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Abstract. On-Line Authenticated Encryption (OAE) combines privacy with data integrity and
is on-line computable. Most block cipher-based schemes for Authenticated Encryption can be run
on-line and are provably secure against nonce-respecting adversaries. But they fail badly for more
general adversaries. This is not a theoretical observation only – in practice, the reuse of nonces is a
frequent issue1.
In recent years, cryptographers developed misuse resistant schemes for Authenticated Encryption.
These guarantee excellent security even against general adversaries which are allowed to reuse
nonces. Their disadvantage is that encryption can be performed in an off-line way, only. This paper
introduces a nw family of OAE schemes –called McOE– dealing both with nonce-respecting and

with general adversaries. Furthermore, we present three family members, i.e., McOE-X, McOE-D,
and McOE-G. All of these members are based on a ’simple’ block cipher. In contrast to all other
OAE schemes known so far, they provably guarantee reasonable security against general adversaries
as well as standard security against nonce-respecting adversaries.
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1 Introduction

On-Line Authenticated Encryption (OAE). Application software often requires a network chan-
nel that guarantees the privacy and authenticity of data being communicated between two
parties. Cryptographic schemes able to meet both of these goals are commonly referred to as
Authenticated Encryption (AE) schemes.

The ISO/IEC 19772:2009 standard for AE [21] defines generic composition (Encrypt-then-
MAC [3]) and five dedicated AE schemes: OCB2 [39], SIV [43] (denoted as “Key Wrap” in [21]),
CCM [14], EAX [7], and GCM [34]. To integrate an AE-secure channel most seamlessly into a
typical software architecture, application developers expect it to encrypt in an on-line manner
meaning that the i-th ciphertext block can be written before the (i+1)-th plaintext block has to
be read. A restriction to off-line encryption, where usually the entire plaintext must be known
in advance (or read more than once) is an encumbrance to software architects.

Nonces and their reuse. Goldwasser and Micali [18] formalized encryption schemes as stateful
or probabilistic, because otherwise important security properties are lost. Rogaway [38, 41, 42]
proposed an unified point of view, by always defining a cryptographic scheme as a deterministic
algorithm that takes an user supplied nonce (a number used once). So the application program-
mer – and not the encryption scheme – is responsible for flipping coins or maintaining state. This
reflects cryptographic practice since the algorithm itself is often implemented by a multi-purpose
cryptographic library which is more or less application-agnostic.

⋆ A shortened version of this paper appears in the proceedings of Fast Software Encryption (FSE) 2012.
1 A prominent example is the PlayStation 3 ’jailbreak’ [20], where application developers used a constant that
was actually supposed to be a nonce for a digital signature scheme.



secure ... against nonce-respecting adversaries ag. nonce-reusing adversaries

on-line CCFB[33] CHM[22] CIP[23] CWC[29] EAX[7] GCM[34] McOE-D (this paper)

IACBC[26] IAPM[26] McOE-D McOE-G McOE-X McOE-G (this paper)

OCB1-3 [42, 39, 30] RPC[11] TAE[31] XCBC[17] McOE-X (this paper)

off-line BTM[24] CCM[14] HBS[25] SIV[43] SSH-CTR[37] BTM[24] HBS[25] SIV[43]

Table 1. Classification of provably secure block cipher-based AE Schemes. CCM and SSH-CTR are considered off-
line because encryption requires prior knowledge of the message length. Note that the family of McOE schemes,
because of being on-line, satisfies a slightly weaker security definition against nonce-reusing adversaries than SIV,
HBS, and BTM.

In theory, the concept of a nonce is simple. In practice, it is challenging to ensure that a nonce
is never reused. Flawed implementations of nonces are ubiquitous [10, 20, 28, 46, 47]. Apart from
implementation failures, there are fundamental reasons why software developers cannot always
prevent nonce-reuse. A persistently stored counter, which is increased and written back each
time a new nonce is needed, may be reseted by a backup – usually after some previous data loss.
Similarly, the internal and persistent state of an application may be duplicated when a virtual
machine is cloned, etc.

Related Work and Our Contribution. We aim to achieve both simultaneously : security against
nonce-reusing adversaries (sometimes also called nonce-misusing adversaries) and support for
on-line-encryption in terms of an AE scheme. Apart from generic composition (Encrypt-then-
Mac, EtM), none of the ISO/IEC 19772:2009 schemes – in fact, no previously published AE
scheme at all – achieves both of these goals, cf. Table 1. In this table, we classify a vast variety
of provably secure block cipher-based AE scheme with respect to their on-line-ability and against
which adversaries (nonce-respecting versus -reusing) they are proven secure.

Since EtM is not a concrete scheme but merely a generic construction technique, there are
some challenges left in order to make it full on-line secure: First, an appropriate on-line cipher
has to be chosen. Second, a suitable, on-line computable, secure, and deterministic MAC must
be selected. And, third, the EtM scheme requires at least two independent keys to be secure.
Since two schemes are used in parallel, it is likely to squander resources in terms of run time
and – important for hardware designers – in terms of space. Since EtM first has to be turned
into an OAE scheme by making the appropriate choices, we do not include it in our analysis.

As it turned out, we actually found nonce-reuse attacks for all of those schemes, cf. Table
2 and Appendix A. In this paper we present a new family of on-line authenticated encryption
schemes called McOE. The general structure is based on the Tweak Chain Hash (TCH) con-
struction from [31] which is adepted from the Matyas-Meyer-Oseas (MMO) construction [35].
We introduce three members of the McOE family – called McOE-X, McOE-D, McOE-G.
Each of them is able to fill the gap in the upper-right of Table 1. We argue that closing this gap
is both practically relevant and theoretically interesting.

Initial Value (IV) based AE schemes which provide security against repeated IV’s have been
addressed by Rogaway and Shrimpton in [43]. Furthermore, they shaped the notion of “misuse
resistance” and proposing SIV as a solution. SIV and related schemes (HBS [25] and BTM [24])
actually provide excellent security against nonce-reusing adversaries, though there are other
potential misuse cases, cf. Appendix A.3. Their main disadvantage is that they are inherently
off-line: For encryption, one must either keep the entire plaintext in memory, or read the plaintext
twice.

Ideally, an adversary seeing the encryptions of two (equal-length) plaintexts P1 and P2 cannot
even decide if P1 = P2 or not. When using a nonce more than once, deciding about P1 = P2 is
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privacy authenticity
attack workload attack workload

CCFB [33] O(1) O(1)

CCM [14] O(1) ≪ 2(n/2) [15]

CHM [22] O(1) O(1)

CIP [23] O(1) O(1)

CWC [29] O(1) O(1)

EAX [7] O(1) O(1)

GCM [34] O(1) O(1)

IACBC [26] O(1) O(1)

privacy authenticity
attack workload attack workload

IAPM [26] O(1) O(1)

OCB1 [42] O(1) O(1)

OCB2 [39] O(1) O(1)

OCB3 [30] O(1) O(1)

RPC [11] O(1) O(1)

TAE [?] O(1) O(1)

XCBC [17] O(2n/4) ?

Table 2. Overview of our nonce-reuse attacks on published AE schemes, excluding SIV, HBS and BTM, which
have been explicitly designed to resist nonce-reuse. Almost all attacks achieve an advantage close to 1. The “attack
workload” covers the computational effort, amount of needed memory as well as the time complexity. Details are
given in Appendix A.

easy. SIV and its relatives ensure that nothing else is feasible for nonce-reusing adversaries. In
the case of on-line encryption, where the first few bits of the encryption of a lengthy message
must not depend on the last few bits of that message, there is unavoidably something beyond
P1 = P2. The adversary can compare any two ciphertexts for their longest common prefix, and
then conclude about common prefixes of the secret plaintexts. Our notion of misuse resistance
means that this is all the adversary can gain. Even in the case of a nonce-reuse, the adversary

1. cannot do anything beyond determining the length of common plaintext prefixes and

2. the scheme still provides the usual level of authenticity for AE (INT-CTXT).

The first property is common for on-line ciphers/permutations (OPRP) [1]. Recently, [45] studies
the design of on-line ciphers from tweakable block ciphers bearing some similarities to our
approach, especially to TC3. In contrast to the McOE family, the constructions from [45]
provide no authentication. The McOE schemes are, e.g., based on a normal block cipher or a
tweakable block cipher.

Design Principles for AE Schemes. The question how to provide authenticated encryption
(without stating that name) when given a secure on-line cipher is studied in [2], the revised and
full version of [1]. The first idea in [2] only provides security if all messages are of the same
length. The second idea repairs that by prepending the message’s length to the message, at the
cost of being off-line, since the message length must be known at the beginning of the encryption
process. The third idea is to prepend and append a random W to a message M and then to
perform the on-line encryption of (W ||M ||W ). This looks promising, but the same W is used
for two different purposes, putting different constraints on the generation of W . For privacy, it
suffices that W behaves like a nonce, not requiring secrecy or unpredictability. Even if W is not
a nonce, but the same W is used for the encryption of several messages, all the adversary can
determine are the lengths of common plaintexts prefixes, as we required for nonce-reuse. On the
other hand, authenticity actually assumes a secret or unpredictable W , rather than a nonce. If
the adversary can guess W before choosing a message, she asks for the authenticated encryption
of (M ||W ). Then she can predict the authenticated encryption of M without actually asking for
it.

The McOE family replaces the “random” W by a proper nonce and the key-dependent tag
computation value τ , performing a nonce-dependent on-line encryption of (M ||τ). The encryp-
tion can also depend on some associated data, which turns McOE into a family of schemes for
OAEAD (On-Line Authenticated Encryption with Associated Data).
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Fig. 1. The generic McOE construction, where Ẽ denotes a tweakable block cipher.

Roadmap. In Section 2 we describe the basic design principle of McOE. Then we present the
members of the McOE family. Furthermore, we introduce concret instances of those family,
and provide performance data when instantiated with either AES-128 or Threefish-512 as the
underlying block cipher. Section 3 deals with general notions and definitions, and Section 4
defines the security of OAE. The main result of the paper, the security proof of the generic
McOE scheme and its analysis is presented in Section 5. In Sections 6, 7, and 8 we show
the security of McOE-X, McOE-D, and McOE-G, respectively. The discussion in Section 9
concludes the paper. The appendix deals with misuse attacks against published AE schemes,
and provides some proof supplements.

2 Practical On-Line Authenticated Encryption using AES and Threefish

2.1 Generic Construction of the McOE Family (without Tag-splitting)

Our design goal was to build a misuse-resistent on-line authenticated encryption scheme, which
follows the on-line permutation approach discussed by Bellare et al. in [1]. Therefore, our generic
McOE structure (see Figure 1) is based on TC3, which is an on-line encryption scheme presented
by Rogaway and Zhan in [45]. Like TC3, our scheme is based on a tweakable block cipher – called
ẼK – but is stateful regarding to the usage of a nonce. Additionally, we expanded it to a full-
fledged authenticated encryption scheme with an additional effort of only two tweakable block
cipher calls.

We also introduce the tag-splitting (TS) method for processing messages whose length is
not a multiple of the block length. Without TS, we would have to pad such messages and then
encrypt the padded messages – resulting in an expanded ciphertext. TS is similar to a well-
known length preserving method called ciphertext stealing (CTS), e.g., [13]. Note, that CTS
requires to process the last block before the last but one, which is not possible for McOE.

The encryption and decryption of the generic construction of McOE without TS can be
described by the following two algorithms.

Definition 1 (Generic McOE Scheme without Tag-Splitting). Let Π = {K, E ,D} be an
authenticated encryption scheme, where K denotes the key derivation function, E the encryption
function, and D the decryption function. Let Ẽ ∈ Block(n, n, n) be a tweakable block cipher.
Furthermore, let H be the header with H ∈ DLH

n , M be the message with M ∈ DL
n for some

integer L, T be the authentication tag with T ∈ Dn, and C be the ciphertext with C ∈ DL
n .

Then E and D of the McOE family are given by the algorithms EncryptAuthenticate and
DecryptAuthenticate, respectively. Here, the encryption function takes a header H and a
message M returning a ciphertext C and a tag T . The decryption function takes a header H, a
ciphertext C and a tag T and returns either a plaintext M or the fail symbol ⊥.
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Fig. 2. The genericMcOE construction, where Ẽ denotes a tweakable block cipher. For simple reference, we denote
Tα as the (n − |CL|)-bit string T [0...n − |CL| − 1] and T β as the |CL|-bit string T [n − |CL|, ..., n]. Additionally,
we denote the corresponding strings τα = τ [0, . . . , |CL| − 1] and τβ = τ [|CL|, . . . , n− 1], respectively.

EncryptAuthenticate(H,M)
1. U ← 0n

2. for i = 1, . . . , LH − 1 do

U ← ẼK(U,Hi)⊕Hi

3. τ ← ẼK(U,HLH
)

4. U ← τ ⊕HLH

5. for i = 1, . . . , L loop

Ci ← ẼK(U,Mi)⊕Mi

U ←Mi ⊕ Ci

6. T ← ẼK(U, τ)
7. return (C1, . . . , CL, T )

DecryptAuthenticate(H,C, T )
1. U ← 0n

2. for i = 1, . . . , LH − 1 do

U ← ẼK(U,Hi)⊕Hi

3. τ ← ẼK(U,HLH
)

4. U ← τ ⊕HLH

5. for i = 1, . . . , L loop

Mi ← Ẽ−1K (U,Ci)
U ←Mi ⊕ Ci

6. if T = ẼK(U, τ) then
return (M1, . . . ,ML)
else return ⊥

In the case when the header or the message length is not a multiple of the block size n, we
recommend to use the secure 10∗-padding. Furthermore, the header has to consist of at least one
block, since the tag computation value τ depends on it. Hence, the whole header can be seen
as a nonce. To fulfill the requirement of length preserving encryption, we introduce the generic
McOE scheme using the TS method in the next section.

