
ar
X

iv
:1

20
6.

02
54

v1
  [

m
at

h-
ph

] 
 1

 J
un

 2
01

2

1

The Maxwell system in waveguides with several ends

B. A. Plamenevskii, A. S. Poretckii 1

A waveguide coincides with a domain G in R3 having finitely many cylindrical outlets
to infinity; the boundary ∂G is smooth. InG, we consider the stationary Maxwell system with
spectral parameter k ∈ R and identity matrices of dielectric and magnetic permittivity. The
boundary ∂G is supposed to be perfectly conductive. In the presence of charges and currents
we investigate the solvability of the corresponding boundary value problem supplemented
with "intrinsic" radiation conditions at infinity. For all k in the continuous spectrum of
the problem (including the thresholds and eigenvalues), we describe a basis in the space of
continuous spectrum eigenfunctions, define the scattering matrix, and prove it is unitary. To
this end, we extend the Maxwell system to an elliptic one and study the latter in detail.
The information on the Maxwell boundary value problem comes from that obtained for the
elliptic problem.

1 Introduction. Formulation of the results

Let G be a domain in R3, coinciding outside a large ball with the union Π1
+ ∪ · · · ∪ ΠN

+ of
finitely many non-overlapping semicylinders

Πq
+ = {(yq, tq) : yq ∈ Ωq, tq > 0},

where (yq, tq) are local coordinates in Πq
+ and Ωq is a bounded domain in R2. We consider

the Maxwell system

i rotu2(x)− ku1(x) = f 1(x),

−i div u2(x) = h1(x), (1.1)

−i rot u1(x)− ku2(x) = f 2(x),

i div u1(x) = h2(x)

in G with boundary conditions

ν(x)× u1(x) = 0, 〈u2(x), ν(x)〉 = 0, x ∈ ∂G; (1.2)

here u1 and u2 are vector valued functions with three components (the electric and magnetic
vectors respectively), k is a spectral parameter, ν is the outward normal to ∂G, 〈u, ν〉 are
ν×u are scalar and vector product, and f j , hj are given functions. The boundary conditions
correspond to perfectly conductive boundary, which means that at ∂G there vanish the
tangent component of u1 and the normal one of u2. The system (1.1) is overdetermined
(eight equations and only six indeterminate functions). The compatibility conditions

divf 1(x)− ikh2(x) = 0, x ∈ G,

divf 2(x) + ikh1(x) = 0, x ∈ G, (1.3)

〈f 2(x), ν(x)〉 = 0, x ∈ ∂G
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are necessary for the solvability of problem (1.1), (1.2).
Preparatory to describing the continuous spectrum eigenfunctions and the radiation

conditions, we first associate with problem (1.1), (1.2) some operator pencils and then define
"waves" needed for asymptotic formulas. Let us write down (1.1), (1.2) in the form

M(D, k)U(x) = F(x), x ∈ G; u1(x)τ = 0, u2(x)ν = 0, x ∈ ∂G, (1.4)

where D = (D1, D2, D3), Dj = −i∂/∂xj , U = (u1, u2), while u1(x)τ and u2(x)ν denote the
tangent and normal component of u1(x) and u2(x).

Let us consider problem (1.4) in the cylinder G := Ω × R = {x = (x1, x2, x3) :
(x1, x2) ∈ Ω, x3 ∈ R}, where Ω is a bounded domain in R

2 with smooth boundary ∂Ω.
For the vectors Φ = (ϕ, ψ) with components ϕ, ψ in C∞(Ω̄;C3) satisfying the boundary
conditions ϕτ = 0, ψν = 0 at ∂Ω (we assume here that the outward normal to ∂Ω is the
vector ν = (ν1, ν2, 0)), we define an operator pencil C ∋ λ 7→ M(λ, k) by the equality

M(λ, k)Φ(x1, x2) = exp (−iλx3)M(D, k)(exp (iλx3)Φ(x1, x2)). (1.5)

