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Abstract—We consider the problem of designing optimalM ×

N (M ≤ N ) sensing matrices which minimize the maximum
condition number of all the submatrices of K columns. Such
matrices minimize the worst-case estimation errors when only K

sensors out ofN sensors are available for sensing at a given time.
For M = 2 and matrices with unit-normed columns, this problem
is equivalent to the problem of maximizing the minimum singular
value among all the submatrices ofK columns. For M = 2,
we are able to give a closed form formula for the condition
number of the submatrices. WhenM = 2 and K = 3, for an
arbitrary N ≥ 3, we derive the optimal matrices which minimize
the maximum condition number of all the submatrices of K
columns. Surprisingly, a uniformly distributed design is often not
the optimal design minimizing the maximum condition number.

I. I NTRODUCTION

Consider a set ofN sensors. TheseN sensors are used
to estimate anM -dimensional signal, whereN ≥ M . In the
sensor scheduling problems, to maximize the lifetime of the
sensor network, at any single time instant, onlyK sensors are
turned on to monitor theM -dimensional signal. In our system,
we assume that each time theseK sensors are uniformly
selected from the

(

N
K

)

possible subsets, so on average the
lifetime of the sensor network is extended by a factor ofN

K
.

In hostile environments, for example, in battlefields, it isvery
common that only a limited number of sensors are able to
survive and operate as designed. Suppose that onlyK sensors
out of theN sensors are able to survive the hostile environment
and be functional in sensing theM -dimensional signal. For
these application scenarios, it is helpful to maximize the worst-
case performance of the sensing system, no matter what set
of sensors are used or are able to survive. In this paper, we
consider the problem of optimal sensing schemes to achieve
such a goal.

Suppose the signal is denoted as a vectorx ∈ RM . Let us
consider a sensing matrixA ∈ RM×N . The sensing results
of N sensors can be represented byN real numbers, each of
which is the inner product between the signalx and a column
of A. Let KS ⊆ {1, 2..., N}, with cardinality |KS| = k, be
the subset sensors that are active at a certain time. We can then
represent the measurement matrix of the surviving sensors by
AKS , whereAKS is aM ×K matrix consisting of columns
indexed byKS from A.

Then theK-dimensional measurement resulty

y = AT
KSx+ w,

wherew is theK-dimensional observation noise.

The authors are temporarily listed in alphabetical order oftheir names.

Then by the singular value decomposition, we have

AT
KS = UΛV ∗,

whereΛ is a M × M diagonal matrix with theK singular
valuesσ1, σ2, ..., andσM on its diagonal.

Then the estimation error of̂x = (AT
KSAKS)

−1AT
KS(y)

satisfies

‖x̂− x‖2 = ‖(AT
KSAKS)

−1AT
KS(w)‖2 ≤

‖w‖2
σmin

.

So in order to optimize the worst-case performance, we need
to maximize the smallest singular value among all the possible
(

N
K

)

possible subsets. This introduces a problem of designing
the measurement matrixA. To make the problem meaningful,
we assume that each column of the measurement matrix has
unit norm. Since each column of the measurement matrixA
has unit norm, whenM = 2, this is equivalent to minimizing
the maximum condition number.

In general, the condition numberκ(B) of a matrixB is the
ratio of the largest singular valueσmax(B) and the smallest
singular valueσmin(B): κ(B) = σmax(B)

σmin(B) .
Let A = [a1, a2, ..., aN ], wherea1, ...., aN are the columns

of A. We assume here that||ai||2 = 1 holds true for1 ≤ i ≤
N . Let KS ⊆ {1, 2, ..., N} with cardinality|KS| = K. Now,
let AKS be anM ×K submatrixAKS = [ai1 , ai2 , ....., aiK ]
with columns indicesij , 1 ≤ j ≤ K, from the setKS. Also
define

ÃKS = AKSA
T
KS =

K
∑

j=1

aija
T
ij

(I.1)

Using these notations, we can describe our optimal design
problem for the parameter set(M,N,K) as follows.

min
A∈RM×N with unit-normed columns

{

max
KS⊆{1,2,...,N}

λmax(ÃKS)

λmin(ÃKS)

}

.

Compared with the design of compressive sensing matrices
satisfying the restricted isometry condition [1], in our problem,
the submatricesAKS are wide matrices instead of tall matrices
in [1]. Also, the application background is very different from
compressive sensing.

II. D ERIVATION OF THE CONDITION NUMBER FORM = 2

Generally, the optimal design for an arbitraryM , N and
K is difficult to get. The difficulty arises from the fact, we
need to optimize the maximum condition number among

(

N
K

)

submatrices. In our applications, we focus on the case ofM =
2. WhenM = 2, we can a concise formula for the condition
number for a specific submatrix̃AKS .

http://arxiv.org/abs/1206.0277v1


2

We know that the condition number of̃AKS is given by

κ(ÃKS) =
max||η||=1(η

T ÃKSη)

min||η||=1(ηT ÃKSη)
(II.1)

Since the columns ofA are unit-normed, we can represent
A = [a1, a2, ...., aN ] with

ai =

(

cos θi
sin θi

)

(II.2)

for 1 ≤ i ≤ N , whereθi ∈ [0, π). Note that shiftingθi by π
does not change the condition number of any submatrix.

Since||η||2 = 1 we can choose

η =

(

cosα
sinα

)

.

Thus

ηT ÃKSη = {

K
∑

j=1

ηT aija
T
ij
η}. (II.3)

And, ηTaija
T
ij
η is equal to

(cos(α) cos(βij ) + sin(α) sin(βij ))
2

= cos2(α − θij )

After simplification, (II.3) becomes

ηT ÃKSη =

K
∑

j=1

cos2(α− θij ) =
K

2
+

1

2

K
∑

j=1

cos(2(α− θij )).

(II.4)
Let us define

J(α) =
K

2
+

1

2

K
∑

j=1

cos(2(α− θij )). (II.5)

Then the minimum or maximum eigenvalue of̃AKS is
achieved whenJ ′(α) = 0

J ′(α) = −2

K
∑

j=1

sin(2(α− θij )) = 0. (II.6)

We also have

J ′′(α) = −4

K
∑

j=1

cos(2(α− θij )) ≤ 0 (II.7)

at the maximum eigenvalue and the inequality is reversed at
the minimum eigenvalue. An important observation to make
is thatαmax andαmin differ by π

2 .

When (
∑K

j=1 sin(2θij ))
2 + (

∑K
j=1 cos(2θij ))

2 6= 0, from
(II.6), the optimizingα satisfies

cos(2α) =

∑K
j=1 cos(2θij )

√

(
∑K

j=1 sin(2θij ))
2 + (

∑K
j=1 cos(2θij ))

2

and

sin(2α) =

∑K
j=1 sin(2θij )

√

(
∑K

j=1 sin(2θij ))
2 + (

∑K
j=1 cos(2θij ))

2
.

