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Abstract—We consider the problem of designing optimall x Then by the singular value decomposition, we have
N (M < N) sensing matrices which minimize the maximum . )
condition number of all the submatrices of K columns. Such Ags =UAVT,

matrices minimize the worst-case estimation errors when dg K . . . . .
sensors out ofN' sensors are available for sensing at a given time. Where A is a M x M d|agonal matrix with theK singular
For M = 2 and matrices with unit-normed columns, this problem valuesoy, o3, ..., andoy, on its diagonal.

is equivalent to the problem of maximizing the minimum singuar Then the estimation error of = (AL Aks) tAL 4 (y)
value among all the submatrices of K columns. For M = 2, satisfies

we are able to give a closed form formula for the condition ]
number of the submatrices. WhenM = 2 and K = 3, for an N — wi|2
arbitrary N > 3, we derive the optimal matrices whichgﬁwinimize 12 = zlla = I(AksAxs) ™" Afes(w)ll2 <
the maximum condition number of all the submatrices of K . L
columns. Surprisingly, a uniformly distributed design is dten not SO in order to optimize the worst-case performance, we need
the optimal design minimizing the maximum condition number to maximize the smallest singular value among all the péssib
(%) possible subsets. This introduces a problem of designing
the measurement matrit. To make the problem meaningful,
|. INTRODUCTION we assume that each column of the measurement matrix has
unit norm. Since each column of the measurement matrix
Consider a set ofV sensors. Thes& sensors are usedhas unit norm, whed/ = 2, this is equivalent to minimizing
to estimate an\/-dimensional signal, wher&/ > M. In the the maximum condition number.
sensor scheduling problems, to maximize the lifetime of the In general, the condition numbe(B) of a matrix B is the
sensor network, at any single time instant, oflysensors are ratio of the largest singular valug,,.,(B) and the smallest
turned on to monitor thd/-dimensional signal. In our system,singular values,;,(B): k(B) = %.
we assume that each time thesé sensors are uniformly  Let A = [ay, as, ..., an], Whereay, ....,ay are the columns
selected from the(%) possible subsets, so on average thef A. We assume here thét;||> = 1 holds true forl <i <
lifetime of the sensor network is extended by a factorj—}{faf N.LetKS C {1,2,..., N} with cardinality| K.S| = K. Now,
In hostile environments, for example, in battlefields, iv&y let Axs be anM x K submatrixAxs = [ai,, Qiyy -eeney Qig )
common that only a limited number of sensors are able ¥th columns indices;, 1 < j < K, from the setK'S. Also
survive and operate as designed. Suppose thatigrdgnsors define
out of theNV sensors are able to survive the hostile environment o r S T
and be functional in sensing th& -dimensional signal. For Axs = AxsAks = Zaijaij (1)
these application scenarios, it is helpful to maximize tloesi+ =1
case performance of the sensing system, no matter what \detng these notations, we can describe our optimal design
of sensors are used or are able to survive. In this paper, p@blem for the parameter sgi/, N, K) as follows.

min

consider the problem of optimal sensing schemes to achieve ) i
such a goal. min M )
Suppose the signal is denoted as a veetar RM. Let us ~ ASR*Vwith unitnormed columns| KSC{1.2.....N} Apin (Axcs)

consider a sensing matrid € R™*™. The sensing results  compared with the design of compressive sensing matrices
of N sensors can be representedyreal numbers, each of satisfying the restricted isometry condition [1], in ouoptem,
which is the inner product between the signand a column {he sybmatrices x5 are wide matrices instead of tall matrices

of A. Let KS C {1,2..., N}, with cardinality|[K.S| = k, be in [1]. Also, the application background is very differenti
the subset sensors that are active at a certain time. We ean ttlfbmpressive sensing.

represent the measurement matrix of the surviving sensors b
Ags, whereAggs is aM x K matrix consisting of columns
indexed byk'S from A. II. DERIVATION OF THE CONDITION NUMBER FORM = 2
Then theK -dimensional measurement resylt Generally, the optimal design for an arbitraky, N and
K is difficult to get. The difficulty arises from the fact, we
need to optimize the maximum condition number amc()ﬁg
wherew is the K -dimensional observation noise. submatrices. In our applications, we focus on the cas¥ cf
2. WhenM = 2, we can a concise formula for the condition
The authors are temporarily listed in alphabetical ordethefr names. number for a specific submatriftx s.

y:Af(Sx—i—w,
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We know that the condition number ofx g is given by

o
~ max|,=1(n" Axsn
k(Axs) = —! 1(T~KS )
min =1 (n" Axsn)

(I1.1)

Since the columns ofA are unit-normed, we can represent

,an| with

cos 0;
a; = ( sinﬁi ) (“2)
for 1 <i < N, wheref; € [0,7). Note that shiftingd; by =

A=la,az,....

does not change the condition number of any submatrix.

Since||n||a = 1 we can choose
o Cos
T=\ sina /-

K
n" Axsn ={>_n"ai,aln}.

Jj=1

Thus
(1.3)

And, n"a;;af 1 is equal to

(cos() cos(B;;) + sin(a) sin(B;,))*

= cos’(a — 0;;)

After simplification, [IL.3) becomes

K
n AKSn*Zcos :——|— Zcos —0;,)).
1
= (11.4)
Let us define
K
K 1
=_ —Z 0:,))- (1.5)
2 2 —

Then the minimum or maximum eigenvalue ofis is
achieved whenJ’'(a) =0

K
"(a) = =2 sin(2(a —6;,)) = 0. (11.6)
j=1
We also have
J"(a) = —42005 1)) <0 (1.7)

at the maximum elgenvalue and the inequality is reversed at

From expansion of (IT]5), we get

K

1 & 1 &
J(0) = S +5 > cos(2a) cos(20;, )+3 > sin(2a) sin(26;, ).

