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Abstract. In this work we present new timing vulnerabilities that arise
in the inversion of the error syndrome through the Extended Euclidean
Algorithm that is part of the decryption operation of code-based Cryp-
tosystems. We analyze three types of timing attack vulnerabilities theo-
retically and experimentally: The first allows recovery of the zero-element
of the secret support, the second is a refinement of a previously described
vulnerability yielding linear equations about the secret support, and the
third enables to retrieve non-linear equations about the secret support.
Furthermore, we analyze theoretically the limitations applying to actual
attacks based on the information gained in such manner.
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1 Introduction

The McEliece PKC [1] and Niederreiter [2] Cryptosystems, build on error cor-
recting codes, are considered imune to quantum computer attacks [3], and thus
are of interest as candidates for future cryptosystems in high security applica-
tions. Accordingly, they have received growing interested from researchers in the
past years and been analyzed with respect to efficiency on various platforms
[4–8]. Furthermore, a growing number of works has investigated the side channel
security of code-based cryptosystems [9–13].

Side channel security is a very important implementation aspect of any cryp-
tographic algorithm. A side channel is given when a physical observable quantity
that is measured during the operation of a cryptographic device, allows an at-
tacker to gain information about a secret that is involved in the cryptographic
operation. The usual observables used in this respect are the duration of the
operation (timing attacks [14]), or the power consumption as a function over the
time (power analysis attacks[15]).

So far, timing attacks against the decryption operation of the McEliece PKC
targeting the plaintext have been developed [12, 10]. In [11], a timing attack is
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described that targets the secret support that is part of the private key in code-
based cryptosystems. The attacker learns linear equations about the support in
this attack.

This work extends on the analysis given in [11] in multiple ways: first of all,
we find that a control flow ambiguity causing leakage in terms of the linear equa-
tions is manifest already in the syndrome inversion preceding the solving of the
key equations in the decryption operation, and consequently the countermeasure
proposed in that work is insufficient. We furthermore give experimental results
showing that the attack in terms of collecting these linear equations through
timing analysis is practical. We also show that there exists a timing side channel
vulnerability in the syndrome inversion that allows the attacker to gain knowl-
edge of the zero-element of the secret support. Again, after a theoretical analysis,
we demonstrate that the vulnerability can be exploited practically. As an exten-
sion resp. generalization of the attacks yielding linear equations, we derive a
practical timing attack that lets the attacker gain non-linear equations. Lastly,
we give a theoretical analysis of the limitations applying to the usability of the
linear equation system for actual attacks and discuss in how far the employment
of the non-linear equations yields improvements.

2 Preliminaries

In this work, we give a brief description of the McEliece PKC, and stress those
features of the decryption algorithm, that are necessary to understand the tim-
ing attack presented in this paper. A more detailed description and security
considerations can be found e.g. in [16].

Goppa Codes. Goppa codes [17] are a class of linear error correcting codes. The
McEliece PKC makes use of irreducible binary Goppa codes, so we will restrict
ourselves to this subclass.

Definition 1. Let the polynomial g(Y ) =
∑t
i=0 giY

i ∈ F2m [Y ] be monic and
irreducible over F2m [Y ], and let m, t be positive integers. Then g(Y ) is called a
Goppa polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as Γ (g(Y )) = {c ∈ Fn2 |Sc(Y ) :=∑n−1
i=0

ci
Y−γi = 0 mod g(Y )}, where n = 2m, Sc(Y ) is the syndrome of c, the γi,

i = 0, . . . , n− 1 are pairwise distinct elements of F2m , and ci are the entries of
the vector c.

The code defined in such way has length n, dimension k = n −mt and can
correct up to t errors. Note that in general, there is a freedom in choosing the
ordering of the elements γi, i = 0, . . . , n − 1. Each such ordering will yield a
different code. In this work, we choose lexicographical ordering for the γi.

As for any error correcting code, for a Goppa code there exists a generator
matrix G and a parity check matrix H [18]. Given these matrices, a message m
can be encoded into a codeword c of the code by computing z = mG, and the
syndrome of a (potentially distorted) codeword can be computed as s = zH.



