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ARITHMETIC, GEOMETRIC AND HARMONIC MEAN FOR
ACCRETIVE-DISSIPATIVE MATRICES

MINGHUA LIN

ABSTRACT. The concept of Lowner (partial) order for general complex ma-
trices is introduced. After giving the definition of arithmetic, geometric and
harmonic mean for accretive-dissipative matrices, we study their basic prop-
erties, in particular, A-G-H mean inequality is established for two accretive-
dissipative matrices in the sense of this extended Lowner order.

1. INTRODUCTION

Let M, (C) be the space of complex matrices of size n x n. For any T € M,,(C),
we can write

(1.1) T=A+iB,
in which A = T+2T* and B = T;iT* are both Hermitian. This is called the Toeplitz

decomposition (sometimes also called Cartesian decomposition) of T'. For Hermit-
ian matrices, there is an important partial order called Lowner (partial) order which
says that for two Hermitian matrices A, B € M, (C), A > (>)B provided A — B
is positive (semi)definite. However, a similar partial order for general complex ma-
trices seems lacking. The unique decomposition (LI enables us to give a natural
extension of the Lowner order for general complex matrices.

Let T, S € M, (C), with their Toeplitz decompositions

(1.2) T=A+iB, S=C+iD,

we define the partial order T' > ()5 provided that both A > (>)C and B > (>)D.

Recall that a matrix T € M, (C) is said to be accretive-dissipative if, in its
Toeplitz decomposition [III), both matrices A and B are positive definitd]l. The
set of accretive-dissipative matrices of order n will be denoted by MFt. The
symbol M, will be used to denote the broader set of accretive-dissipative matrices
defined by the conditions A > 0 and B > 0. Obviously, both M+ and M, are
cones. There are several recent work devoted to studying this kind of matrix (see
[7, 9, 10, 14]) and more generally, matrices with positive real part (see [2, B [15]).

Our main focus is the possible extension of the properties of Hermitian positive
definite matrices in the set of accretive-dissipative matrices. The latter behaves
differently from the former. For example, the set of accretive-dissipative matrices
is not closed under inversion. The partial order for general complex matrices is also
not a trivial extension of the Lowner order for Hermitian matrices.
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1Since the numerical range of T is easily seen to be in the first quadrant, another terminology
for this kind of matrix may be first quadrant matriz.
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Let T € M, t, then we know (see e.g..kato) there is a unique square root of T,
denoted by T2, that belongs to M.

The famous Léwner-Heniz theorem (see e.g., [16]) states that

For Hermitian positive definite matrices A,C € M,,(C), Then

A > C ensures A" > C"  for any r € [0, 1].
But this fails for accretive-dissipative matrices as the following example shows,

Example 1.1. Let T = 321 + 24il, S = 71 + 244l (throughout, I denotes the
identity matriz of an appropriate size). Obviously, T = S. However, Tz = 61+2:1,
S3 = 41 + 3il, so we don’t have Tz = Sz.

The paper is organized as follows: in Section 2, we define the arithmetic, geo-
metric and harmonic mean for accretive-dissipative matrices and study their basic
properties; in Section 3, we present the partial order between these three means,
including a partial order between harmonic mean and the parallel sum of two
accretive-dissipative matrices; in the final section, some concluding remarks are
given.

2. ARITHMETIC, GEOMETRIC AND HARMONIC MEAN

For two Hermitian positive definite matrices A, C € M,,(C), we use the following
notation for the arithmetic, geometric and harmonic means of A and C, respectively
(see [12]):

A+C
ave =225,
AfC = AB(ATTCATE)5 A%,
AlC =247+ H L

In this section, we extend the above three means to the cone of accretive-
dissipative matrices. For T, S € M, ", the arithmetic mean T and S is naturally
defined by

T+ S

2
Next, we define the geometric mean of T and S (also denoted by TH#S) by the
maximum (in the sense of partial order) of an X € M, (C) such that
T X
[ r S} - 0.

