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A CESÀRO AVERAGE OF GOLDBACH NUMBERS

ALESSANDRO LANGUASCO & ALESSANDRO ZACCAGNINI

Abstract. Let Λ be the von Mangoldt function and rG(n) =
∑

m1+m2=n Λ(m1)Λ(m2)
be the counting function for the Goldbach numbers. Let N ≥ 2 be an integer. We prove
that

∑

n≤N

rG(n)
(1− n/N)k

Γ(k + 1)
=

N2

Γ(k + 3)
− 2

∑

ρ

Γ(ρ)

Γ(ρ+ k + 2)
Nρ+1

+
∑

ρ1

∑

ρ2

Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)
Nρ1+ρ2 +Ok

(
N1/2

)
,

for k > 1, where ρ, with or without subscripts, runs over the non-trivial zeros of the
Riemann zeta-function ζ(s).

1. Introduction

We continue our recent work on the number of representations of an integer as a sum
of primes. In [7] we studied the average number of representations of an integer as a sum
of two primes, whereas in [8] we considered individual integers. In this paper we study
a Cesàro weighted explicit formula for Goldbach numbers and the goal is similar to the
one in [7], that is, we want to obtain the expected main term and one or more terms that
depend explicitly on the zeros of the Riemann zeta-function, with a small error. Letting

rG(n) =
∑

m1+m2=n

Λ(m1)Λ(m2),

the main result of the paper is the following theorem.

Theorem 1. Let N be a positive integer. We have

∑

n≤N

rG(n)
(1− n/N)k

Γ(k + 1)
=

N2

Γ(k + 3)
− 2

∑

ρ

Γ(ρ)

Γ(ρ+ k + 2)
Nρ+1

+
∑

ρ1

∑

ρ2

Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)
Nρ1+ρ2 +Ok

(
N1/2

)
, (1)

for k > 1, where ρ, with or without subscripts, runs over the non-trivial zeros of the

Riemann zeta-function ζ(s).

We remark that the double series over zeros in (1) converges absolutely for k > 1/2,
and it seems reasonable to believe that the stated equality holds for the same values of
k, possibly with a weaker error term, although the bound k > 1 appears in several places
of the proof and it seems to be the limit of the method.

The result in [7] is the case k = 0 of (1) under the assumption of the Riemann Hypoth-
esis (RH); there we only get the first sum over zeros and the error term is O(N(logN)3).
The proof in [7] depends on RH in just one place; it is not hard to get an unconditional
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version of such a result with an error term o(N2). The technique here is completely
different and RH has no consequences on the lower bound for the size of k.

Similar averages of arithmetical functions are common in the literature, see, e.g., Chan-
drasekharan-Narasimhan [2] and Berndt [1] who built on earlier classical works. In their
setting the generalized Dirichlet series associated to the arithmetical function satisfies a
suitable functional equation and this leads to an asymptotic formula containing Bessel
functions of real order. In our case we have no functional equation, and Bessel functions
are naturally replaced by Gamma functions; in fact we plan to develop further the present
technique to deal with the cases pℓ11 +pℓ22 and p+m2, where Bessel functions with complex
order arise; we expect many technical complications.

The most interesting explicit formula in Goldbach’s problem has been recently given
by Pintz [12]. It is too complicated to be reproduced here, but we remark that in his
formula, which deals with individual values of rG(n), the summation is over zeros of
suitable Dirichlet L-functions, whereas in an average problem like the present one, only
the zeros of the Riemann ζ-function are relevant. The same phenomenon occurs in our
papers [7] and [8].

The method we will use is based on a formula due to Laplace [9], namely

1

2πi

∫

(a)

v−sev dv =
1

Γ(s)
, (2)

where ℜ(s) > 0 and a > 0, see, e.g., formula 5.4(1) on page 238 of [4]. In the following we
will need the general case of (2) which can be found in de Azevedo Pribitkin [3], formulae
(8) and (9):

1

2π

∫

R

eiDu

(a+ iu)s
du =






Ds−1e−aD

Γ(s)
if D > 0,

0 if D < 0,
(3)

which is valid for σ = ℜ(s) > 0 and a ∈ C with ℜ(a) > 0, and

1

2π

∫

R

1

(a+ iu)s
du =

{
0 if ℜ(s) > 1,

1/2 if s = 1,
(4)

for a ∈ C with ℜ(a) > 0. Formulae (3)-(4) enable us to write averages of arithmetical
functions by means of line integrals as we will see in §2 below. We recall that Walfisz,
see [15, Ch. X], replaced (3)-(4) with the following particular case

1

2πi

∫

(a)

exω
dω

ωℓ+1
=

{
xℓ/ℓ! if x > 0,

0 if x ≤ 0,

which is valid for ℓ ∈ N with ℓ ≥ 1, a > 0, and x ∈ R.
We combine this approach with line integrals with the classical methods dealing with

infinite sums, exploited by Hardy & Littlewood (see [5] and [6]) and by Linnik [10]. In
particular, in §2.5 of [5] there is a sort of “explicit formula” for a function related to
ψ(x)− x.

