both sides of this equation by ρ2(ψ(|ω̃|2), we have

|ω̃|2
ρ2(ψ(|ω̃|2)) = ψ(|ω̃|2) .

This concludes the proof.

Remark 3.3. Note that δ(A(ω)) = δ
(

ρ(|ω|2)ω
)

and that condition (3.11)
is precisely the condition that makes the nonlinear Hodge system (1.1, 1.2)
either elliptic (corresponding to dφ/dt > 0), or hyperbolic (corresponding to
dφ/dt < 0).

Remark 3.4. Because Theorem 3.2 gives conditions under which the oper-
ator (3.12) can be inverted, it can be used to construct explicit k-form-valued
solutions to the nonlinear Hodge–Frobenius equations which change from ellip-
tic to hyperbolic type. Briefly, one argues by the Poincaré Lemma that a solu-
tion ω to (1.1) on a simply connected domain of Rn always admits a “stream
(n− k − 1)-form” f , that is, a form f satisfying

ρ(Q)ω = ∗df . (3.17)

On the other hand, given a (suitable) (n− k − 1)-form f , the function φ can be
inverted on the elliptic and hyperbolic regions individually in order to obtain
solutions ω to (1.1) in terms of f, ρ, and ψ. Special care must be taken to assure
the continuity of ω across the sonic curve dividing the elliptic from the hyper-
bolic regime. One can also write the formula (3.17), for singular stream forms
f (that is, allowing more general domains, not necessarily simply connected),
which implies (1.1) except at the singularities of f . More precisely, eqs. (3.10),
(3.17) imply

φ(Q) = |df |2 ,
and the inversion of the operator (3.12) guaranteed by Theorem 3.2 allows us
to construct solutions ω to eq. (1.1) by means of the explicit formula

ω =
∗df

ρ
(

ψ
(

|df |2
)) . (3.18)

These solutions are defined on Ωf ≡ {(x, y) ∈ Ω : |∇f |2 (x, y) ∈ Imφ}, except
possibly on the sonic curve and at the singularities of f . Satisfaction of (1.2)
for some one-form Γ can easily be shown, and is equivalent to the existence of
an integrating factor in the cases k = 1, or k = n − 1. Details and examples
for the special case of vectorial ω, corresponding to k = 1, are given in [22].
Note that the hypothesis in Theorem 3.2 that ρ be a strictly positive function
of the independent variable t is not necessary when applying the Theorem to
construct explicit solutions as outlined in the present remark. In fact, for the

validity of eq. (3.18) it is sufficient that ρ
(

ψ
(

|df |2
))

be non-zero.
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4 A zoo of Hodge-Bäcklund transformations

One finds in the literature a bewildering redundancy of choices for the mass
density ρ. Whenever one choice is selected, others seem to appear as well. See,
for example, Sec. 1 of [17], Sec. 2 of [18], and the pairs of densities that arise
in Sec. 2 of this paper in connection with the Born–Infeld and extremal surface
equations. It is natural to wonder whether there is a mathematical operation
underlying the varieties of density. In this section we construct a mechanism for
relating many of the densities in Sec. 2. That mechanism extends Theorem 6.1
of [21], which related two particular densities by an application of the Hodge–
Bäcklund transformation. (See also the special cases studied in [39], [36], [3],
[2], [8], and [16].) We find in this section that this class of transformations is of
rather general applicability to systems of the form (1.2), (1.5).

Theorem 4.1. Denote by Σ a given, continuously differentiable 1-form. The
k-form ω satisfies the nonlinear Hodge–Frobenius system

d ∗ (ρ(Q)ω) = Σ ∧ ∗ (ρ(Q)ω)

dω = Γ ∧ ω ,
(4.1)

where Q ≡ |ω|2 and ρ(Q) is an assigned density, if and only if the (n− k)-form
ξ ≡ ∗ (ρ(Q)ω) satisfies the nonlinear Hodge–Frobenius system

d ∗ (ρ̂(R)ξ) = Γ ∧ ∗ (ρ̂(R)ξ)
dξ = Σ ∧ ξ ,

(4.2)

where R ≡ |ξ|2 and ρ̂, which we refer to as a density dual to ρ, satisfies the
identity

ρ(Q)ρ̂(R) ≡ 1 . (4.3)

Proof. Multiplying ξ by ρ̂(R) and applying the Hodge operator ∗ to both
sides of the definition ξ ≡ ∗ (ρ(Q)ω), and using (4.3), we obtain