A number λ ∈ C is said to be an eigenvalue of the pencil M(·, k) if there exists a vector Φ 6= 0
such that M(λ, k)Φ = 0; then Φ is called an eigenvector of the pencil. The eigenvalues of
M(·, k) are resting on the coordinate axes of the complex plane, accumulate only at infinity,
while the real axis contains at most finitely many eigenvalues. We assume that the domain
Ω is 1-connected. A value k 6= 0 is called a threshold if λ = 0 turns out to be an eigenvalue
for M(·, k). The set of thresholds is infinite, symmetric about the coordinate origin, and
accumulates only at infinity. The first threshold on the semiaxis 0 < k <∞ is equal to

√
µ0,

where µ0 is the minimal positive eigenvalue of the Neumann problem

∆u(x) + µu(x) = 0, x ∈ Ω, ∂νu(x) = 0, x ∈ ∂Ω,

∆ being the Laplace operator in Ω. Let k′ and k′′ are neighboring thresholds and let 0 <
k′ < k′′. The sum of multiplicities κ(k) of the real eigenvalues λ of the pencil M(·, k) is even
and constant for |k| ∈ (k′, k′′); to every eigenvalue λ there correspond only eigenvectors,
while generalized eigenvectors do not exist. We denote by λ0 and Φ0 a real eigenvalue and a
corresponding eigenvector of M(·, k). The function

G ∋ (y, t) 7→ P (y, t) = exp (iλ0t)Φ0(y) (1.6)

satisfies the homogeneous problem (1.4) in the cylinder G = {x = (y, t) : y ∈ Ω, t ∈ R}. Each
of the solutions is a linear combination of TE- and TM-modes (see, e.g., [1]). The dimension
of the linear space of solutions of the form (1.6) is equal to κ(k). One can choose a basis in
the space subject to certain orthogonality and normalization conditions so that half of the
basis consists of "waves outgoing to +∞" , and the other half consists of "waves incoming
from +∞" .

Let us turn to the "general" domain G with several cylindrical ends Π1
+, . . . ,Π

N
+ . We

introduce the pencil Mq(·, k) in Πq = Ωq×R, q = 1, . . . , N , denote by Tq the set of thresholds
for Mq, and define T := T1 ∪ · · · ∪ TN . Assume now that k′, k′′ ∈ T, 0 < k′ < k′′, while
(k′, k′′) ∩ T = ∅. We also suppose that κ(k) := κ

1(k) + · · ·+ κ
N (k), where k ∈ (k′, k′′) and

κq(k) is the sum of multiplicities of the real eigenvalues of the pencil Mq(·, k). The value
κ(k) is constant for |k| ∈ (k′, k′′) and equal to an even number 2Υ.
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Denote by χ a function in C∞(R) such that 0 ≤ χ(t) ≤ 1, χ(t) = 1 for t > T , and
χ(t) = 0 for t < T − 1, where T is sufficiently large number. In local coordinates of Πq

+,
introduce the function (yq, tq) 7→ χ(tq)P (yq, tq), P being a solution of the form (1.6) to the
homogeneous problem (1.4) in Πq. We can assume that suppχP ⊂ G ∩ Πq

+ for a large T
in the definition of χ. Extending χP by zero to G, we obtain a smooth function given in
G. Taking for P in Πq a wave incoming from +∞ (outgoing to +∞), we obtain a function
called incoming (outgoing) wave in the domain G. In such a way we define incoming waves
w+

1 , . . . , w
+

Υ
and outgoing waves w−

1 , . . . , w
−
Υ

in G.
As before, assume that |k| ∈ (k′, k′′). A smooth bounded in G vector-valued function

U = (u1, u2) is called a continuous spectrum eigenfunction (CSE) of problem (1.1), (1.2) if
U satisfies the homogeneous problem (1.1), (1.2) and does not belong to the space L2(G).