j=1 j=1
(11.8)
Combining the optimizingy and [IL.8), we have

J(a)zg-i—

1 S S0 (cos(26;,) cos(26;,) + sin(26;,) sin(26;,)) |
2 (TE sin(26,))) + (T, cos(26,,))?

Defineden® = (31, sin26;,)% + (X1, cos26;,)%. Then
K
den? = Z(sim2 26;, + cos® 20;,)
=1
K K K K
+ Z Z cos 20;, cos 20, + Z Z sin 20;, sin 20,
j=11=1,1%#j j=11=1
K K
= K+ 22 Z cos2(0;, — 0;,)
j=11=j+1

Similarly, we definenum = ijl lel cos(20;,) cos(20;; )+
S S0 sin(26;,) sin(26;).
It can be expanded as

K
num:Z(sin2 20, + cos® 20;,) +
=1

—I—Z Z sin 20;, sin 20,

J=11=1,l#j

K K
Z Z cos 20;, cos 20;;
J=11=1]

Pluggingden and num into (IL9), we get

K K
K 1 |K

J(Qmaz) = 5 + §$ > +Z Z cos2(0;, —0;,), (11.9)
J=11l=j5+1

and

K K
K 1
J(amzn)—?—i\l— ZZ OS2 Zl—Hij).

(11.10)

the minimum eigenvalue. An important observation to makehus minimizing the condition number oix ¢ for a given

is that e and gy differ by 7.

When (Z ~1sin(26;,))* + (Zﬁil cos(26;,))* # 0, from
(I6), the optlmlzmga ‘satisfies

Z;il cos(20;;)

cos(2a) = - )
\/(ijl sin(26;;))? + (3=, cos(20;;))?
and
sin(2a) = Zﬁil sin(26;,)

\/(2521 sin(26;))? + (Zfil cos(29ij))2'

set of indices{i1, 1, ..,ix} IS the same as this optimization
problem

K K
minimize Z Z cos2(0;, — 0;,).

j=11=j+1

With KS C {1,2,..,N}, the optimal sending matrix
design problem fofl/ = 2 can be reformulated as,

(I1.11)

K K
emio max Z Z cos2(6;, — 0;,).
15,08 KS={i1,ia,.. ,lK}J 112511



One can easily find the optimal solution féf = 2. Its derivative is

Theorem2.1: Let K = 2, M = 2 and letN > 2 be , B . .
an integer. Then the set of angles= {0, ., 2r.. (Y- Umy Fit) = _bm(ttr"_:;l) +sin(ts . ti)t
minimizes the maximum condition number over all possible 2 sin(2—— SRERL S}
sub-matrices with two columns.

Proof: The optimal design minimizes the cost function gg if (ts —t1) < , the derivativef’(t,) is non-positive for

— t2) cos(

cos2(6:, — ;) (11.12) fath <, < %er;_ and it is non-negative fofettt 47 <

tgg%+2W.80|f0:t1§tggt3§%, (tQ)IS

for the set of indiceqiy,i2} C {1,2,..., N} which gives the minimized whent, = ¢; or ¢, = t3. The corresponding(t2)
largest cost function. is

Without loss of generality, we leff;, 1 < i < N, lie in b B B 149 ) > 149 4
the range[0,7) and letd; = 0. In order to minimize the flta=t1) = f(ta = t3) = 1+2cos(t1 —t3) > 1+ COS(W)'
maximum condition number, we only need to maximize the . -
minimum of min{|26;, — 26;,|, 2w — (20;, — 26;,)|}. This is (Achievability)
apparently achieved with the given set of angles m [n order to finish the prczof, )we only need to show that the
: : 2m(i—1 . H
In the following sections, we will derive the optimal desigrdVen set of angle§; = ==g— mod 7, 1 <4 < N, achieve
for K — 3. the lower boundl + 2cos(%F). Let 6; = 20;, so we have
0 < 6; < 27. Counter-clockwise, starting from the two angles

6; = 0 and é%ﬂ = 0 (which are in fact two angles in the

same position), wee-label theseN angles sequentially s,
02, ..., andfy.

Ill. K =3, NISANEVEN NUMBER

Surprisingly, unlikeK = 2, the optimal matrix design for
K = 3 is often not achieved with the uniformly distributed Namely, we need to show, for ayyanglesr, r, andrs
angles. from the given set of angleé,— satisfy

Theorem 3.1 Let K = 3 and N be an even number. Then .
the set of angle8; = w mod 7, 1 < i < N, minimizes cos(r1 —r2) + cos(ra —r3) +cos(ri —r3) <1+ 2COS(W)-
the maximum condition number among all sub-matrices with
K columns. Moreover, they are the unique set of angles thatwithout loss of generality, we assume that r, andrs
achieve the smallest maximum condition numberfoe> 6. are in a counter-clockwise order; and assume that— r;)

Proof: We first derive a lower bound for the maximummod (27)]| is the smallest amon@r.—71) mod (27)|, |(r3—

condition number among all sub-matrices witi = 3 r2) mod (27)| and|(r1 —r3) mod (27)|. Apparently,|(rs —
columns; and then show the given set of angles achieve thi$ mod (27)| < 2F, and|(r; —r1) mod (27)] is an integer
lower bound. multiple of 4Z.

Suppose that the set of angles< 6 < 7w, 1 < i <
N, achieve the smallest maximum condition number for ql{
submatrices with' = 3 columns. Without loss of generality,
let 67 = 0; and letd}, 1 < ¢ < N, appear sequentially in a
counter-clockwise order. Let; = 26*, so we have) < §; < f(r3) = cos(ry — r2) + cos(ry — r3) + cos(ra — r3)
2.