Write X =Y +iZ to be the Toeplitz decomposition of X, then it means
A'Y |\B Z
R

or the maximum of Hermitian matrices Y and Z such that

[A Y}ZOand [B Z

Yy C Z D

The maximum of such Y, Z are A$C, BfD, respectively (e.g., [13]). Thus, we
can write

B

T4S = A4C + iB4D.



ARITHMETIC, GEOMETRIC AND HARMONIC MEAN 3

Our harmonic mean of 7" and S (also denoted by T'1S) is defined by the maximum
of all X € M,,(C) for which
2T 0| (X X
0 25— |X X|°

Write X = Y + ¢Z to be the Toeplitz decomposition of X, then it means the
maximum of Hermitian matrices Y and Z such that

2A 0 Y Y 2B 0 Z 7
[0 2C]E[Y Y} and [o 2D}E[Z Z]
It also turns out that
TS = AIC +iB!D.

Proposition 2.1. Let T,S € M, ", then for any nonsingular Q € M,(C), we
have

(@ TR SQ) = Q" (TE9)Q.
Proof. We write T, S as in ([L2)), then
(@ TRHQ™SQ) = (QTAQ+iQ"BQ)HQ"CQ +1iQ"DQ)
(Q"AQ)HQ™CQ) +i(Q"BQ)HQ"DQ)
Q" (AIC)Q +iQ"(BED)Q
= Q"(A1C +iBiD)Q
Q" (T1S)Q

O

Proposition 2.2. Let T,S € M. If TS = ST and either S or T is normal,
then

T4S = A2C> +iB3D>.
Proof. We may assume that S is normal and write 7, S as in (IZ2). Since T'S = ST,
then by Fuglede’s theorem [6], we have T'S* = S*T and so ST* = T*S. Hence
(TH+TS+S)=(S+5S)T+T)
(T = T*)(S - §%) = (S — §)(T — )
ie.
AC =CA, BD=DB.
Therefore, T#S = A4C + iB$D = A2C% + iB2 D3, O

The following example shows that generally we don’t have THS = T=Sz even
when both T, S are normal and commute.

Example 2.3. Let T = 31 +4il, S = 151 + &I, then T2 = 21 +il, Sz = 4] +l.
Obviously, T, S are normal and commute. However,

T4S = 3B + 4V2il # 71 +6il =T2Sz.
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3. A-G-H MEAN INEQUALITY AND MORE

With the notion of arithmetic, geometric and harmonic mean of accretive-dissipative
matrices developed in Section 2, we can write down the A-G-H mean inequality for
accretive-dissipative matrices:

Theorem 3.1. Let T, S € M, then
(3.1) TVS = TiS = T!S.

The inequality (B1)) in turn demonstrates the our definition is a faithful one.
Let T € M, " as in (L)), set

T'=E+iF, E=E*F=F".
Then [15]
E=(A+BA™'B)™', F=—(B+AB 'A%
In a similar manner, we can show,
T={T"Y"' = (E+iF)!
(E+FE'F)' —i(F+EF'E)"L.

Thus, comparing the real and imaginary part, we have the following identities:

A™' = (A+BA'B)!

(3.2) +(B+AB YA (A+BAT'B)(B+ AB7tA)!,
B! = (B+AB'A)!

(3.3) +(A+BA'B)y"Y(B+ AB 'A)(A+ BAT'B)"L.

Using Sherman-Morrison-Woodbury matrix identity [§], we have (A+BA~'B)~! =
A1 — A7'B(A+ BATIB)"'BA~1, after some rearrangement, one could indeed
verify the above two identities.

Recall that for Hermitian positive definite matrices A,C € M,,(C), the parallel
sum A : C is given by

A:C=A"1+cHh
Thus, A!C = 2(A : C) for Hermitian positive definite matrices.

Using a property of accretive-dissipative matrices (see [7, Property 1]), we know
that T : S € M;F*, provided both T, S € M, *. It is curious to know the relation
between TS and T : S for T, S € M, +. The remaining of this section is devoted
to this problem.

Let A, B € M, (C) be Hermitian, and

A Ap Bi1 By
3.4 A= B =
(34 i R

be comformably partitioned such that the diagonal blocks are square. If Ago is
invertible, then the Schur complement of Ass in A is denoted by A/Asg := Aqq —
A12A§21A’{2.