Denote by ρδ a smooth positive function onG, given on Πq
+∩G by ρδ(y

q, tq) = exp (δtq)
with q = 1, . . . , N and a positive δ. We choose such a δ sufficiently small so that the strip
{λ ∈ C : |Imλ| ≤ δ} contains no eigenvalues of the pencils Mq(·, k) except for the real ones.
Introduce the space W l

δ(G) of functions in G with norm

‖u;W l
δ(G)‖ := (

l∑

|α|=0

∫

G

|Dα(ρδu)|2 dx)1/2

for l = 0, 1, . . . . A number k is called an eigenvalue for problem (1.1), (1.2) if there exists
in L2(G) a (smooth) solution to the homogeneous problem; as a rule, we do not distinct
in notations the space of scalar and vector valued functions. Every eigenvalue is real; the
dimension of eigenspace is always finite. The eigenvalues can accumulate only at infinity.
Any eigenfunction turns out to be in W l

δ(G) for each l.
Denote by kerM(D, k) the eigenspace of problem (1.1), (1.2) (possibly, trivial) corresponding

to a number k. For the sake of formulation simplicity we suppose in Theorems 1.1 and 1.2,
as before, that k′, k′′ ∈ T, 0 < k′ < k′′, and (k′, k′′) ∩ T = ∅.

Theorem 1.1. Let |k| ∈ (k′, k′′) and let 2Υ be the sum of multiplicities of all real eigenvalues
of the pencils M

q(·, k), q = 1, . . . , N . Then there exist solutions W+
j (·, k), j = 1, . . . ,Υ, to

the homogeneous problem (1.1), (1.2) such that

W+
j (·, k)− w+

j (·, k)−
Υ∑

q=1

sjq(k)w
−
q (·, k) ∈ W l

δ(G),

where l = 1, 2, . . . If k is not an eigenvalue of problem (1.1), (1.2), then the solution W+
j (·, k)

with above property is unique and W+
1 (·, k), . . . ,W+

Υ
(·, k) form a basis in the space of CSE

corresponding to k. If k turns out to be an eigenvalue of problem (1.1), (1.2), then W+
j (·, k)

is determined up to an arbitrary term in kerM(D, k) and any W+
1 (·, k), . . . ,W+

Υ
(·, k) form

a basis modulo kerM(D, k) in the space of CSE.
The matrix

s(k) = (sjq(k))
Υ
j, q=1

is unitary. It is independent of the choice of W+
j (·, k) in the case that k is an eigenvalue of

problem (1.1), (1.2).
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The theorem can be generalized for the thresholds as well. The matrix s is called the
scattering matrix. It is defined for k satisfying k2 ≥ µM, where µM = min{µ1

0, . . . , µ
N
0 } and

(µj
0)

1/2 is the first positive threshold for the pencil Mj in Ωj . In fact, there is no wave for
k2 < µM that could transfer energy.

The incoming and outgoing waves can "exchange roles" . In particular, there exist
solutions W−

j (·, k) to the homogeneous problem (1.1), (1.2) such that

W−
j (·, k)− w−

j (·, k)−
Υ∑

q=1

tjq(k)w
+
q (·, k) ∈ W l

δ(G).

The matrices (sjq(k))
Υ
j, q=1 and (tjq(k))

Υ
j, q=1 are mutually inverse.

The solvability of the problem (1.1), (1.2) supplemented with intrinsic radiation
conditions is established by the following theorem.

Theorem 1.2. Let |k| ∈ (k′, k′′) and let ζ1, . . . , ζm be a basis in the space kerM(D, k)
of eigenvectors of problem (1.1), (1.2). We also assume that F = (f 1, h1, f 2, h2) is in
W l−1

δ (G,C8), (l ≥ 1), satisfies the compatidility conditions (1.3) and moreover (f, ζj)G = 0
for j = 1, . . . , m, where f = (f 1, f 2) and (·, ·)G is the inner product on L2(G). Then there
exists a solution U = (u1, u2) with the radition conditions

V := U − c1w
−
1 − . . . cΥw

−
Υ
∈ W l

δ(G;C
6),

where cj = i(f,W−
j )G. Such a solution U is determined up to an arbitrary term in kerM(D, k)

and there holds the inequality

‖V;W l
δ(G;C

6)‖+ |c1|+ · · ·+ |cΥ| ≤ const(‖F ;W l−1

δ (G,C8)‖+ ‖ρδV;L2(G,C
6)‖). (1.7)

