The Asymptotic Behavior of Compositions of the Euler and Carmichael Functions

Vishaal Kapoor
vkapoor@google.com

June 4, 2012

Abstract

We compare the asymptotic behavior of $\lambda(\varphi(n))$ and $\lambda(\lambda(n))$ on a set of positive integers n of asymptotic density 1 , where λ is Carmichael's λ-function and φ is Euler's totient function. We prove that $\log \lambda(\varphi(n)) / \lambda(\lambda(n))$ has normal order $\log \log n \log \log \log n$.

1 Introduction

Euler's totient function $\varphi(n)$ is defined to be the cardinality of the multiplicative group modulo n, for any positive integer n. Carmichael's λ-function [2] denotes the cardinality of the largest cycle in the multiplicative group modulo n. In other words, $\lambda(n)$ is the smallest positive integer m such that $a^{m} \equiv 1(\bmod n)$ for all reduced residues $a(\bmod n)$. We notice that when the multiplicative group modulo n is cyclic, namely when $n=1,2,4, p^{a}$ or $2 p^{a}$ where p is an odd prime and $a \geq 1$, both $\varphi(n)$ and $\lambda(n)$ are equal.

One may compute $\varphi(n)$ with the aid of the Chinese remainder theorem by using the formula

$$
\varphi(n)=\left|\left(\mathbb{Z} / p_{1}^{a_{1}} \mathbb{Z}\right)^{\times}\right| \times \cdots \times\left|\left(\mathbb{Z} / p_{k}^{a_{k}} \mathbb{Z}\right)^{\times}\right|=p_{1}^{a_{1}-1}\left(p_{1}-1\right) \cdots p_{k}^{a_{k}-1}\left(p_{k}-1\right) .
$$

where n has the prime decomposition $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. For Carmichael's function we note

$$
\lambda\left(p^{a}\right)= \begin{cases}p^{a-1}(p-1) & \text { if } p \geq 3 \text { or } a \leq 2, \text { and } \tag{1}\\ 2^{a-2} & \text { if } p=2 \text { and } a \geq 3\end{cases}
$$

together with

$$
\begin{equation*}
\lambda(n)=\operatorname{lcm}\left(\lambda\left(p_{1}^{a_{1}}\right), \ldots, \lambda\left(p_{k}^{a_{k}}\right)\right) . \tag{2}
\end{equation*}
$$

In what follows we introduce the following notation. Given two functions $f(n)$ and $g(n)$, we will frequently drop the outer parentheses from the expression $f(g(n))$, instead writing the composition as $f g(n)$. Additionally for $f(n)$ denoting $\lambda(n), \varphi(n)$ or $\log (n)$, we define $f_{1}(n)=f(n)$ and $f_{k+1}(n)=f\left(f_{k}(n)\right)$ for $k \geq 1$. We will use the expression "for almost all $n "$ to mean for n in a set of positive integers of asymptotic density 1 , and the expression "for almost all $n \leq x$ " to be analogous, but restricting $n \leq x$. We recall that for arithmetic functions $f(n)$ and $g(n)$, we say $f(n)$ has normal order $g(n)$ if $f(n)$ is asymptotic to $g(n)$ for almost all n, or equivalently if $f(n)=(1+o(1)) g(n)$ for almost all n.

The theorem that we prove in this article is:
Theorem 1. The normal order of $\log (\lambda \varphi(n) / \lambda \lambda(n))$ is $\log _{2} n \log _{3} n$.

More precisely, we show that for almost all $n \leq x$,

$$
\begin{equation*}
\log \frac{\lambda \varphi(n)}{\lambda \lambda(n)}=\log _{2} n \log _{3} n+O\left(\psi(x) \log _{2} x\right) \tag{3}
\end{equation*}
$$

where $\psi(x)$ is a function tending to infinity slower than $\log _{3} x$. We also show that the exceptional set of positive integers n for equation (3) is of asymptotic density $O(x / \psi(x))$. This work is part of the author's PhD thesis (see [7]).

There has been extensive study on the asymptotic behavior of $\varphi(n)$ and $\lambda(n)$ and their compositions. In 1928, Schoenberg [9] established that the quotient $n / \varphi(n)$ has a continuous distribution function. In other words:

Proposition 2. The limit

$$
\Phi(t)=\lim _{N \rightarrow \infty}|\{n \leq N: n / \varphi(n) \geq t\}| / N
$$

exists and is continuous for any real t.

Recently Weingartner [10] studied the asymptotic behavior of $\Phi(t)$ showing that as t tends to infinity, $\log \Phi(t)=-\exp \left(t e^{-\gamma}\right)\left(1+O\left(t^{-2}\right)\right)$, where $\gamma=0.5722 \ldots$ is Euler's constant.

We mention that higher iterates of $\varphi(n)$ have been studied by Erdős, Granville, Pomerance and Spiro in [4]. They established:

Proposition 3. The normal order of the $\varphi_{k}(n) / \varphi_{k+1}(n)$ is $k e^{\gamma} \log _{3} n$, for $k \geq 1$.

In 1955 Erdős established the normal order of $\log (n / \lambda(n))$ in 3]. This result was refined by Erdős, Pomerance, and Schmutz in [5] where they proved the following result.
Proposition 4. For almost all $n \leq x$,

$$
\log \frac{n}{\lambda(n)}=\log _{2} n\left(\log _{3} n+A+O\left(\left(\log _{3} n\right)^{-1+\varepsilon}\right)\right.
$$

where

$$
A=-1+\sum_{q \text { prime }} \frac{q}{(q-1)^{2}}=.2269688 \ldots
$$

and $\varepsilon>0$ is fixed but arbitrarily small.