From expansion of (II.5), we get

J(α) =
K

2
+
1

2

K
∑

j=1

cos(2α) cos(2θij )+
1

2

K
∑

j=1

sin(2α) sin(2θij ).

(II.8)
Combining the optimizingα and (II.8), we have

J(α) =
K

2
+

1

2

∑K
j=1

∑K
l=1(cos(2θil) cos(2θij ) + sin(2θil) sin(2θij ))

√

(
∑K

l=1 sin(2(θil)))
2 + (

∑K
l=1 cos(2θil))

2

.

Defineden2 = (
∑K

l=1 sin 2θil)
2 + (

∑K
l=1 cos 2θil)

2. Then

den2 =

K
∑

l=1

(sin2 2θil + cos2 2θil)

+

K
∑

j=1

K
∑

l=1,l 6=j

cos 2θil cos 2θij +

K
∑

j=1

K
∑

l=1

sin 2θil sin 2θij

= K + 2

K
∑

j=1

K
∑

l=j+1

cos 2(θil − θij )

Similarly, we definenum =
∑K

j=1

∑K
l=1 cos(2θil) cos(2θij )+

∑K
j=1

∑K
l=1 sin(2θil) sin(2θij ).

It can be expanded as

num=

K
∑

l=1

(sin2 2θil + cos2 2θil) +

K
∑

j=1

K
∑

l=1,l 6=j

cos 2θil cos 2θij

+

K
∑

j=1

K
∑

l=1,l 6=j

sin 2θil sin 2θij

=K + 2

K
∑

j=1

K
∑

l=j+1

cos 2(θil − θij )

Pluggingden andnum into (II.9), we get

J(αmax) =
K

2
+

1

2

√

√

√

√

K

2
+

K
∑

j=1

K
∑

l=j+1

cos 2(θil − θij ), (II.9)

and

J(αmin) =
K

2
−

1

2

√

√

√

√

K

2
+

K
∑

j=1

K
∑

l=j+1

cos 2(θil − θij ).

(II.10)
Thus minimizing the condition number of̃AKS for a given
set of indices{i1, i2, .., iK} is the same as this optimization
problem

minimize
K
∑

j=1

K
∑

l=j+1

cos 2(θil − θij ). (II.11)

With KS ⊆ {1, 2, ..., N}, the optimal sending matrix
design problem forM = 2 can be reformulated as,

min
θ1,...,θN

max
KS={i1,i2,..,iK}

K
∑

j=1

K
∑

l=j+1

cos 2(θil − θij ).
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One can easily find the optimal solution forK = 2.
Theorem 2.1: Let K = 2, M = 2 and let N ≥ 2 be

an integer. Then the set of anglesΘ = {0, π
N
, 2π
N
... (N−1)π

N
}

minimizes the maximum condition number over all possible
sub-matrices with two columns.

Proof: The optimal design minimizes the cost function

cos 2(θil − θij ) (II.12)

for the set of indices{i1, i2} ⊆ {1, 2, ..., N} which gives the
largest cost function.

Without loss of generality, we letθi, 1 ≤ i ≤ N , lie in
the range[0, π) and let θ1 = 0. In order to minimize the
maximum condition number, we only need to maximize the
minimum of min{|2θil − 2θij |, 2π − (2θil − 2θij )|}. This is
apparently achieved with the given set of angles.

In the following sections, we will derive the optimal design
for K = 3.

III. K = 3, N IS AN EVEN NUMBER

Surprisingly, unlikeK = 2, the optimal matrix design for
K = 3 is often not achieved with the uniformly distributed
angles.

Theorem 3.1: Let K = 3 andN be an even number. Then
the set of anglesθi =

2π(i−1)
N

mod π, 1 ≤ i ≤ N , minimizes
the maximum condition number among all sub-matrices with
K columns. Moreover, they are the unique set of angles that
achieve the smallest maximum condition number forN ≥ 6.

Proof: We first derive a lower bound for the maximum
condition number among all sub-matrices withK = 3
columns; and then show the given set of angles achieve this
lower bound.

Suppose that the set of angles0 ≤ θ∗i < π, 1 ≤ i ≤
N , achieve the smallest maximum condition number for all
submatrices withK = 3 columns. Without loss of generality,
let θ∗1 = 0; and letθ∗i , 1 ≤ i ≤ N , appear sequentially in a
counter-clockwise order. Let̃θi = 2θ∗i , so we have0 ≤ θ̃i <
2π.

(lower bound for maximum condition number)
We claim that there must exist an index1 ≤ i ≤ N such
that for θ̃i, θ̃(i+1) mod N , andθ̃(i+2) mod N , |(θ̃(i+2) mod N−

θ̃i) mod (2π)| ≤ 4π
N

. Notice that |(θ̃(i+2) mod N − θ̃i)

mod (2π)| is just the counter-clockwise region going from̃θi
to θ̃(i+2) mod N . So the summation

∑N
i=1 |(θ̃(i+2) mod N−θ̃i)

mod (2π)| = 2× (2π) because each counter-clockwise region
between two adjacent angles are summed twice. By looking
at the average of theseN summands, such an indexi must
exist.

For simplicity of notations, we denote these three anglesθ̃i,
θ̃(i+1) mod N , andθ̃(i+2) mod N ast1, t2 andt3. Without loss
of generality, we assume that0 = t1 ≤ t2 ≤ t3 ≤ 4π

N
. We

how that the smallest condition number that these three angles
t1, t2, andt3 can achieve is whent2 = t1 or t2 = t3.

We consider the scenario where|t3 − t1| ≤
4π
N

remains as
a fixed constant. Definef(t2) as

f(t2) = cos(t1 − t2) + cos(t1 − t3) + cos(t2 − t3).

Its derivative is

f ′(t2) = − sin(t2 − t1) + sin(t3 − t2)

= 2 sin(
t3 + t1

2
− t2) cos(

t3 − t1
2

).

So if (t3− t1) ≤ π, the derivativef ′(t2) is non-positive for
t3+t1

2 ≤ t2 ≤ t3+t1
2 +π; and it is non-negative fort3+t1

2 +π ≤
t2 ≤ t3+t1

2 + 2π. So if 0 = t1 ≤ t2 ≤ t3 ≤ 4π
N

, f(t2) is
minimized whent2 = t1 or t2 = t3. The correspondingf(t2)
is

f(t2 = t1) = f(t2 = t3) = 1+2 cos(t1−t3) ≥ 1+2 cos(
4π

N
).