Here, we do not give the formulas for the computation of these matrices as they
are of no importance for the understanding of the attack developed in this work.
The interested reader, however, is referred to [18].

Overview of the McEliece PKC. In this section we give a brief overview of the
McEliece PKC, where we closely follow the one given in [19].

The McEliece secret key consists of the Goppa polynomial g(Y ) of degree t
defining the secret code Γ , an n × n permutation matrix P and a non-singular
k × k matrix S over F2. The public key is given by the public n × k generator
matrix Gp = SGsP over F2, where Gs is a generator matrix of the secret code Γ .
The encryption operation allows messages m ∈ Fk2 . A random vector e ∈ Fn2 with
hamming weight wt (e) = t has to be created. Then the ciphertext is computed
as z = mGp + e.

McEliece decryption is performed in the following way: First, compute z′ =
zP−1 = mSGs + eP−1. The right hand side of this equation demonstrates
that applying error correction using the secret code Γ will recover the permuted
error vector e′ = eP−1, since mSGs is a code word of Γ . The error correction
procedure is detailed in Section 2.

If the matrix S is chosen in such way that the public generator matrix is in
reduced row echelon form, i.e. Gp = [I|G2], then, in the decryption operation, m
can be recovered by extracting the first k bits of mSGs. This would be a security
problem if the McEliece PKC was used as proposed in [1]. But since the system
has been proven to be insecure against adaptive chosen ciphertext attacks, a
so called CCA2-Conversion [20, 21] has to be applied in any case. Consequently,
using the reduced row echelon form is not a problem [22]. In this case, the matrix
S does not have to be part of the private key. This choice for the matrix S will
be assumed for the remainder of the paper. In this work however, we describe
the McEliece PKC without such a CCA2-Conversion, as this is of no relevance
for the side channel attack devised in this work.

Appropriate choices for the security parameters of the scheme, n and t, would
e.g. be n = 2048 and t = 50 for about 100 bit security [19].

The Decryption Operation in the McEliece PKC. As mentioned above, the first
step in the decryption operation is computing z′ = zP−1. Then, the syndrome
associated with this ciphertext has to be computed. This can be done using a
parity check matrix H corresponding to the secret code Γ . Algorithm 1 depicts
the top level McEliece decryption. It makes use of the error correction algorithm,
given by the Patterson Algorithm [23], shown in Algorithm 3. Please note that
in Step 1 of this algorithm, the multiplication with the coefficient vector is used
to turn the syndrome vector into the syndrome polynomial S(Y ). The Patterson
Algorithm, in turn, uses an algorithm for finding roots in polynomials over F2m

(root find()), and the Extended Euclidean Algorithm (XGCD) for polynomials
with a break condition based on the degree of the remainder, given in Algorithm
4. The root finding can e.g. be implemented as an exhaustive search on F2m .
Please note that all polynomials appearing in the algorithms have coeffients in
F2m .



In the following, we turn to those details, that are relevant for the side channel
issues we are going to address in Section 3. Please note that the error locator
polynomial σ(Y ), which is determined in Step 4 of Algorithm 3, has the following
form3:

σ(Y ) = σt
∏
j∈E′

(Y − γj) =

t∑
i=0

σiY
i. (1)

where E ′ is the set of those indexes i, for which e′i = 1, i.e. those elements of
F2m that correspond to the error positions in the permuted error vector. The
determination of the error vector in Step 6 of Algorithm 3 makes use of this
property. Accordingly, deg (σ(Y )) = wt (e) if wt (e) 6 t holds.

Algorithm 2 The McEliece Decryption Operation

Require: the McEliece ciphertext z
Ensure: the message m
1: z′ ← zP−1

2: e′ ← err corr(z′, g(Y ))
3: e← e′P
4: m′ ← z + e
5: m←the first k bits of m′

6: return m

Algorithm 3 The McEliece error correction with the Patterson Algorithm
(err corr(z′, g(Y )))

Require: the permuted ciphertext z′, the secret Goppa polynomial g(Y )
Ensure: the permuted error vector e′

1: S(Y )← z′H>
(
Y t−1, · · · , Y, 1

)>
2: τ(Y )←

√
S−1(Y ) + Y mod g(Y )

3: (α(Y ), β(Y ))← XGCD (τ(Y ), g(Y ))
4: σ(Y )← α2(Y ) + Y β2(Y )
5: E ′ = {E0, . . . , Et−1} ← rootfind(σ(Y )) // if γi is a root, then E ′ contains i
6: e′ ← v ∈ Fn

2 with vi = 1 if and only if i ∈ E ′
7: return e′

3 Usually, the error locator polynomial is defined to be monic, i.e σt = 1. But as
a matter of fact the error locator polynomial generated in Step 4 of Algorithm 3
generally is not monic.