A solution U 0 that satisfies the additional conditions (U 0, ζj)G = 0 is unique and there holds
the estimate (1.7) with right-hand changed for const‖F ;W l−1

δ (G,C8)‖.
The study of problem (1.1), (1.2) begins with extension of the overdetermined Maxwell

system to an elliptic system. To this end we use the orthogonal extension method suggested
by I.S. Gudovich, S.G. Krein, and I.M. Kulikov (see e.g. [2], [3] and references there). As a
result, there arises an elliptic boundary value problem self-adjoint with respect to a Green
formula. The general problems of this type in domains with cylindrical outlets to infinity were
studied in [4]. In particular, the intrinsic radiation conditions were described, the solvability
of the boundary value problem with those radiation conditions was established, the unitary
scattering matrix was introduced. When analyzing the obtained elliptic problem, we clarify
its specific properties coming from the Maxwell system. To this end we investigate in detail
the operator pencil generated by the elliptic problem. Then we derive the information on
the Maxwell system from that obtained for the elliptic one.

From numerous mathematical works devoted to the Maxwell system in waveguides
we set off two lines of investigation. One of the lines is related to the Wiener-Hopf technique
and the mode matching method. Surveys of the methods are given in [5], [6]. The other line
is presented in [7] (see also references therein). The methodology in these works is connected
with cylindrical waveguides and dielectric and magnetic permittivity independent of the axial
variable.
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We use neither the methods nor the results of the works mentioned in the preceding
paragraph. The elliptic extension of Maxwell system provides all the advantages of elliptic
situation, in particular, the possibility of localization, freedom in choosing waveguide geometry.
In this paper, we consider waveguides with identity matrices of dielectric and magnetic
permittivity; in another paper, we are going to show that our approach also suggests reasonably
wide freedom in choosing waveguide medium.

2 Augmented Maxwell system

2.1 Elliptic boundary value problem

We now pass on to the "orthogonal extension" of system (1.1) ([2], see also [3]). Namely, in
the domain G we introduce the boundary value problem

i rotu2(x) + i∇a2(x)− ku1(x) = f 1(x),

−i div u2(x)− ka1(x) = h1(x), (2.1)

−i rotu1(x)− i∇a1(x)− ku2(x) = f 2(x),

i div u1(x)− ka2(x) = h2(x)

with boundary conditions

ν(x)× u1(x) = g1(x), 〈u2(x), ν(x)〉 = g2(x), a2(x) = g3(x), x ∈ ∂G; (2.2)

here u1, u2 are vector valued functions with three components and a1, a2 stand for scalar
functions in G. Problem (2.1), (2.2) is elliptic. Rewrite it in the form

A(D, k)U(x) = F(x), x ∈ G, (2.3)

BU(x) = G(x), x ∈ ∂G,

where D = (D1, D2, D3), Dj = −i∂/∂xj , U = (u1, a1, u2, a2). The Green formula holds

(A(D, k)U ,V)G + (BU ,QV)∂G = (U ,A(D, k)V)G + (QU ,BV)∂G, (2.4)

with U = (u1, a1, u2, a2), V = (v1, b1, v2, b2), and

BU = (ν × u1, 〈u2, ν〉, a2), QV = (−iv2,−ib1, 〈iv1, ν〉).

The operator of problem (2.3) is self adjoint with respect to the Green formula (2.4).

2.2 Elliptic and Maxwell operator pencils

We consider the operator {A(D),B} of problem (2.3) in the cylinder Ω × R = {x =
(x1, x2, x3) : (x1, x2) ∈ Ω, x3 ∈ R}, where Ω is a bounded domain in R2 with smooth
boundary ∂Ω. Let Φ = (ϕ, α, ψ, β) be a vector with components ϕ, ψ in C∞(Ω̄;C3) and α,
β in C∞(Ω̄;C) satisfying

BΦ = (ν × ϕ, 〈ψ, ν〉, β) = 0 (2.5)
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on ∂Ω, where ν is the outward normal to ∂Ω; we assume that ν is of the form (ν1, ν2, 0).
Denote by uτ and uν the tangent and normal components of u on ∂Ω and rewrite (2.5) as

ϕτ = 0, ψν = 0, β|∂Ω = 0.