(∗k)2ω = ∗ρ̂(R)ξ , (4.4)

where (∗k)2 is the square of the Hodge operator on k-forms; thus (∗k)2 is either
1 or −1. Multiplying both sides by (∗k)2 and using (∗k)4 = 1, we also obtain

ω = (∗k)2 ∗ ρ̂(R)ξ . (4.5)

By (4.4) and the second equation in (4.1),

d(∗ρ̂(R)ξ) = d
(

(∗k)2ω
)

= (∗k)2dω = (∗k)4Γ ∧ ∗(ρ̂(R)ξ) = Γ ∧ ∗(ρ̂(R)ξ) , (4.6)

which is the first equation in the system (4.2) and the second equation in (4.1)
with a change in notation. The second equation in (4.2) is precisely the first
equation in the system (4.1) with a change in notation. �
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Corollary 4.2. The k-form ω satisfies the nonlinear Hodge–Frobenius system
(4.1) with

ρ(Q) =

(

1− γ − 1

2
Q

)1/(γ−1)

(4.7)

if and only if the (n − k)-form ξ ≡ ∗ (ρ(Q)ω) satisfies the nonlinear Hodge–
Frobenius system (4.2) with the density ρ̂ dual to ρ satisfying

γ − 1

2
Rρ̂(R)

γ+1 − ρ̂(R)
γ−1

+ 1 ≡ 0 . (4.8)

Proof: Because the Hodge operator ∗ is an isometry, one obtains

R ≡ |ξ|2 = ρ2(Q)|ω|2 ≡ Qρ2(Q). (4.9)

Likewise,
Q = Rρ̂2(R), (4.10)

having used ρ̂(R)ρ(Q) ≡ 1. Thus, applying Theorem 4.1 to the class of densities
(4.7), we obtain

1 ≡ ρ̂(R)ρ
(

Rρ̂2(R)
)

= ρ̂(R)(1− γ − 1

2
Rρ̂2(R) )

1

γ−1 .

Taking the γ − 1 power of both sides, we obtain

1 = ρ̂(R)γ−1(1− γ − 1

2
Rρ̂2(R)).

This yields the equation (4.8). �

Remark 4.1. The case of the Chaplygin flow density, defined for 1-forms ω,
and the case of the Euclidean Born–Infeld model, defined for 2-forms ω, have
in common that γ = −1 in (4.7). In these cases Corollary 4.2 yields

−Rρ̂0 − ρ̂(R)
−2

+ 1 = −R− ρ̂(R)
−2

+ 1 ≡ 0. (4.11)

Thus

ρ̂ =
1√

1−R
,

which is the density for the Lorentzian Born–Infeld model.

Remark 4.2. Comparing eqs. (4.1) and (4.2), we observe that Σ and Γ are
interchanged. So, for example, if ω satisfies the nonlinear Hodge–Frobenius
system (4.1) with Σ ≡ 0, then ξ satisfies a conventional nonlinear Hodge system
(i.e., dξ = 0).

Remark 4.3. In some cases there is more than one mass density dual to ρ.
This is the case for γ = 3. Indeed, if γ = 3, then by solving (4.8) in the form

Rρ̂4(R)− ρ̂2(R) + 1 = 0,
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we obtain the following dual densities – of which only the first two are positive
– defined for R ∈ (0, 14 ]:

ρ̂ =

√

1− δ

2R
; (4.12)

ρ̂ =

√

1 + δ

2R
; (4.13)

ρ̂ = −
√

1− δ

2R
; (4.14)

ρ̂ = −
√

1 + δ

2R
, (4.15)

(4.16)

where δ ≡
√
1− 4R.

An initial density which will include perhaps all the known applications could
have the form

ρ(x,Q) =
(

1− at2(x)Qb
)1/2a

, (4.17)

where x is a vector; a and b are constants (which may be negative); t(x) is a
given, bounded function; and the order of the form is either k = 1 or k = 2.
Then the following holds:

Corollary 4.3. The k-form ω satisfies the nonlinear Hodge–Frobenius system
(4.1) with

ρ(x,Q) =
(

1− at2(x)Qb
)1/2a

(4.18)

if and only if the (n − k)-form ξ ≡ ∗ (ρ(Q)ω) satisfies the nonlinear Hodge–
Frobenius system (4.2) with dual density ρ̂ satisfying

at2(x)Rbρ̂(R)2a+2b − ρ̂(R)2a + 1 = 0. (4.19)

Proof: The argument is identical to the proof of Corollary 4.2. Notice that
here we are allowing the initial density ρ to depend explicitly on x. Nonetheless,
the explicit dependence of ρ on x does not affect any steps in the proof of
Theorem 4.1, nor of the straightforward calculation needed to obtain (4.19). �

Note that in particular, we recover by this method the transformation be-
tween the two densities (2.5) derived in [17], by taking a = 1 = −b in eqs. (4.17)
and (4.19).