3 Analysis of Timing Side Channels in the Syndrome
Inversion

3.1 Properties of the Syndrome Inversion

Algorithm 4 The Extended Euclidean Algorithm (EEA(r−1(Y ), r0(Y ), d))

Require: the polynomials r−1(Y ) and r0(Y ), with deg (r0(Y )) < deg (r−1(Y ))
Ensure: two polynomials rN (Y ), bN (Y ) satisfying rN (Y ) = bN (Y )r0(Y ) mod r−1(Y )

and deg (r0(Y )) 6 bdeg (r−1) /2c
1: b−1 ← 0
2: b0 ← 1
3: i← 0
4: while deg (ri(Y )) > d do
5: i← i+ 1
6: (qi(Y ), ri(Y )) ← ri−2(Y )/ri−1(Y ) // polynomial division with quotient qi and

remainder ri
7: bi(Y )← bi−2(Y ) + qi(Y )bi−1(Y )
8: end while
9: N ← i

10: return (rN (Y ), bN (Y ))

The syndrome polynomial is defined as

S(Y ) ≡
w∑
i=1

1

Y ⊕ εi
≡ Ω(Y )

σ(Y )
mod g(Y ) (2)

The identification of the error locator polynomial σ(Y ) in the denominator is
simply a result of the form of the common denominator of all sum terms. Based
on this form, it is possible to find the σ(Y ) in case of w 6 t/2 by invoking the
Alg. 4 as EEA(g(Y ), S(Y ), (t/2)−1), i.e. with r−1(Y ) = g(Y ) and r0(Y ) = S(Y )
and breaking once deg (ri(Y )) 6 (t/2)−1. Then, it returns δσ(Y ) = bN (Y ) [18].

Given this form of the S(Y ), we can make a statement about the max-
imal possible number of iterations in the EEA used to compute S−1(Y ) ≡
σ(Y )/Ω(Y ) mod g(Y ) withΩ(Y ) and σ(Y ) given through S(Y ) ≡ Ω(Y )/σ(Y ) mod g(Y ).
To this end, note that the actual invocation for the syndrome inversion is
EEA(g(Y ), S(Y ), 1), since in code based cryptosystems based on Goppa Codes
we use Pattersons’s Algorithm which can correct up to t errors. But the above
explained fact that we could stop at deg (ri(Y )) 6 (t/2)−1 means that we there
is one iteration in the EEA where ri(Y ) = δΩ(Y ) and bi(Y ) = δσ(Y ), in case of
w 6 (t/2)− 1.

Corollary 1. Assume a Goppa Code defined by g(Y ) and some arbitrary support

Γ . When Alg. 4 is invoked as EEA(g(Y ), S(Y ), 1) with S(Y ) = Ω(Y )
σ(Y ) , and the



error vector e corresponding to S(Y ) satisfies wt (e) 6 (deg (g(Y )) /2)− 1, then
for the number of iterations in Alg. 4 we find:

M 6Mmax = deg (Ω(Y )) + deg (σ(Y ))

Proof. Regard the iteration where rj(Y ) = δΩ(Y ) and bj(Y ) = δσ(Y ). Since
according to Alg. 4 the degree of bj(Y ), starting from zero, increases at least
by one in each iteration, we find j 6 deg (σ(Y )). From here on, the degree
of rj(Y ) = δΩ(Y ) is decreased by at least one in each subsequent iteration
down to deg (rM (Y )) = 0, i.e. M − j 6 deg (Ω(Y )), giving M = M − j + j 6
deg (Ω(Y )) + deg (σ(Y )). ut

3.2 Leakage of the Zero Element of the Support

Algorithm 5 Polynomial Division poly div(n(Y ), d(Y ))