2.2 Generic Construction of the McOE Family (Tag-splitting)

In Figure 2 you can see the generic McOE scheme when using Tag-splitting to provide length
preserving. Both the encryption and decryption process can be seen in the following pseudocode.
Note that the additional effort to generate the tag – in comparison to McOE without TS – is
given by only one block cipher invocation (cf. line 7 and 9 in EncryptAuthenticateSplitTag
and DecryptAuthenticateSplitTag, respectively).

Definition 2 (Generic McOE Scheme with Tag-Splitting). Let Π = {K, E ,D} be an
authenticated encryption scheme, where K denotes the key derivation function, E the encryption
function, and D the decryption function. Let Ẽ ∈ Block(n, n, n) be a tweakable block cipher.
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Furthermore, let H be the header with H ∈ DLH
n , M be the message with M ∈ DL

n ||{0, 1}
l∗ for

some integers L and l∗, 0 < l∗ < n, T be the authentication tag with T ∈ Dn, and C be the
ciphertext with C ∈ DL

n ||{0, 1}
l∗. Then, the tag-splitting variants of E and D are given by the

algorithms EncryptAuthenticateSplitTag and DecryptAuthenticateSplitTag, respectively.
Here, the encryption function takes a header H and a message M returning a ciphertext C and
a tag T . The decryption function takes a header H, a ciphertext C and a tag T and returns
either a plaintext M or the fail symbol ⊥.

EncryptAuthenticateSplitTag(H,M)
1. U ← 0n

2. for i = 1, . . . , LH − 1 do

U ← ẼK(U,Hi)⊕Hi

3. τ ← ẼK(U,HLH
)

4. U ← τ ⊕HLH

5. for i = 1, . . . , L− 1 loop

Ci ← ẼK(U,Mi)⊕Mi

U ←Mi ⊕ Ci

6. M∗ ← (ML||τ [0 . . . n− l∗ − 1])
7. M∗ ←M∗ ⊕ ẼK(1n, |ML|)
8. C∗ ← ẼK(U,M∗)
9. Parse CL||T [0 . . . n− l∗ − 1]← C∗

10. U ←M∗ ⊕ C∗

11. C∗∗ ← ẼK(U, τ)
12. T [n− l∗ . . . n− 1]← C∗∗[0 . . . l∗ − 1]
13. return (C1, . . . , CL−1, C

∗
L, T )

DecryptAuthenticateSplitTag(H,C, T )
1. U ← 0n

2. for i = 1, . . . , LH − 1 do

U ← ẼK(U,Hi)⊕Hi

3. τ ← ẼK(U,HLH
)

4. U ← τ ⊕HLH

5. for i = 1, . . . , L− 1 loop

Mi ← Ẽ−1K (U,Ci)
U ←Mi ⊕ Ci

6. C∗ ← CL||T [0 . . . n− l∗ − 1]
7. M∗ ← Ẽ−1K (U,C∗)
8. U ←M∗ ⊕ C∗

9. M∗ ←M∗ ⊕ ẼK(1n, |CL|)
10. Parse ML||τ

′[0 . . . n− l∗ − 1]←M∗

11. T ′ = ẼK(U, τ)
12. if τ ′[0 . . . n− l∗ − 1] = τ [0 . . . n− l∗ − 1]

and T ′[0 . . . l∗ − 1] = T [n− l∗ . . . n− 1]
then return (M1, . . . ,ML) else return ⊥

Both schemes, with and without Tag-splitting, are secure in the common CCA setting as-
suming a nonce respecting adversary. In addition, they guarantee a certain amount of security
in the nonce-misuse scenario, i.e., indistinguishability from an on-line permutation and secure
against existential forgery attacks.

2.3 McOE-X

The first instance presented in this paper is called McOE-X, where the ’X’ indicates the way of
handling the tweak. This scheme uses an ordinary block cipher which is converted to a tweakable
block cipher by XORing the tweak (i.e., the chaining value) to the key K. A depiction of this
instance is given in Figure 3.

The none tag-splitting and tag-splitting modes of McOE-X can be described by the algo-
rithms introduced in Section 2.1 (see Definition 1 and 2) where the tweakable block cipher ẼK

is defined by

ẼK(U,M) := EK⊕U (M),

where EK is a common block cipher, e.g., AES, Serpent, or MARS. For performance testing we
have implemented McOE-X using the block ciphers AES-128 and Threefish-512, resulting in
the two practical instances McOE-X-AES and McOE-X-Threefish. Both implementations are
easily extended to smoothly handle associated data, i.e., data that is not encrypted but only
authenticated. The security proofs considering associated data are given in Section 6.
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Fig. 3. The McOE-X encryption process. In case that the message length is not a multiple of the block size,
McOE-X performs tag-splitting (upper variant). Otherwise, the tag can be computed without splitting (lower
variant). The key used for the block cipher E is computed by the injective function K ⊕ U which is given the
secret key K and the chaining value input U . The tag returned is the n-bit value T . The n − l-bit value Z is
discarded. The decryption process works in a similar way from ’left to right’ only the block cipher component E
is replaced by its counterpart E−1 apart from one exception: the first call computes τ .

The choice of Threefish-512 is based on two facts. First, it contains a really agile key scheduler,
since it is optimized for hashing messages in the MMO (Matyas-Meyer-Oseas) mode. Second, it
processes message blocks of size 512 bit, which results in less frequent incovations of the block
cipher EK .

Remark. For this instance of the McOE family we do need related key resistance for the
block cipher E since the adversary can ’partially control’ some relations among keys used in
the computation. We need this requirement only for McOE-X and not for the two instances
introduced in the next sections.

2.4 McOE-D

In this section we present another member of the McOE family – called McOE-D. This scheme
invokes the block cipher E twice for processing one message block (see Figure 4). The tweakable
block cipher ẼK is defined as follows

ẼK(U,M) := EK(EK(M)⊕ U),

where EK denotes a common block cipher, M the message, and U (chaining value) the tweak. To
get rid of the key relation issue we used the double invocation technique (i.e., the block cipher
EK is called twice) introduced by Liskov et al. in [31]. This implies that the key scheduler is
only applied at the beginning and not for every message block as in McOE-X. So the additional
effort compared to McOE-X is only the difference between the computation effort of the key
scheduler and a block cipher call.

For this member of the McOE family we also present a version realizing the tag-splitting
approach, which was introduced before (see Section 6).
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Fig. 4. The McOE-D encryption process. In case that the message length is not a multiple of the block size,
McOE-D performs tag-splitting (upper variant), where Tα denotes T [0, . . . , n − l∗ − 1] and T β denotes T [n −
l∗, . . . , n− 1]. Else, the tag can be computed without splitting (lower variant). The key used for the block cipher
E is the same in every encryption. Hence, it is constant and can be precomputed. The tag returned is the n-bit
value T . The n − l-bit value Z is discarded. The decryption process works in a similar way from ’left to right’
only the block cipher component E is replaced by its counterpart E−1 apart from one exception: the first call
computes τ .

2.5 McOE-G

The third and last member of the McOE family presented in this paper is given by McOE-G.
This version updates the chaining value by applying an almost XOR-universal hash function to
the XOR result of the previous message block and ciphertext block (see Figure 5). In our practical
implementation, we use the Galois-Field multiplication for H, i.e., the key K2 is multiplied
with the chaining value over GF(2128) defined by the low weight irreducibel polynomial g(x) =
x128 + x7 + x2 + x+ 1 as used in OCB [42] and GCM [34].

The tweakable block cipher ẼK is then defined as follows

ẼK(U,M) := EK1(M ⊕HK2(U))⊕HK2(U),

where EK denotes a common block cipher, M the message, and U (chaining value) the tweak.
The key K is denoted by the concatenation of K1 and K2, i.e., K = K1||K2.

For this member of the McOE family we also present a version realizing the tag-splitting
approach, which was introduced before (see Section 6). Here, an additional key K2 is requiered
for the XOR-universal hash function HK2 as shown in Figure 5, respectively.
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Fig. 5. The McOE-G encryption process. In case that the message length is not a multiple of the block size,
McOE-G performs tag-splitting (upper variant), where Tα denotes T [0, . . . , n − l∗ − 1] and T β denotes T [n −
l∗, . . . , n− 1]. Else, the tag can be computed without splitting (lower variant). The key used for the block cipher
E is the same for every encryption. Hence, it can be precomputed. The tag returned is the n-bit value T . The
n − l-bit value Z is discarded. The decryption process works in a similar way from ’left to right’ only the block
cipher component E is replaced by its counterpart E−1 apart from one exception: the first call computes τ .

The McOE-G scheme can be easily extended to smoothly handle associated data, i.e., data
that is not encrypted but only authenticated. The security proofs considering associated data
are given in Section 8.

2.6 Benchmarking

This section is about measuring the performance of all three presented members of the McOE
family. The reference values are given by the CBC encryption scheme. Note, that the implementa-
tion of the CBC mode does not contain authentication. The results of our naive implementation
based on common reference code are illustrated in Table 3.

Block cipher Impl.
Message length in Bytes

64 128 256 512 1024 2048 4096 8192 16384 32768

McOE-X-AES software 31.2 26.3 23.9 22.7 22 21.7 21.6 21.5 21.5 21.5
McOE-X-AES AES-NI 14.2 12.2 11.2 10.7 10.5 10.4 10.4 10.3 10.3 10.3
McOE-X-Threefish software 19.5 13.1 9.9 8.3 7.5 7.1 6.9 6.8 6.8 6.7

McOE-D-AES software 40.1 33 29.4 27.6 26.7 26.3 26.1 25.9 25.9 25.9
McOE-D-AES AES-NI 11.6 9.9 8.3 7.2 6.7 6.4 6.3 6.3 6.2 6.2

McOE-G-AES software 33 27.9 25.4 24.1 23.5 23.2 23 22.9 22.8 22.8
McOE-G-AES GF-NI/AES-NI 12.5 10.6 9.7 9.3 9 8.9 8.9 8.8 8.8 8.8

AES-CBC encryption software 38.3 35.9 13.5 13.3 13.2 13.2 13.1 13.1 13.1 13.1
AES-CBC encryption AES-NI 4 3.7 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Table 3. Performance values (cycles-per-byte, single core), measured on a Core i5 540M for AES-128 and
Threefish-512. McOE-X is the main contribution in the current paper, McOE-D invokes the underlying block
cipher twice and McOE-G uses Galois field arithmetic. For a comparsion, we also provide the performance of
unauthenticated AES-CBC. The AES software implementation is based on Gladman [16], whereas the hardware
implementation is based on the Intel AES-NI Sample Library[12]. The Threefish implementation is based on the
NIST/SHA-3 reference source as provided by the Skein authors [36]. Finally, the implementation of Galois field
NI multiplication (GF-NI) is based on the example-code from [19].
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3 On-Line Authenticated Encryption and Related Notions

3.1 Definitions

Length of Longest Common Prefix (LLCPn). The length of a string x ∈ {0, 1}n is
denoted by |x| := n. For integers n, ℓ, d ≥ 1, set Dd

n = ({0, 1}n)d, and D∗n :=
⋃

d≥0D
d
n, and

Dℓ,n =
⋃

0≤d≤ℓD
d
n. Note that D0

n only contains the empty string. For M ∈ Dd
n; we write

M = (M1, . . . ,Md) with M1, . . . ,Md ∈ Dn. For P,R ∈ D∗n, say, P ∈ Dp
n and R ∈ Dr

n, we define
the length of the longest common n-prefix of P and R as

LLCPn(P,R) = max
i
{P1 = R1, . . . , Pi = Ri} .

For a non-empty set Q of strings in D∗n we define LLCPn(Q, P ) as max
q∈Q
{LLCPn(q, P )}. For

example, if P ∈ Q, then LLCPn(Q, P ) = |P |/n.

For convenience, we introduce a notation for a restriction on a set. Let Q = {0, 1}a × {0, 1}b ×
{0, 1}c, then we denote Q|b,c = {(B,C) | ∃A : (A,B,C) ∈ Q} as the restriction of Q to B and C.
This generalizes in the obvious way.

Game Based Proofs. Most of the proofs in this paper use the concept of game playing proofs.
The presented games in this paper are written in a language heavily based on L, that was
introduced by Bellare and Rogaway in [5]. A game has three kinds of functions: An initialization
function Initialize, a finalization function Finalize, and oracle functions. Any adversary A
that is playing a game calls at first the Initialize function. In the following, A then makes some
oracle queries and finally it ends the game by invoking Finalize. For adversaries, a function
of a game is a black box. They have no access to any local or global variable of any game. An
adversary wins the game if and only if Finalize returns true. We denote Pr[AG ⇒ 1] as the
probability that the adversary wins the game G.

Note, in this paper we usually use a three digit line number which follows the notation of
Bellare and Rogaway where the first digit denotes the Game, e.g., 444 denotes the 44-th line of
Game G4.

3.2 Block Ciphers and On-Line Permutations

Block Cipher. A (k, n) block cipher is a keyed family of permutations consisting of two paired
algorithms E : Dk ×Dn → Dn and E−1 : Dk ×Dn → Dn, accepting a k-bit key and an input
from Dn for some k, n > 0. For n > 0, Block(k, n) is the set of all (k, n) block ciphers. For any
E ∈ Block(k, n) and a fixed key K ∈ Dk, the decryption E−1K (Y ) := E−1(K,Y ) is the inverse
function of enryption EK(X) := E(K,X), so that E−1K (EK(X)) = X holds for any X ∈ Dn.