Suppose|(r2 — r1) mod (27)| = 0. Thenr, = r, and
ri—rg) mod (2m)| = |(rg —r) mod (2m)| > 5F. Similar
to the proof of “lower bound”, for such a setting, the funatio

| bound f , it b is a decreasing function ofs for r3 € [r,(r1 + 7)
W( ovlve_r ct)ﬁnt tﬁr mammu;’n ct_)nt 'tion n(;'én g)_ < N h mod (27)]; and an increasing function ef for r3 € [(r1+)
© claim Fhat Iere must exist an Indexs @ = AV SUCN 110d (27), (r1 + 27) mod (27)]. So the maximum off (r3)

that forf;, 0;41) mod N andt?(i+2) mod N+ [(0(i+2) mod N= is achieved whei(ri —3) mod (2r)| = 4=, wheref (r3)
6;) mod (2m)| < Wﬂ Notice that |(9(i+2) mod N — 91) 1—}-2608(%).

mod (27)| is just the counter-clockwise region going fram i
10 0(;42) mod v- SO the summation " |(0;42) moa v —0:) Suppose|(r24ﬂ— r1) mod (2m)] = . The”j,ﬁ“ —73)
mod (27)| = 2 x (2) because each counter-clockwise regiofi©d (27)| = § and|(rs —r2) mod (2m)[ > 7. Similar
between two adjacent angles are summed twice. By lookiffyy e reasoning in the “lower bound” part, the maximum
at the average of thes§ summands, such an indéxmust 07 f(r3) = cos(r1 — ra) + cos(r1 — r3) + cos(ra — r3) is

exist achieved when(rs — r2) mod (27)| = 3F, r3 # ry; or
' i — 4m
_ For simplicity of notations, we denote these three angjes (1 —r3) mod (2m)| = 3¢ andrs # ry. In both cases,

0(i+1) mod N+ @ANAY(;12) moa N ASt1, t2 @andts. Without loss f(r3) = 2cos(4E) + cos(3F), which is smaller than the lower

4
of generality, we assume that= t; < t, < t3 < 4. We bound1 + 2 cos( 7).
how that the smallest condition number that these threeeangl Now supposé(rz —r;) mod (27)| > %_ Since|(ry — 1)

t1, t2, andts can achieve is whet, = t; or to = ¢3. mod (27)| < 2 and r3 is certainly outside the counter-
We consider the scenario whelig — ¢1| < %’ remains as clockwise region going from; to r, using the same rea-
a fixed constant. Defing(t,) as soning in proving the lower bound, the function

f(t2) = cos(t; — ta) + cos(t1 — t3) + cos(tz — t3). f(r3) = cos(ry — ro) + cos(ry — r3) + cos(ry — r3)



achieves its maximum whens = ry or r3 = ry. This Let0 <6 <m, 1<i<N, be a set ofN angles which
maximum is minimizes the maximum condition number of all submatrices
with 3 columns. For convenience, we consider the correspond-
frs =m) =1+ 2cos(ry —r2), ing N anglesd; = 207, 1 < < N. Without loss of generality,
which is certainly no bigger thah+ 2 cos(4%). we assumé; = 0; and0 < 6; < 27 are arranged sequentially
So the given set of angles indeed achieves the lower bouRd counter-clockwise order aganges froml to N. We first
1+2cos(47), and we have proven the optimality of the giverProve the following two lemmas before proving that there mus
set of angles in minimizing the maximum condition numbegXist at leastt adjacent-3-angle sets which give the maximum
among all submatrices with columns. condition number.
(Uniqueness) Lemma 4.2: The counter-clockwise region between any two
Moreover, in the proof of the lower bound, whe¥i > 6, adjacent angles (for example andf(; 1) moa n for some:
(ts — t1) < m, the derivativef’(t) is negative forefie < ) is smaller thanr.
ty < 88 4 and positive forsth 4 < ¢, < Ldh 497, Proof: Note that the5 angles partition the circle intd
Sotz = t; or t3 = t, are the only two places wherg(t3) regions. If instead the counter-clockwise region goingrfro
achieves the lower bountl + 2 cos(3%). We further notice 0; 10 0(i11) moa n IS at leastr, because the other regions
that the lower bound is achieved only when the countepccupy at mostr, there must exist three adjacent angles for
clockwise region between any adjacent angles fronf;, Wwhich the two counter-clockwise regions covered by them
1 < i < N, is equal to%. Otherwise, if there exist oneis no bigger than;. For those three angles, from the same
set of 3 adjacent angles frori such that the region betweencalculation as in Theorem 3.1, the smallest cost functieseh
them is larger thanlZ, there must exist another set 8f 3 angles can achieve is
adjacent angles fromM;, 1 < i < N, such that the counter- T 7 ) ™ .
clockwise region between them is smaller th&h This is cos(z —g) Feos(0—5) +cos(0—3) =1,

becausey ;" [f(i+2) moa v — 0i| = 2 x (2). For these set which is already bigger than the coBtos(2r) + cos(4r)

of 3 angles, their corresponding cost functigy) is larger 4.nieved by thé anglesd; = 26; — 2(i-1) {c,i< N m
. . 47 1 T (2 N L] — — .

than the derived cost function lower bouhd-2 cos( 5 ), thus Lemma 4.3 Let N — 5. In the optimal desigri, 1 <

bringing a Iargﬁgﬂ)axmum condm.on number. This proves fc%rS N, considerd adjacent angles,, r», r5 andr4, where
N >6,0; = =—g— mod m, 1 <i < N are the unique set

¢ les th imize th . diti b they are arranged in a counter-clockwise order; gndndrs
of angles that minimize the maximum condition nUmber. - 5 e"inside the counter-clockwise region going fromto 4.

) o ) ) (r1,72,73) and(rq,r3,74) give the same condition number if
It is worth mentioning that whedV = 4, the design given 5 only if (rs — 1) mod (27) = (r4 — r3) mod (27).

in Theoren{3.11 is still optimal. However, we have more than bt \without loss of generality, we assume— 0 such
one design that can minimize the maximum condition numbey., rin 1< i < 4, are all within|[0 27;). Now we only need
This is because, when counter-clockwise region covered b¥o show (;1 7,2_ rs) and (ro, 3 r4)’give the same condition
angles isw, no matter where the middle angle is, the cost, \per if a’ndvonly ifry —7:1 '
function is —1.