We thank A. Perelli and J. Pintz for several conversations on this topic.

2. Settings

Let

S̃(z) =
∑

m≥1

Λ(m)e−mz, (5)
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where z = a+ iy with y ∈ R and real a > 0. We recall that the Prime Number Theorem
(PNT) is equivalent, via Lemma 1 below, to the statement

S̃(a) ∼ a−1 for a→ 0+, (6)

which is classical: for the proof see for instance Lemma 9 in Hardy & Littlewood [6]. By
(5) we have

S̃(z)2 =
∑

n≥1

rG(n)e
−nz.

Hence, for N ∈ N with N > 0 and a > 0 we have

1

2πi

∫

(a)

eNzz−k−1S̃(z)2 dz =
1

2πi

∫

(a)

eNzz−k−1
∑

n≥1

rG(n)e
−nz dz. (7)

Since ∑

n≥1

|rG(n)e−nz| = S̃(a)2 ≍ a−2

by (6), where f ≍ g means g ≪ f ≪ g, we can exchange the series and the line integral
in (7) provided that k > 0. In fact, if z = a+ iy, taking into account the estimate

|z|−1 ≍
{
a−1 if |y| ≤ a,

|y|−1 if |y| ≥ a,
(8)

we have

|eNzz−k−1| ≍ eNa

{
a−k−1 if |y| ≤ a,

|y|−k−1 if |y| ≥ a,

and hence, recalling (6), we obtain
∫

(a)

|eNzz−k−1|
∣∣∣
∑

n≥1

rG(n)e
−nz

∣∣∣ |dz| ≪ a−2eNa
[∫ a

−a

a−k−1 dy + 2

∫ +∞

a

y−k−1 dy
]

= 2a−2eNa
(
a−k +

a−k

k

)
,

but only for k > 0. Using (3) for n 6= N and (4) for n = N , we see that the right-hand
side of (7) is

=
∑

n≥1

rG(n)
[ 1

2πi

∫

(a)

e(N−n)zz−k−1 dz
]
=

∑

n≤N

rG(n)
(N − n)k

Γ(k + 1)

for k > 0.
Remark. It is important to notice that the previous computation reveals that we can not
get rid of the Cesàro weight in our method since, for k = 0, it is not clear if the integral
at the right hand side of (7) converges absolutely or not. In fact, if we could prove (1)
for k = 0, assuming the RH we could easily derive the main result of [7] with an error
term O(N), and this seems to be quite unreachable in the present state of knowledge.
See the concluding remarks in the latter paper for an explanation.

Summing up
∑

n≤N

rG(n)
(N − n)k

Γ(k + 1)
=

1

2πi

∫

(a)

eNzz−k−1S̃(z)2 dz,

where N ∈ N with N > 0, a > 0 and k > 0. This is the fundamental relation for the
method.
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3. Inserting zeros

In this section we need k > 1. By Lemma 1 below we have

S̃(z) =
1

z
−

∑

ρ

z−ρΓ(ρ) + E(y, a)

where E(y, a) satisfies (14). Hence

S̃(z)2 =
(1
z
−

∑

ρ

z−ρΓ(ρ)
)2

+ E(y, a)2 + 2E(y, a)
(1
z
−

∑

ρ

z−ρΓ(ρ)
)
.

We have
∣∣∣
1

z
−

∑

ρ

z−ρΓ(ρ)
∣∣∣ =

∣∣S̃(z)− E(y, a)
∣∣ ≤ S̃(a) +

∣∣E(y, a)
∣∣ ≪ a−1 +

∣∣E(y, a)
∣∣

by (6) again, so that

S̃(z)2 =
(1
z
−
∑

ρ

z−ρΓ(ρ)
)2

+O
(∣∣E(y, a)

∣∣2 +
∣∣E(y, a)

∣∣a−1
)
. (9)

Recalling (8) and (14), we have
∫

(a)

∣∣E(y, a)
∣∣2|eNz| |z|−k−1 |dz| ≪ eNa

∫ a

0

a−k dy + eNa

∫ +∞

a

y−k(1 + log2(y/a))2 dy

≪k e
Naa−k+1 + eNaa−k+1

∫ +∞

1

v−k(1 + log2 v)2 dv

≪k e
Naa−k+1.