The author is undertaking the analysis of Theorem 1 to obtain a more accurate asymptotic formula of a form more closely resembling the previous proposition.

Martin and Pomerance subsequently considered the question of understanding the behavior of $\lambda \lambda(n)$. In [8] they proved

Proposition 5. For almost all n,

$$
\begin{equation*}
\log \frac{n}{\lambda \lambda(n)}=(1+o(1))\left(\log _{2} n\right)^{2} \log _{3} n \tag{4}
\end{equation*}
$$

Recently Harland [6] proved a conjecture of Martin and Pomerance concerning the behavior of the higher iterates of $\lambda(n)$:
Proposition 6. For each $k \geq 1$,

$$
\log \frac{n}{\lambda_{k}(n)}=\left(\frac{1}{(k-1)!}+o(1)\right)\left(\log _{2} n\right)^{k} \log _{3} n
$$

for almost all n.

Banks, Luca, Saidak, and Stănică [1] studied the the compositions of λ and φ. In particular, they studied set of n on which $\lambda \varphi(n)=\varphi \lambda(n)$. In their paper, they also established the following:

Proposition 7. For almost all n,

$$
\begin{align*}
& \log \frac{n}{\varphi \lambda(n)}=(1+o(1)) \log _{2} n \log _{3} n, \text { and } \tag{5}\\
& \log \frac{n}{\lambda \varphi(n)}=(1+o(1))\left(\log _{2} n\right)^{2} \log _{3} n \tag{6}
\end{align*}
$$

Consequently, $\log \frac{\varphi \lambda(n)}{\lambda \varphi(n)}$ has normal order $\left(\log _{2} n\right)^{2} \log _{3} n$.

The proof of Proposition 7 uses a simple clever argument that rests on the theorem of Martin and Pomerance. It is interesting to see what we may obtain trivially from Propositions 5 and 7. Subtracting (5) from (4) gives an asymptotic formula for the comparison between $\varphi \lambda(n)$ and $\lambda \lambda(n)$,

$$
\log \frac{\varphi \lambda(n)}{\lambda \lambda(n)} \sim\left(\log _{2} n\right)^{2} \log _{3} n
$$

for almost all n. However, if we subtract (6) from (4), the main terms cancel and we are left with

$$
\log \frac{\lambda \varphi(n)}{\lambda \lambda(n)}=o\left(\left(\log _{2} n\right)^{2} \log _{3} n\right)
$$

for almost all n. This relation is interesting because it leads one to seek a more accurate asymptotic formula. This more accurate result is the content of Theorem [1,

2 Notation and Useful Results

Let $a, n \in \mathbb{Z}$. Then the Brun-Titchmarsh inequality is the asymptotic relationship that

$$
\begin{equation*}
\pi(z ; n, a) \ll \frac{z}{\varphi(n) \log (z / n)} \quad(z>n) \tag{7}
\end{equation*}
$$

where $\pi(z ; n, a)$ is the number of primes congruent to $a(\bmod n)$ up to z. We will be primarily concerned with implications of the Brun-Titchmarsh inequality in the case that $a=1$. For convenience, define \mathcal{P}_{n} to be the set of primes congruent to $1(\bmod n)$, and for a given integer m, define the greatest common divisor of m and \mathcal{P}_{n}, denoted (m, \mathcal{P}_{n}), to be the product of the primes congruent to $1(\bmod n)$ that divides m, or 1 if none exist. We will frequently use the following weaker form of (7) without mention.
Lemma 8 (A Brun-Titchmarsh Inequality). For all $z>e^{e}$,

$$
\begin{equation*}
\sum_{\substack{p \leq z \\ p \in \mathcal{P}_{n}}} \frac{1}{p} \ll \frac{\log \log z}{\varphi(n)} \tag{8}
\end{equation*}
$$

One may obtain (8) from (7) by partial summation. We will also use the following prime estimates stated in [8].

Lemma 9. Let $z>e$. Then we have the following:

$$
\begin{aligned}
& \sum_{p \leq z} \log p \ll z, \quad \sum_{p \leq z} \frac{\log p}{p} \ll \log z, \quad \sum_{p \leq z} \frac{\log ^{2} p}{p} \ll \log ^{2} z, \\
& \sum_{p>z} \frac{\log p}{p^{2}} \ll \frac{1}{z}, \text { and } \quad \sum_{p>z} \frac{1}{p^{2}} \ll \frac{1}{z \log z},
\end{aligned}
$$

These estimates follow via partial summation applied to Mertens' estimate $M(z)=\sum_{p \leq z}(\log p) / p=$ $\log z+O(1)$. We illustrate the derivation of the first tail estimate. One writes the RiemannSteltjies integral

$$
\begin{aligned}
\sum_{p>z}(\log p) / p^{2} & =\int_{z}^{\infty} 1 / t \mathrm{~d} M(t)=M(t) /\left.t\right|_{z} ^{\infty}+\int_{z}^{\infty} M(t) / t^{2} \mathrm{~d} t \\
& =(\log z) / z+O(1 / z)+\int_{z}^{\infty}(\log t) / t^{2}+O\left(1 / t^{2}\right) \mathrm{d} t \\
& \ll 1 / z^{2}
\end{aligned}
$$