Theorem 3.2: For N = 4, K = 3 and M = 2, the set
of © = 20 = {6;,05,0, + 7,0, + n}, where0 < 0; < ,

=T4 —T3.
If (r1,7r2,73) and(rq, r3,74) give the same condition num-
ber, we have

0 < 6, < m, minimizes the maximum condition number over cos(r1 — r2) + cos(ry —13) + cos(ra — r3)
all possible3 x 3 submatrices. = cos(rs — ra) 4 cos(rs — r2) + cos(ry — r3).
This means
IV. K=3,N=30R5
9 rs — 179 T3 — T2
Interestingly, whenk = 3, except for the trivial cas&/ = cos( + 12 — 1) cos( )
3, N = 5 is the only other case where a uniform distributed T3 — T2 T3 — T2
= 2cos( + 14 —r3) cos(———).

design indeed minimizes the maximum condition number.
Theorem4.1: Let K = 3 and N = 3 or 5. Then the  since we have just shown thag — r» is smaller thann,

T a(i—1) . T
set pf angles@i“— —~—» 1 <4 < N, minimizes the_We have
maximum condition number among all sub-matrices with s — T s — Ty
K =3 columns. cos( + 12 —11) = cos( +7r4—13).

Proof: The case forN = 3 is trivial, so now we only
focus on proving the claim foN = 5.
For the set of angled; = 260, = 2201 1 < < N, it
is not hard to check tha adjacent angles, denoted by, 7

andrs, give the maximum cost function

This means eithery — 17y = r4 —r3 Or 74 — 71 = 2.
The latter is not possible for a set of angles which achieee th
smallest maximum condition number, because- r; = 27
forces the next angle; to be aligned with both-; andry.
This gives a condition number ak for the three angles;,
cos(r1—7r2)+cos(r;—r3)+cos(ro—r3) = 2cos(2—7r)—|—cos(4—w), r4 andrs. SO_We mUSt_haYeQ —Tr=Ta s .

5 5 In the optimal designd;, 1 < i < N, we assume
which corresponds to largest condition number. that {91, 0, 93} is a adjacen8-set which corresponds to the




maximum condition humber. Since the cost functions for any othadjacent angles were
strictly smaller than the original cost function §f,, 05,05},
A. (At Least 2 adjacent-3-angle Sets Giving the Maximum their cost functions will stay smaller than the new revisestc
Condition Number) function of {6, 62, 65}. So we have just strictly decreased the
f maximum condition number, which is a contradiction to our
assumption of an optimal design. [ ]

Proof: We prove by contradiction. Suppogé, 0,05} By symmetry, in the same spirit, we have
. ; . Lemma 4.6: {6;,6,,03} and {61,02,05} can not be the
is the unique set o8 adjacent angles that have the largest . X
- s only 2 sets of 3 adjacent angles which have the largest
condition number. Then we must hafle — 6, < w. Suppose =
) ~ ~ = P condition number.
instead that)s — 6; = 7 or 65 — 61 > . | .
If 65 — 6, = , the cost function for the set &f anglesd We can also prove: P,
i 35 . : Lo th ¢ function for the set Bf Il, Lemma 4.7: {0;,0,,05} and {3,04,05} can not be the
7> andos 1S equal to the cost Tunction for the set biangles only 2 sets of3 adjacent angles which correspond to the
t3, 05 and . This is a contradiction to our assumption. maximum condition number
If 63 — 61 > m, thenhy — H; = O3 — O5. Otherwise, we can :

Iy o Proof: Again, we prove by contradiction. Suppose
0140 - o~ o~ ~ L
always shiftf, towards=4= by a sufficiently small amount {6y, 05,05} and{ds,d,, G} are the only two sets of adjacent

and strictly decrease the cost function for 0y andég. Since angles that have the largest condition number.
the cost functions for any oth&r adjacent angles are strictly  \ye first assume thalts — 05 # .
smaller than the original cost function 6f, 0, and 63, their We claim that ifds — 65 > 7, thenf, = 931595' This is

cost functigns~will re~main smaller than the new revised COBEcause otherwise, we can shift toward the middle point
function of6,, 2 andfs. So we have just decreased the largest ;5. by a sufficiently small amount, thus strictly decreas-

gondjtion pumper, which is a contradiction. So we must havr?2 the condition number for f-. .. 6 This will leave
05— @, = 05— 6. However the cost function fdt,, 05 andd, MY ” u R0, 04,05}. This wi v

s lower bounded b cos(%) + cos(m) — —1, which is larger {61,6,,05} as the unique adjaceftset with the maximum

than the cost function fof;, #; andés. This is contradictory condition number, which is not possible by Lemmal 4.4.

' i 2 But if 65—65 > 7, we must havé;—6,; < . However, then
to the assumption that the set@f, 6> and#; corresponds to {91 0, 93"} and {53 0, 55} can not have the same condition
the maximum condition number. o o

s . . . number. In fact, from analyzing the cost function, whign-
So we must havés — 6; < 7. In this case, if we shift 005 (7, G, 05} has a strictly

05 counter-clockwise by a sufficiently small amouft we Or < 7,05 =05 > andfy = =5
will strictly decrease the cost function fdt, 6, and 6s. smaller condition number thaffs, 0, 03}.