Choosing a = 1/N , the error term is ≪k N
k−1 for k > 1. For a = 1/N , by (8) and (14),

the second remainder term in (9) is

≪ N

∫

(1/N)

|E(y, 1/N)||eNz||z|−k−1 |dz|

≪ N

∫ 1/N

0

Nk+1/2 dy +N

∫ +∞

1/N

y−k−1/2 log2(Ny) dy

≪ Nk+1/2 +Nk+1/2

∫ +∞

1

v−k−1/2 log2 v dv ≪k N
k+1/2.

With a little effort we can give an explicit dependence on k for the implicit constants in
the last two estimates, showing that the condition k > 1 is indeed necessary.

Hence, by (7) we have

∑

n≤N

rG(n)
(N − n)k

Γ(k + 1)
=

1

2πi

∫

(1/N)

eNzz−k−1
(1
z
−

∑

ρ

z−ρΓ(ρ)
)2

dz +Ok

(
Nk+1/2

)

=
1

2πi

∫

(1/N)

eNzz−k−3 dz − 1

πi

∫

(1/N)

eNzz−k−2
∑

ρ

z−ρΓ(ρ) dz

+
1

2πi

∫

(1/N)

eNzz−k−1
∑

ρ1

∑

ρ2

z−ρ1−ρ2Γ(ρ1)Γ(ρ2) dz +Ok

(
Nk+1/2

)
. (10)
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Interchanging the series with the integrals (see §5-6 for a proof that this is permitted
when k > 1), by (10) we get that

∑

n≤N

rG(n)
(N − n)k

Γ(k + 1)
=

1

2πi

∫

(1/N)

eNzz−k−3 dz − 1

πi

∑

ρ

Γ(ρ)

∫

(1/N)

eNzz−k−2−ρ dz

+
1

2πi

∑

ρ1

∑

ρ2

Γ(ρ1)Γ(ρ2)

∫

(1/N)

eNzz−k−1−ρ1−ρ2 dz +Ok

(
Nk+1/2

)

= I1 + I2 + I3 +Ok

(
Nk+1/2

)
,

say.

3.1. Evaluation of I1. Using (2) and putting s = Nz, we immediately get

I1 =
Nk+2

2πi

∫

(1)

ess−k−3 ds =
Nk+2

Γ(k + 3)
.

3.2. Evaluation of I2. Putting s = Nz and by (2) again, we have

I2 = − 1

πi

∑

ρ

Γ(ρ)Nk+ρ+1

∫

(1)

ess−k−2−ρ ds = −2
∑

ρ

Γ(ρ)

Γ(ρ+ k + 2)
Nk+ρ+1.

3.3. Evaluation of I3. As above, using (2) and putting s = Nz, we get

I3 =
1

2πi

∑

ρ1

∑

ρ2

Γ(ρ1)Γ(ρ2)N
k+ρ1+ρ2

∫

(1)

ess−k−1−ρ1−ρ2 ds

=
∑

ρ1

∑

ρ2

Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)
Nk+ρ1+ρ2 .

Combining the previous relations, we finally get

∑

n≤N

rG(n)
(N − n)k

Γ(k + 1)
=

Nk+2

Γ(k + 3)
− 2Nk+1

∑

ρ

Γ(ρ)

Γ(ρ+ k + 2)
Nρ

+Nk
∑

ρ1

∑

ρ2

Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)
Nρ1+ρ2 +Ok

(
Nk+1/2

)
(11)

for k > 1. The proof that the double sum over zeros converges absolutely for k > 1/2 is
given in §7 below. Theorem 1 follows dividing (11) by Nk.

4. Lemmas

We recall some basic facts in complex analysis. First, if z = a+ iy with a > 0, we see
that for complex w we have

z−w = |z|−w exp(−iw arctan(y/a))

= |z|−ℜ(w)−iℑ(w) exp((−iℜ(w) + ℑ(w)) arctan(y/a))
so that

|z−w| = |z|−ℜ(w) exp(ℑ(w) arctan(y/a)). (12)

We also recall that, uniformly for x ∈ [x1, x2], with x1 and x2 fixed, and for |y| → +∞,
by the Stirling formula we have

|Γ(x+ iy)| ∼
√
2πe−π|y|/2|y|x−1/2, (13)

see, e.g., Titchmarsh [14, §4.42].
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We will need the Hardy-Littlewood-Linnik formula (see, e.g., Languasco & Zaccagnini
[8]): we notice that here y ∈ R, while in [8] we had the restricted range y ∈ [−1/2, 1/2].
Hence there are some modifications to be made. We will follow the proof in Linnik [10]
(see also eq. (4.1) of [11]).