as required.
We remind the reader that we will be writing the composition of two arithmetic functions $f(n)$ and $g(n)$ as $f g(n)$, and subscripts will be used with functions to indicate the number of times a function will be composed with itself (ie $\log _{2} n=\log \log n$). The multiplicity to which a prime q divides n is denoted by $\nu_{q}(n)$. In what follows, the variables p, q, r will be reserved for primes. Throughout, we denote $y=y(x)=\log _{2} x$. The function $\psi(x)$ denotes a function tending to infinity, but slower than $\log y$. When we use the expression "for almost all $n \leq x$ ", we will mean for all positive integers $n \leq x$ except those in an exceptional set of asymptotic density $O(x / \psi(x))$. We will make use of two parameters $Y=Y(x)$ and $Z=Z(x)$ in the course of the proof of Theorem 1 which we now define as

$$
\begin{aligned}
& Y=3 c y, \text { and } \\
& Z=y^{2},
\end{aligned}
$$

where c is the implicit constant appearing in the Brun-Titchmarsh theorem (7) and (8).

3 The Proof of Theorem 1

We intend to establish an asymptotic formula for

$$
\begin{equation*}
\log \frac{\lambda \varphi(n)}{\lambda \lambda(n)}=\sum_{q}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q \tag{9}
\end{equation*}
$$

valid for n in a set of natural density 1 . We will consider the "large" q and the "small" q separately. The cut-off for this distinction is the parameter Y giving the cases $q>Y$ and $q \leq Y$, respectively.

For $q>Y$, it will be unusual for $\nu_{q}(\lambda \varphi(n))$ to be strictly larger than $\nu_{q}(\lambda \lambda(n))$ and so the
contribution in (9) from large q will be negligible. We bound the sum in (9) by the two cases,

$$
\begin{align*}
\sum_{q>Y}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q \leq & \sum_{\substack{q>Y \\
\nu_{q}(\lambda \varphi(n)) \geq 2}} \nu_{q}(\lambda \varphi(n)) \log q \\
& +\sum_{\substack{q>Y \\
\nu_{q}(\lambda \varphi(n))=1}}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q . \tag{10}
\end{align*}
$$

We prove the two bounds:
Proposition 10. For almost all $n \leq x$,

$$
\sum_{\substack{q>Y \\ \nu_{q}(\lambda \varphi(n))=1}}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q \ll y \psi(x),
$$

and
Proposition 11. For almost all $n \leq x$,

$$
\begin{equation*}
\sum_{\substack{q>Y \\ \nu_{q}(\lambda \varphi(n)) \geq 2}} \nu_{q}(\lambda \varphi(n)) \log q \ll y \psi(x) . \tag{11}
\end{equation*}
$$

Combining Propositions 10 and 11 gives the upper bound we seek:
Proposition 12. For almost all $n \leq x$,

$$
\begin{equation*}
\sum_{q>Y}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q \ll y \psi(x) . \tag{12}
\end{equation*}
$$

We now consider with those primes $q \leq Y$. It will turn out that the main term comes from the quantity $\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n))$ with the sum $\sum_{q \leq Y} \nu_{q}(\lambda \lambda(n))$ sufficiently small.

Proposition 13. For almost all $n \leq x$,

$$
\sum_{q \leq Y} \nu_{q}(\lambda \lambda(n)) \log q \ll y \psi(x)
$$

We are left with the final piece of establishing the asymptotic behavior of $\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n))$. This will involve a case-by-case analysis of the various ways that q can divide $\lambda \varphi(n)$ with
multiplicity. Two functions $g(n)$ and $h(n)$ arise from this analysis:

$$
\begin{aligned}
g(n) & =\sum_{q \leq Y} \sum_{\substack{\alpha \geq 1 \\
q^{\alpha+1} \mid \varphi(n)}} \log q, \\
h(n) & =\sum_{q \leq Y} \sum_{\substack{\alpha \geq 1 \\
\omega\left(n, Q_{q^{\alpha}}\right)>0}} \log q, \text { and } \\
Q_{q^{\alpha}} & =\left\{r \leq x: \exists p \in P_{q^{\alpha}} \text { st } r \in P_{p}\right\} .
\end{aligned}
$$

We will show that $g(n)$ is a good approximation to $\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n))$. To deal with $g(n)$, we will choose a suitably close additive function to approximate $g(n)$ and employ the TuránKubilius inequality to find the normal order of $g(n)$.

Proposition 14. For almost all $n \leq x$,

$$
g(n)=y \log y+O(y)
$$

Proposition 15. For almost all $n \leq x$,

$$
h(n) \ll \psi(x) y .
$$

We will combine these propositions to show

Proposition 16.

$$
\sum_{q \leq Y}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q=y \log y+O(\psi(x) y)
$$

Summing the results from Propositions 12 and 16 gives

$$
\sum_{q}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q=y \log y+O(\psi(x) y)
$$

which proves Theorem 1. In the following two sections, we will establish all of the propositions of this section except proposition 12 which we have established.

4 Large Primes $q>Y$

In this section we prove Propositions 10 and 11. In order to proceed, we must first understand the different ways in which prime powers can divide $\lambda \lambda(n)$ and $\lambda \varphi(n)$. We assume $Y \geq 2$ so all primes q under consideration are odd.