Since by our assumption, the cost function of any other So whends — @y 7 m, we must haveds — 0 T and,
adjacent angles werstrictly smaller than the original Costsymmetr|cajly,93~— 0r < m. Thend, = 05 or bs; 0, = 6,
function of {@;, s, 5}, their cost functions will stay smaller °" 03, and 03 — 01 = 05 — 03. This is because, iby # 03
than the new revised cost function e, 62, 63 }. So we have and 0, # s, we can always shift, towards whatever is

just strictly decreased the maximum condition number of tfdoser tofs amongs and ;. This will strictly decrease the
optimal design, which is not possible n corresponding cost function, and leaving only one adjacent

3-angle set having the maximum condition number, which is
i . , not possible by Lemm@a4.4.

B. (At_Least 3 adjacent-3-angle Sets Giving the Maximum But then by increasingls — 61 = s — f; by a suffi-
Condition Number) o ciently small amounts > 0, we will strictly decrease the
Lemma 4.5: {01,0,05} and {6,,05,6,} can not be the condition numbers fo{6,, 0,03} and{fs, 64, 05}. Since the
only 2 sets of3 adjacent angles which correspond to theost functions for the other sets 6f adjacent angles were

maximum condition number. __ _  strictly smaller than the original cost function §f;, 605, 63}
Proof: We prove by contradiction. Suppogé:,0>,0s} and{6s, 4,05}, their cost functions will remain smaller than
and {6, 03,0,} are the only two sets o8 adjacent angles the new revised cost function offs,f,,05}. So we have
that have the largest condition number. This means 03 =  just decreased the maximum condition number of the optimal
2 — 01 = o for somea > 0; andf, — 60, = 3 for somes > 0. design, which is not possible.
Note that2a + 3 < 27 because, otherwiséy, 5 andf, are  We now consider the possibility thét — ;5 = 7. Because
forced to be in the same position, giving rise to a conditiof¥s, 64, 65} and{6,, 65, 05} both have the maximum condition
number ofoo for these three angles. number; andfs — 6,) + (A5 — 03) < 2m, with the cost function
From Lemmd 52, we know < . For such a3, it is not  cos(a) + cos(8) + cos(a + 8) achieving the minimum-1
hard to check that under the constraat+ 8 < 27, the cost whena + 8 < 7 we must haved; — 0; = 7 too. Thends
function cos(a) + cos(3) + cos(a + 3) achieves its unique andd; must be in the same position, and & , 0, 65} must
minimum when2a + 8 = 27r. Moreover, the cost function is have a condition number no smaller th&, 6., 05} since
a strictly decreasing function asgrows from0 to m — 2. S0 cos(fy— ;) +cos(f; — 5 +27) +cos(f — 65 +27) achieves its
if we shift 6, counter-clockwise by a small amouht> 0 and minimum —1 with 0y = = whendy < . This is contradictory
shift 6, clockwise by the same small amouht> 0, then as to our assumption thaff;, 6,63} and {03,0,,05} are the
long as2a + 8 < 2, this will strictly decrease the conditiononly 2 sets of3 adjacent angles which have the maximum
numbers simultaneously fd;, 65, 63} and {6, 05, 0,}. condition number. n

Lemma 4.4: 6,, 6, andf5 can not be the unique set 8
angles that have the largest condition number.




By symmetry, we can also prove 6, — 6y, in order for{91,92,93} {92,93,94} and {94,95,91}

Lemma 4.8: {0;,0,,0s} and {f,,05,6,} can not be the to have the same cost function, we must héye= 6, = 0
only 2 sets of 3 adjacent angles which have the Iargesind93 _94 = 7. This is contradictory to the assumption that
condition number. {62,05,0,} has a larger cost function thats, f,, 05 }.

Thirdly, we assume that the counter-clockwise region going
from 64 to 6, is larger thanr. Similar to earlier analysis for the
case that 65 must at the middle point of the counter-clockwise
region going fromd, to 6;. However, we get a contradiction
Now we consider the cases where more angle sets havepgBeause the cost function f({ﬂ47 95’ 91} is no bigger than

C. (At Least 4 adjacent-3-angle Sets Giving the Maximum
Condition Number)

maximum condition number. —1; while the cost function f0|{91,92,93} is bigger than-1
Lemma 4.9: {01,02,05}, {02,05,04} and {fs,04,05} can sinceds — 6, < .

not be the only3 sets of3 adjacent angles which have the So in summary, we have proven this lemma. m

largest condition number. In the same spirit, we can prove

Proof: We prove by contradiction. Let us assume Lemma 4.11: {91,92,93} {93,94,9 } and {9 91,92} can
{01,05,03}, {02,03,0,} and {03,6,,05} are the only3 sets not be the only3 sets of3 adjacent angles which have the
of 3 adjacent angles which have the largest condition numbkirgest condition number.

Apparently,eg —91 = 94 —93 =« and93 —92 = 6‘!’ 6‘4 = B Lemma 4.12: {91, 92, 93} {93, 94, 95} and {94, 95, 91} can

for somea > 0 and 5 > 0. not be the only3 sets of3 adjacent angles which have the
We must havey+ 3 < w. Otherwise, anglés will be in the largest condition number.

same position a8,. But, as argued in Lemnia4.7, this implies So the only left four possibilities are

{05,01,0>} can not have a smaller condition number than « {f,,0,,05}, {02, 05,04}, {03,04,05}, and{6s, 05,6, } are

{91,92,93} which is a contradiction to the assumption that the sets of3 adjacent angles which have the largest

{91,92,93} {92,93,04} and {93,94,95} are the only3 sets condition number.

of 3 adjacent angles which have the largest condition numbers {6y, 65,65}, {62,01,65}, {61,05,0,}, and{fs, 6,63} are
So we can always increaseand 3 by a sufficiently small the sets of3 adjacent angles which have the largest

amountd to decrease the condition number f#, 02,603}, condition number.