We follow the usual convention to write oracles, that are provided to an algorithm, as super-
scripts. We define the related key PRP-security of a block cipher E by the success probability
of an adversary trying to differentiate between the block cipher and a random permutation.

Definition 3. Let E ∈ Block(k, n) and denote by E−1 the corresponding inverse. Let ϕ : Dk ×
Dn → Dk. A fixed related key adversary A has access to an E oracle with two parameters such
that she can query either Eϕ(K,·)(·) or E−1ϕ(K,·)(·).

Let Perm(n, n) be the set of n-bit permutations such that the first parameter models the
permutation and the second parameter the value that is to be permuted, i.e., for π ∈ Perm(n, n)
it holds that π(Z, ·) is a random permutation for any given value of Z.
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1 OPerm(V,M)
2 (j, p)← LLCP∗

n(Q|V,M , (V,M)) ;

3 Q ← Q∪ (V,M,C) ;
4 for i = 1, . . . , p do

5 Ci ← Cj
i ;

6 for i = p+ 1, . . . , |M |/n do

7 Ci
$
← Dn \D[V ||M1|| . . . ||Mi−1] ;

8 D[V ||M1|| . . . ||Mi−1]← D[V ||M1|| . . . ||Mi−1] ∪ Ci ;
9 return C ;

Fig. 6. Lazy sampling implementation of a stateful (n-)on-line permutation. In line 2, the Oracle LLCP∗
n is

invoked returning (j, p) where p denotes the length of the prefix n determined via LLCPn and j denotes the index
in Q|V,M . In line 5, we denote by C

j
i the i-th n-bit block of the j-th entry in Q|C .

The related-key (RK) advantage [32] of A in breaking E is then defined as

AdvRK-CPA-PRP
E (A) = |Pr[K

$
← DkA

Eϕ(K,·)(·) ⇒ 1]− Pr[π
$
← Perm(n,n) : Aπ(·,·) ⇒ 1]|

AdvRK-CCA-PRP
E,E−1 (A) = |Pr[K

$
← Dk : A

Eϕ(K,·)(·),E
−1
ϕ(K,·)

(·)
⇒ 1]

− Pr[π
$
← Perm(n,n) : Aπ(·,·),π−1(·,·) ⇒ 1]|.

Tweakable Block Cipher The concept of a tweakable block ciphers was introduced by Liskov
et al. in [31]. The design is based on a common block cipher, which is extended by a so called
tweak. A tweakable (k, v, n) block cipher is a family of functions consisting of two paired algo-
rithms E : Dk × Dv × Dn → Dn and E−1 : Dk × Dv × Dn → Dn, accepting a key K ∈ Dk,
a tweak V ∈ Dv, and an input from Dn for some k, v, n > 0. Block(k, v, n) is the set of all
(k, v, n) tweakable block ciphers. For any Ẽ ∈ Block(k, v, n) and two fixed values K ∈ Dk

and V ∈ Dv, the decryption Ẽ−1K (V, Y ) := E−1(K,V, Y ) is the inverse function of encryption

ẼK(V,X) := Ẽ(K,V,X), i.e., ẼK(K,V, ·) is a permutation.

Definition 4. Let Ẽ ∈ Block(k, v, n) and denote by Ẽ−1 the corresponding inverse. A fixed
adversary A has access to an Ẽ oracle with three parameters such that she can query either
ẼK(·, ·) or Ẽ−1K (·, ·).

Let TPerm(v, n) be the set of n-bit permutations such that the first parameter models the
permutation and the second parameter the value that is to be permuted, i.e., for π ∈ TPerm(v, n)
it holds that π(Z, ·) is a random permutation for any given value of Z.

The advantage for an adversary A to distinguish Ẽ from a randomly chosen permutation
from TPerm(v, n) is defined as

AdvT-IND-CPA
Ẽ

(A) = |Pr[K
$
← Dk : AẼK(·,·) ⇒ 1]− Pr[π

$
← TPerm(v, n) : Aπ(·,·) ⇒ 1]|

AdvT-IND-CCA
Ẽ,Ẽ−1 (A) = |Pr[K

$
← Dk : AẼK(·,·),Ẽ−1

K (·,·) ⇒ 1]

− Pr[π
$
← TPerm(v, n) : Aπ(·,·),π−1(·,·) ⇒ 1]|.

On-Line Permutation (OPerm). We aim for larger permutations that not only permute
single blocks but can handle multiple/variable block messages. Such a permutation, from D∗n to
D∗n, is (n-)on-line if the i-th block of the output is determined completely by the first i blocks of
the input. Let denote OPermn,∗ the set of all on-line permutations from D∗n to D∗n. It is easy to
extend the definition with a state space Dv. Let OPermv

n,∗ denote the set of all functions from
Dv ×D∗n to D∗n. Then for each f ∈ OPermv

n,∗ and V ∈ Dv, the function f(V, ·) is an (n-)on-line
permutation. Figure 6 illustrates a lazy sampling implementation of OPermv

n,∗.

Next, we introduce the formal definition of a family of (n-)on-line functions which is the
basic design principle of the McOE family.
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Definition 5. Let n, k, v ≥ 0, K ∈ Dk, V ∈ Dv. A family of functions F : Dk ×Dv ×D∗n → D∗n
is (n-)on-line if for any instance of this family determined by K,V , F (K,V, ·) is a permutation
and there exists for any message M = (M1,M2, . . . ,Mℓ) a family of functions f i : Dk × (Dv ×
Di−1

n )×Dn → Dn, i = 1, . . . , ℓ such that

Π(K,V,M) = f1
K((V, ∅),M1)||f

2
K((V,M1),M2)

|| . . . ||

f ℓ−1
K ((V,M1|| . . . ||Mℓ−2),Mℓ−1)||f

ℓ
K((V,M1|| . . . ||Mℓ−1),Mℓ),

where “||” being the concatenation of strings, holds.

An encryption scheme is (n-)on-line if the encryption function is (n-)on-line. A thorough dis-
cussion of on-line encryption and its properties can be found in [1].

Proposition 1. Let F be an (n-)on-line function as defined in Definition 5, then all f i
K(V, ·)

are n-bit permutations.

The proof is similar to Proposition 3.4 of [1].

Let F be a family of (n-)on-line functions. Assume that for each uniform randomly chosen FK

from F , each f i
K(V, ·) is a PRP, then it is easy to see that FK is indistinguishable from the

OPerm oracle as shown in Figure 6. We call such a a family of (n-)on-line functions on-line
pseudo random permutations (OPRP).

3.3 Authenticated Encryption (With Associated Data)

An authenticated encryption scheme is a tuple Π = (K, E ,D). Its aim is to provide privacy and
data integrity. The key generation function K takes no input and returns a randomly chosen key
K from the key space, e.g., from Dk. The encryption algorithm E and the decryption algorithm
D are deterministic algorithms that map values from Dk × D+

n × D∗n to a string or – if the
input is invalid – the value ⊥. The header H consists either only of the initial value/nonce
V ∈ Dn (if no data is to be authenticated/checked in the encryption/decryption process) or is
a combination of V and a value from D∗n. So H ⊂ D+

n in either case. For sake of convenience,
we usually write EHK (M) for E(K,H,M) and DH

K(M) for D(K,H,M), where the message M
is chosen from D∗n, H ∈ D+

n and a key from the key space. We require DH
K(EHK (M)) = M for

any possible K,M,H, and define the tag size for a message M ∈ D∗n and header H ∈ D+
n

as tag(H,M) := |EHK (M)| − |M |. We denote an authenticated encryption scheme with the
requirement that the initial vector V is only used once in a nonce based scheme. Otherwise,
we call such a scheme deterministic. Similarly, we call an adversary nonce-respecting (nr) if no
nonce is used twice for any query. Otherwise, the adversary is called nonce-ignoring (ni).

4 Security Notions for On-Line Authenticated Encryption

Authenticated (On-Line) Encryption tries to achieve privacy and authenticity at the same time.
Therefore we need security notions to handle this twofold goal. For AE, there have been notions
and their relations introduced for deterministic [44] and nonce based [3, 4, 27, 38, 42] AE schemes.
In order to have one convenient toolset of notions, we adopt the notion of CCA3 security
suggested in [44] as a natural strengthening of CCA2 security.

We parameterize our definition in order to define different – but closely related – notions by
explicitly stating whether we mean an on-line or off-line scheme, ω ∈ {ae,oae}, and stating the
adversary behavior as either nonce-respecting or nonce-ignoring, ν ∈ {nr,ni}.

12



Game GCPA, GCCA3

1 In i t i a l i z e (ω, ν)

2 b
$
← {0, 1} ;

3 i f (b=1) then

4 K ← K() ;

5 Finalize(d)
6 return (b = d) ;

10 Encrypt(H,M)
11 i f (ν = nr and V ∈ B) then

12 return ⊥ ;
13 i f (b=1) then

14 C ← EK(H,M) ;
15 else

16 C ← $ω(H,M) ;
17 B ← B ∪ {V } ;

18 Q ← Q∪ {(H,C)};

19 return C;

20 Decrypt(H,C)
21 i f ((H,C) ∈ Q) then

22 return ⊥ ;
23 i f (b=1) then

24 M ← DK(H,C) ;
25 else

26 M ← ⊥(H,C) ;
27 return M ;

Fig. 7. GCPA(ω, ν) is the CPA
(ω,ν)
Π -Game and GCCA3(ω, ν) the CCA3

(ω,ν)
Π -Game where Π = (K, E ,D). Game

GCCA3 contains the code in the box while GCPA does not. The oracle $ae(H,M) returns a string of length |M |+
tag(H,M), this string is on-line compatible if ω = oae. V denotes the last block of the header representing the
nonce/initial value.

Definition 6 (CCA3(ω, ν)). Let Π = (K, E ,D) be an authenticated encryption scheme with
header space D+

n and message space D∗n, and fix an adversary A. The advantage of A breaking
Π is defined as

Adv
CCA3(ω,ν)
Π (A) =

∣∣∣Pr
[
K

$
← K : AEK(·,·),DK(·,·) ⇒ 1

]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]∣∣∣ .

The adversary’s random-bits oracle, $ae(·, ·) or $oae(·, ·), returns on a query with header H ∈
D+

n and plaintext X ∈ D∗n a random string of length |EK(M)| which is either on-line or not,
depending on the variable ω. The ⊥(·, ·) oracle returns ⊥ on every input. We assume wlog. that
the adversary A never ask a query which answer is already known. It is easy to see that we can
rewrite the term given in Definition 6 as

Adv
CCA3(ω,ν)
Π (A) =

∣∣∣Pr
[
K

$
← K : AEK(·,·),DK(·,·) ⇒ 1

]
− Pr

[
K

$
← K : AEK(·,·),⊥(·,·) ⇒ 1

]
(1)

+Pr
[
K

$
← K : AEK(·,·),⊥(·,·) ⇒ 1

]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]∣∣∣ . (2)

One can interpret (1) as the advantage that an adversary has on the integrity of the ciphertext
and (2) as the advantage that an CPA adversary has on the privacy. Using this decomposition
as a motivational starting point, we now define ciphertext integrity and what we mean by a
CPA adversary on authenticated encryption schemes. From now on, our definitions are based on
the game playing methodology. For example, we can restate Definition 6 using the game GCCA3

given in Figure 7 as

Adv
CCA3(ω,ν)
Π (A) = 2

∣∣∣Pr[AGCCA3(ω,ν) ⇒ 1]− 0.5
∣∣∣ .

We denote Adv
CCA3(ω,ν)
Π (q, ℓ, t) as the maximum advantage over all CCA3(ω, ν) adversaries

run in time at most t, ask a total maximum of q queries to E and D, and whose total query
length is not more than ℓ blocks.

4.1 Privacy and Integrity Notions for Authenticated Encryption Schemes.

Similarly, we define the privacy and integrity of an authenticated (on-line) encryption scheme
Π = (K, E ,D) with header space D+

n , message space D∗n and tag-size function tag(H,M) as
follows.

Definition 7. Let GCPA(ω, ν) be the CPAω,ν
Π game given in Figure 7. Fix an adversary A. The

advantage of A breaking Π is defined as

Adv
CPA(ω,ν)
Π (A) ≤ 2

∣∣∣Pr[AGCPA(ω,ν) ⇒ 1]− 0.5
∣∣∣ .
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Game GINT−CTXT

1 In i t i a l i z e (ν)
2 K ← K();

3 Finalize ( )
4 return win ;

10 Encrypt (H,M)
11 i f (ν = nr and V ∈ B) then

12 return ⊥ ;
13 C ← EK (H,M) ;
14 B ← B ∪ {V } ;
15 Q ← Q∪ {(H,C)} ;
16 return C ;

20 Verify (H,C)
21 M ← DK (H,C) ;
22 i f ((H,C) 6∈ Q and M 6= ⊥) then

23 win ← true ;
24 return (M 6= ⊥) ;

Fig. 8. Game GINT−CTXT (ν) is the INT-CTXTω,ν
Π game where Π = (K, E ,D). V denotes the last block of the

header representing the nonce/initial value.
.

Definition 8. Let GINT-CTXT(ν) be the INT-CTXTν
Π game given in Figure 8. Fix an adversary

A. The advantage of A breaking Π is defined as

Adv
INT-CTXT(ν)
Π (A) ≤ Pr[AGINT-CTXT(ν) ⇒ 1].

We denote Adv
CPA(ω,ν)
Π (q, t, ℓ) and Adv

INT-CTXT(ν)
Π (q, t, ℓ) as the maximum advantage over all

CPA(ω, ν) resp. INT-CTXT(ν) adversaries run in time at most t, ask a total maximum of q
queries to E and D, and whose total query length is not more than ℓ blocks.