Lemma 3.2. Consider the partition as in (34). If Asa, Bao and Az + Bag are
invertible, then

(3.5) (A + B)/(Azz + Bas) = A/Ags + B/Baos + X(A;zl + B;zl)_lX*,
where X = A12A;21 — 3123521.
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Proof.

X(Ap + By )71 X"

(A12455 — B1aByy' ) Baa(Azz + Boo) ™' Ao (Agy ATy — Bay' Biy)

= (A19A5) Bog — Bio)(Aas + Bag) ' (A}y — A2 By, Biy)

= (A1245; Boy + A1z — A1z — Bi2)(Asz + Bao) ' (A}, — A2 By, BY,)

(A12 A5y Bag + Aj2)(Aga + Bao) 1A}y — A2 By Biy)
—(A12 + Bi2)(A2z + Baa) ' (A7, — A2 B5y' BYy)

= ApAy (A7 — A2 By, Biy)
— (412 + Bi2)(Ag + Baz) ' (A} + By — By — A2 By BYy)

= A12Ay A}y — A12By' Biy — (A12 + Bi2)(Asa + Bao) ' (Ar2 + Bia)*
+(A12 + Bi2)(Asz + Bao) ! (B, + A2 B3, By,)

= Ay Ajy — A12By By — (A12 + Bi2)(Ass + Bao) ' (Ar2 + Bio)*
+(A12 + B12)B3,' Bf,

= A12Ay A}y + B12B5y' By — (A12 + Bi2)(Aza + Baz) ' (A12 + Bia)*.

It becomes clear after writing down (A + B)/(Ass + Bas), A/A22 and B/Bas ex-
plicitly. ([l

Remark 3.3. The formula (F3) presents the sum of two Schur complements, for
the difference of two Schur complements, see []. A similar formula can also be
found in [14]. By Lemmal[3.2, if A, B are positive definite, then (A + B)/(As2 +
Bgs) > A/As9 + B/Baa, see |5, Theorem 1].

Theorem 3.4. Let T, S € M,f" as in (12), then
2T : §) = TS.

Proof. Denoted by M = (A+BA™'B)"'+(C+DC~ D)™, N = (B+AB71A)~1+
(D +CD~1C)71, then
T:S=(M+NM'N)"' +iN+MN-'M)~"
From the expression
M NJ] _ [(A+BA™'B)"' (B+AB'4)7!
N —-M| = |[(B+AB7'A)! —(A+BA"'B)™!
N (C+DC™ D)~ (D+CD71C)7?
(D+CD'C)"! —(C+DC™'D)™!
and by Lemma [3.2] we have
M+NM'N = (A+BA'B)"'+(B+AB A Y(A+BA™'B)(B+ AB 'A)™!
+(C+DC™ D)y '+ (D+CD'C)"Y(C + DCT'D)(D +CD7'C)!
+a Hermitian negative definite matrix, say R
= AT'+C'+R
< AT CT
where the second equality is by ([B.2]) and ([B.3)).
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Thus (A~'+C7 1)~ < (M +NM~IN)~. The role of A,C, M and B, D, N are
symmetric, so we also have (B! + D~1)=1 < (N + MN~'M)~!. This completes
the proof. O

The following example shows that there is not a partial order for 2(7 : S) and
TS for T,S € M.

Example 3.5. Let T =1+1I, S =1+ 2il, then

14
THS = I +V2il, 2(T: S) = it %u.

There is no ordering between 2(T : S) and THS in this case.

4. CONCLUDING REMARKS

This paper defines the arithmetic, geometric and harmonic mean of two accretive-
dissipative matrices. It opens a door to study the Lowner order of complex matri-
ces, in particular the Lowner order of accretive-dissipative matrices. We have seen
though not all properties in Hermitian positive definite matrices have its (direct)
counterpart in the set of accretive-dissipative matrices, some connection and anal-
ogy still exist. It is expected that many interesting results on this aspect can be
found in the near future.
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