From the definition $\lambda(n)$ (see (11) and (2)), one sees that $\lambda \lambda(n)$ has q as a prime divisor if q^{2} divides $\lambda(n)$ or if n is divisible by some prime in \mathcal{P}_{q}. We emphasize that these conditions are not exclusive. We may expand these conditions in turn. If $q^{2} \mid \lambda(n)$, then the higher power q^{3} divides n, or a prime in $\mathcal{P}_{q^{2}}$ divides n; while if some prime $p \in \mathcal{P}_{q}$ divides $\lambda(n)$, then $p^{2} \mid n$, or $\left(n, \mathcal{P}_{p}\right)>1$. We summarize these cases in the tree diagram below.

We proceed with a similar analysis on the ways that q can be a divisor of $\lambda \varphi(n)$. We saw that either q^{2} or some prime in \mathcal{P}_{q} must divide the argument $\varphi(n)$ of $\lambda \varphi(n)$. If two copies of q divide $\varphi(n)$, then their presence can come from the cube q^{3} dividing n, two distinct primes dividing n with each prime in \mathcal{P}_{q} contributing one factor of q, both $q^{2} \mid n$ and a prime $p \in \mathcal{P}_{q}$ dividing n, or a single prime in $\mathcal{P}_{q^{2}}$ dividing n. In the other case, if a prime $p \in \mathcal{P}_{q}$ divides $\varphi(n)$, then $p^{2} \mid n$ or $\left(n, \mathcal{P}_{p}\right)>1$.

Now we turn to the proof of Proposition 10.

Proof of Proposition 10. One sees from the above analysis that $q \mid \lambda \varphi(n)$ whenever $q \mid \lambda \lambda(n)$, so the only way $\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right)$ can be nonzero is if $q \mid \lambda \varphi(n)$ and $q \nmid \lambda \lambda(n)$. Moreover, there are only two ways that q can divide $\lambda \varphi(n)$ but not $\lambda \lambda(n)$; namely, two distinct primes $p_{1}, p_{2} \in P_{q}$ could divide n, or both q^{2} and a single prime $p \in P_{q}$ could divide n. Thus

$$
\begin{aligned}
\frac{1}{x} \sum_{n \leq x} \sum_{\substack{q>Y \\
\nu_{q}(\lambda \varphi(n))=1}}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q & \leq \frac{1}{x} \sum_{\substack{q>Y}} \sum_{\substack{p_{1}, p_{2} \in P_{q} \\
p_{1} p_{2} \mid n \\
n \leq x}} \log q+\frac{1}{x} \sum_{q>Y} \sum_{\substack{n \leq x \\
p \in P_{q} \\
p p^{2}\left|n \\
q^{2}\right| n}} \log q \\
& \ll \frac{1}{x} \sum_{q>Y}\left(\frac{x y^{2}}{q^{2}}+\frac{x y}{q^{3}}\right) \log q \\
& \ll y^{2} / Y,
\end{aligned}
$$

where we used Lemmata 8 and 9. Plugging in $Y=3 c y$ the upper bound is $\ll y$. We deduce that for almost all $n \leq x$,

$$
\sum_{\substack{q>Y \\ \nu_{q}(\lambda \varphi(n))=1}}\left(\nu_{q}(\lambda \varphi(n))-\nu_{q}(\lambda \lambda(n))\right) \log q \ll y \psi(x)
$$

Now we would like to show that

$$
\begin{equation*}
\sum_{\substack{q>Y \\(\lambda \varphi(n)) \geq 2}} \nu_{q}(\lambda \varphi(n)) \log q \ll y^{2} \psi(x) / Y \tag{13}
\end{equation*}
$$

holds normally.

Proof of Proposition 11. Define $S_{q}=S_{q}(x)=\left\{n \leq x: q^{2} \mid n\right.$ or $p \mid n$ for some $\left.p \in P_{q^{2}}\right\}$ and $S=\cup_{q>Y} S_{q}$. A simple estimate shows that the cardinality of S is $O(x y /(Y \log Y))$. We will choose Y to be of asymptotic order $\gg y$, thus the number of elements in S is $O(x / \psi(x))$. As we are interested in a normality result, we may safely ignore the positive integers in S. Consequently, to establish (13) for almost all n, it suffices to establish the mean value estimate

$$
\begin{equation*}
\frac{1}{x} \sum_{\substack{n \leq x \\ n \notin S}} \sum_{\substack{q>Y \\ \nu_{q}(\lambda \varphi(n)) \geq 2}} \nu_{q}(\lambda \varphi(n)) \log q \ll y^{2} / Y . \tag{14}
\end{equation*}
$$

To this end we write

$$
\begin{aligned}
\frac{1}{x} \sum_{\substack{n \leq x \\
n \notin S}} \sum_{\substack{q>Y \\
\nu_{q}(\lambda \varphi(n)) \geq 2}} \nu_{q}(\lambda \varphi(n)) \log q & \leq \frac{2}{x} \sum_{\substack{q>Y \\
\alpha \geq 2}} \sum_{\substack{n \leq x \\
\alpha \notin S \\
q^{\alpha} \mid \lambda \varphi(n)}} \log q \\
& \leq \frac{2}{x} \sum_{\substack{q>Y \\
\alpha \geq 2}}\left(\sum_{\substack{n \leq x \\
p \in P_{q} \\
p|\varphi(n) \\
p \nmid c| \\
q^{\alpha+1} \mid \varphi(n)}}+\sum_{\substack{n \leq x \\
q^{2}}}\right) \log q .
\end{aligned}
$$

In order for the prime p to be a divisor of $\varphi(n)$, one of: p^{2} divides n, or $r \in P_{p}$ and r divides n for some prime r must occur. Thus,

