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ARITHMETIC, GEOMETRIC AND HARMONIC MEAN FOR

ACCRETIVE-DISSIPATIVE MATRICES

MINGHUA LIN

Abstract. The concept of Löwner (partial) order for general complex ma-
trices is introduced. After giving the definition of arithmetic, geometric and

harmonic mean for accretive-dissipative matrices, we study their basic prop-
erties, in particular, A-G-H mean inequality is established for two accretive-
dissipative matrices in the sense of this extended Löwner order.

1. Introduction

Let Mn(C) be the space of complex matrices of size n×n. For any T ∈ Mn(C),
we can write

T = A+ iB,(1.1)

in which A = T+T
∗

2
and B = T−T

∗

2i
are both Hermitian. This is called the Toeplitz

decomposition (sometimes also called Cartesian decomposition) of T . For Hermit-
ian matrices, there is an important partial order called Löwner (partial) order which
says that for two Hermitian matrices A,B ∈ Mn(C), A > (≥)B provided A − B
is positive (semi)definite. However, a similar partial order for general complex ma-
trices seems lacking. The unique decomposition (1.1) enables us to give a natural
extension of the Löwner order for general complex matrices.

Let T, S ∈ Mn(C), with their Toeplitz decompositions

T = A+ iB, S = C + iD,(1.2)

we define the partial order T ≻ (�)S provided that both A > (≥)C and B > (≥)D.
Recall that a matrix T ∈ Mn(C) is said to be accretive-dissipative if, in its

Toeplitz decomposition (1.1), both matrices A and B are positive definite1. The
set of accretive-dissipative matrices of order n will be denoted by M++

n
. The

symbol M+
n

will be used to denote the broader set of accretive-dissipative matrices
defined by the conditions A ≥ 0 and B ≥ 0. Obviously, both M++

n
and M+

n
are

cones. There are several recent work devoted to studying this kind of matrix (see
[7, 9, 10, 14]) and more generally, matrices with positive real part (see [2, 3, 15]).

Our main focus is the possible extension of the properties of Hermitian positive
definite matrices in the set of accretive-dissipative matrices. The latter behaves
differently from the former. For example, the set of accretive-dissipative matrices
is not closed under inversion. The partial order for general complex matrices is also
not a trivial extension of the Löwner order for Hermitian matrices.
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1Since the numerical range of T is easily seen to be in the first quadrant, another terminology

for this kind of matrix may be first quadrant matrix.
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Let T ∈ M++
n

, then we know (see e.g.,kato) there is a unique square root of T ,

denoted by T
1

2 , that belongs to M++
n

.
The famous Löwner-Heniz theorem (see e.g., [16]) states that
For Hermitian positive definite matrices A,C ∈ Mn(C), Then

A ≥ C ensures Ar ≥ Cr for any r ∈ [0, 1].

But this fails for accretive-dissipative matrices as the following example shows,

Example 1.1. Let T = 32I + 24iI, S = 7I + 24iI (throughout, I denotes the

identity matrix of an appropriate size). Obviously, T � S. However, T
1

2 = 6I+2iI,

S
1

2 = 4I + 3iI, so we don’t have T
1

2 � S
1

2 .

The paper is organized as follows: in Section 2, we define the arithmetic, geo-
metric and harmonic mean for accretive-dissipative matrices and study their basic
properties; in Section 3, we present the partial order between these three means,
including a partial order between harmonic mean and the parallel sum of two
accretive-dissipative matrices; in the final section, some concluding remarks are
given.

2. Arithmetic, Geometric and Harmonic mean

For two Hermitian positive definite matrices A,C ∈ Mn(C), we use the following
notation for the arithmetic, geometric and harmonic means of A and C, respectively
(see [12]):

A∇C =
A+ C

2
,

A♯C = A
1

2 (A−
1

2CA−
1

2 )
1

2A
1

2 ,

A!C = 2(A−1 + C−1)−1.

In this section, we extend the above three means to the cone of accretive-
dissipative matrices. For T, S ∈ M++

n
, the arithmetic mean T and S is naturally

defined by
T + S

2
.

Next, we define the geometric mean of T and S (also denoted by T ♯S) by the
maximum (in the sense of partial order) of an X ∈ Mn(C) such that

[

T X
X S

]

� 0.

Write X = Y + iZ to be the Toeplitz decomposition of X , then it means
[

A Y
Y C

]

+ i

[

B Z
Z D

]

� 0,

or the maximum of Hermitian matrices Y and Z such that
[

A Y
Y C

]

≥ 0 and

[

B Z
Z D

]

≥ 0.