For the vectors Φ with such properties we define the operator pencil C ∋ λ 7→ A(λ),

A(λ)Φ(x1, x2) = exp (−iλx3)A(D)(exp (iλx3)Φ(x1, x2)). (2.6)

For the usual operations ∇, rot, div, and ∆ in Ω× R, introduce in Ω the operations ∇(λ),
rot(λ), div(λ) and ∆(λ) by

∇(λ)α(x1, x2) = exp (−iλx3)∇ (exp (iλx3)α(x1, x2)),

rot(λ)ϕ(x1, x2) = exp (−iλx3)rot (exp (iλx3)ϕ(x1, x2)),

etc. Formulas for the usual operations can immediately be modified for the operations
with parameter. For example, from rot rot = ∇ div − ∆ it follows that rot(λ) rot(λ) =
∇(λ) div(λ)−∆(λ). For ϕ, ψ in C∞(Ω̄;C3) and α in C∞(Ω̄;C) we have

(∇(λ)α, ϕ)Ω = (α, 〈ϕ, ν〉)∂Ω − (α, div(λ̄)ϕ)Ω, (2.7)

(rot(λ)ϕ, ψ)Ω = (ϕ, ψ × ν)∂Ω + (ϕ, rot(λ̄)ψ)Ω. (2.8)

Denote by H l(Ω;C8), l = 0, 1, . . . , the space of vectors with eight components in the Sobolev
space H l(Ω;C) of functions in Ω. We write the elements Φ ∈ H l(Ω;C8) as Φ = (ϕ, α, ψ, β),
where ϕ, ψ ∈ H l(Ω;C3) and α, β ∈ H l(Ω;C). For l = 1, 2, . . . set

DH l(Ω) = {Φ ∈ H l(Ω;C8) : ϕτ = 0, ψν = 0, β|∂Ω = 0}. (2.9)

Let us consider the operator A(λ) given by (2.6) on the domain DH l(Ω). According to the
general theory of elliptic operator pencils (see [8]), for all λ ∈ C with the exception of
some isolated points, the mapping A(λ) : DH l(Ω) → H l−1(Ω;C8)is an isomorphism. The
mentioned isolated points are the eigenvalues of the pencil λ 7→ A(λ) of finite algebraic
multiplicity. The components of eigenvectors and generalized eigenvectors are smooth in Ω.
For U = (ϕ, α, ψ, β) ∈ DH l(Ω) from (2.1) and (2.6) it follows that

A(λ) :




ϕ
α
ψ
β


 7→




i rot(λ)ψ + i∇(λ)β − kϕ
−i div(λ)ψ − kα

−i rot(λ)ϕ− i∇(λ)α− kψ
i div(λ)ϕ− kβ


 . (2.10)

The pencil A is called elliptic and its restriction to {U ∈ DH l(Ω) : U = (ϕ, 0, ψ, 0)} will
be called the Maxwell pencil and denoted by M. The number λ0 is an eigenvalue of the
pencil M(·, k) if there exists a smooth nonzero vector Φ = (ϕ, 0, ψ, 0) that is subject to the
boundary conditions ϕτ = 0, ψν = 0 on ∂Ω and satisfies M(λ0, k)Φ = 0.
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2.3 Eigenvalues and eigenvectors of the pencils A and M

Proposition 2.1. Let λ be an eigenvalue of the pencil A(·, k) and (ϕ, α, ψ, β) an eigenvector
corresponding to the eigenvalue, ϕ = (ϕ1, ϕ2, ϕ3) and ψ = (ψ1, ψ2, ψ3). Assume that k2−λ2 6=
0. Then

∆(λ)α + k2α = 0 in Ω, ∂να = 0 on ∂Ω, (2.11)

∆(λ)β + k2β = 0 in Ω, β = 0 on ∂Ω, (2.12)

