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ON AN INCOMPLETE ARGUMENT OF ERDŐS ON THE

IRRATIONALITY OF LAMBERT SERIES

J. VANDEHEY

Abstract. We show that the Lambert series f(x) =
∑

d(n)xn is irrational at x = 1/b
for negative integers b < −1 using an elementary proof that finishes an incomplete proof
of Erdős.

1. Introduction

Chowla [4] conjectured that the functions

f(x) =

∞
∑

n=1

xn

1− xn
and g(x) =

∞
∑

n=1

xn

1− xn
(−1)n+1

are irrational at all rational values of x satisfying |x| < 1. For such x the above functions
may be rewritten as

f(x) =

∞
∑

n=1

d(n)xn and g(x) =
1

4

∞
∑

n=1

r(n)xn,

where d(n) is the number of divisors of n and r(n) is the number of representations of n as
a sum of two squares.

Erdős [5] proved that for any integer b > 1, the value f(1/b) is irrational. He did so
by showing that f(1/b) written in base b contains arbitrary long strings of 0’s without
terminating on 0’s completely. If we take b < −1 to be a negative integer, then Erdős’
methods show by the same method that f(1/b) in base |b| contains arbitrary long strings
of 0’s; however, Erdős claims without proof that showing it will not terminate on 0’s can
be done using similar methods. It is not clear what method Erdős intended, and in later
papers (including his review of similar irrationality results [6]) Erdős only refers to proving
the case of positive b.

Since then, several proofs have been offered for the irrationality of the b < −1 case and
far more general theorems besides. Much credit is often given to Bezivin [2] and Borwein
[3] for proving the first major generalizations of these results; and other results can be often
be found in the literature under the term of the q-analogue of the logarithm or, simply,
the q-logarithm. However, these results are proved using entirely different techniques than
what Erdős uses and leaves open the question of whether his method could have finished
the proof.
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Erdős’ method can be extended to the following stronger result with a virtually identical
proof.

Theorem 1.1. Let b > 1 be a positive integer and A be any finite set of non-negative

integers. Then for any sequence {an}
∞
n=1 taking values in A such that the sequence does

not end on repeated 0’s, we have that

∞
∑

n=1

d(n)
an
bn

is irrational.

Theorem 1.1 has the following curious corollary. Let an(x) be the nth base b digit of a
number x in (0, 1). (If x has two base b expansions, then we chose the one which does not
end on repeated 0’s.) Then the map

x =

∞
∑

n=1

an(x)

bn
7−→

∞
∑

n=1

d(n)
an(x)

bn

has its image in R \Q and is also continuous at all x that do not have a representation as
a finite base b expansion.

We could replace the condition that an be in the finite set A with a restriction that
0 ≤ an ≤ φ(n) for some sufficiently slowly growing integer-valued function φ. It would be
interesting to know what the fastest growing φ for which the Theorem 1.1 holds would be.

In this paper, we will prove the following extension of Theorem 1.1.

Theorem 1.2. Let b > 1 be a positive integer and A be any finite set of integers that does
not contain 0. Then for any sequence of {an}

∞
n=1 taking values in A, we have that

∞
∑

n=1

d(n)
an
bn

is irrational.

The new ingredient to extend Erdős’ method is finding arbitrarily long strings of zeros
that are known to be preceded by a non-zero number, and to find these strings arbitrarily
far into the base |b| expansion.

In particular, by taking an = (−1)n, this proves that f(1/b) is irrational for negative
integers b < 1 as well, completing Erdős’ proof.

2. Proof of Theorem 1.2

We will require a result mentioned by Alford, Granville, and Pomerance [1, p. 705]. The
function π(N ; d, a) equals the number of primes up to N that are congruent to a modulo d.

Proposition 2.1. Let 0 < δ < 5/12. Then there exist positive integers N0 and D dependent

only on δ, such that the bound

π(N ; d, a) ≥
N

2ϕ(d) logN
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holds for all N > N0; all moduli d with 1 ≤ d ≤ N δ, except, possibly for those d that are

multiples of some element in D(N), a set of at most D different integers that all exceed

logN ; and all a relatively prime to d.

We begin our proof much as Erdős did his. Let b ≥ 2 be a fixed positive integer, let A
be a finite set of integers that does not contain 0, and let N be a large positive integer that
is allowed to vary. Define k in terms of N by

k = k(N) := ⌊(logN)1/10⌋.