4.2 CCA3 is equal to INT-CTXT plus CPA.

We now give a generalization of Theorem 3.2 from Bellare and Namprempre [3]. It simply states
the equivalence of a scheme being CCA3 secure and both INT-CTXT and CPA secure (often
denoted as IND-CPA secure). These statements hold in the on-line and off-line case.

Theorem 1. Let Π = (K, E ,D) be an authenticated encryption scheme. Fix ω ∈ {ae,oae}
and ν ∈ {nr,ni}. Let A be an CCA3(ω, ν)Π-adversary running in time t, making q queries
with a total length of at most ℓ blocks. Then there are a CPA(ω, ν)-adversary Ap and an
INT-CTXT(ω, ν)-adversary Ac such that

Adv
CCA3(ω,ν)
Π (A) ≤ Adv

CPA(ω,ν)
Π (Ap) +Adv

INT-CTXT(ω,ν)
Π (Ac).

Furthermore, Ac and Ap run in time O(t) and both make at most q queries in each case.

The proof is given in Appendix B.

4.3 Relations between PRP and OPRP.

Let us proceed from on-line authenticated encryption schemes in a common case, where we
consider an adversary A to be nonce respecting and the regarded scheme to be CCA3ae,nr

secure. For such schemes it is desirable to obtain a certain level of security, even in a misuse
scenario. Due to the nature of this scenario an on-line authenticated encryption scheme can
solely be CCA3oae,ni secure. Hence it is of great interest to determine the relation between
these two security notions.

Lemma 1. Let F be an OPRP, introduced in Section 3.2, and A be a nonce respecting adversary.
Then

Adv
PRP(nr)
F (A) = |Pr[K

$
← K : AFK ⇒ 1]− Pr[p

$
← PRP : Ap ⇒ 1]| = 0.

Proof (Sketch). Let denote (Vi,Mi) the i-th encryption query. For each Vi, Vj with i 6= j it holds
true that Vi 6= Vj , since we assume a nonce respecting adversary. Consequently FK(Vi, ·) and
FK(Vj , ·) are two independent PRPs, due to the fact that all f ℓ

k(V ||X, ·) with X ∈ Dℓ−1
n are

PRPs. This implies that FK(V, .) is a PRP. ⊓⊔

This Lemma shows that a CCA3oae,ni secure on-line authenticated encryption scheme is also
CCA3ae,nr secure against nonce respecting adversaries.
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5 Security of the Generic McOE Scheme

In this section, we analyse the security of the generic McOE scheme. We introduced this scheme
by Definition 1 and 2 (cf.Section 2), which also provide the corresponding pseudocode. We show
that McOE achieves our two-fold goal, by proofing that it guarantees a certain minimum,
well defined security against a nonce-ignoring adversary. More formal, we show that McOE is
CCA3oae,ni secure, which implies that McOE is also fully secure against a nonce-respecting
adversary, i.e., CCA3ae,nr secure (cf. Section 4.3).

5.1 Security Analysis of McOE without Tag-Splitting

We now proceed to show the security of McOE. For this we use the results of Theorem 1 and
show the INT-CTXT and RK-CPA-PRP security separately.

Theorem 2. Let Π = (K, E ,D) be a McOE scheme as in Definition 1, i.e., K is the key
derivation function, E = EncryptAuthenticate and D = DecryptAuthenticate. Then

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

3(q + ℓ)(q + ℓ+ 1) + 4q + 3ℓ

2n − (q + ℓ)
+ 3AdvT-IND-CCA

Ẽ,Ẽ−1 (q + ℓ, O(t)).

Proof. The proof follows from Theorem 1 together with Lemmas 2 and 3. ⊓⊔

In the follwoing, for the sake of simplification, we provide an upper bound which is much
easier to grasp than the original bound, but not as tight as the original bound given in the
theorem above.

Corollary 1. Let assume that ℓ ≥ 7, ℓ ≥ q and the T-IND-CCA-advantage is at most δ for
an adversary which amount of queries is at most q + ℓ and its running time is O(t). Then the
following bound holds

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

14ℓ2

2n − (2ℓ)
+ δ.

Lemma 2. Let Π = (K, E ,D) be a McOE scheme as in Definition 1. Let q be the number of
total queries an adversary A is allowed to ask and ℓ be an integer representing the total length
in blocks of the queries to E and D. Then,

Adv
INT-CTXT(ni)
Π (q, ℓ, t) ≤

(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

2q + ℓ

2n − (q + ℓ)
+AdvT-IND-CCA

Ẽ,Ẽ−1 (q + ℓ).

Proof. Our bound is derived by game playing arguments. Consider games G1-G3 of Figure 9
and a fixed adversary A asking at most q queries with a total length of at most ℓ blocks. The
functions Initialize and Finalize are identical for all games in this proof. Lets denote G0 as
the Game INT-CTXT(ni) as defined in Figure 8. Definition 8 states that

Adv
INT-CTXT(ni)
Π (A) ≤ Pr[AG0 ⇒ 1].

In G1, the encryption and verify placeholders are replaced by their generic McOE counterparts
as of Definition 1. Clearly, Pr[AG0 ⇒ 1] = Pr[AG1 ⇒ 1]. We now discuss the differences between
G1 and G2. The set B1 is initialized with 0n and then collects all new key-input values U , which
are computed during the encryption or verification process (in lines 204, 207, 213, 223, 226, 232
and 237).
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1 In i t i a l i z e ( )

2 K
$
← K() ;

3 B1 ← {0n} ;

4 Finalize ( )
5 return win ;

100 Encrypt(H,M) Game G1

101 LH ← |H|/n ; L← |M |/n ;
102 U ← 0n ;
103 for i = 1, ..., LH do

104 τ ← ẼK(U,Hi) ;
105 U ← Hi ⊕ τ ;
106 for i = 1, ..., L do

107 Ci ← ẼK(U,Mi) ;
108 U ← Ci ⊕Mi ;

109 T ← ẼK(U, τ) ;
110 Q ← (H,M,C, T ) ;
111 return (C1, . . . , CL, T ) ;

112 Verify(H,C, T ) Game G1

113 LH ← |H|/n ; L← |C|/n ;
114 U ← 0n ;
115 for i = 1, ..., LH do

116 τ ← ẼK(U,Hi) ;
117 U ← Hi ⊕ τ ;
118 for i = 1, ..., L do

119 Mi ← Ẽ−1
K (U,Ci) ;

120 U ← Ci ⊕Mi ;

121 i f (T = ẼK(U, τ) and (H,C) 6∈ Q|H,C) then

122 win ← true ;
123 Q ← (H,⊥, C,⊥) ;

124 return (T = ẼK(U, τ))

200 Encrypt(H,M) Game G2, G3

201 LH ← |H|/n ; L← |M |/n ;
202 B2 ← B2 ∪H ;
203 p← LLCPn(Q|H,M , (H,M)) ;

204 U ← 0n ;
205 for i = 1, . . . , LH do

206 τ ← ẼK(U,Hi) ;
207 U ← Hi ⊕ τ ;
208 i f (U ∈ B1 and i > p) then

209 bad ← true ; U
$
← {0, 1}n \B1;

210 B1 ← B1 ∪ U ;
211 for i = 1, . . . , L do

212 Ci ← ẼK(U,Mi) ;
213 U ← Ci ⊕Mi ;
214 i f (U ∈ B1 and i+ LH > p) then

215 bad ← true ; U
$
← {0, 1}n \B1;

216 B1 ← B1 ∪ U ;

217 T ← ẼK(U, τ) ;
218 Q ← (H,M,C, T ) ;
219 return (C1, . . . , CL, T ) ;

220 Verify(H,C, T ) Game G2, G3

221 LH ← |H|/n ; L← |C|/n ;
222 p← LLCPn(Q|H,M , (H,M)) ;

223 U ← 0n ;
224 for i = 1, . . . , LH do

225 τ ← ẼK(U,Hi) ;
226 U ← Hi ⊕ τ ;
227 i f (U ∈ B1 and i > p) then

228 bad ← true ; U
$
← {0, 1}n \B1;

229 B1 ← B1 ∪ U ;
230 for i = 1, . . . , L− 1 do

231 Mi ← Ẽ−1
K (U,Ci) ;

232 U ← Ci ⊕Mi ;
233 i f (U ∈ B1 and i+ LH > p) then

234 bad ← true ; U
$
← {0, 1}n \B1;

235 B1 ← B1 ∪ U ;

236 ML ← Ẽ−1
K (U,CL) ;

237 U ← CL ⊕ML ;
238 i f (U ∈ B1 and H 6∈ B2 ) then

239 bad ← true ; U
$
← {0, 1}n \B1;

240 i f (T = ẼK(U, τ) and (H,C, T ) 6∈ Q|H,C,T ) then

241 win ← true ;
242 Q ← (H,⊥, C,⊥) ;
243 B ← B ∪ U ;

244 return (T = ẼK(U, τ)) ;

Fig. 9. Games G1-G3 for the proof of Lemma 2. Game G3 contains the code in the box while G2 does not.
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In lines 203 and 222, the LLCPn oracle is inquired. Finally, the variable bad is set to true if
one of the if-conditions in lines 208, 214, 227, 233, or 238 is true. None of these modifications
affect the values returned to the adversary and therefore

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

For our further discussion we require another game G4 which is explained in more detail later
in this proof2. It follows that

Pr[AG2 ⇒ 1] = Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1|

≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]

≤ Pr[AG4 ⇒ 1] + |Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]|+ Pr[AG3sets bad]. (3)

We now proceed to upper bound any of the three terms contained in (3) – in right to left order.
The success probability of game G3 does not differ from the success probability of G2 unless a
chaining value U occurs twice. In this case, the adversary must (1) either have ’found’ a collision
for ẼK(X,Y ) ⊕ Y , i.e., she stumbles over (X,Y ) and (X ′, Y ′) such that ẼK(X,Y ) ⊕ Y =
ẼK(X ′, Y ′) ⊕ Y ′ or, (2), must have found a preimage of 0n, which is always the starting point
of our chain. Note, the value 0n is initially stored in the set B1. In both cases, the variable bad
would have been set to true, and it follows by [9] that

Pr[AG3sets bad] ≤
(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)
.

We now describe the new game G4. It is equal to G3 except that the tweakable block cipher Ẽ
and its inverse Ẽ−1 are replaced by the functions EncryptBlock and DecryptBlock, which
are modeled as a set of pseudo random permutations, where the index is given by the tweak.
We assume that they are implemented via lazy sampling. More precisely, the call ẼK(X,Y ) is
replaced by an invocation of EncryptBlockK(X,Y ) and the call Ẽ−1K (X,Y ) is replaced by an
invocation of DecryptBlockK(X,Y ). We now upper bound the difference between G3 and G4.

So, by definition of G4, we have

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ AdvT-IND-CCA
Ẽ,Ẽ−1 (q + ℓ, O(t)).

Finally, we have to upper bound the advantage for the adversary A to win the game G4. A can
only win this game if the condition in line 238 (resp. 438 for game G4) is true. As usual, we
assume wlog. that A doesn’t ask a question if the answer is already known which implies that
(H,C, T ) 6∈ Q|H,C,T . For our analysis we distinguish between three cases. So we formally adjust

line 240 (i.e., choose as the tag computation operation either Ẽ or Ẽ−1) such that we always
have enough randomness left for our result.

Case 1: H ∈ B2 and U ∈ B.
Since we already have computed τ in the past, the chance of success is upper bounded by
the probability Pr[Ẽ−1K (U, T ) = τ ] which can be upper bounded by 1/(2n − (q + ℓ)).

Case 2: H 6∈ B2, and U 6∈ B1.
Then the tagging operation uses a new tweak and therefore the output of ẼK(U, τ) is uni-
formly distributed and the success probability is ≤ 1/2n.

Case 3: H ∈ B2 and U 6∈ B1.
The chance of success is upper bounded by Pr[Ẽ−1K (U, T ) = τ ] which can be upper bounded
by 1/2n.

2 Since the difference is very minor, we do not provide an extra figure.
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Note, the ’missing’ fourth case has been explicitly excluded by line 240 (resp. 440). Since these
three cases are mutually exclusive, we can upper bound the success probability for q queries as

Pr[AG4 ⇒ 1] ≤
q

2n − (q + ℓ)
.

Our claim follows by adding up the individual bounds. ⊓⊔

Lemma 3. Let Π = (K, E ,D) be a McOE scheme as in Definition 1 (i). Let q be the number
of total queries an adversary A is allowed to ask and ℓ be an integer representing the total length
of the queries to E and D. Then,

Adv
CPA(aoe,ni)
Π (q, ℓ, t) ≤ 2

(
(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)
+AdvT-IND-CPA

Ẽ
(q + ℓ)

)
.

Proof. Our bound is derived by game playing arguments. Consider games G1 and G2 of Figure
12. The functions Initialize and Finalize are identical for any of those games.

At first we investigate the differences between the CPA(aoe,ni) game from Figure 7 and
G1 from Figure 12. In G1 we have replaced E by its definition of McOE, and $w by an on-line
encryption oracle OnlinePermutation (line 102) that just models a ’perfect’ OPRP, i.e., for
two plaintexts with an equal prefix it returns two ciphertexts that also share a prefix of the same
length. We again assume this oracle to be implemented by lazy sampling. Then, set B collects
all chaining values (lines 113 and 119) in order to intercept the occurrence of two equal chaining
values which do lead to two equal tweaks for the encryption of a block.

In line 105, the oracle LLCPn is invoked returning the length of the longest common prefix
of (H,M) and Q|H,M .