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ p \in\left|P_{q} \alpha \\ p\right| \varphi(n)}} 1=\sum_{\substack{p \leq x \\ p \in P_{q^{\alpha}}}} \sum_{\substack{n \leq x \\ p \mid \varphi(n)}} 1 \ll \sum_{\substack{p \leq x \\ p \in P_{q^{\alpha}}}}\left(\frac{x}{p^{2}}+\sum_{\substack{r \leq x \\ r \in P_{p}}} \frac{x}{r}\right) \ll \sum_{p>q^{\alpha}} \frac{x}{p^{2}}+\sum_{\substack{p \leq x \\ p \in P_{q^{\alpha}}}} \frac{x y}{p} \ll \frac{x}{\alpha q^{\alpha} \log q}+\frac{x y^{2}}{q^{\alpha}} \tag{15}
\end{equation*}
$$

Summing over $q>Y$ and $\alpha \geq 2$ and weighting by $\log q$ we have the asymptotic upper bound

$$
\frac{1}{x} \sum_{\substack{q>Y \\ \alpha \geq 2}} \sum_{\substack{n \leq x \\ p \in P_{q^{\alpha}} \\ p \mid \varphi(n)}} \log q \ll y^{2} / Y .
$$

Now we would like to establish

$$
\frac{1}{x} \sum_{\substack{q>Y \\ \alpha \geq 2}} \sum_{\substack{n \leq x \\ n \notin S \\ q^{\alpha+1} \mid \varphi(n)}} \log q \ll y^{2} / Y .
$$

We note that the contribution of prime powers of q dividing $\varphi(n)$ for $n \notin S$ can only come from distinct primes in P_{q} dividing n . We then have

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \notin \Phi \\ q^{\alpha+1} \mid \varphi(n)}} 1 \ll \frac{1}{(\alpha+1)!} \sum_{p_{1}, \ldots, p_{\alpha+1} \in P_{q}} \sum_{p_{1} \cdots p_{\alpha+1} \mid n \leq x} 1 \ll \frac{x(c y)^{\alpha+1}}{(\alpha+1)!q^{\alpha+1}} \tag{16}
\end{equation*}
$$

where we intentionally omit the condition that the primes $p_{i} \in P_{q}$ are distinct and where c is the constant appearing in the Brun-Titchmarsh theorem. As $Y \geq 2 c y$ we have $c y / q \leq 1 / 2$. Thus summing the LHS of (16) over $\alpha \geq 2$ and $q>Y$ and weighting by $\log q$ gives

$$
\begin{equation*}
\sum_{q>Y} \sum_{\alpha \geq 3} \frac{x c^{\alpha} y^{\alpha}}{\alpha!q^{\alpha}} \log q \leq x c^{2} y^{2} \sum_{\alpha \geq 1} \frac{1}{\alpha!2^{\alpha}} \sum_{q>Y} \frac{\log q}{q^{2}} \ll x y^{2} / Y \tag{17}
\end{equation*}
$$

as required.

5 Small primes $q \leq Y$

In this section we will be concerned with estimates for small primes; namely, we will prove Propositions 13, 14, 15 and 16. The main term in our asymptotic formula will come from Proposition 14 which concerns the sum

$$
\begin{equation*}
\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n)) \log q . \tag{18}
\end{equation*}
$$

The remaining two Propositions provide us with error terms.
We restate a Lemma 11 from [8] which we will use:
Lemma 17. For a power of a prime q^{a}, the number of positive integers $n \leq x$ with q^{a} dividing $\lambda \lambda(n)$ is $O\left(x y^{2} / q^{a}\right)$.

Proof of Proposition 13. We break the summation up into two parts depending on the size of q^{α},

$$
\begin{aligned}
\sum_{q \leq Y} \nu_{q}(\lambda \lambda(n)) \log q & =\sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\
q^{\alpha} \mid \lambda \lambda(n)}} 1 \\
& \ll \sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\
q^{\alpha} \leq Z}} 1+\sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\
q^{\alpha}>Z}} 1
\end{aligned}
$$

We may bound the first sum as

$$
\sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\ q^{\alpha} \leq Z}} 1 \ll Y \log Z / \log Y
$$

We use an average estimate to bound the second sum. Note

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} \sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\ q^{\alpha} \geq Z \\ q^{\alpha} \mid \lambda \lambda(n)}} 1=\frac{1}{x} \sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\ q^{\alpha}>Z}} \sum_{\substack{n \leq x \\ q^{\alpha} \mid \lambda \lambda(n)}} 1 . \tag{19}
\end{equation*}
$$

From Lemma 17, we see (19) is

$$
\ll \frac{1}{x} \sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\ q^{\alpha}>Z}} \frac{x y^{2}}{q^{\alpha}} \ll \sum_{q \leq Y} \frac{y^{2} \log q}{Z} \ll \frac{y^{2} Y}{Z} .
$$

Therefore

$$
\sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1 \\ q^{\alpha}>Z \\ q^{\alpha} \mid \lambda \lambda(n)}} 1 \ll y^{2} Y \psi(x) / Z,
$$

for almost all $n \leq x$. Combining our upper bounds gives

$$
\sum_{q \leq Y} \nu_{q}(\lambda \lambda(n)) \log q \ll\left(Y \log Z / \log Y+y^{2} Y / Z\right) \psi(x)
$$

for almost all $n \leq x$. Substituting $Y=3 c y$ and $Z=y^{2}$ gives the theorem.

