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12 Parabolic martingales and non-symmetric
Fourier multipliers

Krzysztof Bogdan∗ Łukasz Wojciechowski†

June 5, 2012

Abstract

We give a class of Fourier multipliers with non-symmetric symbols
and explicit norm bounds onLp spaces by using the stochastic calculus of
Lévy processes and Burkholder-Wang estimates for differentially subordi-
nate martingales.

1 Introduction and main result

For each functionm : Rd → C of absolute value bounded by1, there is a unique
linear contractionM onL2(Rd) defined in terms of the Fourier transform by

M̂f = mf̂ , (1)

or, in terms of bilinear forms and Plancherel theorem, by

Λ(f, g) =

∫

Rd

Mf(x)g(x)dx = (2π)−d

∫

Rd

m(ξ)f̂(ξ)ĝ(−ξ)dξ . (2)

∗Corresponding author: Institute of Mathematics of the Polish Academy of Sciences, and
Institute of Mathematics, Wrocław University of Technology, 50-370 Wrocław, Poland, bog-
dan@im.pwr.wroc.pl. Supported in part by grant MNiSW N N201397137.

†Mathematical Institute, University of Wrocław, 50-384 Wrocław, Poland, lu-
woj@math.uni.wroc.pl.

02010MS Classification: 42B15, 60G15, 60G46.
Key words and phrases: non-symmetric Fourier multiplier, martingale transform.

1

http://arxiv.org/abs/1206.0423v1


We are interested insymbolsm for which theFourier multiplier M has a finite
operator norm‖M‖p onLp(Rd) for all p ∈ (1,∞):

|Λ(f, g)| ≤ ‖M‖p‖f‖p‖g‖q, (3)

whereq = p/(p − 1) and, say,f, g ∈ C∞
c (Rd). Motivated by [5, 14], a wide

class of multipliers was recently studied in [3, 4] by transforming the so-called
parabolic martingales of Lévy process. Burkholder-Wang inequalities for differ-
entially subordinate martingales ([15]) were used to bound their norms:

‖M‖p ≤ max{p− 1,
1

p− 1
} =: p∗ − 1. (4)

Surprisingly, the symbolsm obtained in [3, 4] turned out to be symmetric, even
when non-symmetric Lévy processes were used in the construction. In this paper
we propose a new approach which leads tonon-symmetricsymbols. Namely we
use two different Lévy processes to drive the martingales defining the pairingΛ.
Compared to [3, 4] we also slightly modify the calculations of the Fourier symbol.

Let d, n ∈ N and consider the general Lévy-Khinchine exponent onR
n,

Ψ(ζ) =

∫

Rn

(
ei(ζ,z) − 1− i(ζ, z)1|z|≤1

)
ν(dz)−

1

2

∫

S

(ζ, θ)2 µ(dθ) + i(ζ, γ), (5)

whereζ, γ ∈ Rn, µ ≥ 0 is a (non-unique) finite measure on the unit sphere
S ⊂ Rn, andν ≥ 0 is a (unique) Lévy measure onRn: ν({0}) = 0 and

∫

Rn

min(|z|2, 1)ν(dz) < ∞.

Here(ξ, η) =
∑

k ξkηk and|ξ|2 =
∑

k |ξk|
2 = (ξ, ξ) for ξ, η ∈ Rd, Rn, Cd, Cn.

Consider complex-valued functionsφ onRn andϕ onS such that‖φ‖∞ ≤ 1 and
‖ϕ‖∞ ≤ 1. Forζ ∈ Rn we let

Ψ̃(ζ) =

∫

Rn

(
ei(ζ,z) − 1− i(ζ, z)1|z|≤1

)
φ(z)ν(dz) −

1

2

∫

S

(ζ, θ)2 ϕ(θ)µ(dθ). (6)

LetA,B ∈ Rd×n. Forξ ∈ Rd we define

m(ξ) =

[
eΨ(BT ξ−AT ξ) − eΨ(BT ξ)+Ψ(−AT ξ)

]
× (7)

∫
Rd

(
ei(B

T ξ,z) − 1
)(

ei(−AT ξ,z) − 1
)
φ (z) ν(dz)−

∫
S

(
BT ξ, θ

) (
−AT ξ, θ

)
ϕ (θ)µ (dθ)

∫
Rd

(
ei(BT ξ,z) − 1

) (
ei(−AT ξ,z) − 1

)
ν(dz)−

∫
S

(BT ξ, θ) (−AT ξ, θ)µ (dθ)
,
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with the convention that

m(ξ) = εΨ(BT ξ)+Ψ(−AT ξ)× (8)
( ∫

Rd

(
ei(B

T ξ,z) − 1
)(

ei(−AT ξ,z) − 1
)
φ (z) ν(dz)−

∫

S

(
BT ξ, θ

) (
−AT ξ, θ

)
ϕ (θ)µ(dθ)

)
,

if the denominator in (7) is zero. To simplify (7) and (8), we note that
∫

Rn

(
ei(ζ1,z) − 1

) (
ei(ζ2,z) − 1

)
φ(z)ν(dz) −

∫

S

(ζ1, θ) (ζ2, θ)ϕ(θ)µ(dθ)