Finally, the variable bad is set to true if (one of) the conditions of lines 111/211 or 117/217
hold. These changes do not affect the success probability of an adversary, because the output of
the oracle remains unchanged. More precisely, the distribution of the output does not change.
This means that

Adv
CPA(aoe, ni)
Π (A) = 2 · |Pr[AG1 ⇒ 1]− 0.5|,

and therefore, by common game playing arguments – using a new game G3 described shortly –,

Pr[AG1 ⇒ 1] ≤ Pr[AG2 ⇒ 1] + |Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]|

≤ Pr[AG2 ⇒ 1] + Pr[AG2sets bad]

≤ Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|+ Pr[AG2sets bad].

The success probability of game G2 does not differ from the success probability of G1 unless a
chaining value U occurs twice. In this case, the adversary must either have found a collision for
ẼK(X,Y )⊕Y , i.e., she has found (X,Y ) and (X ′, Y ′) such that ẼK(X,Y )⊕Y = ẼK(X ′, Y ′)⊕Y ′

or must have found a preimage of 0n. In both cases, the variable bad would have been set to
true, and it follows again by [9] that

Pr[AG2sets bad] ≤
(q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)
.

The aforementioned new game G3 is equal to the game G2 except that the tweakable block cipher
Ẽ and its inverse Ẽ−1 are replaced by the functions EncryptBlock and DecryptBlock, which
are modeled as set of pseudo random permutations, where the index is given by the tweak.
We assume that they are implemented via lazy sampling. More precisely, the call ẼK(X,Y ) is
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1 In i t i a l i z e ( )

2 b
$
← {0, 1}; K

$
← K() ; B ← 0n;

3 Finalize (d)
4 return (b=d ) ;

100 Encrypt(H,M) Game G1, G2

101 i f (b = 0) then

102 C ← OnlinePermutation(H,M) ;
103 else

104 LH ← |H|/n ; L← |M |/n ;
105 p← LLCPn(Q, (H,M)) ;
106 Q ← Q∪ (H,M) ;
107 U ← 0n;
108 for i = 1, . . . , LH do

109 τ ← ẼK(U,Hi);
110 U ← Hi ⊕ τ ;

111 i f (U ∈ B and i > p) then

112 bad ← true ; U
$
← {0, 1}n \B;

113 B ← B ∪ U ;
114 for i = 1, . . . , L do

115 Ci ← ẼK(U,Mi) ;
116 U ← Ci ⊕Mi ;
117 i f (U ∈ B and i+ LH > p) then

118 bad ← true ; U
$
← {0, 1}n \B;

119 B ← B ∪ U ;
120 return C ;

Fig. 10. Games G1 and G2 for the proof of Lemma 3. Game G2 contains the code in the box while G1 does not.

replaced by an invocation of EncryptBlockK(X,Y ) and the call Ẽ−1K (X,Y ) is replaced by an
invocation of DecryptBlockK(X,Y ). We now upper bound the difference between G2 and G3.
So, by definition of G4, we have

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ AdvT-IND-CPA
Ẽ

(q + ℓ, O(t)).

Finally, we have to upper bound the advantage for an adversary A to win the game G3. Since
the U cannot collide and it is not possible to compute a preimage for any query, the algorithm
for b = 0 is an OPRP, and therefore the success probability to win G3 for any adversary is 0.5,
i.e., she has no advantage in winning this game.

Our claim follows by adding up the individual bounds. ⊓⊔

5.2 Security Analysis of McOE with Tag-Splitting

Theorem 3. Let Π = (K, E ,D) be a McOE scheme as in Definition 2, i.e., K is the key
generation function, E = EncryptAuthenticateSplitTag and D = DecryptAuthenticate-
SplitTag. For q ≤ 2n/2−2 we have

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

4(q + ℓ+ 2)(q + ℓ+ 3) + 6(2q + ℓ)

2n − (q + ℓ)
+

3q(q + 1)

2n − q

+
q

2n/2 − q
+ 3AdvT-IND-CCA

E,E−1 (2q + ℓ, O(t)).

Proof. The proof follows from Theorem 1 together with Lemmas 4 and 6. ⊓⊔

For the sake of simplification we provide an upper bound which is much easier to grasp than
the original bound, but not as tight as the original bound given in the theorem above.

Corollary 2. Let assume that ℓ ≥ 35, ℓ ≥ q and the T-IND-CCA-advantage is at most δ for
an adversary which amount of queries is at most q + ℓ and its running time is O(t). Then the
following bound holds

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

21ℓ2 + ℓ

2n − (2ℓ)
+

ℓ

2n/2 − ℓ
+ δ.
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1 In i t i a l i z e ( )

2 K
$
← K() ; B ← {0n, 1n} ;

3 Finalize ( )
4 return win ;

100 Encrypt(H,M) Game G1

101 LH ← |H|/n ; L← ⌈|M |/n⌉ ;
102 U ← 0n ;
103 for i = 1, ..., LH do

104 τ ← ẼK(U,Hi) ;
105 U ← Hi ⊕ τ ;
106 for i = 1, ..., L− 1 do

107 Ci ← ẼK(U,Mi) ;
108 U ← Ci ⊕Mi ;
109 M∗ ←ML||τ [0, . . . n− |ML| − 1] ;

110 M∗ ←M∗ ⊕ ẼK(1n, |ML|) ;

111 C∗ ← ẼK(U,M∗);
112 CL ← C∗[0, ..., |ML| − 1];
113 T [0, . . . , n− |ML| − 1]← C∗[|ML| − 1, . . . , n− 1];
114 U ←M∗ ⊕ C∗

115 T [n− |ML|, . . . , n− 1]← ẼK(U, τ)[0, ..., |ML|];
116 Q ← (H,M,C, T ) ;
117 return (C1, . . . , CL, T ) ;

118 Verify(H,C, T ) Game G1

119 LH ← |H|/n ; L← ⌈|C|/n⌉ ;
120 U ← 0n ;
121 for i = 1, ..., LH do

122 τ ← ẼK(U,Hi) ;
123 U ← Hi ⊕ τ ;
124 for i = 1, ..., L− 1 do

125 Mi ← Ẽ−1
K (U,Ci) ;

126 U ← Ci ⊕Mi ;
127 C∗ ← CL||T [0 . . . n− |CL|

∗ − 1] ;

128 M∗ ← Ẽ−1
K (U,C∗) ;

129 U ←M∗ ⊕ C∗;

130 M∗ ←M∗ ⊕ ẼK(1n, |CL|) ;
131 ML ←M∗[0, . . . , |CL| − 1] ;
132 τ ′[0 . . . n− |CL| − 1]←M∗[|CL|, . . . , n− 1] ;

133 T ′ ← ẼK(U, τ) ;
134 i f τ ′[0 . . . n− l∗ − 1] = τ [0 . . . n− l∗ − 1]
135 and T ′[0 . . . l∗ − 1] = T [n− l∗ . . . n− 1]
136 and (H,C) 6∈ Q|H,C) then

137 win ← true ;
138 Q ← (H,⊥, C,⊥) ;
139 return win ;

200 Encrypt(H,M) Game G2, G3

201 LH ← |H|/n ; L← ⌈|M |/n⌉ ;
202 p← LLCPn(Q|H,M , (H,M)) ;

203 U ← 0n ;
204 for i = 1, . . . , LH do

205 τ ← ẼK(U,Hi) ;
206 U ← Hi ⊕ τ ;
207 i f (U ∈ B and i > p) then

208 bad ← true ; U
$
← {0, 1}n \B;

209 B ← B ∪ U ;
210 for i = 1, . . . , L− 1 do

211 Ci ← ẼK(U,Mi) ;
212 U ← Ci ⊕Mi ;
213 i f (U ∈ B and i+ LH > p) then

214 bad ← true ; U
$
← {0, 1}n \B;

215 B ← B ∪ U ;
216 M∗ ←ML||τ [0, . . . n− |ML| − 1] ;

217 M∗ ←M∗ ⊕ ẼK(1n, |ML|) ;
218 i f (M∗ ∈ A[U ] and L+ LH − 1 = p) then

219 bad ← true ; M∗ $
← {0, 1}n \A[U ];

220 A[U ]← A[U ] ∪M∗ ;

221 C∗ ← ẼK(U,M∗);
222 CL ← C∗[0, ..., |ML| − 1];
223 T [0, . . . , n− |ML| − 1]← C∗[|ML| − 1, . . . , n− 1];
224 U ← C∗ ⊕M∗ ;
225 i f (U ∈ B and L+ LH > p) then

226 bad ← true ; U
$
← {0, 1}n \B;

227 B ← B ∪ U ;

228 T [n− |ML|, . . . , n− 1]← ẼK(U, τ)[0, ..., |ML| − 1];
229 Q ← (H,M,C, T ) ;
230 return (C1, . . . , CL, T ) ;

231 Verify(H,C, T ) Game G2, G3

232 LH ← |H|/n ; L← ⌈|C|/n⌉ ;
233 p← LLCPn(Q|H,M , (H,M)) ;

234 U ← 0n ;
235 for i = 1, . . . , LH do

236 τ ← ẼK(U,Hi) ;
237 U ← Hi ⊕ τ ;
238 i f (U ∈ B and i > p) then

239 bad ← true ; U
$
← {0, 1}n \B;

240 B ← B ∪ U ;
241 for i = 1, . . . , L− 1 do

242 Mi ← Ẽ−1
K (U,Ci) ;

243 U ← Ci ⊕Mi ;
244 i f (U ∈ B and i+ LH > p) then

245 bad ← true ; U
$
← {0, 1}n \B;

246 B ← B ∪ U ;
247 C∗ ← CL||T [0 . . . n− |CL|

∗ − 1] ;

248 M∗ ← Ẽ−1
K (U,C∗) ;

249 i f (M∗ ∈ A[U ] and L+ LH − 1 = p) then

250 bad ← true ; M∗ $
← {0, 1}n \A[U ];

251 A[U ]← A[U ] ∪M∗ ;

252 M∗ ←M∗ ⊕ ẼK(1n, |ML|) ;
253 ML ←M∗[0, . . . , |CL| − 1] ;
254 τ ′[0 . . . n− |CL| − 1]←M∗[|CL|, . . . , n− 1] ;
255 U ←M∗ ⊕ C∗ ;
256 i f (U ∈ B and L+ LH + 1 > p) then

257 bad ← true ; U
$
← {0, 1}n \B;

258 B ← B ∪ U ;

259 T ′ ← ẼK(U, τ);
260 i f τ ′[0 . . . n− l∗ − 1] = τ [0 . . . n− l∗ − 1]
261 and T ′[0 . . . l∗ − 1] = T [n− l∗ . . . n− 1]
262 and (H,C) 6∈ Q|H,C) then

263 win ← true ;
264 Q ← (H,⊥, C,⊥) ;
265 return win ;

Fig. 11. Games G1-G3 for the proof of Lemma 4. Game G3 contains the code in the box while G2 does not.
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Lemma 4. Let Π = (K, E ,D) be a McOE scheme as in Definition 1 (ii). Let q ≤ 2n/2−2 be
the number of total queries an adversary A is allowed to ask and ℓ be an integer representing
the total length in blocks of the queries to E and D. Then,

Adv
INT-CTXT(ni)
Π (q, ℓ, t) ≤

(2q + ℓ+ 2)(2q + ℓ+ 3)

2n − (q + ℓ)
+

2(2q + ℓ)

2n − (q + ℓ)
+

q(q + 1)

2n − q

+
q

2n/2 − q
+AdvT-IND-CCA

Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Proof. Our bound is derived by game playing arguments. Consider games G1-G3 of Figure 11
and a fixed adversary A asking at most q queries with a total length of at most ℓ blocks. The
functions Initialize and Finalize are identical for all games in this proof. Lets denote G0 as
the Game INT-CTXT(ni) as defined in Figure 8. Definition 8 states that

Adv
INT-CTXT(ni)
Π (A) ≤ Pr[AG0 ⇒ 1].

In G1, the encryption and verify placeholders are replaced by their generic McOE counterparts
as of Definition 1. We now discuss the differences between G1 and G2. The set B is initialized
with {0n, 1n} and then collects all new key-input values U which are computed during the
encryption or verification process (in lines 209, 215, 227, 240, 246, and 258). Furthermore, the
sets A[U ] collect the masked values of M∗ (cf. lines 220 and 252) for a certain prefix.

In lines 202 and 233, the LLCPn oracle is inquired. Finally, the variable bad is set to true

if one of the if-conditions in lines 207, 213, 218, 225, 238, 244, 249 or 256 hold. None of these
modifications affect the values returned to the adversary and therefore

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

For our further discussion we require another game G4 which is explained in more detail later
in this proof3. It follows that

Pr[AG2 ⇒ 1] ≤ Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|

≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]

≤ Pr[AG4 ⇒ 1] + |Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]|+ Pr[AG3sets bad]. (4)

We now proceed to upper bound any of the three terms contained in (4) – in right to left order.
The success probability of game G3 does not differ from the success probability of G2 unless a
chaining value U occurs twice. In this case, the adversary must (1) either have ’found’ a collision
for ẼK(X,Y ) ⊕ Y , i.e., she stumbles over (X,Y ) and (X ′, Y ′) such that ẼK(X,Y ) ⊕ Y =
ẼK(X ′, Y ′) ⊕ Y ′ or, (2), must have found a preimage of 0n or 1n, which is always the starting
point of our chain. Note, the values 0n and 1n are initially stored in the set B. In both cases,
the variable bad would have been set to true. From [9] follows as upper bound

(2q + ℓ+ 2)(2q + ℓ+ 3)

2n − (q + ℓ)
+

2(2q + ℓ)

2n − (q + ℓ)
.