(Achievability)
In order to finish the proof, we only need to show that the
given set of anglesθi =

2π(i−1)
N

mod π, 1 ≤ i ≤ N , achieve
the lower bound1 + 2 cos(4π

N
). Let θ̈i = 2θi, so we have

0 ≤ θ̈i < 2π. Counter-clockwise, starting from the two angles
θ̈i = 0 and θ̈N

2
+1 = 0 (which are in fact two angles in the

same position), were-label theseN angles sequentially aŝθ1,
θ̂2, ..., andθ̂N .

Namely, we need to show, for any3 anglesr1, r2 and r3
from the given set of angleŝθi satisfy

cos(r1 − r2) + cos(r2 − r3) + cos(r1 − r3) ≤ 1 + 2 cos(
4π

N
).

Without loss of generality, we assume thatr1, r2 and r3
are in a counter-clockwise order; and assume that|(r2 − r1)
mod (2π)| is the smallest among|(r2−r1) mod (2π)|, |(r3−
r2) mod (2π)| and|(r1−r3) mod (2π)|. Apparently,|(r2−
r1) mod (2π)| ≤ 2π

3 , and|(r2−r1) mod (2π)| is an integer
multiple of 4π

N
.

Suppose|(r2 − r1) mod (2π)| = 0. Then r2 = r1 and
|(r1−r3) mod (2π)| = |(r3−r2) mod (2π)| ≥ 4π

N
. Similar

to the proof of “lower bound”, for such a setting, the function

f(r3) = cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)

is a decreasing function ofr3 for r3 ∈ [r1, (r1 + π)
mod (2π)]; and an increasing function ofr3 for r3 ∈ [(r1+π)
mod (2π), (r1 + 2π) mod (2π)]. So the maximum off(r3)
is achieved when|(r1−r3) mod (2π)| = 4π

N
, wheref(r3) =

1 + 2 cos(4π
N
).

Suppose|(r2 − r1) mod (2π)| = 4π
N

. Then |(r1 − r3)
mod (2π)| ≥ 4π

N
and |(r3 − r2) mod (2π)| ≥ 4π

N
. Similar

to the reasoning in the “lower bound” part, the maximum
for f(r3) = cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3) is
achieved when|(r3 − r2) mod (2π)| = 4π

N
, r3 6= r1; or

|(r1 − r3) mod (2π)| = 4π
N

and r3 6= r2. In both cases,
f(r3) = 2 cos(4π

N
)+cos(8π

N
), which is smaller than the lower

bound1 + 2 cos(4π
N
).

Now suppose|(r2− r1) mod (2π)| > 4π
N

. Since|(r2− r1)
mod (2π)| ≤ 2π

3 and r3 is certainly outside the counter-
clockwise region going fromr1 to r2, using the same rea-
soning in proving the lower bound, the function

f(r3) = cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)



4

achieves its maximum whenr3 = r2 or r3 = r1. This
maximum is

f(r3 = r1) = 1 + 2 cos(r1 − r2),

which is certainly no bigger than1 + 2 cos(4π
N
).

So the given set of angles indeed achieves the lower bound
1+2 cos(4π

N
), and we have proven the optimality of the given

set of angles in minimizing the maximum condition number
among all submatrices with3 columns.

(Uniqueness)
Moreover, in the proof of the lower bound, whenN ≥ 6,
(t3 − t1) < π, the derivativef ′(t2) is negative fort3+t1

2 <
t2 < t3+t1

2 +π; and positive fort3+t1
2 +π < t2 < t3+t1

2 +2π.
So t3 = t1 or t3 = t2 are the only two places wheref(t3)
achieves the lower bound1 + 2 cos(4π

N
). We further notice

that the lower bound is achieved only when the counter-
clockwise region between any3 adjacent angles from̃θi,
1 ≤ i ≤ N , is equal to 4π

N
. Otherwise, if there exist one

set of3 adjacent angles from̃θ such that the region between
them is larger than4π

N
, there must exist another set of3

adjacent angles from̃θi, 1 ≤ i ≤ N , such that the counter-
clockwise region between them is smaller than4π

N
. This is

because
∑N

i=1 |θ̃(i+2) mod N − θ̃i| = 2 × (2π). For these set
of 3 angles, their corresponding cost functionf(·) is larger
than the derived cost function lower bound1+2 cos(4π

N
), thus

bringing a larger maximum condition number. This proves for
N ≥ 6, θi =

2π(i−1)
N

mod π, 1 ≤ i ≤ N are the unique set
of angles that minimize the maximum condition number.

It is worth mentioning that whenN = 4, the design given
in Theorem 3.1 is still optimal. However, we have more than
one design that can minimize the maximum condition number.
This is because, when counter-clockwise region covered by3
angles isπ, no matter where the middle angle is, the cost
function is−1.

Theorem 3.2: For N = 4, K = 3 and M = 2, the set
of Θ̃ = 2Θ = {θ̃1, θ̃2, θ̃1 + π, θ̃2 + π}, where0 ≤ θ̃1 < π,
0 ≤ θ̃2 < π, minimizes the maximum condition number over
all possible3× 3 submatrices.

IV. K = 3, N = 3 OR 5

Interestingly, whenK = 3, except for the trivial caseN =
3, N = 5 is the only other case where a uniform distributed
design indeed minimizes the maximum condition number.

Theorem 4.1: Let K = 3 and N = 3 or 5. Then the
set of anglesθi = π(i−1)

N
, 1 ≤ i ≤ N , minimizes the

maximum condition number among all sub-matrices with
K = 3 columns.

Proof: The case forN = 3 is trivial, so now we only
focus on proving the claim forN = 5.

For the set of angleŝθi = 2θi = 2π(i−1)
N

, 1 ≤ i ≤ N , it
is not hard to check that3 adjacent angles, denoted byr1, r2
andr3, give the maximum cost function

cos(r1−r2)+cos(r1−r3)+cos(r2−r3) = 2 cos(
2π

5
)+cos(

4π

5
),

which corresponds to largest condition number.

Let 0 ≤ θ∗i < π, 1 ≤ i ≤ N , be a set ofN angles which
minimizes the maximum condition number of all submatrices
with 3 columns. For convenience, we consider the correspond-
ing N anglesθ̃i = 2θ∗i , 1 ≤ i ≤ N . Without loss of generality,
we assumẽθ1 = 0; and0 ≤ θ̃i < 2π are arranged sequentially
in a counter-clockwise order asi ranges from1 to N . We first
prove the following two lemmas before proving that there must
exist at least4 adjacent-3-angle sets which give the maximum
condition number.

Lemma 4.2: The counter-clockwise region between any two
adjacent angles (for examplẽθi and θ̃(i+1) mod N for somei
) is smaller thanπ.