∆(λ)ϕ3 + k2ϕ3 = 0 in Ω, ϕ3 = 0 on ∂Ω, (2.13)

∆(λ)ψ3 + k2ψ3 = 0 in Ω, ∂νψ3 = 0 on ∂Ω, (2.14)

while ϕj, ψj for j = 1, 2 are defined by

ϕ1 = (k2 − λ2)−1[iλ∂1ϕ3 + ik∂2ψ3 − iλ∂2α + ik∂1β],

ϕ2 = (k2 − λ2)−1[iλ∂2ϕ3 − ik∂1ψ3 + iλ∂1α + ik∂2β], (2.15)

ψ1 = (k2 − λ2)−1[−ik∂2ϕ3 + iλ∂1ψ3 − ik∂1α− iλ∂2β],

ψ2 = (k2 − λ2)−1[ik∂1ϕ3 + iλ∂2ψ3 − ik∂2α + iλ∂1β].

Conversely, any nonzero vector (ϕ, α, ψ, β) with components satisfying (2.11) – (2.14) and
(2.15) is an eigenvector of A(·, k) corresponding to λ.

If a number λ (such that k2−λ2 6= 0) is an eigenvalue for one of the pencils A(·, k) and
M(·, k), then it is an eigenvalue for the other one; moreover, λ turns out to be an eigenvalue
of the pencils if and only if it is an eigenvalue for at least one of problems (2.11) and (2.12).
There hold the equalities

κA(λ, k) = 2κM(λ, k) = 2κD(λ, k) + 2κN (λ, k),

where κA(λ, k) and κM(λ, k) are the geometric multiplicities of the eigenvalue λ for the
pencils A(·, k) and M(·, k), while κN (λ, k) and κD(λ, k) are those for problems (2.11) and
(2.12).

The case k2 − λ2 = 0 has been described in the next proposition.

Proposition 2.2. Let Ω be a 1-connected domain. Then:
1. If λ2 = k2 6= 0, then λ is an eigenvalue of A(·, k) and the corresponding eigenspace

is one-dimensional and spanned by the vector Φ = (ϕ, α, ψ, β) with components

ϕ = 0, α = const 6= 0, ψ1 = ψ2 = 0, ψ3 = (λ/k)α, β = 0.

The vector Φ does not belong to the domain M(·, k), and λ is not an eigenvalue for M(·, k).
2. If k = 0, then λ = 0 is an eigenvalue of A(·, k) with eigenspace spanned by the

vectors Φ̂ = (ϕ̂, α̂, ψ̂, β̂)and Φ̃ = (ϕ̃, α̃, ψ̃, β̃), where

ϕ̂ = 0, α̂ = const 6= 0, ψ̂ = 0, β̂ = 0,

ϕ̃ = 0, α̃ = 0, ψ̃1 = ψ̃2 = 0, ψ̃3 = const 6= 0, β̃ = 0.

The vector Φ̂ does not belong to the domain of M(·, k), while Φ̃ is an eigenvector for M(·, k).
The generalized eigenvectors of A(·, k) exist if and only if k is a threshold, i.e. λ = 0

is an eigenvalue of A(·, k) while k 6= 0. We do not dwell on describing such vectors.
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2.4 Continuous spectrum eigenfunctions. Scattering matrix

Assume that k is not a threshold for the elliptic pencils A1, . . .AN . For every q = 1, . . . , N in
the cylinder Πq = Ωq × R, we define solutions of the form (1.6) to the homogeneous elliptic
problem (2.1), (2.2) (to this end we can use Propositions 2.1 and 2.2). The dimension of linear
space of such solutions in Πq is equal to the sum Σq