Furthermore, we have to consider the case when a collision occurs between the masked value of
M∗ and the set A[U ]. As an adversary can ask q queries, it follows that the probability that the
flag bad is set to true in lines 219 and 250 can be upper bounded by

q(q + 1)

2n − q
.

3 Since the difference is very minor, we do not provide an extra figure.
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By adding up both bounds it follows that

Pr[AG3sets bad] ≤
(2q + ℓ+ 2)(2q + ℓ+ 3)

2n − (q + ℓ)
+

2(2q + ℓ)

2n − (q + ℓ)
+

q(q + 1)

2n − q
.

We now describe the new game G4. It is equal to G3 except that the block cipher Ẽ and its inverse
Ẽ−1 are replaced by the functions EncryptBlock and DecryptBlock, which are modeled as
a set of pseudo random permutations, where the index is given by the tweak. We assume that
they are implemented via lazy sampling. More precisely, the call ẼK(X,Y ) is replaced by an
invocation of EncryptBlockK(X,Y ) and the call Ẽ−1K (X,Y ) is replaced by an invocation of
DecryptBlockK(X,Y ). We now upper bound the difference between G3 and G4 by

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ AdvT-IND-CCA
Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Finally, we have to upper bound the advantage for the adversary A to win the game G4. A can
only win this game if the condition in lines 260-262 (resp. 460-462 for game G4) holds. As usual,
we assume wlog. that A does not ask a question if the answer is already known which implies
that (H,C, T ) 6∈ Q|H,C,T . We formally adjust lines 260-262 (i.e., choose as the tag computation

operation either Ẽ or Ẽ−1) such that we always have enough randomness left for our result. For
simple reference, we denote the last two chaining values as UL and UL+1. For our analysis we
distinguish between our two main cases. First, the case when |ML| = n, i.e., the size of the last
message block is equal to the block size n. Second, the case when the size of the last message
block ML is not equal to n.

Case 1: In this case we first consider that UL ∈ B. This implies that (C1, . . . , CL) must be part
of a common prefix of a previous query. The adversary can only win if T is new, i.e., not a
part of a previous occured prefix. The upper bound is then given by

Pr
[
Ẽ−1K (UL+1, T ) = τ

]
= 0,

since Ẽ−1 is a PRP.
If UL /∈ B, we can upper bound the success probability for one query by 1/(2n − q). Hence,
for q queries we can upper bound the success probability by q/(2n − q).

Case 2: Now we consider the case |ML| 6= n. It can be upper bounded by Lemma 5. The success
probability is at most q/(2n/2 − q).

Since both cases are mutually exclusive, we can upper bound the success probability for q queries
by

q

2n/2 − q
.

Our claim follows by adding up the individual bounds. ⊓⊔

Lemma 5. Let Π = (K, E ,D) be a McOE scheme as in Definition 2 and q be the number of
total queries with q ≤ 2n/2−2. The probability that an adversary A wins G4 as defined in the
proof of Lemma 4, for any message which is not a multiple of the block size n, can be upper
bounded by q/(2n/2 − q).

Proof. For simple reference, we denote the last two chaining values as UL and UL+1. Furthermore,
we denote Tα as the (n − |CL|)-bit string T [0...n − |CL| − 1] and T β as the |CL|-bit string
T [n− |CL|, ..., n]. Additionally, we denote the corresponding strings τα = τ [0, . . . , |CL| − 1] and
τβ = τ [|CL|, . . . , n− 1], respectively.
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Case 1: UL+1 ∈ B
This case implies that (C1, ..., CL, T

α) must be part of a common prefix from a previous
query, otherwise this would imply a collison of the chaining value which is already handled
by setting the flag bad to true in game G2 (cf. line 248 of Figure 4). Hence, the adversary
can only win if T β is new, i.e., not a part of a previous occured prefix. The upper bound is
given by

max
Z

{
Pr[Ẽ−1K, (UL+1T

β ||Z) = τ ]
}
= 0,

since Ẽ−1 is a PRP.
Case 2: UL+1 /∈ B

This case implies that CL||T
α must be new. The probability that the condition from line 260

holds – for q queries – can be upper bounded by

Prα = max
ML

{
Pr

[
Ẽ−1K (UL, CL||T

α) = (ML||τ
α)⊕ ẼK(1n, |ML|)

]}
≤

2

2(n−|CL|) − 2q
.

Hence, the probability for q queries can be upper bound by 2q

2(n−|CL|)−2q
.

From the assumption UL+1 /∈ B follows that UL+1 is new. Since Ẽ is a PRP, we can upper
bound the probability that the condition from line 452 holds by

Prβ = max
Z

{
Pr[ẼK(UL+1τ) = T β ||Z]

}
≤

1

2|CL| − q
.

Then, the probability for q queries can be upper bound by q/(2|CL| − q).
The success probability of this case depends on the length of |CL|. So we can distinguish
between the following three subcases.
Subcase 2.1: |CL| < n/2

In this case, we can upper bound Prα by 1
2n/2−q

and Prβ by 1. Hence the total success

probability for q queries is at most q
2n/2−q

.

Subcase 2.2: |CL| = n/2
In this case, we can upper bound Prα by 2

2n/2−2q
and Prβ by 1

2n/2−q
. Hence the total

success probability for q queries is at most 2q2

2n−1−q2 .

Subcase 2.3: |CL| > n/2
In this case, we can upper bound Prα by 1 and Prβ by 1

2n/2+1−q
. Hence the total success

probability for q queries is at most q
2n/2+1−q

.

Since all three subcases are mutually exclusive, we can upper bound the success probability
for q ≤ 2n/2−2 queries by

max

{
q

2n/2 − q
,

2q2

2n−1 − q2
,

q

2n/2+1 − q

}
≤

q

2n/2 − q
.

Due to the fact that Case 1 and Case 2 are mutually exclusive, we can upper bound the success
probability for q queries by

max

{
0,

q

2n/2 − q

}
≤

q

2n/2 − q
.

Our claim follows by adding up the individual bounds. ⊓⊔
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Lemma 6. Let Π = (K, E ,D) be a McOE scheme as in Definition 2. Let q be the number of
total queries an adversary A is allowed to ask and ℓ be an integer representing the total length
of the queries to E and D. Then,

Adv
CPA(aoe,ni)
Π (q, ℓ, t) ≤ 2

(
(q + ℓ+ 2)(q + ℓ+ 3)

2n − (q + ℓ)
+

2(2q + ℓ)

2n − (q + ℓ)
+

q(q + 1)

2n − q

)

+ 2AdvT-IND-CPA
Ẽ

(2q + ℓ, O(t)).

Proof. At first we investigate the differences between the CPA(aoe,ni) game from Figure 7
and G1 from Figure 12. In G1 we have replaced E by its definition of McOE, and $w by an
on-line encryption oracle OPerm (line 102) that just models a ’perfect’ OPRP, i.e., for two
plaintexts with an equal prefix it returns two ciphertexts that also share a prefix of the same
length. We again assume this oracle to be implemented by lazy sampling. Then, set B collects
all chaining values (lines 113 and 119) in order to intercept the occurrence of two equal chaining
values which do lead to two equal tweaks for the encryption of a block. The sets A[U ] collect all
values of masked M∗ for specific chaining values U (line 124).

In line 105, the oracle LLCPn is invoked returning the length of the longest common prefix
of (H,M) and Q|H,M .

Finally, the variable bad is set to true if (one of) the conditions of lines 111/211, 117/217
or 122/222 holds. These changes do not affect the success probability of an adversary, because
the output of the oracle remains unchanged. More precisely, the distribution of the output does
not change. This means that

Adv
CPA(aoe, ni)
Π (A) = 2 · |Pr[AG1 ⇒ 1]− 0.5|,

and therefore, by common game playing arguments – using a new game G3 described shortly –

Pr[AG1 ⇒ 1] ≤ Pr[AG2 ⇒ 1] + |Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]|

≤ Pr[AG2 ⇒ 1] + Pr[AG2sets bad]

≤ Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|+ Pr[AG2sets bad].

The success probability of game G2 does not differ from the success probability of G1 unless
(1) a chaining value U occurs twice or (2) a collision between two masked values M∗ – sharing
the same chaining value U – occurs.

In the first case, the adversary must either have found a collision for ẼK(X,Y ) ⊕ Y , i.e.,
she has found (X,Y ) and (X ′, Y ′) such that ẼK(X,Y ) ⊕ Y = ẼK(X ′, Y ′) ⊕ Y ′ or must have
found a preimage of 0n or 1n. In these cases, the variable bad would have been set to true, and
it follows again by [9] that

(q + ℓ+ 2)(q + ℓ+ 3)

2n − (q + ℓ)
+

2(2q + ℓ)

2n − (q + ℓ)

In the second case, an adversary can ask q queries, and it follows that the probability for the
flag bad is set to true in line 123 can be upper bounded by

q(q + 1)

2n − q
.

By adding up both bounds follows

Pr[AG2sets bad] ≤
(q + ℓ+ 2)(q + ℓ+ 3)

2n − (q + ℓ)
+

2(2q + ℓ)

2n − (q + ℓ)
+

q(q + 1)

2n − q
.
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1 In i t i a l i z e ( )

2 b
$
← {0, 1}; K

$
← K() ; B ← {0n, 1n};

3 Finalize (d)
4 return (b=d ) ;

100 Encrypt(H,M) Game G1, G2

101 i f (b = 0) then

102 C ← OPerm(H,M) ;
103 else

104 LH ← |H|/n ; L← |M |/n ;
105 p← LLCPn(Q, (H,M)) ;
106 Q ← Q∪ (H,M) ;
107 U ← 0n;
108 for i = 1, . . . , LH do

109 τ ← ẼK(U,Hi);
110 U ← Hi ⊕ τ ;
111 i f (U ∈ B and i > p) then

112 bad ← true ; U
$
← {0, 1}n \B;

113 B ← B ∪ U ;

114 for i = 1, . . . , L− 1 do

115 Ci ← ẼK(U,Mi) ;
116 U ← Ci ⊕Mi ;
117 i f (U ∈ B and i+ LH > p) then

118 bad ← true ; U
$
← {0, 1}n \B;

119 B ← B ∪ U ;
120 M∗ ←ML||τ [0, . . . n− |ML| − 1] ;

121 M∗ ←M∗ ⊕ ẼK(1n, |ML|);
122 i f (M∗ ∈ A[U ] and L+ LH − 1 = p) then

123 bad ← true ; M∗ $
← {0, 1}n \A[U ];

124 A← A[U ] ∪M∗ ;

125 C∗ ← ẼK(U,M∗);
126 CL ← C∗[0, ..., |ML| − 1];
127 return (C1, . . . , CL) ;

Fig. 12. Games G1 and G2 for the proof of Lemma 3. Game G2 contains the code in the box while G1 does not.

The aforementioned new game G3 is equal to the game G2 except that the block cipher
Ẽ and its inverse Ẽ−1 are replaced by randomly chosen functions EncryptBlock and De-
cryptBlock, which are modeled as pseudo random permutations . We assume that they are
implemented via lazy sampling. More precisely, the call ẼK(X) is replaced by an invocation of
EncryptBlockK(X) and the call Ẽ−1K (X) is replaced by an invocation of DecryptBlockK(X).
We now upper bound the difference between G2 and G3. So, by definition of G4, we have

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ AdvT-IND-CPA
Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Finally, we have to upper bound the advantage for an adversary A to win the game G3. Since
U cannot collide and it is not possible to compute a preimage for any query, the algorithm for
b = 0 is an OPRP, and therefore the success probability to win G3 for any adversary is 0.5,
i.e., she has no advantage in winning this game.

Our claim follows by adding up the individual bounds. ⊓⊔

6 The On-Line Authenticated Encryption Scheme McOE-X

This section shows the security of McOE-X for any given block cipher. The here presented
upper bounds are based on the generic proof of the McOE family as showed in Section 5.
Note, that we have generalized the xor-operation between the key and the tweak by a function
ϕ : Dk ×Dn → Dn. For any fixed key K, ϕ(K, ·) and the xor-operation are injectiv. Therefore,
we can replace the xor-operation by the function ϕ.

Theorem 4. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 1 and 2, where the
tweakable block cipher Ẽ is given by

ẼK(U,M) := Eϕ(K,U)(M).

with E ∈ Block(n, n) and ϕ is an injective function. Furthermore, the amount of queries an
adversary is allowed to ask is at most 2n/2−2. Then, the upper bounds for the variants with and
without using the Tag-Splitting method are as follows.
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(i) Security without Tag-Splitting.

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

3(q + ℓ)(q + ℓ+ 1) + 4q + 3ℓ

2n − (q + ℓ)
+ 3AdvRK-CCA-PRP

E (2q + ℓ, O(t)).

(ii) Security with Tag-Splitting.

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

4(q + ℓ+ 2)(q + ℓ+ 3) + 6(2q + ℓ)

2n − (q + ℓ)
+

3q(q + 1)

2n − q
+

q

2n/2 − q

+ 3AdvRK-CCA-PRP
E (2q + ℓ, O(t)).

Proof. The proofs of (i) and (ii) follow from Theorem 2 and Theorem 3. Since ϕ is an injective
function, a collision for the chaining values U implies a collision for the values of ϕ(K,U).
Furthermore, it is easy to see that the advantage for the tweakable block cipher can be upper
bounded by the RK-CCA-PRP advantage of an adversary A, even though she has only limited
control over the tweak, i.e., the chaining value U . ⊓⊔

7 The On-Line Authenticated Encryption Scheme McOE-D

Theorem 5. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 1 and 2, where the
tweakable block cipher Ẽ is given by

ẼK(U,M) := EK(EK(M)⊕ U).

with E ∈ Block(n, n) and ϕ is an injective function. Furthermore, the amount of queries an
adversary is allowed to ask is at most 2n/2−6. Then, the upper bounds for the variants with and
without using the Tag-Splitting method are as follows.