The maximum of such Y, Z are A♯C, B♯D, respectively (e.g., [13]). Thus, we
can write

T ♯S = A♯C + iB♯D.
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Our harmonic mean of T and S (also denoted by T !S) is defined by the maximum
of all X ∈ Mn(C) for which

[

2T 0
0 2S

]

�
[

X X
X X

]

.

Write X = Y + iZ to be the Toeplitz decomposition of X , then it means the
maximum of Hermitian matrices Y and Z such that

[

2A 0
0 2C

]

�
[

Y Y
Y Y

]

and

[

2B 0
0 2D

]

�
[

Z Z
Z Z

]

It also turns out that

T !S = A!C + iB!D.

Proposition 2.1. Let T, S ∈ M++
n

, then for any nonsingular Q ∈ Mn(C), we
have

(Q∗TQ)♯(Q∗SQ) = Q∗(T ♯S)Q.

Proof. We write T, S as in (1.2), then

(Q∗TQ)♯(Q∗SQ) = (Q∗AQ + iQ∗BQ)♯(Q∗CQ + iQ∗DQ)

= (Q∗AQ)♯(Q∗CQ) + i(Q∗BQ)♯(Q∗DQ)

= Q∗(A♯C)Q + iQ∗(B♯D)Q

= Q∗(A♯C + iB♯D)Q

= Q∗(T ♯S)Q.

�

Proposition 2.2. Let T, S ∈ M++
n

. If TS = ST and either S or T is normal,
then

T ♯S = A
1

2C
1

2 + iB
1

2D
1

2 .

Proof. We may assume that S is normal and write T, S as in (1.2). Since TS = ST ,
then by Fuglede’s theorem [6], we have TS∗ = S∗T and so ST ∗ = T ∗S. Hence

(T + T ∗)(S + S∗) = (S + S∗)(T + T ∗)

(T − T ∗)(S − S∗) = (S − S∗)(T − T ∗)

i.e.,

AC = CA, BD = DB.

Therefore, T ♯S = A♯C + iB♯D = A
1

2C
1

2 + iB
1

2D
1

2 . �

The following example shows that generally we don’t have T ♯S = T
1

2S
1

2 even
when both T, S are normal and commute.

Example 2.3. Let T = 3I +4iI, S = 15I +8iI, then T
1

2 = 2I + iI, S
1

2 = 4I + iI.
Obviously, T, S are normal and commute. However,

T ♯S = 3
√
5I + 4

√
2iI 6= 7I + 6iI = T

1

2S
1

2 .
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3. A-G-H mean inequality and more

With the notion of arithmetic, geometric and harmonic mean of accretive-dissipative
matrices developed in Section 2, we can write down the A-G-H mean inequality for
accretive-dissipative matrices:

Theorem 3.1. Let T, S ∈ M++
n

, then

T∇S � T ♯S � T !S.(3.1)

The inequality (3.1) in turn demonstrates the our definition is a faithful one.
Let T ∈ M++

n
as in (1.1), set

T−1 = E + iF, E = E∗, F = F ∗.

Then [15]

E = (A+BA−1B)−1, F = −(B +AB−1A)−1.

In a similar manner, we can show,

T = (T−1)−1 = (E + iF )−1

= (E + FE−1F )−1 − i(F + EF−1E)−1.

Thus, comparing the real and imaginary part, we have the following identities:

A−1 = (A+BA−1B)−1

+(B +AB−1A)−1(A+BA−1B)(B +AB−1A)−1,(3.2)

B−1 = (B +AB−1A)−1

+(A+BA−1B)−1(B +AB−1A)(A+BA−1B)−1.(3.3)

Using Sherman-Morrison-Woodburymatrix identity [8], we have (A+BA−1B)−1 =
A−1 − A−1B(A + BA−1B)−1BA−1, after some rearrangement, one could indeed
verify the above two identities.

Recall that for Hermitian positive definite matrices A,C ∈ Mn(C), the parallel
sum A : C is given by

A : C = (A−1 + C−1)−1.

Thus, A!C = 2(A : C) for Hermitian positive definite matrices.
Using a property of accretive-dissipative matrices (see [7, Property 1]), we know

that T : S ∈ M++
n

, provided both T, S ∈ M++
n

. It is curious to know the relation
between T !S and T : S for T, S ∈ M++

n
. The remaining of this section is devoted

to this problem.
Let A,B ∈ Mn(C) be Hermitian, and

A =

[

A11 A12

A∗

12 A22

]

, B =

[

B11 B12

B∗

12 B22

]

(3.4)

be comformably partitioned such that the diagonal blocks are square. If A22 is
invertible, then the Schur complement of A22 in A is denoted by A/A22 := A11 −
A12A

−1
22 A

∗

12.