Lemma 1. Let z = a+ iy, where a > 0 and y ∈ R. Then

S̃(z) =
1

z
−

∑

ρ

z−ρΓ(ρ) + E(a, y)

where ρ = β + iγ runs over the non-trivial zeros of ζ(s) and

E(a, y) ≪ |z|1/2
{
1 if |y| ≤ a

1 + log2(|y|/a) if |y| > a.
(14)

Proof. Following the line of Hardy and Littlewood, see [5, §2.2], [6, Lemma 4] and of §4
in Linnik [10], we have that

S̃(z) =
1

z
−
∑

ρ

z−ρΓ(ρ)− ζ ′

ζ
(0)− 1

2πi

∫

(−1/2)

ζ ′

ζ
(w)Γ(w)z−w dw. (15)

Now we estimate the integral in (15). Let c > 0 be a positive constant to be chosen later.
Writing w = −1/2+it, we have |(ζ ′/ζ)(w)| ≪ log(|t|+2), |z−w| = |z|1/2 exp(t arctan(y/a))
by (12) and, for |t| > c, Γ(w) ≪ |t|−1 exp(−π

2
|t|) by (13). Letting Lc = {−1/2+ it : |t| >

c} we have
∫

Lc

ζ ′

ζ
(w)Γ(w)z−w dw ≪ |z|1/2

∫

Lc

log |t|
|t| exp

(
−π
2
|t|+ t arctan(y/a)

)
dt.

If ty ≤ 0 we call η the quantity π
2
+ | arctan(y/a)| ∈ [π/2, π). If |y| ≤ a we define η as

π
2
− arctan(y/a) > π

2
− arctan(1) = π

4
. In the remaining case (|y| > a and ty > 0) we set

η = arctan(a/|y|) ≫ a/|y|. Now fix c such that cη < 1 (e.g., c = 1/π is allowed). Letting
u = ηt, we get

∫

Lc

ζ ′

ζ
(w)Γ(w)z−w dw ≪ |z|1/2

∫ +∞

c

e−ηt log t

t
dt = |z|1/2

∫ +∞

cη

e−u log(u/η)

u
du

= |z|1/2
∫ +∞

cη

e−u log u

u
du+ |z|1/2 log(1/η)

∫ +∞

cη

e−udu

u

= J1 + J2. (16)

We remark that 0 ≤ u−1 log u ≤ e−1 for u ≥ 1, since the maximum of u−1 log u is attained
at u = e. Since

0 ≤
∫ +∞

1

e−u log u

u
du ≤ e−1

∫ +∞

1

e−u du≪ 1

and ∣∣∣
∫ 1

cη

e−u log u

u
du

∣∣∣ ≤
∫ 1

cη

− log u

u
du =

[
−1

2
log2 u

]1
cη

≪ log2(1/η)

we have that J1 ≪ |z|1/2 log2(1/η). For J2 it is sufficient to remark that

0 ≤ J2 ≤ |z|1/2 log(1/η)
(∫ 1

cη

du

u
+

∫ +∞

1

e−udu
)
≪ |z|1/2 log2(1/η).

Inserting the last two estimates in (16), recalling the definition of η and remarking that
the integration over |t| ≤ c gives immediately a contribution ≪ 1, we obtain that the
integral in (15) is dominated by the right hand side of (14) and the lemma is proved. �
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In the next sections we will need to perform several times a set of similar computations;
so we collected them in the following two lemmas.

Lemma 2. Let β + iγ run over the non-trivial zeros of the Riemann zeta-function and

α > 1 be a parameter. The series

∑

ρ : γ>0

γβ−1/2

∫ +∞

1

exp
(
−γ arctan 1

u

) du

uα+β

converges provided that α > 3/2. For α ≤ 3/2 the series does not converge. The result

remains true if we insert in the integral a factor (log u)c, for any fixed c ≥ 0.