Recall q^{α} divides $\lambda \varphi(n)$ if one of

- $q^{\alpha+1} \mid \varphi(n)$
- $q^{\alpha}|p-1, p| r-1, r \mid n$
- $q^{\alpha}\left|p-1, p^{2}\right| n$
occurs. Note that these conditions are not mutually exclusive. We write (18) as

$$
\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n)) \log q=g(n)+O\left(h(n)+\sum_{\substack{q \leq Y}} \sum_{\substack{p \in P_{q^{\alpha}} \\ p^{2} \mid n}} \log q\right),
$$

where

$$
\begin{aligned}
g(n) & =\sum_{q \leq Y} \sum_{\substack{\alpha \geq 1 \\
q^{\alpha+1} \mid \varphi(n)}} \log q, \\
h(n) & =\sum_{q \leq Y} \sum_{\substack{\alpha \geq 1 \\
\omega\left(n, Q_{q^{\alpha}}\right)>0}} \log q, \text { and } \\
Q_{q^{\alpha}} & =\left\{r \leq x: \exists p \in P_{q^{\alpha}} \text { st } r \in P_{p}\right\} .
\end{aligned}
$$

Thus, for almost all $n \leq x$,

$$
\begin{equation*}
\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n)) \log q=g(n)+O\left(h(n)+\psi(x) \log _{2} Y\right) . \tag{20}
\end{equation*}
$$

In the next two sections, we prove Propositions 14 and 15. We see that Proposition 16 follows immediately by applying these two propositions to equation (20) giving

$$
\sum_{q \leq Y} \nu_{q}(\lambda \varphi(n)) \log q=y \log y+O(y \psi(x))
$$

for almost all $n \leq x$, as required.

5.1 Normal order of $g(n)$

Our strategy is to approximate $g(n)$ from above and below by an additive arithmetic function, thus indirectly making $g(n)$ amenable to the Turán-Kubilius inequality. To start, write $g(n)$ as

$$
\begin{align*}
g(n) & =\sum_{q \leq Y} \sum_{\substack{\alpha \geq 1 \\
q^{\alpha+1} \varphi(n)}} \log q \\
& =\sum_{q \leq Y}\left(\nu_{q}(\varphi(n))-1\right) \log q \\
& =\sum_{q \leq Y} \sum_{p \mid n} \nu_{q}(p-1) \log q-Y(1+o(1))+O\left(\sum_{q \leq Y} \nu_{q}(n) \log q\right), \tag{21}
\end{align*}
$$

where we used the double inequality

$$
\sum_{p \mid n} \nu_{q}(p-1) \leq \nu_{q}(\varphi(n)) \leq \sum_{p \mid n} \nu_{q}(p-1)+\nu_{q}(n) .
$$

We will use the Turán-Kubilius inequality:
Lemma 18 (The Turán-Kubilius Inequality). There exists an absolute constant C such that for all additive functions $f(n)$ and all $x \geq 1$ the inequality

$$
\begin{equation*}
\sum_{n \leq x}|f(n)-A(x)|^{2} \leq C x B(x)^{2} \tag{22}
\end{equation*}
$$

holds where

$$
\begin{aligned}
A(x) & =\sum_{p \leq x} f(p) / p, \text { and } \\
B(x)^{2} & =\sum_{p^{k} \leq x}\left|f\left(p^{k}\right)\right|^{2} / p^{k}
\end{aligned}
$$

Proof of Proposition 14. We will use Lemma 18 for the additive function $g_{0}(n)=\sum_{q \leq Y} \sum_{p \mid n} \nu_{q}(p-$ 1) $\log q$. Let $A(x)$ and $B(x)$ be the first and second moments:

$$
\begin{aligned}
& A(x)=\sum_{r \leq x} g_{0}(r) / r, \text { and } \\
& B(x)=\sum_{r^{k} \leq x} g_{0}\left(r^{k}\right)^{2} / r^{k}
\end{aligned}
$$

Notice that $g_{0}\left(r^{k}\right)=g_{0}(r)=\sum_{q \leq Y} \nu_{q}(r-1) \log q$ leading to

$$
\begin{aligned}
A(x)=\sum_{r \leq x} \frac{1}{r} \sum_{q \leq Y} \sum_{p \mid r} \nu_{q}(p-1) \log q & =\sum_{q \leq Y} \log q \sum_{r \leq x} \frac{\nu_{q}(r-1)}{r} \\
& =\sum_{q \leq Y} \log q \sum_{\substack{\alpha \geq 1}} \sum_{\substack{r \leq x \\
r \in P_{q^{\alpha}}}} \frac{1}{r}
\end{aligned}
$$

We split the sum over α into

$$
\sum_{1 \leq \alpha \leq w_{q}} \sum_{\substack{r \leq x \\ r \in P_{q^{\alpha}}}} \frac{1}{r}+\sum_{\alpha>w_{q}} \sum_{\substack{r \leq x \\ r \in P_{q^{\alpha}}}} \frac{1}{r}
$$

with w_{q} to be determined later. The first we estimate with Page's theorem and the second we bound with the Brun-Titchmarsh bound

$$
\begin{gather*}
\sum_{\substack{r \leq x \\
r \equiv 1(\bmod d)}} 1 / r \ll y / \varphi(d) \\
\sum_{\alpha=1}^{\infty} \frac{y}{\varphi\left(q^{\alpha}\right)}+O\left(\frac{y}{q^{w_{q}}}+w_{q}\right)=\frac{y q}{(q-1)^{2}}+O\left(\frac{y}{q^{w_{q}}}+w_{q}\right) \tag{23}
\end{gather*}
$$