{05,05,0,} and{03,0,,05}. Since the cost functions for any o {y,65,605}, {62,0s,64}, {03, 04,05}, and{6s, 6, , 65} are
other3 adjacent angles were strictly smaller than the original  the sets of3 adjacent angles which have the largest
cost function of{f;, 03, 03}, {0, 03,04} and{fs, 64, 05}, their condition number.
cost functions will remain smaller than the new revised coste {0y, 05,05}, {02, 03,04}, {04,05,6,}, and{fs, 0,, 6} are
function of §;, 6, and #3. So we have just decreased the the sets of3 adjacent angles which have the largest
maximum condition number, which is a contradiction to our  condition number.
assumption. u These four cases are symmetric to each other, so we
We also have: o o consider the first case and the conclusion carries over to the
Lemma 4.10: {01,602, 03}, {02,03,04} and{04,05,6,} can other three cases accordingly.
not be the only3 sets of3 adjacent angles which have the The first case implies thét — 91 = 94 05 = 91_9r+2w =
largest condition number. o for some constante > 0; andf; — 6, = 05 — 64 = 3 for
_ Proof: Again, we prove by contradiction. Suppose thasome constans > 0.
{01,04,05}, {02,03,0,} and {04,05,6,} are the only3 sets ~ We note that{f;,0,,05} are adjacent3 angles with«
of 3 adjacent angles which have the largest condition numbbetweerd; andd,; anda between{él and§5}. We also notice
Firstly, we assume that the counter-clockwise region btrata > 5 > 0 (becauser+ 8 < 7w and2a + 8 < 2. Under
tween angle!)4 and angle); is smaller thanr. Then we know these constraints, it is not hard to check that the cost fomct
angle95 must be in the same position as an@leor angle cos(a) + cos(a) + cos(2a) for {05,61,6,} is bigger than the
6. Otherwise, as we discussed earlier, we can always @&hiftcost functioncos(a) + cos(3) 4 cos(a+ 3) for {6y, 0,05} if
such that the cost function fe{ﬂ4, 05, 91} is decreased, which and only ifa > 3. ) and3a + 23 = 2x. In order to minimize
will reduce us to the scenario in Lemral4.5. the largest condition number, we should make the cost foncti
Supposél; is in the same position as anglg. From our cos(a) + cos(3) 4 cos(a + ) as small as possible.
assumption, the cost function f<{93,94,9 } is smaller than  Under the constraints that > 5 > 0 and 3a + 28 = 2,
the cost function f0|{92,93,94} This is not possible, becausewe have2’T <a< 2; Within this range, the cost function
94 - 93 < m, andfs; — 6, = 0 and the cost function for cos(a )+cos(ﬂ)+cos(a+ﬂ) achieves its minimum when =

{05,05,0,} is maximized wherf, = 03 under the condition § = 2=. If o = j3, the cost function is equal t@cos( )+
0 < 0. 005(4”) ~ —0.1910.
By symmetry offs with respect tof, and 6, whends is  So indeed the optimal solution is given Iy = =01
in the same position a&, , we also get a contradiction. 1<i<N. ]
Secondly, we assume that the counter-clockwise region
going from 94 to 01 is equal tor. In this case, the cost V. K=3,N=T7

function for {05,91,04} does not depend on the location of One might think that the uniform distributed design is
anglefs. Since the cost function f0{94,95,91} is —1 and optimal forN =7



Theorem 5.1; Let K =3 and N = 7 . Thené, = %ﬁ:’ j < N as its central angléd;}. We assume that;, 6, and
mod 7, 1 < 4 < N, minimizes the maximum condition #3 are three angles which correspond to the largest condition

number among all sub-matrices wifti = 3 columns. number.
Proof: Among6; = 20, = 4’;(,1_11) mod 27,1 <7< N, We now prove the following lemma:
it is not hard to check tha® adjacent angles, denoted by, Lemma 5.3: In the optimal desigrd;, 1 < i < N, N >

r9 andrs with r; = ro, give the maximum cost function 7, there do not exist> 2 consecutive adjacentangle sets
(for example{6;} and {f(;+1) moa n} fOr somel < j <
)+1. N) which have smaller condition numbers than the maximum
condition number.
Proof: We prove by contradiction. Suppose that for some
: ! 46,3 and {0,41) moa »} both have smaller condition
p055|b_le3-c(;)|umn submatrr:cgs. im(i1) numbers than the maximum condition number. We also as-
L e brases s s i oo L0 00 s ) 80 U o) o1
= v= , . A adjacent3-angle set corresponding to the maximum condition
among all3-column submatrices, it is enough to shéw= " mper. Notice that we can always find suchj af there

o Am(i—1) : inimi i . . - .
20; = =y7r- mod 27, 1 <i < N, minimizes the maximum eyist> 2 consecutive adjacertangle sets which have smaller

condition number among all the adjacenangle sets. Let Us cqngition numbers than the maximum condition number.

assume thatV angles0 < 6 = 207 < 2,1 < i < N By Lemmd5.2, any adjacent angle widthsand~y, satisfy

achieves the smallest maximum condition number among ;HI_F72 < 7. The cost function fotos(71 )+cos(y2)+cos(y1 +

the adjacens-angle sets. Without sacrificing generality, let,, ) strictly decreases if we increase and~» simultaneously

0, = 0 andf; be arranged sequentially in a counter-clockwisgy a sufficiently small amount.

order asi goes froml to V. o Suppose thatd, } spans two regions with counter-clockwise
Lemma 5.2 In the pptlmal desigrg;, 1 < i g_N, the angle widtha > 0 and > 0; and that{é(jﬂ) mod N} Spans

f:ounte_r-clockW|se region covered by any three adjacernieangs, o regions with counter-clockwise angle widthand .

is no bigger tharr for NV = 7; and smaller tham for V> 9. If 3> 0, we can always reducé by a sufficiently small

The only scenario where the counter-clockwise region @Veranough amount and increase every region involved in all the

by one adjacent-angle set ist is whenN' = 7 and the7  ggjacent3-angle sets corresponding to the maximum condition

angles are respectively, 0, /2, 7/2, =,m and % (Up 10 number by an appropriate small amount such that the angle

rotations of these angles). _ . widths of the N regions still sum up t@x. In this way, we