Require: the polynomials n(Y ), d(Y )) with deg (n(Y )) > deg (d(Y ))
Ensure: two polynomials s(Y ), q(Y ) with q(Y )d(Y ) + s(Y ) = n(Y ) and deg (s(Y )) <

deg (d(Y ))
1: s−1(Y )← n(Y )
2: s0(Y )← d(Y )
3: q0(Y )← 0
4: i← 0
5: while deg (si(Y )) > deg (d(Y )) do
6: i← i+ 1
7: ai ← si−2,deg(si−2(Y ))/si−1,deg(si−1(Y ))
8: fi ← deg (si−2(Y ))− deg (si−1(Y ))
9: qi(Y ) = qi−1 + aiY

fi

10: si ← si−2(Y )− aisr−1(Y )Y fi

11: end while
12: return (qi(Y ), si(Y ))

For w = 1 the whole control flow in Patterson’s Algorithm is very simple and
unambigious on a high level:

S(Y ) ≡ 1

Y ⊕ ε1
mod g(Y ),

S−1(Y ) = Y ⊕ ε1,

τ(Y ) =
√
ε1

a(Y ) = τ(Y )

b(Y ) = 1

σ(Y ) = Y ⊕ ε1



The polynomial inversion is, according to Cor. 1, performed in exactly one itera-
tion. But there is an ambigous control flow within the polynomial division (Alg.
5) that is executed within this EEA iteration: We find q1(Y ) = Y because there
is no alternative to deg (S(Y )) = t− 1.

If ε1 = 0, then the division has to stop at this point. Otherwise, a second
iteration is performed giving q2(Y ) = δ(Y ⊕ ε1). Thus, if the timing difference
resulting from the different number of iterations in the division is detectable, the
secret support element α0 can be found.

This explicit connection between the value of σ0 and the number of iterations
in a division is only given when a single iteration is performed in the Syndrome
Inversion EEA. But information about α0 = 0, i.e. the position of the zero
element of the secret support, can be obtained in other cases as well.

For w = 2 we find δσ0 = 1 + q2,0q1,0 = δε1ε2. Thus, if w.l.o.g ε1 = 0, then
σ0 6= 0 and consequently neither q2,0 nor q1,0, both being linked to the number
of division iterations in the above discussed manner, can be zero. If an attacker
finds from the running time that both divisions are executed in two iterations,
then he knows ε1 6= 0 ∧ ε2 6= 0. These inequations certainly are less useful than
the explicit information obtainable for w = 1, but still leakage is present.

The same type of inequations can be found for certain special cases of w = 3:
Assume the syndrome inversion is performed with one less iteration and that
this happens before the j-iteration where rj(Y ) = δΩ(Y ), i.e. j = 2 in this case.
We leave it open as to whether it is possible to detect this case through timing
side channels alone. But given this case is detectable, further refinement in the
side channel analysis might reveal wether q1,0 = 0 or q2,0 = 0. In either of these
two cases, δσ0 = δε1ε2ε3 = q2,0q1,0 + 1 6= 0.

3.3 The Case w = 4

In the following, we give an analysis of the control flow of the first application
of EEA during the McEliece decryption, which is used to invert the syndrome
polynomial in F2m [X]/g(Y ). By “control flow analysis”, we basically mean giv-
ing statements about the number of iterations that are performed in the EEA
invocations that an attacker can use to gain information about the secret key,
specifically the code support.

Control Flow Analysis of Syndrome Inversion The vulnerability we aim
at is given if ciphertexts with even error weights w 6 (t/2)− 1. The reason that
the vulnerability is not exploitable for odd values of w will be given in the course
of the analysis.

The error weight w = 4 is the lowest value of the w were the exploitable
control flow vulnerability occurs. Thus we will start with the analysis of this
concrete instance and then give arguments as to why the same control flow
vulnerabilities occur for higher even value of w.