Proof. Setting y = arctan(1/u), for any real γ > 0 we have
∫ +∞

1

exp
(
−γ arctan 1

u

) du

uα+β
=

∫ π/4

0

exp(−γy) (sin y)
α+β−2

(cos y)α+β
dy

≪α

∫ π/4

0

exp(−γy) yα+β−2 dy

= γ1−α−β

∫ πγ/4

0

exp(−w)wα+β−2 dw

≤ γ1−α−β
(
Γ(α− 1) + Γ(α)

)
,

since 0 < β < 1. This shows that the series over γ converges for α > 3/2. For α = 3/2
essentially the same computation shows that the integral is ≫ γ−1/2−β and it is well
known that in this case the series over zeros diverges. The other assertions are proved in
the same way. �

Lemma 3. Let α > 1, z = a+ iy, a ∈ (0, 1) and y ∈ R. Let further ρ = β + iγ run over

the non-trivial zeros of the Riemann zeta-function. We have

∑

ρ

|γ|β−1/2

∫

Y1∪Y2

exp
(
γ arctan

y

a
− π

2
|γ|

) dy

|z|α+β
≪α a

−α,

where Y1 = {y ∈ R : yγ ≤ 0} and Y2 = {y ∈ [−a, a] : yγ > 0}. The result remains true if

we insert in the integral a factor (log(|y|/a))c, for any fixed c ≥ 0.

Proof. We first work on Y1. By symmetry, we may assume that γ > 0. For y ∈ (−∞, 0]
we have γ arctan(y/a)− π

2
|γ| ≤ −π

2
|γ| and hence the quantity we are estimating becomes

∑

ρ : γ>0

γβ−1/2 exp
(
−π
2
γ
)∫ 0

−∞

dy

|z|α+β
≪α

∑

ρ : γ>0

γβ−1/2 exp
(
−π
2
γ
)
a1−α−β ≪α a

−α,

using 0 < β < 1, standard zero-density estimates and (8). We consider now the integral
over Y2. Again by symmetry we can assume that γ > 0 and so we get

∑

ρ : γ>0

γβ−1/2

∫ a

0

exp
(
γ(arctan

y

a
− π

2
)
) dy

|z|α+β
≪

∑

ρ : γ>0

γβ−1/2 exp
(
−π
4
γ
)∫ a

0

dy

|z|α+β

≪α

∑

ρ : γ>0

γβ−1/2 exp
(
−π
4
γ
)
a1−α−β ≪α a

−α

arguing as above. The other assertions are proved in the same way. �
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5. Interchange of the series over zeros with the line integral

We need k > 1/2 in this section. We need to establish the convergence of

∑

ρ

|Γ(ρ)|
∫

(1/N)

|eNz| |z|−k−1 |z−ρ| |dz|. (17)

By (12) and the Stirling formula (13), we are left with estimating

∑

ρ

|γ|β−1/2

∫

R

exp
(
γ arctan(Ny)− π

2
|γ|

) dy

|z|k+1+β
. (18)

We have just to consider the case γy > 0, |y| > 1/N since in the other cases the total
contribution is ≪k N

k+1 by Lemma 3 with α = k + 1 and a = 1/N . By symmetry, we
may assume that γ > 0. We have that the integral in (18) is

≪
∑

ρ : γ>0

γβ−1/2

∫ +∞

1/N

exp
(
−γ arctan 1

Ny

) dy

yk+1+β

= Nk
∑

ρ : γ>0

Nβγβ−1/2

∫ +∞

1

exp
(
−γ arctan 1

u

) du

uk+1+β
.

For k > 1/2 this is ≪k N
k+1 by Lemma 2. This implies that the integrals in (18) and in

(17) are both ≪k N
k+1 and hence this exchange step is fully justified.

6. Interchange of the double series over zeros with the line integral

We need k > 1 in this section. Arguing as in §5, we first need to establish the conver-
gence of

∑

ρ1

|Γ(ρ1)|
∫

(1/N)

|
∑

ρ2

Γ(ρ2)z
−ρ2 ||eNz| |z|−k−1 |z−ρ1 | |dz|. (19)

Using the PNT and (14), we first remark that
∣∣∣
∑

ρ

z−ρΓ(ρ)
∣∣∣ =

∣∣S̃(z)− 1

z
− E(y,

1

N
)
∣∣ ≪ N +

1

|z| +
∣∣E(y, 1

N
)
∣∣

≪
{
N if |y| ≤ 1/N ,

|z|−1 + |z|1/2 log2(2N |y|) if |y| > 1/N .
(20)

By symmetry, we may assume that γ1 > 0. By (20), (8) and (12), for y ∈ (−∞, 0] we
are first led to estimate

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

)(∫ 0

−1/N

Nk+2+β1 dy +

∫ −1/N

−∞

dy

|y|k+2+β1

+

∫ −1/N

−∞

log2(2N |y|) dy

|y|k+1/2+β1

)
≪k N

k+2,

by the same argument used in the proof of Lemma 3 with α = k + 1/2 and a = 1/N .
On the other hand, for y > 0 we split the range of integration into (0, 1/N ]∪(1/N,+∞).