Lemma 3.2. Consider the partition as in (3.4). If A22, B22 and A22 + B22 are
invertible, then

(A +B)/(A22 +B22) = A/A22 +B/B22 +X(A−1
22 +B−1

22 )−1X∗,(3.5)

where X = A12A
−1
22 − B12B

−1
22 .
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Proof.

X(A−1
22 +B−1

22 )−1X∗

= (A12A
−1
22 −B12B

−1
22 )B22(A22 +B22)

−1A22(A
−1
22 A

∗

12 −B−1
22 B∗

12)

= (A12A
−1
22 B22 −B12)(A22 +B22)

−1(A∗

12 −A22B
−1
22 B∗

12)

= (A12A
−1
22 B22 +A12 −A12 −B12)(A22 +B22)

−1(A∗

12 −A22B
−1
22 B∗

12)

= (A12A
−1
22 B22 +A12)(A22 +B22)

−1(A∗

12 −A22B
−1
22 B∗

12)

−(A12 +B12)(A22 +B22)
−1(A∗

12 −A22B
−1
22 B∗

12)

= A12A
−1
22 (A

∗

12 −A22B
−1
22 B∗

12)

−(A12 +B12)(A22 +B22)
−1(A∗

12 +B∗

12 −B∗

12 − A22B
−1
22 B∗

12)

= A12A
−1
22 A

∗

12 −A12B
−1
22 B∗

12 − (A12 +B12)(A22 +B22)
−1(A12 +B12)

∗

+(A12 +B12)(A22 +B22)
−1(B∗

12 +A22B
−1
22 B∗

12)

= A12A
−1
22 A

∗

12 −A12B
−1
22 B∗

12 − (A12 +B12)(A22 +B22)
−1(A12 +B12)

∗

+(A12 +B12)B
−1
22 B∗

12

= A12A
−1
22 A

∗

12 +B12B
−1
22 B∗

12 − (A12 +B12)(A22 +B22)
−1(A12 +B12)

∗.

It becomes clear after writing down (A + B)/(A22 + B22), A/A22 and B/B22 ex-
plicitly. �

Remark 3.3. The formula (3.5) presents the sum of two Schur complements, for
the difference of two Schur complements, see [4]. A similar formula can also be
found in [14]. By Lemma 3.2, if A,B are positive definite, then (A + B)/(A22 +
B22) ≥ A/A22 +B/B22, see [5, Theorem 1].

Theorem 3.4. Let T, S ∈ M++
n

as in (1.2), then

2(T : S) � T !S.

Proof. Denoted byM = (A+BA−1B)−1+(C+DC−1D)−1, N = (B+AB−1A)−1+
(D + CD−1C)−1, then

T : S = (M +NM−1N)−1 + i(N +MN−1M)−1.

From the expression
[

M N
N −M

]

=

[

(A+BA−1B)−1 (B +AB−1A)−1

(B +AB−1A)−1 −(A+BA−1B)−1

]

+

[

(C +DC−1D)−1 (D + CD−1C)−1

(D + CD−1C)−1 −(C +DC−1D)−1

]

and by Lemma 3.2, we have

M +NM−1N = (A+BA−1B)−1 + (B +AB−1A)−1(A+BA−1B)(B +AB−1A)−1

+(C +DC−1D)−1 + (D + CD−1C)−1(C +DC−1D)(D + CD−1C)−1

+a Hermitian negative definite matrix, say R

= A−1 + C−1 +R

≤ A−1 + C−1,

where the second equality is by (3.2) and (3.3).
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Thus (A−1+C−1)−1 ≤ (M +NM−1N)−1. The role of A,C,M and B,D,N are
symmetric, so we also have (B−1 +D−1)−1 ≤ (N +MN−1M)−1. This completes
the proof. �

The following example shows that there is not a partial order for 2(T : S) and
T ♯S for T, S ∈ M++

n
.

Example 3.5. Let T = I + iI, S = I + 2iI, then

T ♯S = I +
√
2iI, 2(T : S) =

14

13
I +

6

13
iI.

There is no ordering between 2(T : S) and T ♯S in this case.

4. Concluding remarks

This paper defines the arithmetic, geometric and harmonic mean of two accretive-
dissipative matrices. It opens a door to study the Löwner order of complex matri-
ces, in particular the Löwner order of accretive-dissipative matrices. We have seen
though not all properties in Hermitian positive definite matrices have its (direct)
counterpart in the set of accretive-dissipative matrices, some connection and anal-
ogy still exist. It is expected that many interesting results on this aspect can be
found in the near future.
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