Proof: Note that the5 angles partition the circle into5
regions. If instead the counter-clockwise region going from
θ̃i to θ̃(i+1) mod N is at leastπ, because the other4 regions
occupy at mostπ, there must exist three adjacent angles for
which the two counter-clockwise regions covered by them
is no bigger thanπ2 . For those three angles, from the same
calculation as in Theorem 3.1, the smallest cost function these
3 angles can achieve is

cos(
π

2
−

π

2
) + cos(0 −

π

2
) + cos(0−

π

2
) = 1,

which is already bigger than the cost2 cos(2π5 ) + cos(4π5 )

achieved by the5 anglesθ̃i = 2θi =
2π(i−1)

N
, 1 ≤ i ≤ N .

Lemma 4.3: Let N = 5. In the optimal desigñθi, 1 ≤
i ≤ N , consider4 adjacent anglesr1, r2, r3 and r4, where
they are arranged in a counter-clockwise order; andr2 andr3
are inside the counter-clockwise region going fromr1 to r4.
(r1, r2, r3) and(r2, r3, r4) give the same condition number if
and only if (r2 − r1) mod (2π) = (r4 − r3) mod (2π).

Proof: Without loss of generality, we assumer1 = 0 such
that ri, 1 ≤ i ≤ 4, are all within [0, 2π). Now we only need
to show (r1, r2, r3) and (r2, r3, r4) give the same condition
number if and only ifr2 − r1 = r4 − r3.

If (r1, r2, r3) and(r2, r3, r4) give the same condition num-
ber, we have

cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)

= cos(r3 − r2) + cos(r4 − r2) + cos(r4 − r3).

This means

2 cos(
r3 − r2

2
+ r2 − r1) cos(

r3 − r2
2

)

= 2 cos(
r3 − r2

2
+ r4 − r3) cos(

r3 − r2
2

).

Since we have just shown thatr3 − r2 is smaller thanπ,
we have

cos(
r3 − r2

2
+ r2 − r1) = cos(

r3 − r2
2

+ r4 − r3).

This means eitherr2 − r1 = r4 − r3 or r4 − r1 = 2π.
The latter is not possible for a set of angles which achieve the
smallest maximum condition number, becauser4 − r1 = 2π
forces the next angler5 to be aligned with bothr1 and r4.
This gives a condition number of∞ for the three anglesr1,
r4 andr5. So we must haver2 − r1 = r4 − r3.

In the optimal designθ̃i, 1 ≤ i ≤ N , we assume
that {θ̃1, θ̃2, θ̃3} is a adjacent-3-set which corresponds to the
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maximum condition number.

A. (At Least 2 adjacent-3-angle Sets Giving the Maximum
Condition Number)

Lemma 4.4: θ̃1, θ̃2 and θ̃3 can not be the unique set of3
angles that have the largest condition number.

Proof: We prove by contradiction. Suppose{θ̃1, θ̃2, θ̃3}
is the unique set of3 adjacent angles that have the largest
condition number. Then we must haveθ̃3 − θ̃1 < π. Suppose
instead that̃θ3 − θ̃1 = π or θ̃3 − θ̃1 > π.

If θ̃3 − θ̃1 = π, the cost function for the set of3 anglesθ̃1,
θ̃2 and θ̃3 is equal to the cost function for the set of3 angles
θ̃3, θ̃5 and θ̃1. This is a contradiction to our assumption.

If θ̃3 − θ̃1 > π, then θ̃2 − θ̃1 = θ̃3 − θ̃2. Otherwise, we can
always shiftθ̃2 towards θ̃1+θ̃3

2 by a sufficiently small amount
and strictly decrease the cost function forθ̃1, θ̃2 and θ̃3. Since
the cost functions for any other3 adjacent angles are strictly
smaller than the original cost function ofθ̃1, θ̃2 and θ̃3, their
cost functions will remain smaller than the new revised cost
function of θ̃1, θ̃2 andθ̃3. So we have just decreased the largest
condition number, which is a contradiction. So we must have
θ̃2− θ̃1 = θ̃3− θ̃2. However the cost function for̃θ4, θ̃5 andθ̃1
is lower bounded by2 cos(π2 )+ cos(π) = −1, which is larger
than the cost function for̃θ1, θ̃2 and θ̃3. This is contradictory
to the assumption that the set ofθ̃1, θ̃2 and θ̃3 corresponds to
the maximum condition number.

So we must havẽθ3 − θ̃1 < π. In this case, if we shift
θ̃3 counter-clockwise by a sufficiently small amountδ, we
will strictly decrease the cost function for̃θ1, θ̃2 and θ̃3.
Since by our assumption, the cost function of any other3
adjacent angles werestrictly smaller than the original cost
function of {θ̃1, θ̃2, θ̃3}, their cost functions will stay smaller
than the new revised cost function for{θ̃1, θ̃2, θ̃3}. So we have
just strictly decreased the maximum condition number of the
optimal design, which is not possible.

B. (At Least 3 adjacent-3-angle Sets Giving the Maximum
Condition Number)

Lemma 4.5: {θ̃1, θ̃2, θ̃3} and {θ̃2, θ̃3, θ̃4} can not be the
only 2 sets of 3 adjacent angles which correspond to the
maximum condition number.

Proof: We prove by contradiction. Suppose{θ̃1, θ̃2, θ̃3}
and {θ̃2, θ̃3, θ̃4} are the only two sets of3 adjacent angles
that have the largest condition number. This meansθ̃4 − θ̃3 =
θ̃2− θ̃1 = α for someα ≥ 0; andθ̃2− θ̃1 = β for someβ ≥ 0.
Note that2α+ β < 2π because, otherwise,̃θ4, θ̃5 and θ̃1 are
forced to be in the same position, giving rise to a condition
number of∞ for these three angles.

From Lemma 5.2, we knowβ < π. For such aβ, it is not
hard to check that under the constraint2α+ β ≤ 2π, the cost
function cos(α) + cos(β) + cos(α + β) achieves its unique
minimum when2α+ β = 2π. Moreover, the cost function is
a strictly decreasing function asα grows from0 to π− β

2 . So
if we shift θ̃4 counter-clockwise by a small amountδ > 0 and
shift θ̃1 clockwise by the same small amountδ > 0, then as
long as2α+ β < 2π, this will strictly decrease the condition
numbers simultaneously for{θ̃1, θ̃2, θ̃3} and{θ̃2, θ̃3, θ̃4}.

Since the cost functions for any other3 adjacent angles were
strictly smaller than the original cost function of{θ̃1, θ̃2, θ̃3},
their cost functions will stay smaller than the new revised cost
function of{θ̃1, θ̃2, θ̃3}. So we have just strictly decreased the
maximum condition number, which is a contradiction to our
assumption of an optimal design.

By symmetry, in the same spirit, we have
Lemma 4.6: {θ̃1, θ̃2, θ̃3} and {θ̃1, θ̃2, θ̃5} can not be the

only 2 sets of 3 adjacent angles which have the largest
condition number.