By (20), (8) and Lemma 3 with α = k + 1 and a = 1/N , on the first interval we have

N
∑

ρ1 : γ1>0

γ
β1−1/2
1

∫ 1/N

0

exp
(
γ1(arctan(Ny)−

π

2
)
) dy

|z|k+1+β1

≪k N
k+2.

8



On the other interval, again by (8), we have to estimate

∑

ρ1 : γ1>0

γ
β1−1/2
1

∫ +∞

1/N

exp
(
−γ1 arctan

1

Ny

)y−1 + y1/2 log2(2Ny)

yk+1+β1

dy

= Nk
∑

ρ1 : γ1>0

Nβ1γ
β1−1/2
1

∫ +∞

1

exp
(
−γ1 arctan

1

u

)Nu−1 + u1/2N−1/2 log2(2u)

uk+1+β1

dy.

Lemma 2 with α = k + 1/2 shows that the last term is ≪k N
k+2. This implies that the

integral in (19) is ≪k N
k+2 provided that k > 1 and hence we can exchange the first

summation with the integral in this case.
To exchange the second summation we have to consider

∑

ρ1

|Γ(ρ1)|
∑

ρ2

|Γ(ρ2)|
∫

(1/N)

|eNz||z|−k−1|z−ρ1 ||z−ρ2 | |dz|. (21)

By symmetry, we can consider γ1, γ2 > 0 or γ1 > 0, γ2 < 0.
Assuming γ1, γ2 > 0, for y ≤ 0 we have γj arctan(Ny)− π

2
γj ≤ −π

2
γj, j = 1, 2, and, by

(12), the corresponding contribution to (21) is

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

) ∑

ρ2 : γ2>0

γ
β2−1/2
2 exp

(
−π
2
γ2

)(∫ 0

−∞

dy

|z|k+1+β1+β2

)

≪k N
k+2

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

) ∑

ρ2 : γ2>0

γ
β2−1/2
2 exp

(
−π
2
γ2

)
≪k N

k+2,

using standard zero-density estimates and (8). On the other hand, for y > 0 we split the
range of integration into (0, 1/N ] ∪ (1/N,+∞). On the first interval we have

∑

ρ1 : γ1>0

γ
β1−1/2
1

∑

ρ2 : γ2>0

γ
β2−1/2
2

∫ 1/N

0

exp
(
(γ1 + γ2)(arctan(Ny)−

π

2
)
) dy

|z|k+1+β1+β2

≪
∑

ρ1 : γ1>0

γ
β1−1/2
1

∑

ρ2 : γ2>0

γ
β2−1/2
2 exp

(
−π
4
(γ1 + γ2)

)∫ 1/N

0

Nk+1+β1+β2 dy

≪k N
k+2

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
4
γ1

) ∑

ρ2 : γ2>0

γ
β2−1/2
2 exp

(
−π
4
γ2

)
≪k N

k+2,

arguing as above. With similar computations, on the other interval we have

∑

ρ1 : γ1>0

γ
β1−1/2
1

∑

ρ2 : γ2>0

γ
β2−1/2
2

∫ +∞

1/N

exp
(
(γ1 + γ2)(arctan(Ny)−

π

2
)
) dy

yk+1+β1+β2

= Nk
∑

ρ1 : γ1>0

Nβ1γ
β1−1/2
1

∑

ρ2 : γ2>0

Nβ2γ
β2−1/2
2

∫ +∞

1

exp
(
−(γ1 + γ2) arctan

1

u

) du

uk+1+β1+β2

.