Note used the bound $1 / q^{\left\lfloor w_{q}\right\rfloor+1}=O\left(1 / q^{w_{q}}\right)$. Taking $w_{q}=\log y / \log q$ gives an error term of $O\left(w_{q}\right)=O(\log y / \log q)$. Summing (23) over $q \leq Y$ weighted by $\log q$ gives the asymptotic formula

$$
\begin{align*}
A(x) & =y \sum_{q \leq Y} \frac{q \log q}{(q-1)^{2}}+O\left(\frac{Y \log y}{\log Y}+Y\right) \\
& =y \log Y+O\left(\frac{Y \log y}{\log Y}+Y\right) \tag{24}
\end{align*}
$$

Expanding the square, write the second moment $B(x)$ as

$$
B(x)=\sum_{q_{1}, q_{2} \leq Y} \log q_{1} \log q_{2} \sum_{r \leq x} \nu_{q_{1}}(r-1) \nu_{q_{2}}(r-1) \sum_{\substack{k \leq 1 \\ r^{k} \leq x}} 1 / r^{k} .
$$

Uniformly in primes $r, \sum_{k \geq 1} 1 / r^{k} \ll 1 / r$. We may also express $\nu_{q_{i}}(r-1)(i=1,2)$ as

$$
\nu_{q_{i}}(r-1)=\sum_{\substack{\alpha_{i} \geq 1 \\ r \in P_{q_{i}} \alpha_{i}}} 1
$$

giving the expanded

$$
B(x) \ll \sum_{q_{1}, q_{2} \leq Y} \log q_{1} \log q_{2} \sum_{\alpha_{1}, \alpha_{2} \geq 1} \sum_{\substack{r \leq x \\ r \in P_{q_{1}}^{\alpha_{1} \cap P_{q_{2}}^{\alpha_{2}}}}} \frac{1}{r} .
$$

We split the sum in q_{1}, q_{2} into the two cases: $q_{1}=q_{2}$ and $q_{1} \neq q_{2}$. For the q_{1}, q_{2} with $q=q_{1}=q_{2}$ we have

$$
\begin{align*}
\sum_{q \leq Y}(\log q)^{2} \sum_{\alpha_{1}, \alpha_{2} \geq 1} \sum_{\substack{r \leq x \\
r \in P_{q^{\max \left(\alpha_{1}, \alpha_{2}\right)}}}} \frac{1}{r} & =\sum_{q \leq Y}(\log q)^{2} \sum_{\alpha \geq 1} \sum_{\substack{r \leq x \\
r \in P_{q^{\alpha}}}} \frac{\alpha}{r} \\
& \ll \sum_{q \leq Y}(\log q)^{2} \sum_{\alpha \geq 1} \frac{\alpha y}{q^{\alpha}} \\
& \ll y \sum_{q \leq Y} \frac{(\log q)^{2}}{q} \\
& \ll y(\log Y)^{2} \tag{25}
\end{align*}
$$

If q_{1} and q_{2} are distinct then we have an upper bound (intentionally ignoring the condition that $q_{1} \neq q_{2}$ in the sum)

$$
\begin{align*}
\sum_{q_{1}, q_{2} \leq Y} \log q_{1} \log q_{2} \sum_{\alpha_{1}, \alpha_{2} \geq 1} \sum_{\substack{r \leq x \\
r \in P_{Q_{1}}^{\alpha_{1}} q_{2}^{\alpha_{2}}}} \frac{1}{r} & \ll \sum_{q_{1}, q_{2} \leq Y} \log q_{1} \log q_{2} \sum_{\alpha_{1}, \alpha_{2} \geq 1} \frac{y}{q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}}} \\
& \ll y \sum_{q_{1}, q_{2} \leq Y} \frac{\log q_{1} \log q_{2}}{q_{1} q_{2}} \\
& <y(\log Y)^{2} . \tag{26}
\end{align*}
$$

Combining (25) and (26) gives

$$
\begin{equation*}
B(x) \ll y(\log Y)^{2} \tag{27}
\end{equation*}
$$

Using Lemma 18 we may conclude that The statement of Lemma 18 gives us the equation

$$
\begin{equation*}
\sum_{n \leq x}\left|g_{0}(n)-A(x)\right|^{2} \leq C x B(x)^{2} \tag{28}
\end{equation*}
$$

Thus the set of $n \leq x$ on which $g_{0}(n)$ differs from $A(x)$ by more than y is $O\left(x(\log Y)^{2} / y\right)=$ $O(x / \psi(x))$.

The mean value of $\sum_{q \leq Y} \nu_{q}(n) \log q$ for $n \leq x$ is $\ll 1 / x \sum_{q \leq Y} x \log q / q \ll \sum_{q \leq Y} \log q / q \sim$ $\log Y$, so $\sum_{q \leq Y} \nu_{q}(n) \log q \ll \log ^{2} Y$ for almost all $n \leq x$. Thus from (21), we see that for
almost all $n \leq x$,

$$
\begin{equation*}
g(n)=y \log Y+O\left(\frac{Y \log y}{\log Y}+Y\right) \tag{29}
\end{equation*}
$$

Substituting $Y=3 c y$ gives the theorem.