(i) Security without Tag-Splitting.

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

3(q + ℓ)(q + ℓ+ 1) + 4q + 3ℓ

2n − (q + ℓ)

+ 3

(
2AdvCCA-PRP

E,E−1 (2q + ℓ, O(t)) +
8(2q + ℓ)2 + 2(2q + ℓ)

2n − (2q + ℓ)

)

(ii) Security with Tag-Splitting.

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

4(q + ℓ+ 2)(q + ℓ+ 3) + 6(2q + ℓ)

2n − (q + ℓ)
+

3q(q + 1)

2n − q
+

q

2n/2 − q

+ 3

(
2AdvCCA-PRP

E,E−1 (2q + ℓ, O(t)) +
8(2q + ℓ)2 + 2(2q + ℓ)

2n − (2q + ℓ)

)

Proof. The proofs of (i) and (ii) follow from Theorem 2, Theorem 3, and Lemma 7. ⊓⊔

Lemma 7. Let E ∈ Block(n, n). Lets define the tweakable block cipher ẼK as

ẼK(U,M) := EK(EK(M)⊕ U),

where EK denotes a common block cipher, M the message, and U (chaining value) the tweak.
Furthermore, the inverse of ẼK is defined by

Ẽ−1K (U,C) := E−1K (E−1K (C)⊕ U),

where EK denotes a common block cipher, C the ciphertext, and U (chaining value) the tweak.
Then, the T-IND-CCA advantage of an adversary A is given by

AdvT-IND-CCA
Ẽ,Ẽ−1 (q, t) ≤

(
2AdvCCA-PRP

E,E−1 (q,O(t)) +
8q2 + 2q

2n − q

)
.
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1 In i t i a l i z e ( )

2 b
$
← {0, 1} ; B1 ← ∅;B2 ← ∅;

3 Finalize (d)
4 return (d=b ) ;

100 Encrypt (U,M) Game G1

101 i f (∃C′ : (U,M,C′) ∈ Q) then

102 return C’ ;
103 i f (b = 1) then

104 C ← π(π(M)⊕ U) ;
105 else

106 C
$
← {0, 1}n ;

107 Q ← Q∪ (U,M,C);
108 return C ;

109 Decrypt (U,V,C)
110 i f (∃M ′ : (U,M ′, C) ∈ Q) then

111 return M’ ;
112 i f (b = 1) then

113 M ← π−1(π−1(M)⊕ U) ;
114 else

115 M
$
← {0, 1}n ;

116 Q ← Q∪ (U,M,C);
117 return M ;

200 Encrypt (U,M) Game G2, G3

201 i f ∃C′ : (U,M,C′) ∈ Q then

202 return C’ ;
203 i f (b = 1) then

204 X ← π(M)⊕ U ;
205 i f (X ∈ B1) or (X ∈ Q|M ) then

206 bad ← true ; X
$
← {0, 1}n \B1 ∪Q|M ;

207 B1 ← B1 ∪ {X} ;
208 C ← π(X) ;
209 B2 ← B2 ∪ {X ⊕ U} ;
210 i f (C ∈ B2) then

211 bad ← true ; C
$
← {0, 1}n \B2 ;

212 else

213 C
$
← {0, 1}n ;

214 Q ← (U,C,M);
215 return C ;

216 Decrypt (U,C)
217 i f (∃M ′ : (U,M ′, C) ∈ Q) then

218 return M’ ;
219 i f (b = 1) then

220 Y ← π−1(C)⊕ U ;
221 i f (Y ∈ B2 ) or (Y ∈ Q|C) then

222 bad ← true ; Y
$
← {0, 1}n \B2 ∪ Q|C ;

223 B2 ← B2 ∪ {Y } ;

224 M ← π−1(Y ) ;
225 B1 ← B1 ∪ {Y ⊕ U} ;
226 i f (M ∈ B1) then

227 bad ← true ; M
$
← {0, 1}n \B1 ;

228 else

229 M
$
← {0, 1}n ;

230 Q ← (U,C,M);
231 return M ;

Fig. 13. Games G1, G2, and G3 for the proof of Lemma 7. Game G3 contains the code in the box while G2 does
not. The functions Initialize and Finalize are the same for all three games.

Proof. The proof borrows ideas from the XEX proof presented by Rogaway in [40]. Let A be an
adversary that runs in time t and wlog. makes exactly q queries. At first we define

(1) p1 = Pr[K
$
← K : AẼK(·,·),Ẽ−1

K (·,·) ⇒ 1],

(2) p2 = Pr[π
$
← Perm(n) : Aπ̃π(·,·),π̃

−1

π−1 (·,·) ⇒ 1],

(3) p3 = Pr[A$(·,·)$(·,·) ⇒ 1],

(4) p4 = Pr[π
$
← TPerm(v, n) : Aπ(·,·),π−1(·,·) ⇒ 1].

The experiment denoted by (1) models the adversary A with access to the enciphering and
deciphering function of the tweakable block cipher Ẽ/Ẽ−1, respectively. Experiment (2) denotes
the replacement of the block cipher EK by the PRP π. Experiment (4) however models the
adversary A having access to an ideal tweakable block cipher. So the CCA-PRP advantage of
an adversary on the tweakable block cipher Ẽ is upper bounded by

p1 − p4 = (p1 − p2) + (p2 − p3) + (p3 − p4),

which we proceed to do in exact these three steps. It is easy to upper bound the first and the
third addend as follows.

(p1 − p2). Here we consider the difference between McOE-D using a block cipher E, and
McOE-D, where the block cipher is replaced by the PRP π. The success probability is
therefore upper bounded by AdvCCA−PRP

E,E−1 (q,O(t)).
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(p3 − p4). This is the well-known replacement of a random permutation – and its inverse –
by a pair of random functions. Since the adversary is allowed to ask up to q queries, the
probability is upper bounded by (q2 − q)/2n+1.

We now upper bound the second addend, p2−p3 by a game playing argument. Consider games
G1, G2 and G3 of Figure 13. Game G1 is defined in a way such that |p2− p3| = Pr[AG1 ⇒ 1]. In
G2 we modified the case b = 1 as follows. In lines 207 and 225 (lines 209 and 223) the xor-output
of the encrypted plaintext X (decrypted ciphertext Y ) and the tweak U of each query is added
to the set B1 (B2).

Additionally, in line 205 (221), we test, whether the xor-output of a new query is already
element of the set B1 (B2) or if the value of X (Y ) is equal to a plaintext (ciphertext) which
already exists in the query history queue. Furthermore, we test in line 210 (226) if a ciphertext
(plaintext) is already an element of the set B2 (B1). If one of these tests succeed, we set a flag bad
to true. These cases imply that an adversary gains knowledge collected from previous queries.
If no bad event occurs, the set of remaining available outcome of the encryption (decryption)
function is uniformly distributed. Since these changes do not effect the success probability for
any adversary it follows that

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

By common game playing arguments, it holds that

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ Pr[AG3sets bad].

Then, clearly,

|p2 − p3| = Pr[AG2 ⇒ 1]

≤ Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|

≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]. (5)

We are left with upper bounding the two addends of (5). We first bound Pr[AG3sets bad]. In line
206 bad is set if the xor difference X = π(M) ⊕ U is already an element of the set B1 and the
value X consists already in the query history queue. We can upper bound this probabilities by
2(2q2 + q)/(2n− q), since π is PRP. By reusing this argument, we have the same bound for line
222. Additionally, the probability that bad is set to true in line 211 is given by (q2+q)/(2n−q).
The same argument holds for line 227 and it follows that

Pr[AG3sets bad] ≤
6q2 + 4q

2n − q
.

The success probability for winning game three,i.e., the event AG3 ⇒ 1, can be upper bounded
by the common PRP-PRF game playing argument given in [6]. Hence, the success probability
is given by

Pr[AG3 ⇒ 1] ≤
q2 − q

2n+1
.

Our claim follows by adding up the individual bounds. ⊓⊔

Remarks. If an adversary has access to inner block cipher the double construction has some
intense security issues as shown in [8]. Hence, the adversary is only allowed to query the tweakable
block cipher Ẽ and not the block cipher inside.
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8 The On-Line Authenticated Encryption Scheme McOE-G

This section shows the security of McOE-G for any given block cipher and when using an ǫ-AXU
secure hash function. The here presented upper bounds are based on (1) the generic proof of the
McOE family as showed in Section 5 and (2) the paper of Liskov et al. (see Theorem 2 of [31]).

Liskov et al. showed that the T-IND-CCA advantage of an adversary A is at most

AdvT-IND-CCA
Ẽ,Ẽ−1 (q, t) ≤ AdvCCA-PRP

E,E−1 (q,O(t)) + 3ǫq2 (6)

We use this result for the following security proof.

Theorem 6.
Let Π = (K, E ,D) be a McOE-G scheme as in Definition 1 and 2, where the tweakable block
cipher Ẽ is given by

ẼK(U,M) := EK1(M ⊕HK2(U))⊕HK2(U).

with E ∈ Block(n, n) and H is a family of ǫ-AXU hash functions. Furthermore, the amount of
queries an adversary is allowed to ask is at most 2n/2−2. Then, the upper bounds for the variants
with and without using the Tag-Splitting method are as follows.

(i) Security without Tag-Splitting.

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

3(q + ℓ)(q + ℓ+ 1) + 4q + 3ℓ

2n − (q + ℓ)

+ 3
(
AdvCCA-PRP

E,E−1 (2q + ℓ, O(t)) + 3ǫ(2q + ℓ)2
)

(ii) Security with Tag-Splitting.

Adv
CCA3(oae,ni)
Π (q, ℓ, t) ≤

4(q + ℓ+ 2)(q + ℓ+ 3) + 6(2q + ℓ)

2n − (q + ℓ)
+

3q(q + 1)

2n − q
+

q

2n/2 − q

+ 3
(
AdvCCA-PRP

E,E−1 (2q + ℓ, O(t)) + 3ǫ(2q + ℓ)2
)

Proof. The proofs of (i) and (ii) follow from Theorem 2, Theorem 3 and Equation 6. ⊓⊔

Remark. McOE-G is not secure, if an adversary has oracle access to the internal building
blocks, i.e., the block cipher E and the ǫ-AXU hash function H. This is shown by Black et al.
in [8]. Hence, it is crucial that the adversary is only allowed to query the tweakable block cipher
Ẽ and not one of its parts.

9 Discussion

New Challenges for Research. At this point of time, cryptographic research has developed an
inpressive number of good schemes for encryption, authentication, and authenticated encryption.
Many of these schemes have been proven secure under standard assumptions on the underlying
primitives. In practice, however, such schemes are often used in a way that undermines security.
Trying to design cryptosystems as “misuse resistant” as possible still stands as a challenge for
cryptographers.

Furthermore, our research seems to pose new challenges for the design of symmetric prim-
itives. Ideally, we would like to implement McOE using a tweakable n-bit block cipher with
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n-bit tweaks, supporting fast random tweak changes. Due to the current lack of such a primi-
tive, we designed McOE-X, which requires an ordindary n-bit block cipher being secure against
XOR-related key attacks, and supporting fast random key changes. Much beyond McOE, cryp-
tosystem designers could benefit from new tweak-agile tweakable block ciphers and new key-agile
ordinary block ciphers.

It is mentionable that McOE-X, when using Threefish-512 in software, performs consider-
ably better as when using software or even hardware AES-128. Note, Threefish-512 actually is
a tweakable block cipher, but the 128-bit tweak is too short for McOE. As an alternative, we
developed further variants of McOE using double encryption and Galois field arithmetic. These
two variants also do not expose the underlying block cipher to related-key attacks.

Conclusion. Originally, this research has been inspired by the search for a default authenticated
encryption mode of operation for a general-purpose cryptographic library. It should offer, by
default, a huge failure tolerance for practical software developers and still allow being used in
an on-line manner.

Since the well-known schemes, such as OCB and SIV, did not fit our requirements, we
searched for other ways to achieve the security and functionality we were looking for. Apart
from McOE, generic composition (Encrypt-then-Mac) of a secure on-line cipher for encryption
and a secure deterministic MAC for authentication, using two independent keys might be another
solution. As it turned out, using McOE, one can save the additional key and the time to generate
the MAC by using a slightly tweaked on-line cipher for both encryption and authentication.
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A Misuse-Attacks: The Weak Point of Current Authenticated Encryption
(AE) Schemes.

A.1 Attacking Schemes without Claimed Resistance Against Nonce-Reuse

Cipher-block-chaining (CBC) is an unauthenticated encryption mode which is sometimes used
as the encryption component of an AE scheme. But one can easily distinguish CBC encryption
from a good on-line cipher, if the nonce (or the IV) is constant. The attack from [1] only needs
three chosen plaintexts. Counter mode, which has been very popular among the designers of
AE schemes, fails terribly in nonce-reuse settings, since it generates exactly the same keystream
twice when a nonce is reused. It was to be expected that a scheme using counter mode or CBC
inherits the nonce-reuse issue from that mode. But, as it turned out, common AE schemes also
fail at the authenticity frontier (see Table 2 in Section 1 for an overview). This is an unpleasant
surprise, since the cryptographic community has known well deterministic MACs for a long time
– so why is the authenticity provided by most authenticated encryption schemes so much more
fragile than the authenticity provided by well-known MACs?

The following two attack patterns will be used in most of our attacks.