Let j0 be a fixed integer, independent of N , so that 2maxa∈A |a|/bj0 < 1.
Let 0 < δ < 5/12 be some sufficiently small fixed constant, and let N0 = N0(δ) and

D = D(δ) be the corresponding constants from Proposition 2.1. Let N1 > N0 be large
enough so that for any N > N1, the interval ((logN)2, 2(logN)2) cotains at least u + D
primes, where u = u(N) = k(k−1)/2. In addition, for such N > N1, let D(N) be the set of
exceptional moduli from Proposition 2.1. Since we assume that δ is constant, |D(N)| ≤ D
is bounded.

For each D in D(N), let p̃D denote the smallest prime strictly greater than (logN)2 that
divides D, if such a prime exists, and then let p1 < p2 < · · · < pu be the smallest u primes
strictly greater than (logN)2 that are not equal to p̃D for any D ∈ D(N); by assumption
on N , we have that each such pi is less than 2(logN)2. Finally, let

A :=

j0(j0−1)/2
∏

i=1

pbi

u
∏

i=j0(j0+1)/2+1

pbi ,

so that, in particular, A is not a multiple of any D in D(N); moreover, provided N is
sufficiently large, we have

A < (2(logN)2)bk(k−1)/2 ≤ N δ.

By the Chinese remainder theorem, there exists an integer r, with 0 ≤ r ≤ A − 1, such
that

r + j ≡

j(j+1)/2
∏

i=j(j−1)/2+1

pb−1
i (mod

j(j+1)/2
∏

i=j(j−1)/2+1

pbi), 0 ≤ j ≤ k − 1, j 6= j0.

(The exception j 6= j0 marks the key difference between this proof and Erdős’.) Since all
the pi’s are bounded below by (logN)2, we have that r necessarily tends to infinity as N
does, although possibly much slower.

With this value of r, for any integer of the form

r +mA, 0 ≤ m < ⌊N/A⌋,

we have that

(1) d(r +mA+ j) ≡ 0 (mod bj+1), 0 ≤ j < k, j 6= j0

by the multiplicity of d(·). Moreover, r + j0 is relatively prime to A, since each p dividing

A also divides some r + j, with 0 ≤ j < k, j 6= j0; the largest j can be is k ≤ (logN)1/10,
but all primes dividing A are at least (logN)2.
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We can also apply Proposition 2.1 to see that

(2) π(N,A, r + j0) ≥
N

2ϕ(A) logN
.

Erdős in [?] also proved the following result, which we give here without reproof. (While
our construction of A and r are different from Erdős’, they satisfy all the requirements for
Erdős’ proof technique to still hold.)

Lemma 2.2. With A, r, b, and k all as above, the number of m < ⌊N/A⌋ such that

∑

n>r+k+mA

d(n)
1

bn
>

1

br+k/2+mA

is less than
10cN(logN)2

A2k/4

for some constant c independent of all variables.

Regardless of how large c is, we have, for sufficently large N , that

N

2ϕ(A) logN
≥

10cN(logN)2

A2k/4
.

Therefore, by combining Lemma 2.2 with (1) and (2), we see that for sufficiently large N
there exists some m0 < ⌊N/A⌋ such that

(3) bj+1|d(r +m0A+ j), 0 ≤ j < k, j 6= j0,

(4) r +m0A+ j0 is prime,

and

(5)
∑

n>r+k+m0A

∣

∣

∣

d(n)
an
bn

∣

∣

∣

≤
maxa∈A |a|

br+k/2+mA
.

Now consider a particular sequence (an) with each an ∈ A together with the sum

∞
∑

n=1

d(n)
an
bn

.

By (3), the partial sum
∑

n≤r+k+m0A
n 6=r+j0+m0A

d(n)
an
bn

,

when written in base b, has its last non-zero digit in the (r − 1 +m0A)th place or earlier.1

In addition, by (5), the partial sum
∑

n>r+k+m0A

d(n)
an
bn

1Here we switch back to the convention that finite expansions are assumed to end on an infinite string
of zeros.
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when written in base b has its first non-zero digit in the

(r + k/2 +m0A− ⌈logb max
a∈A

|a|⌉)th

place or later. The number

d(r + j0 +m0A)
ar+j0+m0A

br+j0+m0A
=

2ar+j0+m0A

br+j0+m0A

when written in base b has its non-zero digits only between the (r+m0A)th and (r+ j0 +
m0A)th place, and it has at least one such non-zero digit. Thus the full sum has a string
of at least k/2 +O(1) zeroes immediately preceded by a non-zero digit starting somewhere
between the (r +m0A)th and (r + j0 +m0A)th place.

So as N increases to infinity, we can find arbitrarily long strings of 0’s (which corresponds
to k increasing to infinity) immediately preceded by a non-zero digit, and we find these
strings arbitrarily far out in the expansion (since r also tends to infinity). The base b digits
cannot therefore be periodic and hence the sum is irrational. This completes the proof.
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