Arguing as in the proof of Lemma 2, the integral on the right is ≍ (γ1+γ2)
−k−β1−β2 . The

inequality

γ
β1−1/2
1 γ

β2−1/2
2

(γ1 + γ2)β1+β2

≤ 1

γ
1/2
1 γ

1/2
2

(22)

shows that it is sufficient to consider

Nk
∑

ρ1 : γ1>0

∑

ρ2 : γ2>0

Nβ1+β2
1

γ
1/2
1 γ

1/2
2 (γ1 + γ2)k

≪ Nk+2
∑

ρ1 : γ1>0

1

γ
k+1/2
1

∑

ρ2 : 0<γ2≤γ1

1

γ
1/2
2

9



≪ Nk+2
∑

ρ1 : γ1>0

log γ1
γk1

and the last series over zeros converges for k > 1.
Assume now γ1 > 0, γ2 < 0. For y ≤ 0 we have γ1 arctan(Ny) − π

2
γ1 ≤ −π

2
γ1, by (8)

the corresponding contribution to (21) is

≪k

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

){ ∑

ρ2 : γ2<0

|γ2|β2−1/2
[
exp

(
−π
4
|γ2|

)∫ 0

−1/N

Nk+1+β1+β2 dy

+

∫ −1/N

−∞

exp
(
−|γ2|(arctan(Ny) +

π

2
)
) dy

|y|k+1+β1+β2

]}

≪k N
k+2

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

) ∑

ρ2 : γ2<0

|γ2|β2−1/2 exp
(
−π
4
|γ2|

)

+Nk+2
∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

) ∑

ρ2 : γ2<0

|γ2|β2−1/2

∫ +∞

1

exp
(
−|γ2| arctan

1

u

) du

uk+1+β1+β2

≪k N
k+2 +Nk+2

∑

ρ1 : γ1>0

γ
β1−1/2
1 exp

(
−π
2
γ1

)
≪k N

k+2

for k > 1/2, by Lemma 2 and standard zero-density estimates.
On the other hand, the case γ1 > 0, γ2 < 0 and y > 0 can be estimated in a similar

way essentially exchanging the role of γ1 and γ2 in the previous argument.
This implies that the integral in (21) is ≪k N

k+2 provided that k > 1. Combining the
convergence conditions for (19)-(21), we see that we can exchange both summations with
the integral provided that k > 1.

7. Convergence of the double sum over zeros

In this section we prove that the double sum on the right of (11) converges absolutely
for every k > 1/2. We need (13) uniformly for x ∈ [0, k+3] and |y| ≥ T , where T is large
but fixed: this provides both an upper and a lower bound for |Γ(x+ iy)|. Let

Σ =
∑

ρ1

∑

ρ2

∣∣∣
Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)

∣∣∣,

so that, by the symmetry of the zeros of the Riemann zeta-function, we have

Σ = 2
∑

ρ1 : γ1>0

∑

ρ2 : γ2>0

∣∣∣
Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)

∣∣∣+ 2
∑

ρ1 : γ1>0

∑

ρ2 : γ2>0

∣∣∣
Γ(ρ1)Γ(ρ2)

Γ(ρ1 + ρ2 + k + 1)

∣∣∣

= 2(Σ1 + Σ2),

say. It is clear that if both Σ1 and Σ2 converge, then the double sum on the right-hand
side of (11) converges absolutely. In order to estimate Σ1 we choose a large T and let

D0 = {(ρ1, ρ2) : (γ1, γ2) ∈ [0, 2T ]2},
D1 = {(ρ1, ρ2) : γ1 ≥ T, T ≤ γ2 ≤ γ1},
D2 = {(ρ1, ρ2) : γ1 ≥ T, 0 ≤ γ2 ≤ T},
D3 = {(ρ1, ρ2) : γ2 ≥ T, T ≤ γ1 ≤ γ2},
D4 = {(ρ1, ρ2) : γ2 ≥ T, 0 ≤ γ1 ≤ T},

10



so that Σ1 ≤ Σ1,0+Σ1,1+Σ1,2+Σ1,3+Σ1,4, say, where Σ1,j is the sum with (ρ1, ρ2) ∈ Dj .
Now, D0 contributes a bounded amount, that depends only on T , and, by symmetry
again, Σ1,1 = Σ1,3 and Σ1,2 = Σ1,4. We also recall the inequality (22) which is valid for
all couples of zeros considered in Σ1. Hence

Σ1,1 ≪
∑∑

ρ1 : γ1≥T
ρ2 : T≤γ2≤γ1

∣∣∣
Γ(β1 + iγ1)Γ(β2 + iγ2)

Γ(β1 + β2 + k + 1 + i(γ1 + γ2))

∣∣∣

≪
∑∑

ρ1 : γ1≥T
ρ2 : T≤γ2≤γ1

e−π(γ1+γ2)/2γ
β1−1/2
1 γ

β2−1/2
2

e−π(γ1+γ2)/2(γ1 + γ2)β1+β2+k+1/2
≪

∑∑

ρ1 : γ1≥T
ρ2 : T≤γ2≤γ1

1

γ
1/2
1 γ

1/2
2 (γ1 + γ2)k+1/2

≪
∑

ρ1 : γ1≥T

1

γk+1
1

∑

ρ2 : T≤γ2≤γ1

1

γ
1/2
2

≪
∑

ρ1 : γ1≥T

log γ1

γ
k+1/2
1

.