A
(k) of all real eigenvalue multiplicities

for Aq(·, k); the number Σq
A
(k) is even. In the space there exists a basis satisfying proper

orthogonality and normalization conditions so that one half of the basis consists of of "waves
outgoing to +∞" , and the other half consists of "waves incoming from +∞" . The waves in
the domain G

v+j , v−j , j = 1, . . . , T := (Σ1
A
(k) + · · ·+ΣN

A
(k))/2, (2.16)

can now be introduced like those in Section 1 after (1.6).
A smooth bounded inG vector-valued function U = (u1, a1, u2, a2) is called a continuous

spectrum eigenfunction (CSE) of problem (2.1), (2.2) if U satisfies the homogeneous problem
(2.1), (2.2) and does not belong to the space L2(G). A number k is called an eigenvalue for
problem (2.1), (2.2) if there exists in L2(G) a (smooth) solution to the homogeneous problem.
Every eigenvalue is real; the dimension of eigenspace is always finite. The eigenvalues can
accumulate only at infinity. Any eigenfunction turns out to be in W l

δ(G) for each l. Denote
by kerA(D, k) the eigenspace of problem (2.1), (2.2) (possibly, trivial) corresponding to a
number k.

Theorem 2.3. Let 2T be the sum of all real eigenvalue multiplicities of the pencils Aq(·, k),
q = 1, . . . , N . Then there exist solutions V+

j (·, k), j = 1, . . . , T , to the homogeneous problem
(2.1), (2.2) such that

V+
j (·, k)− v+j (·, k)−

T∑

q=1

σjq(k)w
−
q (·, k) ∈ W l

δ(G),

where l = 1, 2, . . . If k is not an eigenvalue of problem (2.1), (2.2), then the solution V+
j (·, k)

with above property is unique and V+
1 (·, k), . . . ,V+

T (·, k) form a basis in the space of CSE
corresponding to k. If k turns out to be an eigenvalue of problem (2.1), (2.2), then V+

j (·, k)
is determined up to an arbitrary term in kerA(D, k) and any V+

1 (·, k), . . . ,V+

T (·, k) form a
basis modulo kerA(D, k) in the space of CSE.

The matrix
σ(k) = (σjq(k))

T
j, q=1

is unitary. It is independent of the choice of V+
j (·, k) in the case that k is an eigenvalue of

problem (2.1), (2.2). There exist solutions V−
j (·, k) to the homogeneous problem (2.1), (2.2)

such that

V−
j (·, k)− v−j (·, k)−

T∑

q=1

τjq(k)v
+
q (·, k) ∈ W l

δ(G). (2.17)

The matrices (σjq(k))
T
j, q=1 and (τjq(k))

T
j, q=1 are mutually inverse.

This theorem can be generalized for any real k (including the thresholds), the σ(k)
and τ(k) are defined for all k ∈ R, i.e., the continuous spectrum of problem (2.1), (2.2)
coincides with R.
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2.5 Radiation principle

Theorem 2.4. Let z1, . . . , zd be a basis in kerA(D, k) and {F ,G} ∈ W l−1

δ (G)×W l−1/2
δ (∂G),

while
(F , zj)G + (G,Qzj)∂G = 0, j = 1, . . . , d,

where Q is the operator in the Green formula (2.4). Then there exists a solution U of the
problem (2.1), (2.2) determined up to an arbitrary term in kerA(D, k) such that

V := U − c1v
−
1 − · · · − cTv

−
T ∈ W l

δ(G), (2.18)

where
cj = i(F ,V−

j )G + i(G,QV−
j )∂G, j = 1, . . . , T. (2.19)

There holds the inequality

‖V;W l
δ(G)‖+ |c1|+ · · ·+ |cT | (2.20)

≤ const(‖F ;W l−1

δ (G)‖+ ‖G;W l−1/2
δ ∂G‖+ ‖ρδV;L2(G)‖).

A solution U 0 subject to (U 0, zj)G = 0, j = 1, . . . , d, is unique and satisfies (2.20) with

right-hand side replaced by const(‖F ;W l−1

δ (G)‖+ ‖G;W l−1/2
δ ∂G‖).