We can also prove:
Lemma 4.7: {θ̃1, θ̃2, θ̃3} and {θ̃3, θ̃4, θ̃5} can not be the

only 2 sets of 3 adjacent angles which correspond to the
maximum condition number.

Proof: Again, we prove by contradiction. Suppose
{θ̃1, θ̃2, θ̃3} and{θ̃3, θ̃4, θ̃5} are the only two sets of3 adjacent
angles that have the largest condition number.

We first assume that̃θ5 − θ̃3 6= π.
We claim that if θ̃5 − θ̃3 > π, then θ̃4 = θ̃3+θ̃5

2 . This is
because otherwise, we can shiftθ̃4 toward the middle point
θ̃3+θ̃5

2 by a sufficiently small amount, thus strictly decreas-
ing the condition number for{θ̃3, θ̃4, θ̃5}. This will leave
{θ̃1, θ̃2, θ̃3} as the unique adjacent-3-set with the maximum
condition number, which is not possible by Lemma 4.4.

But if θ̃5−θ̃3 > π, we must havẽθ3−θ̃1 < π. However, then
{θ̃1, θ̃2, θ̃3} and{θ̃3, θ̃4, θ̃5} can not have the same condition
number. In fact, from analyzing the cost function, whenθ̃3 −

θ̃1 < π, θ̃5− θ̃3 > π andθ̃4 = θ̃3+θ̃5
2 , {θ̃3, θ̃4, θ̃5} has a strictly

smaller condition number than{θ̃1, θ̃2, θ̃3}.
So whenθ̃5 − θ̃3 6= π, we must havẽθ5 − θ̃3 < π and,

symmetrically,θ̃3 − θ̃1 < π. Then θ̃4 = θ̃3 or θ̃5; θ̃2 = θ̃1
or θ̃3; and θ̃3 − θ̃1 = θ̃5 − θ̃3. This is because, if̃θ4 6= θ̃3
and θ̃4 6= θ̃5, we can always shift̃θ4 towards whatever is
closer toθ̃4 amongθ̃3 and θ̃5. This will strictly decrease the
corresponding cost function, and leaving only one adjacent-
3-angle set having the maximum condition number, which is
not possible by Lemma 4.4.

But then by increasing̃θ3 − θ̃1 = θ̃5 − θ̃3 by a suffi-
ciently small amountδ > 0, we will strictly decrease the
condition numbers for{θ̃1, θ̃2, θ̃3} and{θ̃3, θ̃4, θ̃5}. Since the
cost functions for the other sets of3 adjacent angles were
strictly smaller than the original cost function of{θ̃1, θ̃2, θ̃3}
and{θ̃3, θ̃4, θ̃5}, their cost functions will remain smaller than
the new revised cost function of{θ̃3, θ̃4, θ̃5}. So we have
just decreased the maximum condition number of the optimal
design, which is not possible.

We now consider the possibility that̃θ5 − θ̃3 = π. Because
{θ̃3, θ̃4, θ̃5} and{θ̃1, θ̃2, θ̃3} both have the maximum condition
number; and(θ̃3− θ̃1)+(θ̃5− θ̃3) ≤ 2π, with the cost function
cos(α) + cos(β) + cos(α + β) achieving the minimum−1
whenα + β ≤ π we must havẽθ3 − θ̃1 = π too. Thenθ̃5
and θ̃1 must be in the same position, and so{θ̃1, θ̃2, θ̃5} must
have a condition number no smaller than{θ̃1, θ̃2, θ̃3} since
cos(θ̃2−θ̃1)+cos(θ̃1−θ̃5+2π)+cos(θ̃2−θ̃5+2π) achieves its
minimum−1 with θ̃2 = π whenθ̃2 ≤ π. This is contradictory
to our assumption that{θ̃1, θ̃2, θ̃3} and {θ̃3, θ̃4, θ̃5} are the
only 2 sets of3 adjacent angles which have the maximum
condition number.
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By symmetry, we can also prove
Lemma 4.8: {θ̃1, θ̃2, θ̃3} and {θ̃4, θ̃5, θ̃1} can not be the

only 2 sets of 3 adjacent angles which have the largest
condition number.

C. (At Least 4 adjacent-3-angle Sets Giving the Maximum
Condition Number)

Now we consider the cases where more angle sets have the
maximum condition number.

Lemma 4.9: {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5} can
not be the only3 sets of3 adjacent angles which have the
largest condition number.

Proof: We prove by contradiction. Let us assume
{θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5} are the only3 sets
of 3 adjacent angles which have the largest condition number.
Apparently,θ̃2− θ̃1 = θ̃4− θ̃3 = α and θ̃3− θ̃2 = θ̃5− θ̃4 = β
for someα ≥ 0 andβ ≥ 0.

We must haveα+β < π. Otherwise, anglẽθ5 will be in the
same position as̃θ1. But, as argued in Lemma 4.7, this implies
{θ̃5, θ̃1, θ̃2} can not have a smaller condition number than
{θ̃1, θ̃2, θ̃3}, which is a contradiction to the assumption that
{θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5} are the only3 sets
of 3 adjacent angles which have the largest condition number.

So we can always increaseα andβ by a sufficiently small
amountδ to decrease the condition number for{θ̃1, θ̃2, θ̃3},
{θ̃2, θ̃3, θ̃4} and{θ̃3, θ̃4, θ̃5}. Since the cost functions for any
other3 adjacent angles were strictly smaller than the original
cost function of{θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and{θ̃3, θ̃4, θ̃5}, their
cost functions will remain smaller than the new revised cost
function of θ̃1, θ̃2 and θ̃3. So we have just decreased the
maximum condition number, which is a contradiction to our
assumption.

We also have:
Lemma 4.10: {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and{θ̃4, θ̃5, θ̃1} can

not be the only3 sets of3 adjacent angles which have the
largest condition number.

Proof: Again, we prove by contradiction. Suppose that
{θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃4, θ̃5, θ̃1} are the only3 sets
of 3 adjacent angles which have the largest condition number.

Firstly, we assume that the counter-clockwise region be-
tween anglẽθ4 and anglẽθ1 is smaller thanπ. Then we know
angle θ̃5 must be in the same position as angleθ̃4 or angle
θ̃1. Otherwise, as we discussed earlier, we can always shiftθ̃5
such that the cost function for{θ̃4, θ̃5, θ̃1} is decreased, which
will reduce us to the scenario in Lemma 4.5.