In the case of w = 4 the syndrome polynomial is of the form:

S(Y ) ≡
4∑
i=1

1

Y ⊕ εi
≡ aY 2 ⊕ b
Y 4 ⊕ aY 3 ⊕ cY 2 ⊕ bY ⊕ d

mod g(Y ), (3)

where εi ∈ F2m , i ∈ 1, . . . , 4 denote the the four elements of the support asso-
ciated with the error positions. Furthermore, in the right hand side of Equ. 3,
which is found by bringing all four sum terms to their common denominator, we
have

a = ε1 ⊕ ε2 ⊕ ε3 ⊕ ε4,
b = ε2ε3ε4 ⊕ ε1ε3ε4 ⊕ ε1ε2ε4 ⊕ ε1ε2ε3,

c = ε1ε2 ⊕ ε1ε3 ⊕ ε1ε4 ⊕ ε2ε3 ⊕ ε2ε4 ⊕ ε3ε4,
d = ε1ε2ε3ε4.

We will now show that this effect can be exploited for an attack. Regarding
Ω(Y ) for the case w = 4 we find that the coefficent to the highest power of Y is
given by a = ε1⊕ε2⊕ε3⊕ε4. If a = 0, then the degree of Ω(Y ) is zero, otherwise
it is two. This means that in the case of a = 0 the number of iterations in the
Inversion is four, in contrast to six in the general case. As a matter of fact, the
EEA executes in the maximal number of iterations in the majority of the cases,
as numerous experiments have shown.

We now show that the vulnerability is only given for even error weights. In
the general case, the syndrome polynomial is given as

S(Y ) ≡
w∑
i=1

1

Y ⊕ εi
mod g(Y ) (4)

Accordingly, the polynomial Ω(Y ) and σ(Y ) with Ω(Y )
σ(Y ) ≡ S(Y ) mod g(Y ) are

found by bringing the right hand side of Equ. 4 to the common denominator.
We have

S(Y ) ≡
w∑
i=1

Y w−1 ⊕ ηi,w−2Y w−2 ⊕ ηi,w−3Y w−3 ⊕ . . .⊕ ηi,0
σ(Y )

mod g(Y ), (5)

where ηi,j ∈ F2m . In case of an even value of w, the sum over i results in the
cancelation of the Y w−1 terms in the nominator. Thus, deg (Ω(Y )) 6 w− 2 and
the coefficient Ωw−2 is is a function of the {εi}, specifically Ωw−2 =

∑w
i=1 εi,

giving us the control flow vulnerability, i.e. deg (Ω(Y )) is smaller when this latter
sum is zero.

In contrast, in case of odd values of w, deg (Ω(Y )) = w − 1 and its highest
coefficient is 1. Thus, for odd w, there is no according control flow vulnerability
related to the degree of Ω(Y ).

Furthermore, for even w, whenever we have Ωw−2 = 0 the maximal degree
of Ω(Y ) is decreased by two, since we find

Ωw−3 =

w∑
i=1

ηi,w−3 =

w∑
i=1

π
(1,w),{i}
k,l (εkεl) = 0. (6)



Here, we introduce the notation

π
(1,x),{i}
j,k (εjεk) :=

x∑
j=2,k<j;j,k 6=i

εjεk,

π
(1,x),{i}
j,k,l (εjεkεl) :=

x∑
j=3,k<j,l<k;j,k,l 6=i

εjεkεl,

. . .

The equality to zero in Equ. 6 is given because each combination of k and l is
found in every summand term from the outer sum with the two exceptions i = k
and i = l, and consequently the remaining number these summands is even and
thus they all cancel out.

Control Flow Analysis of the Key Equation EEA The control flow for
the second EEA invocation, i.e. the solving of the Key Equation, for the case
w = 4 has been analyzed in [11], there it is shown that in the case of σ3 = 0,
which conincides with the case deg (Ω(Y )) = 0, the number of iterations is zero,
whereas in the case σ3 6= 0 it is one. In that work, a countermeasure is proposed
that removes the possiblity to exploit the according timing differences in the sec-
ond EEA invocation. However, due the fact that, as shown in Section 3.3, timing
differences reveal σ3 = 0 already at first EEA invocation, the countermeasure
proposed in [11] is insuffient.

The Case w = 6 As for the case w = 4, the coefficient Ωw−2 = Ω4 =∑6
i=1 εi, and Ωw−3 = Ω3 = 0. Thus the same vulnerability reveals

∑6
i=1 εi = 0.