Repeated Keystream. Many AE schemes generate a keystream S = FK(V ) of length |M |, de-
pending on the secret key K and the nonce V . They encrypt a message M by computing the
corresponding ciphertext C = S ⊕M , typically by applying a block cipher in counter mode.
If the same nonce is used more than once, the following attack straightforwardly breaks the
privacy:

1. Encrypt a plaintext M under the nonce V to a ciphertext C with tag T .
2. Encrypt a plaintext M ′ 6= M under the same V to a ciphertext C ′ and a tag T ′.
3. It turns out that C ′ = C ⊕M ⊕M ′ holds.

Linear Tag. Many AE schemes, which generate a keystream S = FK(V ) as above, apply the
Encrypt-then-Mac (EtM) paradigm and allow to rewrite the authentication tag T as

T = f(V )⊕ g(C),

where V is the nonce, C is the ciphertext, and f and g are some key-dependent functions. This
enables the adversary to mount the linear attack introduced by the following four steps.

1. Encrypt the plaintext M under the nonce V to (C, T ) with T = f(V )⊕ g(C).
2. Encrypt the plaintext M ′ 6= M with |M ′| = |M | under the nonce V ′ 6= V to (C ′, T ′) with

the tag T ′ = f(V ′)⊕ g(C ′).
3. Set M ′′ := M ′⊕C ′⊕C. Encrypt M ′′ under the nonce V ′ to (C ′′, T ′′). Observe C ′′ = C, thus

T ′′ = f(V ′)⊕ g(C).
4. Set T ∗ = T ⊕ T ′ ⊕ T ′′ = f(V )⊕ g(C ′), The adversary accepts (C ′, T ∗) under V .

Two-Pass AE(AD) Modes: CWC [29], GCM [34], CCM [14], EAX [7], CHM [22] . All the
common two-pass AE(AD) modes, CHM,CWC, GCM, CCM and EAX, use the counter mode
as the underlying encryption operation and are thus vulnerable to the repeated keystream at-
tack pattern. Four of them, CHM, CWC, GCM, and EAX, are designed according to the EtM
paradigm, and are thus vulnerable to the linear tag attack pattern. The designers of CCM fol-
lowed Mac-then-Encrypt (MtE), which seems to defend against the linear tag pattern. Forgery
attacks against CCM have been presented in [15], though.
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Mixed AE(AD) Modes: RPC [11] and CCFB [33]. RPC combines counter mode and electronic
codebook mode. Given an n-bit block cipher E under a key K and a c-bit counter cnt, RPC takes
an (n−c)-bit plaintext block Mi and computes the ciphertext block Ci := EK(Mi||(cnt+ i) mod
2c). Authentication is performed locally for each ciphertext block: During decryption, RPC
computes (Mi||Xi) = E−1K (Ci) and accepts Mi as authentic if and only if Xi = (cnt+ i) mod 2c.
The nonce defines cnt.

Under nonce-reuse, the same sequence (cnt+ i) mod 2c of counter values is used for different
messages. This makes it easy to attack the privacy – essentially, when encrypting messages
of m (n − c)-bit blocks, RPC degrades into m independent electronic codebooks. Also, given

two authentic ciphertexts, (C0
1 , . . . , C

0
L) and (C1

1 , . . . , C
1
L), any ciphertext (C

σ(1)
1 , . . . , C

σ(L)
L ) with

σ(i) ∈ {0, 1} is valid, since authenticity is verified locally for each C
σ(i)
i .

Similarly to RPC, CCFB is a combination of Counter and CFB mode. Given an (n− c)-bit
nonce and (n−c)-bit plaintext blocks M1, . . . , Mm CCFB generates (n−c)-bit temporary values
Di, c-bit temporary tags Ti and (n− c)-bit ciphertext blocks Ci as follows:

1. C0 := N ;

2. for i ∈ {2, . . . ,m} do (Di||Ti) := EK(Ci−1||〈i〉); Ci := Mi ⊕Di

3. (∗, Tm+1) := EK(Cm||〈i+ 2〉);

Unlike RPC, CCFB only uses the local tags Ti temporarily; the final authentication tag is
T = T1 ⊕ T2 ⊕ · · · ⊕ Tm+1.

Note that the first ciphertext block C1 is essentially the encryption of M1 in counter mode.
Thus, a variant of the repeated keystream pattern is applicable to CCFB. And the following
variant of the linear tag pattern applies to CCFB (for simplicity, we assume single-block messages
only):

1. Encrypt the plaintext M1 under V to (C1, T ).

2. Encrypt the plaintext M ′1 6= M1 under V ′ 6= V to (C ′1, T
′).

3. Set M ′′1 := M ′1 ⊕ C ′1 ⊕ C1. Encrypt M
′′
1 under V ′ to (C ′′1 , T

′′). Observe C ′′1 = C1.

4. The adversary accepts (C ′1, T ⊕ T ′ ⊕ T ′′) under V .

One-Pass AE(AD) Modes: IAPM [26], OCB1[42], OCB2[39], OCB3[30], TAE [31]. Given a
nonce V and a secret key K, IAPM [26] encrypts a plaintext (M1, . . . ,Mm) to a ciphertext
(C1, . . . Cm) and an authentication tag T as follows.

Initial step: Generate m + 2 values s0, s1, . . . sm+1 depending on V and K, but not on the
plaintext (M1, . . . ,Mm).

Encryption: For i ∈ {1, . . . ,m}: Ci := EK(Mi ⊕ si)⊕ si.

Authentication tag: T := EK(sm+1 ⊕
∑

1≤i≤mMi)⊕ s0.

When encrypting messages of m n-bit blocks, IAPM behaves like a set of m independent elec-
tronic codebook and, like RPC, is vulnerable to distinguishing attacks based on this. Sim-
ilarly to RPC, IAPM behaves like a set of m independent electronic codebooks and is vul-
nerable to the same distinguishing attack. A forgery can exploit the fact that two different
same-length messages (M1, . . . ,Mm) and (M ′1, . . . ,M

′
m), encrypted under the same nonce, have

the same authentication tag T = EK(sm+1 ⊕
∑

1≤i≤mMi)⊕ s0 = EK(sm+1 ⊕
∑

1≤i≤mM ′i)⊕ s0
if
∑

1≤i≤mMi =
∑

1≤i≤mM ′i .

As much as our attacks are concerned, OCB1–3 and TAE are quite similar to IAPM, and
the attacks are the same.
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More One-Pass Modes: IACBC [26] and XCBC [17]. Given a nonce V and a secret key K,
IACBC [26] encrypts (M1, . . . ,Mm) to (C1, . . . Cm) and an authentication tag T as follows.

Initial step: Generate m+1 values s0, s1, . . . sm depending on V and K, but not on the plain-
text (M1, . . . ,Mm).

Encryption: x0 := V ; For i ∈ {1, . . . ,m}: xi := EK(Mi ⊕ xi−1), Ci := xi ⊕ si.
Authentication tag: T := EK(xm ⊕

∑
1≤i≤mMi)⊕ s0.

Note that under nonce-reuse the authentication tag leaks information about the message. Namely,
if we encrypt two messages (M1, . . . ,Mm) and (M ′1, . . . ,M

′
m) of the same length m under the

same nonce, the two authentication tags are the same if and only if
∑

1≤i≤mMi =
∑

1≤i≤mM ′i .
The following nonce-reuse attack distinguishes IACBC encryption from an online permuta-

tion and also provides an existential forgery. For simplicity, we only consider 1-block messages
V 6= W , which we also use as nonces:

1. Encrypt W under V to (C1, T ).
2. Encrypt V under W to (C ′1, T

′).
3. Encrypt V under V to (C ′′1 , T

′′).
4. Set C ′′′1 := C1 ⊕ C ′1 ⊕ C ′′1 and T ′′′ := T ⊕ T ′ ⊕ T ′′.

(C ′′′1 , T ) is a valid encryption of W under W .

Given a nonce V and secret keys K and K ′, XCBC encrypts a plaintext (M1, . . . ,Mm) to a
ciphertext (C1, . . . Cm) and an authentication tag T as follows.

Initial step: Generatem+1 values s1, . . . sm+1 depending on V andK, but not on the plaintext
(M1, . . . ,Mm).

Encryption:
1. C0 := EK(V ); x0 := EK′(V );
2. Generate an additional message word Mm+1 := x0 ⊕M1 ⊕ · · · ⊕Mm for authentication.
3. For i ∈ {1, . . . ,m+ 1}: xi := EK(Mi ⊕ xi−1), Ci := (xi + si) mod 2n.

The best attack we have found for XCBC is not quite as baneful as the attacks on the other
schemes, as the attack workload is at O(2n/4), and the attack only provides a distinguisher, not
a forger. For this reuse-nonce chosen-plaintext attack, we ignore the authentication tag:

1. Generate 2n/4 encryptions of messages M i
1 under a nonce V to Ci

1.
Statistically, expect one pair i 6= j such that the least significant n/2 bits of Ci

1 are identical
to the least significant n/2 bits of Cj

1 .

2. Generate 2n/4 encryptions of messages (M i
1,M

k
2 ) and (M j

1 ,M
ℓ
2) under V to (Ci

1, C
k
2 ) and

(Cj
1 , C

ℓ
2), where the least significant n/2 bits of Mk

2 and M ℓ
2 are the same.

Statistically, expect one pair k 6= ℓ such that Ck
2 = Cℓ

2 holds.

3. Choose an arbitrary M3. Encrypt (M
i
1,M

k
2 ,M3) and (M j

1 ,M
ℓ
2 ,M3) under V to (Ci

1, C
k
2 , C

i,k
3 )

and (Cj
1 , C

ℓ
2, C

j,ℓ
3 ).

Observe Ci,k
3 = Cj,ℓ

3 .

A.2 Dedicated Online Ciphers and Authenticated Encryption

The current paper refers to online ciphers to define the privacy of AOE against general ad-
versaries. Online ciphers have first been studied in [1]. The eprint version of the same paper
describes three AE modes for online cipher, using a random nonce V :

1. Prepend V to the plaintext, append redundancy (e.g., a fixed number of 0-bits).
2. Prepend V and then the length of the plaintext, append redundancy.
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3. Prepend a random value V as the IV, and append the same V .

The first is secure if and only if the message length is fixed. The second is an obvious repair
of the first, but the exact plaintext length must be known at the beginning of the encryption
process. This, though using an underlying online cipher, the scheme itself isn’t online. The third
is vulnerable to a chosen plaintext attack using a message M ||V , if the adversary can guess V .

A.3 Offline Schemes, Defeating Nonce-Reuse (SIV [43], HBS [25], BTM [24])

Given a nonce N , a message M and associated Data H, these schemes perform two steps:

1. Generate the authentication tag T from H, M , and N .
2. Encrypt M in counter mode, using T as the nonce.

This is inherently offline, because one must finish step 1 before one can start step 2. All of
SIV, HBS, and BTM perform counter mode encryption, but employ different MAC schemes to
generate the tag T .

This usage of the counter mode is vulnerable in an on-line decryption misuse case, where,
during decryption, a would-be plaintext is compromised before the tag has been verified. A
chosen-ciphertext adversary can exploit that to determine an unknown keystream and then to
decrypt an unknown message.

Another misuse case may apply when nonce-reuse is possible and the sender reads the mes-
sage twice, once for each of the two steps – if there is any chance that the message has been
modified between the two read operations.

Note that both misuse cases become quite harmless if one replaces the counter mode encryp-
tion by the application of an on-line permutation.

B Proof of Theorem 1

Consider games G0, G1, G2 of Figure 14. For a fixed CCA3(ω, ν) adversary A on the scheme Π
it holds that

Pr[A
CCA3(ω,ν)
Π ⇒ 1] = Pr[AG0 ⇒ 1]

= Pr[AG1 ⇒ 1] + (Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ true])

≤ Pr[AG1 ⇒ 1] + Pr[AG1sets bad].

Since the Decrypt oracles of G1 and G2 always return ⊥,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

Now, we design two adversaries Ac and Ap so that

Pr[AG1sets bad] ≤ Pr[Ac
INT-CTXT(ω,ν)
Π ⇒ 1] and

Pr[AG2 ⇒ 1] ≤ Pr[Ap
CPA(ω,ν)
Π ⇒ 1].

Ap: Adversary Ap simply runs A answering A’s Encrypt queries using its own Encrypt oracle,
and answers Decrypt queries with ⊥. Ap outputs whatever A outputs.

Ac: Adversary Ac runs A answering A’s Encrypt queries using its own Encrypt oracle. It
submits A’s Decrypt queries to it’s Verify oracle (cf. Figure 8) and, regardless of the response,
returns ⊥. Note that the Verify oracle sets win to true if and only if a fresh Decrypt query is
valid. Just such a query would set the variable bad to true. ⊓⊔
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1 In i t i a l i z e (ω, ν )

2 b
$
← {0, 1} ;

3 i f (b=1) then

4 K ← K();

5 Finalize (d)
6 return (d=b ) ;

7 Encrypt (H,M)
8 i f (ν = nr and V ∈ B) then

9 return ⊥ ;
10 else

11 B ← B ∪ {V } ;
12 i f (b=1) then

13 C ← EK (H,M) ;
14 else

15 C ← $ω (H,M) ;
16 Q ← Q∪ {(H,C)} ;
17 return C;

100 Decrypt (H,C) Game G0, G1

101 M ← ⊥ ;
102 i f ((H,C) 6∈ Q and b=1) then

103 M ← DK (H,C) ;
104 i f (M6= ⊥) then

105 bad ← true ; M ← ⊥;

106 return M;

200 Decrypt (H,C) Game G2

201 return ⊥ ;

Fig. 14. Games G0, G1 and G2 for the proof of Theorem 1. Game G1 contains the code in the box while G0 does
not. H0 denotes the first block of the header representing the nonce/initial value.
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