Proof: Suppose instead in the optimal design, the count§{aye just strictly decreased the maximum condition number

clockwise region covered by some three adjacentangles  among all the adjacer-angle sets. This is contradictory to
andr is larger thant. Then there must existadjacent angles e optimal design assumption.

for which the counter-clockwise region covered by them is |t 3 — (, since every two adjacent angles are no more

3 ~ . -
smaller thany™; < 3 because the sum of the counterthanr apart,{f; 1) mea ~} has no bigger condition number

clockwise regions Cove_red by all thbadjacent angles igr than{éj} and{é(jH) mod v} has no bigger condition number
(Please see the proof in Theoréml3.1). This means that m n{é(j-ﬁ-l) mod v }- This is contradictory to the assumption

cost func.tlon- forrs, "2 andrs is larger thar COS(BJY::—L) +.1 that {0} and {6(;+1) moa ~} bOth have smaller condition
(whenr is aligned withr, or 73). Note th"’ltz’fﬂcos(N—l_)+1 'S" humbers than the maximum condition number; and one of
equal to the maX|mu_m cost f.upcn(?rnos(Nf(l‘)jl-)l given by {é(j—l) mod v} and {é(j+2) mod v} is an adjacens-angle
the to-be-proven optimal desigh = 20; = -~ mod 27, set corresponding to the maximum condition number. m
1<i< N,whenN =7; and is bigger thar2 cos(l\?‘—j;l) +1 Lemma 5.4: Let N = 7. Supposd;, 1 < i < N, is an opti-
whenN > 9. This is contradictory to our optimal design. So irmal design which minimizes the maximum condition number
the optimal desigd, = 20, = 4’;5:11) mod 2, the counter- among all adjacent-angle sets. Then there exists at mbst
clockwise region covered by any three adjacent angles is adjacent3-angle set which has smaller condition number than
bigger thant for N > 7. the maximum condition number among all adjacgngle
When N = 7 and the counter-clockwise region covered bygets.
one adjacens-angle set ist, the counter-clockwise region Proof: We prove this lemma by contradiction.
covered by each one of the other adjacgmingle sets is  Without loss of generality, suppose tf{z&ﬁ} has a condition
forced to be%, The only way for that to happen is that tie number smaller than the maximum number and there exist
anglest;, 1 <i < N, are0, 0, /2, n/2, m,m and 37“ (up to adjacent3-angle sets which have smaller condition numbers
rotations of these angles). than the maximum condition number among all adjadnt-
Note that the same argument can show that the countangle sets. Then there must exist a sequence of consecutive
clockwise region covered by any three adjacent angles asgles, say;, 1 <i <, for some3 <[ < N, such that any
smaller thanr for N > 9. B adjacent3-angle set{éj}, 2 < j <1 —1 has the maximum
In the optimal desigrﬁi, 1 < i < N, there areN sets condition number while the first counter-clockwise adjaen
of 3 adjacent angles, and we denote each set by its countangle sel{él} and the first clockwise adjaceBtangle sel{él}
clockwise central angle. For example, we denote the setlave smaller condition numbers than the maximum condition
three angle0(;_1) mod v+ 05, 0(j+1) mod n} fOr somel <  number.

v
cos(ry —12)+cos(ry —r3)+cos(re — = 2cos

s(r1—rg)+cos(ry —r3) (ro—7s) (¥+1
This means the submatrix corresponding to s@chdjacent
angles generate the maximum condition number among




Since{éj}, 2 <j <1-1, have theequal maximum con- « > 0,3 > 0 anda > 8 and4a+38 = 2. This cost function
diton number, the counter-clockwise regions betwéén}, is smaller than the cost function @fcos(2Z) + cos(“Z), so
1 < j < must alternate betweem > 0 and3 > 0, where ¢, = 226=D 5427 1 < i < N is indeed the optlmal

a+ S < 7. Without loss of generality, we assume that 5. o|esign_N+1 ]

For now we also assume that+ 3 < 7. From[5.2, when

a+ B =, only 1 adjacent3-angle set has a smaller than the VI. K =3,N >91s AN ODD NUMBER

maximum condition number. Theorem 6.1: Let K = 3 and N > 9 be an odd number.
We first consider the case whdrés an odd number,namely Then the set of angleg;, = %ﬂl) mod 7w, 1 < i < N,

we have an even number of regions between afgl@nd minimizes the maximum condition number among all sub-

angled;. Sincea + 3 < m, we claim thats must be equal to matrices withkx — 3 columns.

0. Suppose instead # 0. Then we can shift the even-number-  proof: The proof of this theorem follows the proof of

indexed angleg6;}, 1 < j <1, counter-clockwise by a suffi- Theoren{5Jl. The complication compared with Theofem 5.1

ciently small amount. This will strictly decrease the cditti comes from the fact that we need to prove the following lemma

numbers for{f;}, 2 < j < ! —1. Since{#;} and{6,} also instead of Lemm& 5l4.

have strictly smaller condition numbers than the maximum Lemma 6.2: Let us takeN > 9. Suppose that;, 1 <

condition number, thus we have 2 consecutive adjacest ; < N, is an optimal design which minimizes the maximum

angle sets which have the smaller condition number than tbéndition number among all adjacedvangle sets. Then there

maximum condition number. This forms a contradiction bgxists at mostl adjacent3-angle set which has a smaller

Lemma[5.B. condition number than the maximum condition number among
So we must haved = 0. However, this implies all adjacent3-angle sets.