A Decomposition theorems for nonlinear Hodge

fields and related results

The material on nonlinear Hodge theory is taken from [35]. For details of the
underlying linear theory see, e.g., Ch. 7 of [24] and the references therein.
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Let M be an oriented, finite Riemannian manifold with Lipschitz boundary.
Let n = dim (M). For a k-form ω, denote by Tω its tangential component and
by Nω its normal component, where we assume that Tω and Nω are differential
forms defined on ∂M.

Denoting by L2 the L2-completion of the space of smooth p-forms on M , we
have

L2 = ET ⊕ E∗
N ⊕H = E ⊕ E∗

N ⊕HN ,

for
E = {dν} ; E∗ = {δν} ;

H = {σ|dσ = δσ = 0, Nσ = 0} ;
ET = {dν|Tν = 0} ;
E∗
N = {δτ |Nτ = 0} .

Standard convexity arguments imply, by the lower semicontinuity of the nonlin-
ear Hodge energy functional under suitable hypotheses on ρ, that for any closed
subspace V for which L2 = V ⊕ V ⊥, and any given k-forms α and β on T ∗M,
there exists a unique k-form τ such that τ −α ∈ V and ρ (x,Q(τ)) τ − β ∈ V ⊥,
where ρ is defined as in Sec. 1 and Q = ∗ (τ ∧ ∗τ) . See, for example, Lemma
4.2 of [34] for details of this argument.

If H ′(Q) is bounded below away from zero for all Q, where H is given by
[21], [38]

H(Q) =

∫ Q

0

[

1

2
ρ(s) + sρ′(s)

]

ds,

then ρ is said to be regular ; c.f. (3.8). If we assume only that H ′(Q) is positive
for all Q ∈ [0, Qcrit) , where Qcrit is some critical value, then ρ is said to be
admissible. Let

D = D1 ⊕D2,

where D1 = Ker d and D2 = C1+α(M). If n < 3, let

N = N1 ⊕N2,

where N1 = Ker d and N2 = Ker δ. If n = 3 assume also that the boundary of
M is of class C2. If n > 3 assume that the boundary data are homogeneous.

Theorem A.1 (L. M. Sibner and R. J. Sibner [35], Sec. 5). Assume that ρ is
regular. Let (γ, σ) ∈ D. Then there is a unique ω ∈ C1+α(M) which satisfies
dω = 0, δρω = δσ, and ω − γ ∈ ET . The solution depends continuously on γ
and σ. Now let (γ, κ) ∈ N . Then there is a unique ω ∈ C1+α(M) which satisfies
dω = 0, δρω = 0, ω−γ ∈ E , and Nρω = Nκ. The solution depends continuously
on γ and κ.

Proof. The idea of the proof is as follows. We first to show that weak solutions
exist ∀ k ∈ Z

+. The convexity arguments mentioned above will yield, for V =
ET , ω−γ ∈ ET and ρω−σ ∈ E⊥

T , a weak form the first assertion of the theorem,
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as γ is d-closed. A weak form of the second assertion of the theorem is obtained
in the same way, but for a conjugate function ν. In this case we take V = E∗⊥

and obtain ω − γ ∈ E and ρω − κ ∈ E⊥. Now De Giorgi–Nash–Moser methods
can be applied to show that if k = 1, the weak solutions obtained by the lower-
semicontinuity of the energy functional are in fact differentiable. This completes
our brief outline of the proof.

Corollary A.2 (L. M. Sibner and R. J. Sibner [35], Sec. 5). Theorem A.1
extends to the case of admissible ρ.

Proof. The corollary follows immediately from the technique known as Shiff-
man regularization, which was introduced in [32] and for which an elementary
reformulation is given in R. J. Sibner’s appendix to [33].
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