But for w = 6 a further vulnerability arises in the syndrome inversion. This is

because also Ωw−5 =
∑w
i=1 π

(1,w),{i}
j,k,l,p (εjεkεlεp) = 0 for even w because of the

same arguments as for Ωw−3, implying Ω1 = 0 for w = 6.
Thus, if for w = 6 we have Ω4 = 0 and also Ω2 = 0, deg (Ω(Y )) = 0

the maximal number of iterations in the syndrome inversion EEA is further
reduced by two, making the case Ω4 = 0∧Ω2 = 0 distinguishable from the case
Ω4 = 0 ∧Ω2 6= 0. What remains is to show the information gained in this case.

Expanding Ω2 we find

Ω2 =

6∑
i=1

π
(1,6),{i}
j,k,l (εjεkεl) =

6∑
j=3,k<j,l<j

εjεkεl. (7)

If the attacker has already determined the zero element of the support, i.e.
γP0

= α0 = 0, he can enforce a simplified version of Equ. 7 by choosing, w.l.o.g,
ε6 = 0:

Ω2,(ε6=0) =

5∑
j=3,k<j,l<j

εjεkεl.



Control Flow Analysis of the Key Equation EEA In order to determine
the control flow in the second invocation of the EEA for the case Ω4 = 0∧Ω2 = 0,
we first note that for w = 6 we have

σw−1 = σ5 = δ−1
6∑
j=1

εj = Ω4 (8)

σw−3 = σ3 = δ−1
6∑

j=3,k<j,l<k

εjεkεl = Ω2 (9)

σw−5 = σ1 = δ−1π
(1,6),∅
i,j,k,l,p(εiεjεkεlεp) = Ω0 (10)

Thus the computations in Patterson’s Algorithm proceed as follows:

S−1(Y ) =
σ6Y

6 ⊕ σ4Y 4 ⊕ σ2Y 2 ⊕Ω0Y ⊕ σ0
Ω0

τ(Y ) =
√
S−1(Y ) + Y = τ3Y

3 ⊕ τ2Y 2 ⊕ τ1Y ⊕ τ0
Accordingly, the Key Equation solving EEA performs zero iterations, in contrast
to the case where either Ω4 6= 0 or Ω2 6= 0, since then also σ5 6= 0 respectively
σ3 6= 0, which causes contributions to the square root from odd powers of Y
which in turn results in deg (τ(Y )) = t − 1 in the general case and a non-zero
number of iterations in the Key Equation solving EEA.

4 The Effects of “Iteration-Skipping”

In Cor. 1 we only derived an upper bound for the number of iterations M
performed in the Syndrome Inversion EEA based on the degrees of Ω(Y ) and
σ(Y ). Experiments show that for the majority of the ciphertexts, this maximal
number of iterations is performed. However, it can happen that in one iteration
we have deg (qi(Y )) > 1, this implies a reduced number of iterations M < Mmax.
The only concrete lower bound we can give is that M > 2 if deg (Ω(Y )) 6= 0,
because in this case we have to pass at least one intermediate iteration with
ri(Y ) = δΩ(Y ) which cannot be the last iteration 4. Thus, we we have to consider
the effects of “iteration-skipping” for the w = 4 and w = 6 attacks.

But experimental results and closer look into the implementation of the EEA
algorithm show that the effect of iteration skipping is actually minimal. Firstly,
this is because the smaller number of iterations is compensated by a higher
complexity of those iterations where qi(Y ) > 1. Secondly, and much more signif-
icantly, the timing-based distinction of whether deg (Ω(Y )) equals zero or not is
not affected by iteration skipping. This is because of the following observation.

Assume the case w = 4 executes in the maximal number of iterations. This
means that, independently of deg (Ω(Y )), we have b4(Y ) = δσ(Y ) and r4(Y ) =

4 In case of deg (Ω(Y )) = 0, we can in fact have a single iteration, as it is permanently
the case for w = 1 and for instance frequently for w = 2.