{0(+1) moa n} has a condition number no bigger than that  Proof: We prove this lemma by contradiction.

of {6;}. Thus we have two consecutive adjac8rangle Suppose that there exists 2 adjacent3-angle sets which

sets{él} and {é(lH) mod N} Which have smaller condition have smaller condition numbers than the maximum condition

numbers than the maximum condition number. This formsraimber among all adjacefitangle sets. From Lemmnia 5.3,

contradiction by LemmA&5 3. we can always partition théV angles into distinct blocks
We then consider the case whéiig an even number. Sinceby using 6;'s with {6;} having a strictly smaller condition
[ > 3, such a number can only de=4 or [ = 6. number than the maximum condition number as the boundary

When! = 4, then{fs} must also have a smaller conditiorangles between different blocks. From Lenima 5.3, there must
number than the maximum condition number. This is becaussist at least one angle between two boundary angles. Withou
from Lemma5.B{05} and{f} can not have smaller condi-loss of generality, suppos& and 01, 3 <1< N, are two
tion numbers than the maximum condition number. Moreovereighboring boundary angles. Sinp&}, 2 < j <1 —1, have
if {05} also has the maximum condition nUMbf; 04 N}, theequal maximum condition number, the counter-clockwise
4 < j < N +1, are then consecutive angles such thaf}, regions betweeid; }, 1 < j < [ must alternate between> 0
{6s} and {f;} all have the maximum condition numbersandj > 0, wherea + 8 < 7 according to LemmB5.2.
which is not possible by our previous discussion of the casesWe first consider the case whérs an odd number, namely
when! is an odd number. we have an even number of regions between adgland

However, when{éG} has a smaller condition number tharangle ;. Without loss of generality, we assume that> j3
the maximum condition number, there are an even number (umen!/ is an odd number. Since + 3 < «, from the same
fact, 2,) of regions between angl, and anglefs, which is reasoning as in the proof of Lemrials.4 we know this is not
not possible by our previous discussion. possible.

So in summary, the original assumption »f2 adjacent-  We then consider the case whéis an even number. If
3-angle sets having larger than maximum condition numbisran even number, we divide into two scenarias> S or
cannot hold. There exists at mdsadjacent3-angle set which o < 3.
has smaller condition number than the maximum conditionIf « < 3, we can simultaneously shift the even-numbered
number. angleséj, j=2,4,..,1—2, clockwise by the same sulfficiently

m small angle§ > 0. Note that this shift will not increase the

If every adjacenB-angle set has the same condition numbenaximum condition number if is sufficiently small. However,
as the maximum condition number, then the region betwethis will create two consecutive adjacehangle sets{f-}
every angle must be equal. So the cost function for ttamd {#,} which have smaller condition numbers than the
maximum condition number should Beros(22) + cos(4X).  maximum condition number. According to Lemrhal5.3, this

If there is exactlyl adjacent3-angle set which has a smallens contradictory to our assumption of an optimal design.
condition number than the maximum condition number, and We now assume: > 3 and the number of regions in each
{91} is the unique adjacerangle set that has the smallesblock is an odd number. Consider two neighboring blocks
condition number, ther;, 1 < i < 7, can be respectively separated by a single angjesuch that{éj} is an adjacent-
denoted by, o, a+ 8, 2a+ 5, 2(a+8), 3a+24, and3a+35, 3-angle set which has a smaller condition number than the
wherea > 0, > 0 anda > § and4a + 38 = 27. The cost maximum condition number. Suppose that the second block
function for the maximum condition numbess(a)+cos(8)+ is in the clockwise direction of the first block. The counter-
cos(a + f) is thus minimized wherg = 0 anda = %T’T for clockwise region in the first block alternates betweemand



(; the counter-clockwise region in the second block altemat
betweena; and 5, with «; > 5; (otherwise we are done by
the discussion in last paragraph). Since the adjagemtgle
sets inside each block have the maximum condition number,
without loss of generality, we havwe; < «, ands; > 8. If

we change the regions of ti2end block to besy, a1, £1, a1,

.., a1, and ;. Sincea; < « and B; > S, in this change,
we do not increase the condition number{&fj}. It is not
hard to check that as long as + 51 < =, the cost function
cos(aq ) +cos(a1)+cos(2aq ) is smaller than the cost function
cos(aq) + cos(B1) + cos(a + B1). So in this change, we do
not increase the maximum condition number among adjacent-
3-angle sets, while creating two consecutive adjaSeairgle
sets at the clockwise end of the second block, which is a
contradiction from Lemmpg5] 3.

So in summary, there exists at moktadjacent3-angle
set which has smaller condition number than the maximum
condition number.

[ |

So in the optimal design, the angles must alternate dike

v a, B, a, wherea > 8, and - o + Y13 = 27, For

ﬁ!
N > 9, the optimal angle allocation fot is ;77 and3 = 0.
[ |

VIl. CONCLUSION AND FUTURE WORK

We propose the problem designing optimdl x N (M <
N) sensing matrices which minimize the maximum condition
number of all the submatrices df columns. Such matrices
minimize the worst-case estimation errors when oRlysen-
sors out of N sensors are available for sensing at a given
time. WhenM = 2 and K = 3, for an arbitraryN > 3,
we derive the optimal matrices which minimize the maximum
condition number of all the submatrices &f columns. It is
interesting that minimizing the maximum coherence between
columns does not always guarantee minimizing the maximum
condition number.

REFERENCES

[1] E. Candés, “The restricted isometry property and itplioations for
compressed sensing,” Comptes Rendus Mathematique, &ls2008.



	I Introduction
	II Derivation of the Condition Number for M=2
	III K=3, N is an even number
	IV K=3, N=3 or 5
	IV-A (At Least 2 adjacent-3-angle Sets Giving the Maximum Condition Number) 
	IV-B (At Least 3 adjacent-3-angle Sets Giving the Maximum Condition Number) 
	IV-C (At Least 4 adjacent-3-angle Sets Giving the Maximum Condition Number) 

	V K=3, N=7
	VI K=3, N9 is an Odd Number
	VII Conclusion and Future Work
	References