Supposẽθ5 is in the same position as anglẽθ4. From our
assumption, the cost function for{θ̃3, θ̃4, θ̃5} is smaller than
the cost function for{θ̃2, θ̃3, θ̃4}. This is not possible, because
θ̃4 − θ̃3 < π, and θ̃5 − θ̃4 = 0 and the cost function for
{θ̃2, θ̃3, θ̃4} is maximized wheñθ2 = θ̃3 under the condition
θ̃2 ≤ θ̃3.

By symmetry ofθ̃5 with respect toθ̃4 and θ̃1, when θ̃5 is
in the same position as̃θ1 , we also get a contradiction.

Secondly, we assume that the counter-clockwise region
going from θ̃4 to θ̃1 is equal toπ. In this case, the cost
function for {θ̃5, θ̃1, θ̃4} does not depend on the location of
angle θ̃5. Since the cost function for{θ̃4, θ̃5, θ̃1} is −1 and

θ̃4 − θ̃1, in order for{θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and{θ̃4, θ̃5, θ̃1}
to have the same cost function, we must haveθ̃2 = θ̃1 = 0
and θ̃3 = θ̃4 = π. This is contradictory to the assumption that
{θ̃2, θ̃3, θ̃4} has a larger cost function than{θ̃3, θ̃4, θ̃5}.

Thirdly, we assume that the counter-clockwise region going
from θ̃4 to θ̃1 is larger thanπ. Similar to earlier analysis for the
case that ,̃θ5 must at the middle point of the counter-clockwise
region going fromθ̃4 to θ̃1. However, we get a contradiction
because the cost function for{θ̃4, θ̃5, θ̃1} is no bigger than
−1; while the cost function for{θ̃1, θ̃2, θ̃3} is bigger than−1
sinceθ̃3 − θ̃1 < π.

So in summary, we have proven this lemma.
In the same spirit, we can prove
Lemma 4.11: {θ̃1, θ̃2, θ̃3}, {θ̃3, θ̃4, θ̃5} and{θ̃5, θ̃1, θ̃2} can

not be the only3 sets of3 adjacent angles which have the
largest condition number.

Lemma 4.12: {θ̃1, θ̃2, θ̃3}, {θ̃3, θ̃4, θ̃5} and{θ̃4, θ̃5, θ̃1} can
not be the only3 sets of3 adjacent angles which have the
largest condition number.

So the only left four possibilities are
• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4}, {θ̃3, θ̃4, θ̃5}, and{θ̃4, θ̃5, θ̃1} are

the sets of3 adjacent angles which have the largest
condition number.

• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃1, θ̃5}, {θ̃1, θ̃5, θ̃4}, and{θ̃5, θ̃4, θ̃3} are
the sets of3 adjacent angles which have the largest
condition number.

• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4}, {θ̃3, θ̃4, θ̃5}, and{θ̃5, θ̃1, θ̃2} are
the sets of3 adjacent angles which have the largest
condition number.

• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4}, {θ̃4, θ̃5, θ̃1}, and{θ̃5, θ̃1, θ̃2} are
the sets of3 adjacent angles which have the largest
condition number.

These four cases are symmetric to each other, so we
consider the first case and the conclusion carries over to the
other three cases accordingly.

The first case implies that̃θ2−θ̃1 = θ̃4−θ̃3 = θ̃1−θ̃5+2π =
α for some constantα ≥ 0; and θ̃3 − θ̃2 = θ̃5 − θ̃4 = β for
some constantβ ≥ 0.

We note that{θ̃1, θ̃2, θ̃5} are adjacent3 angles withα
betweeñθ1 andθ̃2; andα between{θ̃1 andθ̃5}. We also notice
thatα ≥ β ≥ 0 (becauseα+ β ≤ π and2α+ β ≤ 2π. Under
these constraints, it is not hard to check that the cost function
cos(α) + cos(α) + cos(2α) for {θ̃5, θ̃1, θ̃2} is bigger than the
cost functioncos(α) + cos(β) + cos(α+ β) for {θ̃1, θ̃2, θ̃3} if
and only ifα ≥ β. ) and3α+2β = 2π. In order to minimize
the largest condition number, we should make the cost function
cos(α) + cos(β) + cos(α+ β) as small as possible.

Under the constraints thatα ≥ β ≥ 0 and3α + 2β = 2π,
we have2π

5 ≤ α ≤ 2π
3 . Within this range, the cost function

cos(α)+cos(β)+cos(α+β) achieves its minimum whenα =
β = 2π

5 . If α = β, the cost function is equal to2 cos(2π5 ) +
cos(4π5 ) ≈ −0.1910.

So indeed the optimal solution is given byθi = π(i−1)
N

,
1 ≤ i ≤ N .

V. K = 3, N = 7

One might think that the uniform distributed design is
optimal forN = 7
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Theorem 5.1: Let K = 3 andN = 7 . Thenθi =
2π(i−1)
N+1

mod π, 1 ≤ i ≤ N , minimizes the maximum condition
number among all sub-matrices withK = 3 columns.

Proof: Among θ̂i = 2θi =
4π(i−1)
N+1 mod 2π, 1 ≤ i ≤ N ,

it is not hard to check that3 adjacent angles, denoted byr1,
r2 andr3 with r1 = r2, give the maximum cost function

cos(r1−r2)+cos(r1−r3)+cos(r2−r3) = 2 cos(
4π

N + 1
)+1.

This means the submatrix corresponding to such3 adjacent
angles generate the maximum condition number among all
possible3-column submatrices.

So in order to prove that̂θi = 2θi = 4π(i−1)
N+1 mod 2π,

1 ≤ i ≤ N , minimizes the maximum condition number
among all3-column submatrices, it is enough to shoŵθi =
2θi =

4π(i−1)
N+1 mod 2π, 1 ≤ i ≤ N , minimizes the maximum

condition number among all the adjacent-3-angle sets. Let us
assume thatN angles0 ≤ θ̃ = 2θ∗i < 2π, 1 ≤ i ≤ N
achieves the smallest maximum condition number among all
the adjacent-3-angle sets. Without sacrificing generality, let
θ̃1 = 0 and θ̃i be arranged sequentially in a counter-clockwise
order asi goes from1 to N .

Lemma 5.2: In the optimal desigñθi, 1 ≤ i ≤ N , the
counter-clockwise region covered by any three adjacent angles
is no bigger thanπ for N = 7; and smaller thanπ for N ≥ 9.
The only scenario where the counter-clockwise region covered
by one adjacent-3-angle set isπ is whenN = 7 and the7
angles are respectively0, 0, π/2, π/2, π,π and 3π

2 (up to
rotations of these angles).