A similar argument proves that

Σ1,2 ≪k,T

∑

ρ1 : γ1≥T

1

γk+1
1

,

since Γ(ρ2) is uniformly bounded, in terms of T , for (ρ1, ρ2) ∈ D2. Summing up, we have

Σ1 ≪k,T 1 +
∑

ρ1 : γ1≥T

log γ1

γ
k+1/2
1

,

which is convergent provided that k > 1/2. In order to estimate Σ2 we use a similar
argument. Choose a large T and let

E0 = {(ρ1, ρ2) : (γ1, γ2) ∈ [0, 2T ]2},
E1 = {(ρ1, ρ2) : γ1 ≥ 2T, 0 ≤ γ2 ≤ T},
E2 = {(ρ1, ρ2) : γ1 ≥ 2T, T ≤ γ2 ≤ γ1 − T},
E3 = {(ρ1, ρ2) : γ1 ≥ 2T, γ1 − T ≤ γ2 ≤ γ1},
E4 = {(ρ1, ρ2) : γ2 ≥ 2T, γ2 − T ≤ γ1 ≤ γ2},
E5 = {(ρ1, ρ2) : γ2 ≥ 2T, T ≤ γ1 ≤ γ2 − T},
E6 = {(ρ1, ρ2) : γ2 ≥ 2T, 0 ≤ γ1 ≤ T},

so that Σ2 ≤ Σ2,0 +Σ2,1 +Σ2,2 +Σ2,3 +Σ2,4 +Σ2,5 +Σ2,6, say, where Σ2,j is the sum with
(ρ1, ρ2) ∈ Ej. Now, E0 contributes a bounded amount, that depends only on T , and, by
symmetry again, Σ2,1 = Σ2,6, Σ2,2 = Σ2,5 and Σ2,3 = Σ2,4. Again we use (13) as above;
hence

Σ2,2 =
∑∑

ρ1 : γ1≥2T
ρ2 : T≤γ2≤γ1−T

∣∣∣
Γ(β1 + iγ1)Γ(β2 − iγ2)

Γ(β1 + β2 + 1 + i(γ1 − γ2))

∣∣∣ ≪
∑

ρ1 : γ1≥2T
ρ2 : T≤γ2≤γ1−T

γ
β1−1/2
1 γ

β2−1/2
2 e−πγ2

(γ1 − γ2)β1+β2+k+1/2

≪
∑

ρ1 : γ1≥2T

γ
β1−1/2
1 log γ1

∫ γ1−T

T

t1/2

(γ1 − t)β1+k+1/2
e−πt dt

≪
∑

ρ1 : γ1≥2T

e−πγ1γβ1

1 log γ1

∫ γ1−T

T

eπu du

uβ1+k+1/2

≪
∑

ρ1 : γ1≥2T

e−πγ1γβ1

1 log γ1
eπ(γ1−T )

(γ1 − T )β1+k+1/2
≪T

∑

ρ1 : γ1≥2T

log γ1

γ
k+1/2
1

.
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The rightmost series over zeros plainly converges for k > 1/2. The contribution of zeros
in E1 is treated in a similar fashion, using the uniform upper bound Γ(ρ2) ≪T 1, and is
smaller. We now deal with Σ2,3: we have

Σ2,3 =
∑∑

ρ1 : γ1≥2T
ρ2 : γ1−T≤γ2≤γ1

∣∣∣
Γ(β1 + iγ1)Γ(β2 − iγ2)

Γ(β1 + β2 + k + 1 + i(γ1 − γ2))

∣∣∣

≪
∑

ρ1 : γ1≥2T

e−πγ1/2γ
β1−1/2
1

∑

ρ2 : γ1−T≤γ2≤γ1

e−πγ2/2γ
β2−1/2
2

(
min

k+1≤x≤k+3
0≤t≤T

|Γ(x+ it)|
)−1

≪k,T

∑

ρ1 : γ1≥2T

e−πγ1γβ1+1
1 log(γ1 + T ),

provided that T is large enough. Here we are using Theorem 9.2 of Titchmarsh [13] with
T large but fixed. The series at the extreme right is plainly convergent.
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