3 Coming back to the non-augmented Maxwell system

To simplify formulations, we suppose that k 6= 0 and k is not a threshold. We will consider
the elliptic system

i rotu2(x) + i∇a2(x)− ku1(x) = f 1(x),

−i div u2(x)− ka1(x) = h1(x), (3.1)

−i rotu1(x)− i∇a1(x)− ku2(x) = f 2(x),

i div u1(x)− ka2(x) = h2(x)

in G with homogeneous boundary conditions

ν(x)× u1(x) = 0, 〈u2(x), ν(x)〉 = 0, a2(x) = 0, x ∈ ∂G. (3.2)

If F = (f 1, h1, f 2, h1) belongs to W l−1

δ (G) with l ≥ 2, then the compatibility conditions (1.3)
can be understood directly. In fact, such conditions can be interpreted in some generalized
form for l = 1 as well.

Proposition 3.1. Assume that the vector F = (f 1, h1, f 2, h2) belongs to W l−1

δ (G) and is
subject to compatibility conditions (1.3). Let U = (u1, a1, u2, a2) satisfy the problem (3.1),
(3.2) and the radiation condition (2.18). Then a1 is a solution to the problem

(∆ + k2)a1(x) = 0, x ∈ G, ∂νa
1(x) = 0, x ∈ ∂G, (3.3)

and satisfies the intrinsic radiation conditions defined for the problem (3.3), while a2 is a
solution to the problem

(∆ + k2)a2(x) = 0, x ∈ G, a2(x) = 0, x ∈ ∂G, (3.4)

and satisfies the intrinsic radiation conditions defined for problem (3.4). Thus a1 (a2) can be
nonzero only if it is an eigenfunction of problem (3.3) (problem (3.4)).
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Let us here restrict ourselves to considering the case that k is an eigenvalue of neither
of problems (3.3) and (3.4). Then the solution U in Proposition 3.1 in fact satisfies (3.1) and
(3.2) with a1 = a2 = 0. It remains to discuss the radiation conditions (2.18).

The collection of waves in G needed for problem (3.1), (3.2) in Theorems 2.3 and 2.4
consists of the two parts

E = {e±j }Υj=1 and Γ = {γ±j }Υ+N
j=1 . (3.5)

The outgoing and incoming waves e±j are generated by eigenvectors of Mq(·, k), while the
waves γ±j are generated by eigenvectors of Ap(·, k) which belong to none of the domains of
pencils Mq(·, k), q = 1, . . . , N .

For the solution U in Proposition 3.1, the radiation conditions (2.18) takes the form

U − c1e
−
1 − · · · − cΥe

−
Υ
∈ W l

δ(G); (3.6)

however the elliptic problem yet manifests itself in the coefficients cj = i(F ,V−
j )G in (3.6),

where V−
j is a solution to the homogeneous problem (2.1), (2.2). We have to show that the

role of V−
j is in fact played here by a solution to the homogeneous Maxwell system. It can

be done by using the following

Proposition 3.2. There exists a unique solution E+
j = (u1, 0, u2, 0) of the homogeneous

problem (2.1), (2.2) such that

E+
j (·, k)− e+j (·, k)−

Υ∑

q=1

sjq(k)e
−
q (·, k) ∈ W 1

δ (G) (3.7)

for j = 1, . . . ,Υ. The functions W+
j := (u1, u2) consisting of the components of E+

j form a
basis in the space of continuous spectrum eigenfunctions of the Maxwell problem (1.1), (1.2).

In order to see that the scattering matrix σ in Theorem 2.3 is block diagonal, we now
combine Proposition 3.2 and the next

Proposition 3.3. There exists a unique solution G+
j of the homogeneous problem (2.1),

(2.2), such that

G+
j − γ+j −

Υ+N∑

p=1

υjpγ
−
p ∈ W 1

δ (G) (3.8)

for j = 1, . . . ,Υ + N . The functions E+
1 , . . . , E+

Υ
,G+

1 , . . . ,G+

Υ+N form a basis in the space
of continuous spectrum eigenfunctions of problem (2.1), (2.2). The equality σ = diag(s, υ)
holds, where σ = σ(k) is the scattering matrix in Theorem 2.3,

s = s(k) = (sjq(k))
Υ
j, q=1, υ = υ(k) = (υjq(k))

Υ+N
j, q=1.

Since the matrix σ is unitary, every block s and υ is unitary as well.
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