Proof: Suppose instead in the optimal design, the counter-
clockwise region covered by some three adjacent anglesr1, r2
andr3 is larger thanπ. Then there must exist3 adjacent angles
for which the counter-clockwise region covered by them is
smaller than 3π

N−1 ≤ π
2 because the sum of the counter-

clockwise regions covered by all the3 adjacent angles is4π
(Please see the proof in Theorem 3.1). This means that the
cost function forr1, r2 andr3 is larger than2 cos( 3π

N−1 ) + 1

(whenr2 is aligned withr1 or r3). Note that,2 cos( 3π
N−1 )+1 is

equal to the maximum cost function2 cos( 4π
N+1)+ 1 given by

the to-be-proven optimal design̂θi = 2θi =
4π(i−1)
N+1 mod 2π,

1 ≤ i ≤ N , whenN = 7; and is bigger than2 cos( 4π
N+1 ) + 1

whenN ≥ 9. This is contradictory to our optimal design. So in
the optimal design̂θi = 2θi =

4π(i−1)
N+1 mod 2π, the counter-

clockwise region covered by any three adjacent angles is no
bigger thanπ for N ≥ 7.

WhenN = 7 and the counter-clockwise region covered by
one adjacent-3-angle set isπ, the counter-clockwise region
covered by each one of the other adjacent-3-angle sets is
forced to bepi

2 , The only way for that to happen is that the7
anglesθ̃i, 1 ≤ i ≤ N , are0, 0, π/2, π/2, π,π and 3π

2 (up to
rotations of these angles).

Note that the same argument can show that the counter-
clockwise region covered by any three adjacent angles is
smaller thanπ for N ≥ 9.

In the optimal desigñθi, 1 ≤ i ≤ N , there areN sets
of 3 adjacent angles, and we denote each set by its counter-
clockwise central angle. For example, we denote the set of
three angles{θ̃(j−1) mod N , θ̃j , θ̃(j+1) mod N} for some1 ≤

j ≤ N as its central angle{θ̃j}. We assume that̃θ1, θ̃2 and
θ̃3 are three angles which correspond to the largest condition
number.

We now prove the following lemma:
Lemma 5.3: In the optimal desigñθi, 1 ≤ i ≤ N , N ≥

7, there do not exist≥ 2 consecutive adjacent-3-angle sets
(for example{θ̃j} and {θ̃(j+1) mod N} for some1 ≤ j ≤
N ) which have smaller condition numbers than the maximum
condition number.

Proof: We prove by contradiction. Suppose that for some
j, {θ̃j} and {θ̃(j+1) mod N} both have smaller condition
numbers than the maximum condition number. We also as-
sume that one of{θ̃(j−1) mod N} and {θ̃(j+2) mod N} is an
adjacent-3-angle set corresponding to the maximum condition
number. Notice that we can always find such aj if there
exist≥ 2 consecutive adjacent-3-angle sets which have smaller
condition numbers than the maximum condition number.

By Lemma 5.2, any adjacent angle widthsγ1 andγ2 satisfy
γ1+γ2 ≤ π. The cost function forcos(γ1)+cos(γ2)+cos(γ1+
γ2) strictly decreases if we increaseγ1 andγ2 simultaneously
by a sufficiently small amount.

Suppose that{θ̃j} spans two regions with counter-clockwise
angle widthα ≥ 0 andβ ≥ 0; and that{θ̃(j+1) mod N} spans
two regions with counter-clockwise angle widthβ andγ.

If β > 0, we can always reduceβ by a sufficiently small
enough amount and increase every region involved in all the
adjacent-3-angle sets corresponding to the maximum condition
number by an appropriate small amount such that the angle
widths of theN regions still sum up to2π. In this way, we
have just strictly decreased the maximum condition number
among all the adjacent-3-angle sets. This is contradictory to
the optimal design assumption.

If β = 0, since every two adjacent angles are no more
thanπ apart,{θ̃(j−1) mod N} has no bigger condition number
than{θ̃j} and{θ̃(j+2) mod N} has no bigger condition number
than{θ̃(j+1) mod N}. This is contradictory to the assumption
that {θ̃j} and {θ̃(j+1) mod N} both have smaller condition
numbers than the maximum condition number; and one of
{θ̃(j−1) mod N} and {θ̃(j+2) mod N} is an adjacent-3-angle
set corresponding to the maximum condition number.

Lemma 5.4: Let N = 7. Supposẽθi, 1 ≤ i ≤ N , is an opti-
mal design which minimizes the maximum condition number
among all adjacent-3-angle sets. Then there exists at most1
adjacent-3-angle set which has smaller condition number than
the maximum condition number among all adjacent-3-angle
sets.

Proof: We prove this lemma by contradiction.
Without loss of generality, suppose that{θ̃1} has a condition

number smaller than the maximum number and there exist≥ 2
adjacent-3-angle sets which have smaller condition numbers
than the maximum condition number among all adjacent-3-
angle sets. Then there must exist a sequence of consecutive
angles, saỹθi, 1 ≤ i ≤ l, for some3 ≤ l ≤ N , such that any
adjacent-3-angle set{θ̃j}, 2 ≤ j ≤ l − 1 has the maximum
condition number while the first counter-clockwise adjacent-3-
angle set{θ̃l} and the first clockwise adjacent-3-angle set{θ̃1}
have smaller condition numbers than the maximum condition
number.
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Since{θ̃j}, 2 ≤ j ≤ l − 1, have theequal maximum con-
dition number, the counter-clockwise regions between{θ̃j},
1 ≤ j ≤ l must alternate betweenα ≥ 0 andβ ≥ 0, where
α+β ≤ π. Without loss of generality, we assume thatα ≥ β.
For now we also assume thatα + β < π. From 5.2, when
α+ β = π, only 1 adjacent-3-angle set has a smaller than the
maximum condition number.

We first consider the case wherel is an odd number,namely
we have an even number of regions between angleθ̃1 and
angleθ̃l. Sinceα+ β < π, we claim thatβ must be equal to
0. Suppose insteadβ 6= 0. Then we can shift the even-number-
indexed angles{θ̃j}, 1 ≤ j ≤ l, counter-clockwise by a suffi-
ciently small amount. This will strictly decrease the condition
numbers for{θ̃j}, 2 ≤ j ≤ l − 1. Since{θ̃l} and {θ̃1} also
have strictly smaller condition numbers than the maximum
condition number, thus we have≥ 2 consecutive adjacent-3-
angle sets which have the smaller condition number than the
maximum condition number. This forms a contradiction by
Lemma 5.3.

So we must haveβ = 0. However, this implies
{θ̃(l+1) mod N} has a condition number no bigger than that
of {θ̃l}. Thus we have two consecutive adjacent-3-angle
sets{θ̃l} and {θ̃(l+1) mod N} which have smaller condition
numbers than the maximum condition number. This forms a
contradiction by Lemma 5.3.

We then consider the case wherel is an even number. Since
l ≥ 3, such a number can only bel = 4 or l = 6.