δΩ(Y ). Because of deg (σ(Y )) = 4, we have that deg (q1(Y )) = deg (q2(Y )) =
deg (q3(Y )) = deg (q4(Y )) = 1, and thus deg (ri(Y ))− deg (ri+1(Y )) = 1 for i ∈
{−1, 0, 1, 2}. Accordingly, to fulfill deg (r4(Y )) 6 2, we must have deg (r3(Y ))−
deg (r4(Y )) = deg (q5(Y )) = t− 4− deg (Ω(Y )). This is a large degree of q5(Y )
for realistic choices of t such as for instance t = 33 we use in our example
attacks in subsequent sections. As a consequence, the complexity of the 5th
iteration will be by degrees larger than that of the other iterations, because the
complexity of the polynomial multiplication q5(Y )b4(Y ) in Alg. 4 certainly is
linear5 in deg (q5(Y )). Now we see that for the case deg (Ω(Y )) = 0 this highly
complex EEA iteration will not occur, since then there is no 5th iteration, and for
deg (Ω(Y )) 6= 0 it will inevitably occur. Accordingly, our assumption that timing
analysis unambigously allows for the distinguishing of both cases is reinforced.

When relaxing the initial assumption that the maximal number of iterations
Mmax are executed, we easily see that the skipping of iterations cannot change
anything about the previous statement about the highly complex iteration. Fur-
thermore, these observations can be generalized to higher even values w in a
straightforward manner.

5 Limitations of linear Equations for the secret Support

In this section, we give some fundamental observations about a system of equa-
tions which describes the secret support as it arises from a w = 4 and w = 6
attacks.

Corollary 2. Let there be a system of linear equations describing a permutation
of the elements of F2m , i.e. {γPi} with γi ∈ F2m and {Pi}, i ∈ {0, . . . 2m − 1}.
The rank of this equation system is no larger than 2m −m.

Proof. There must be m linearly independent elements γi to form F2m . ut

In the experimental analysis however, the rank is always m− 1. This restriction
seems to be a result of the type of equations that are gained.

Corollary 3. Given a system of linear equations describing a permutation of
the elements of F2m , there are at least

bm =

m−1∏
k=0

(
2m − 1−

k∑
i=1

(
k

i

))
(m!)−1

conflict-free solutions, i.e. yielding the 2m different elements of F2m .

Proof. With r being the rank of the equation system, for solving the system
d = n − r elements have to be guessed. Among these d elements, for the real
solution (i.e. yielding the correct permutation P ), there is a specific set Q of the

5 Assuming a straigforward implementation of the polynomial multiplication.



indices of the m elements that have to be linearly independent. In the following,
we only regard those guesses where Q is chosen correctly.

We now show that for any such choice of the basis elements, there exists a
choice of the eventually remaining elements that have to be guessed until the
system can be solved, such that the solution is a permutation of F2m . For the
real soluation, the values specific to which are written with a bar above them, in
the equation system for each element of the permutation we have an equation

γ̄i =
∑
i∈B∗

β̄i +
∑
i∈D

ρ̄i =
∑
i∈B∗

β̄i +
∑
i∈D

∑
j∈Ri

β̄j . (11)

B∗ and D are read from the equation system: the former is the set of indices of
the basis elements {β̄i} from Q contributing to γ̄i, and D is the set of indices of
the remaing to-be-guessed elements {ρ̄i} contributing to this element. Thus the
left hand side of Equ. (11) describes each element beyond the guessed elements
as a linear combination of the guessed elements. In the right hand side of that
equation, we expand each ρ̄i in terms of its linear combination from the basis
elements, thus Ri amounts to the set of the indices of basis elements {β̄j} forming
ρ̄i.

Now regard the equations we have for a guess with correctly chosen Q, but
different values for the basis elements {βi}:

γi =
∑
i∈B∗

βi +
∑
i∈D

∑
j∈Ri

βj . (12)

From Equ. (12) we see that using the same set of indices of basis elements Ri
for the each of the guessed {ρi} as for the real {ρ̄i} also yields a conflict-free
solution, since if the {γ̄i} according to Equ. (11) are all different from each other,
then the same applies to the {γi} according to Equ. (11).

Thus for each possible basis of F2m , there exists at least one conflict-free
solution to the equation system. The number bm is just the number of possible
basis for the field. ut

This implies a vast number of wrong solutions which could only be verified by
performing a complete key recovery based on each solution for the permutation.