5.2 Normal order of $h(n)$

Proof of Proposition 15. In order to find an upper bound on a set of asymptotic density 1, we will compute the first moment of $h(n)$:

$$
\begin{aligned}
H(x) & :=\frac{1}{x} \sum_{n \leq x} h(n)=\frac{1}{x} \sum_{\substack{q \leq Y \\
\alpha \geq 1}} \sum_{\substack{n \leq x \\
\omega\left(n, Q_{q^{\alpha}}\right)>0}} \log q \\
& =\frac{1}{x} \sum_{\substack{q^{\alpha} \leq Z \\
q \leq Y \\
\alpha \geq 1}} \sum_{\substack{n \leq x \\
\omega\left(n, Q_{q^{\alpha}}\right)>0}} \log q+\frac{1}{x} \sum_{\substack{q^{\alpha} \leq Z \\
q \leq Y}} \sum_{\substack{n \leq x \\
\omega\left(n Q_{q^{\alpha}}\right)>0 \\
\alpha \geq 1}} \log q .
\end{aligned}
$$

We deal with the two sums in turn.

Small q^{α} The first part is for small powers of q :

$$
\begin{equation*}
\frac{1}{x} \sum_{\substack{q^{\alpha} \leq Z \\ q \leq Y}} \sum_{\substack{n \leq x \\ \omega\left(n, Q_{q^{\alpha}}\right)>0}} \log q \leq \frac{1}{x} \sum_{\substack{q^{\alpha} \leq Z \\ q \leq Y}} \log q \sum_{n \leq x} 1 \leq \sum_{\substack{q^{\alpha} \leq Z \\ q \leq Y}} \log q=\frac{Y \log Z}{\log Y} \tag{30}
\end{equation*}
$$

Large q^{α} The second part is for large powers of q. In this case we use a crude estimate that is sufficient for our needs:

$$
\begin{align*}
\frac{1}{x} \sum_{q^{\alpha}>Z}^{q^{\alpha} \leq Y} \sum_{\substack{n \leq x \\
q\left(n, Q_{q^{\alpha}}\right)>0}} \log q & \ll \frac{1}{x} \sum_{\substack{q^{\alpha}>Z \\
q \leq Y}} \log q \sum_{\substack{ \\
r \in Q_{q^{\alpha}}}} \sum_{\substack{n \leq x \\
r \backslash n}} 1 \\
& \ll \frac{1}{x} \sum_{\substack{q^{\alpha} \geq Z \\
q \leq Y}} \log q \sum_{r \in Q_{q^{\alpha}}} \frac{x}{r} \\
& \ll \sum_{\substack{q^{\alpha}>Z \\
q \leq Y}} \log q \sum_{p \in P_{q^{\alpha}}} \sum_{r \in P_{p}} \frac{1}{r} \\
& \ll y^{2} \sum_{\substack{q^{\alpha}>Z \\
q \leq Y}} \frac{\log q}{q^{\alpha}} . \tag{31}
\end{align*}
$$

The RHS of (31) is less than $\sum_{q \leq Y} \sum_{\alpha>\log Z / \log q} \log q / q^{\alpha} \leq 2 \sum_{q \leq Y} \log q / q^{\log Z / \log q} \ll Y / Z$, or alternatively $q^{\alpha} \geq Z$ and $\sum_{q \leq Y} \log q \sim Y$.

Thus

$$
\begin{equation*}
\frac{1}{x} \sum_{\substack{q^{\alpha}>Z \\ q \leq Y}} \sum_{\substack{n \leq x \\ \omega\left(n, Q_{q^{\alpha}}\right)>0}} \log q=O\left(y^{2} Y / Z\right) . \tag{32}
\end{equation*}
$$

Summing (30) and (32) gives

$$
H(x) \ll Y \log Z / \log Y+y^{2} Y / Z \ll y
$$

where we substituted the values of Y and Z. Thus, for almost all $n \leq x$,

$$
h(n) \ll y \psi(x) .
$$

Acknowledgements I would like to thank my supervisor, Greg Martin, for his support and encouragement during the preparation of this article.

References

[1] W. D. Banks, F. Luca, F. Saidak, and P. Stănică. Compositions with the Euler and Carmichael functions. Abh. Math. Sem. Univ. Hamburg, 75:215-244, 2005.
[2] R. D. Carmichael. On Composite Numbers P Which Satisfy the Fermat Congruence $a^{P-1} \equiv 1 \bmod P$. Amer. Math. Monthly, 19(2):22-27, 1912.
[3] P. Erdös. On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen, 4:201-206, 1956.
[4] P. Erdős, A. Granville, C. Pomerance, and C. Spiro. On the normal behavior of the iterates of some arithmetic functions. In Analytic number theory (Allerton Park, IL, 1989), volume 85 of Progr. Math., pages 165-204. Birkhäuser Boston, Boston, MA, 1990.
[5] Paul Erdős, Carl Pomerance, and Eric Schmutz. Carmichael's lambda function. Acta Arith., 58(4):363-385, 1991.
[6] Nick Harland. The iterated carmichael lambda function. preprint.
[7] Vishaal Kapoor. Asymptotic formulae for arithmetic functions. PhD thesis, The University of British Columbia, April 2011.
[8] Greg Martin and Carl Pomerance. The iterated Carmichael λ-function and the number of cycles of the power generator. Acta Arith., 118(4):305-335, 2005.
[9] Isac Schoenberg. Über die asymptotische Verteilung reeller Zahlen mod 1. Math. Z., 28(1):171-199, 1928.
[10] Andreas Weingartner. The distribution functions of $\sigma(n) / n$ and $n / \varphi(n)$. Proc. Amer. Math. Soc., 135(9):2677-2681 (electronic), 2007.