When l = 4, then{θ̃6} must also have a smaller condition
number than the maximum condition number. This is because,
from Lemma 5.3,{θ̃5} and{θ̃7} can not have smaller condi-
tion numbers than the maximum condition number. Moreover,
if {θ̃6} also has the maximum condition number,{θ̃j mod N},
4 ≤ j ≤ N + 1, are then consecutive angles such that{θ̃5},
{θ̃6} and {θ̃7} all have the maximum condition numbers,
which is not possible by our previous discussion of the cases
when l is an odd number.

However, when{θ̃6} has a smaller condition number than
the maximum condition number, there are an even number (in
fact, 2,) of regions between anglẽθ4 and angleθ̃6, which is
not possible by our previous discussion.

So in summary, the original assumption of≥ 2 adjacent-
3-angle sets having larger than maximum condition number
cannot hold. There exists at most1 adjacent-3-angle set which
has smaller condition number than the maximum condition
number.

If every adjacent-3-angle set has the same condition number
as the maximum condition number, then the region between
every angle must be equal. So the cost function for the
maximum condition number should be2 cos(2π7 ) + cos(4π7 ).

If there is exactly1 adjacent-3-angle set which has a smaller
condition number than the maximum condition number, and
{θ̃1} is the unique adjacent-3-angle set that has the smallest
condition number, theñθi, 1 ≤ i ≤ 7, can be respectively
denoted by0, α, α+β, 2α+β, 2(α+β), 3α+2β, and3α+3β,
whereα ≥ 0, β ≥ 0 andα > β and4α+ 3β = 2π. The cost
function for the maximum condition numbercos(α)+cos(β)+
cos(α + β) is thus minimized whenβ = 0 andα = 2π

4 for

α ≥ 0, β ≥ 0 andα > β and4α+3β = 2π. This cost function
is smaller than the cost function of2 cos(2π7 ) + cos(4π7 ), so
θi = 2π(i−1)

N+1 mod 2π, 1 ≤ i ≤ N is indeed the optimal
design.

VI. K = 3, N ≥ 9 IS AN ODD NUMBER

Theorem 6.1: Let K = 3 andN ≥ 9 be an odd number.
Then the set of anglesθi = 2π(i−1)

N+1 mod π, 1 ≤ i ≤ N ,
minimizes the maximum condition number among all sub-
matrices withK = 3 columns.

Proof: The proof of this theorem follows the proof of
Theorem 5.1. The complication compared with Theorem 5.1
comes from the fact that we need to prove the following lemma
instead of Lemma 5.4.

Lemma 6.2: Let us takeN ≥ 9. Suppose that̃θi, 1 ≤
i ≤ N , is an optimal design which minimizes the maximum
condition number among all adjacent-3-angle sets. Then there
exists at most1 adjacent-3-angle set which has a smaller
condition number than the maximum condition number among
all adjacent-3-angle sets.

Proof: We prove this lemma by contradiction.
Suppose that there exists≥ 2 adjacent-3-angle sets which

have smaller condition numbers than the maximum condition
number among all adjacent-3-angle sets. From Lemma 5.3,
we can always partition theN angles into distinct blocks
by using θ̃j ’s with {θ̃j} having a strictly smaller condition
number than the maximum condition number as the boundary
angles between different blocks. From Lemma 5.3, there must
exist at least one angle between two boundary angles. Without
loss of generality, supposẽθ1 and θ̃l, 3 ≤ l ≤ N , are two
neighboring boundary angles. Since{θ̃j}, 2 ≤ j ≤ l−1, have
the equal maximum condition number, the counter-clockwise
regions between{θ̃j}, 1 ≤ j ≤ l must alternate betweenα ≥ 0
andβ ≥ 0, whereα+ β < π according to Lemma 5.2.

We first consider the case whenl is an odd number, namely
we have an even number of regions between angleθ̃1 and
angle θ̃l. Without loss of generality, we assume thatα ≥ β
when l is an odd number. Sinceα + β < π, from the same
reasoning as in the proof of Lemma 5.4 we know this is not
possible.

We then consider the case whenl is an even number. Ifl
is an even number, we divide into two scenarios:α ≥ β or
α ≤ β.

If α ≤ β, we can simultaneously shift the even-numbered
anglesθ̃j, j = 2, 4, ..., l−2, clockwise by the same sufficiently
small angleδ > 0. Note that this shift will not increase the
maximum condition number ifδ is sufficiently small. However,
this will create two consecutive adjacent-3-angle sets{θ̃2}
and {θ̃1} which have smaller condition numbers than the
maximum condition number. According to Lemma 5.3, this
is contradictory to our assumption of an optimal design.

We now assumeα ≥ β and the number of regions in each
block is an odd number. Consider two neighboring blocks
separated by a single anglej such that{θ̃j} is an adjacent-
3-angle set which has a smaller condition number than the
maximum condition number. Suppose that the second block
is in the clockwise direction of the first block. The counter-
clockwise region in the first block alternates betweenα and
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β; the counter-clockwise region in the second block alternates
betweenα1 andβ1 with α1 ≥ β1 (otherwise we are done by
the discussion in last paragraph). Since the adjacent-3-angle
sets inside each block have the maximum condition number,
without loss of generality, we haveα1 ≤ α, andβ1 ≥ β. If
we change the regions of the2-nd block to beβ1, α1, β1, α1,
..., α1, andα1. Sinceα1 ≤ α and β1 ≥ β, in this change,
we do not increase the condition number of{θ̃j}. It is not
hard to check that as long asα1 + β1 < π, the cost function
cos(α1)+cos(α1)+cos(2α1) is smaller than the cost function
cos(α1) + cos(β1) + cos(α1 + β1). So in this change, we do
not increase the maximum condition number among adjacent-
3-angle sets, while creating two consecutive adjacent-3-angle
sets at the clockwise end of the second block, which is a
contradiction from Lemma 5.3.

So in summary, there exists at most1 adjacent-3-angle
set which has smaller condition number than the maximum
condition number.

So in the optimal design, the angles must alternate likeα,
β, ..., α, β, α, whereα ≥ β, and N+1

2 α + N−1
2 β = 2π. For

N ≥ 9, the optimal angle allocation forα is 4π
N+1 andβ = 0.

VII. C ONCLUSION AND FUTURE WORK

We propose the problem designing optimalM ×N (M ≤
N ) sensing matrices which minimize the maximum condition
number of all the submatrices ofK columns. Such matrices
minimize the worst-case estimation errors when onlyK sen-
sors out ofN sensors are available for sensing at a given
time. WhenM = 2 and K = 3, for an arbitraryN ≥ 3,
we derive the optimal matrices which minimize the maximum
condition number of all the submatrices ofK columns. It is
interesting that minimizing the maximum coherence between
columns does not always guarantee minimizing the maximum
condition number.
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