The integration of of the non-linear Equ. (7) introduces a means of detecting
such wrong solutions to the linear equation system, since in contrast to the linear
equations they are “aware” of the field’s basis. However, they do not allow to
acutally reduce the defect of the equation system beyond d = m: Since according
to Equ. (8), δΩ4 =

∑6
j=1 εj = 0 is given whenever a non-linear equation involving

the very same {εj} is found, a reduction of the defect through the non-linear
equation would imply a reduction through a linear equation, which is impossible
according to Col. 2.
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Fig. 1: Cycle counts taken on an ATMega1284P for the syndrome decoding with pa-
rameters n = 512, t = 33 and inputs of the n different error vectors of hamming weight
w = 1. The first two bars depict the minimal and maximal values of the n − 1 runs
where the division performs two iterations (corresponding to σ0 6= 0). The third bar
gives the cycles taken when one iteration in the division occured (i.e. the single case
where σ0 = ε1 = 0).

6 Experimental Results

6.1 Attacking the Zero-Element of the Support

An experimental attack against the zero-element of the support was conducted
by measuring the decrytion time of the n = 512 ciphertexts with w = 1. From the
results depicted in Fig. 1 we find that the case σ0 = ε1 = 0 can be identified by a
running time which lies clearly below the range of timings found for ciphertexts
which cause σ0 6= 0.

6.2 Linear Equations

The experimental results of the timing side channel vulnerability based on “w =
4 error vectors” from Section 3.3 are given in Figure 2. It shows the minimal
an maximal values for the case σ3 = 0 with M = 4 iterations in the syndrome
inversion, labeled A, and for comparison it shows timings for the case σ3 6= 0
with reduced iteration counts (due to “iteration skipping” as defined in Section
4), labeled B and C. Remember that N denotes the number of iterations in the
key equation solving EEA. Note that even the case C, where the total number of
EEA iterations is the same as in the case A, has timings clearly distinguishable
from those of A; and that the difference in the timings between B and C, which
differ in one iteration of the syndrome inversion, is comparatively small. Both of
these observations are in line with the theoretic analysis given in Section 4.



 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

min(A) max(A) min(B) max(B) C

cy
cl

es

Fig. 2: Cycle counts taken on an ATMega1284P for the syndrome decoding with pa-
rameters n = 512, t = 33. The minimal and maximal cycle counts for the cases
A : M = 4, N = 0, σ3 = 0; B : M = 4, N = 1, σ3 6= 0; C : M = 3, N = 1, σ3 6= 0.

7 Conclusion

The results of this work show that timing attacks based on control flow vulnera-
bilities in the syndrome inversion are a threat to the confidentiality of the secret
key. Though a practical attack based on the side channel information gained
through the vulnerabilities described in this work with secure code parameters
remains an open question, some additional side channel information about the
secret support may solve this problem.

The question of countermeasure against this attack remains open in this
work, but two possibilities seem to suggest themselves: the first would be in
course of the countermeasures given [12], where “premature” abortion of the
key equation solving EEA is prevented enforcing the “missing” iterations. This
however is a delicate undertaking, as even the smallest timing differences have
to be prohibited and thus the complexity of the individual iterations must be
accounted for (consider for instance the “w = 1 attacks” from Section 3.2).
The second option would be to alter the cryptosystem’s parameter specification:
during the encryption, only t − 1 parameters are added, and the prior to the
standard decryption operation, another “bit flip error”, the position of which is
pseudorandomly (yet unpredicably for the attacker) derived from the ciphertext,
is applied. The advantage of this latter suggestion is that it is much more reliable
and also prevents potentially undetected subtle vulnerablities leading to similar
equations as those from this work, as such equations in general will be rendered
useless if one of the involved variables takes on random values, different for each
ciphertext.

This work is another brick in the slowly but persistently growing “wall of
timing side channel vulnerabilities” of code-based cryptosystems. Beyond timing
attacks, the leakage-critical control flow ambiguities will pose a great challenge



for hardware designers. Thus a generic countermeasure as suggested above might
acutally be a feasible solution, even though it demands an increase of security
parameters to compensate for the lower error weight.
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