= Ψ̃(ζ1 + ζ2)− Ψ̃(ζ1)− Ψ̃(ζ2), ζ1, ζ2 ∈ R
n, (9)

and a similar identity holds for the special case ofΨ. Thus,m(ξ) equals

[
eΨ(BT ξ−AT ξ)−eΨ(BT ξ)+Ψ(−AT ξ)

]Ψ̃(BT ξ − AT ξ)−Ψ̃(BT ξ)−Ψ̃(−AT ξ)

Ψ(BT ξ − AT ξ)−Ψ(BT ξ)−Ψ(−AT ξ)
, (10)

with the convention that

m(ξ) =eΨ(BT ξ)+Ψ(−AT ξ)
[
Ψ̃(BT ξ −AT ξ)−Ψ̃(BT ξ)−Ψ̃(−AT ξ)

]
, (11)

if the denominator in (10) is zero. In short,

m(ξ) =eΨ(BT ξ)+Ψ(−AT ξ)
[
Ψ̃(BT ξ −AT ξ)− Ψ̃(BT ξ)− Ψ̃(−AT ξ)

]
(12)

× q
(
Ψ(BT ξ −AT ξ)−Ψ(BT ξ)−Ψ(−AT ξ)

)
,

where

q(z) = (ez − 1)/z if z ∈ C \ {0}, and q(0) = 1 .

We see that (7, 8) are equivalent to (12). Here is our main result.

Theorem 1. If M satisfies(1) and(12), and1 < p < ∞, then‖M‖p ≤ p∗ − 1.

Theorem1 is proved in Section2 by using stochastic calculus of Lévy pro-
cesses. In Section3 we make some clarifying comments and point out a few
symbols resulting from (12). An alternative approach for Gaussian Lévy pro-
cesses is given in Section4, where we use the familiar and more compact clas-
sical Itô calculus. This, however, boils down to takingν = 0 in (5), and yields
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only symmetric symbols. Details of the stochastic calculusneeded in this note
may be found in [3, 4]. We refer to [6, 12] for information on Lévy processes,
including compound Poisson processes, and to [8, 9, 11] for various expositions
of stochastic calculus. Burkholder’s method is discussed in depth in [2], and a
classical treatment of Fourier multipliers may be found in [13]. A recent study of
non-symmetric homogeneous symbols is given in [10]. As we already remarked,
multipliers with symmetric symbols were obtained by similar methods in [6, 12],
and they include, e.g., Marcinkiewicz-type fractional multipliers, the Beurling-
Ahlfors operator and the second order Riesz transforms. We also note that the
bound (4) cannot in general be improved, because it is optimal for second order
Riesz transforms ([12, 1]).

While we considerably extend the class of symbols manageable by our meth-
ods, we fall short of non-symmetric symbols homogeneous of degree0. Specif-
ically, homogeneous symbols may appear as the second factor(the ratio) in (7)
or (10), but they are tempered at the origin and infinity by the first factor therein,
which involves the Fourier transform of the semigroup. ReplacingΨ andΨ̃ by
uΨ anduΨ̃ and lettingu → ∞ usually removes the first factor in (7) and (10)
if A = B. The resulting symbols are given in (18) below, and include many
symmetric symbols homogeneous of degree0, see (19). We wonder if a different
pairing or other modifications of our methods could produce symbols which are
both discontinuous and non-symmetric.

Below we will often use the quadratic variation[F, F ] and covariation[F,G] of
square-integrable continuous-time càdlàg martingalesF , G. Recall that[F, F ] is
the unique adapted right-continuous non-decreasing process with jumps[F, F ]t−
[F, F ]t− = (Ft−Ft−)

2, and such thatt 7→ F 2
t −[F, F ]t is a (continuous) martingale

starting at0 ([8, VII.42]). We say thatF is differentially subordinateto G if t 7→
[G,G]t− [F, F ]t is nonnegative and non-decreasing ([15]). The covariation[F,G]
is defined by polarization, and we haveEFtGt = E[F,G]t. All the functions and
measures considered in this paper are assumed to be Borelian.

2 Proof of Theorem 1

We will first prove the result for

Ψ(ζ) =

∫

Rd

(
ei(ζ,z) − 1

)
ν(dz) , ζ ∈ R

n, (13)
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and

Ψ̃(ζ) =

∫

Rn

(
ei(ζ,z) − 1

)
φ(z)ν(dz) , ζ ∈ R

n, (14)

whereν is finite. To this end we only need to defineΛ satisfying (2) and (3).
By f and g below we will denote complex-valued smooth compactly sup-

ported (i.e.C∞
c ) functions onRd or Rn. Let (Yt, t ≥ 0) be a compound Pois-

son process onRn with the Lévy measureν, semigroup(Pt), expectationE and
jumps∆Yt = Yt − Yt−. Let x ∈ Rn. Recall thatPtf(x) = Ef(x + Yt) =∫
Rd f(x+ y)pt(dy), wheret ≥ 0,

pt = e−t|ν|

∞∑

n=0

ν∗n

n!
,

andp̂t(ζ) = Eei(ζ,Yt) = etΨ(ζ) for ζ ∈ Rn. The process(AYt, t ≥ 0) is compound
Poisson, too, with the Lévy measure equal to (the pushforward measure)Aν =
ν ◦ A−1 onRd \ {0} ([12, Proposition 11.10]). Indeed, forξ ∈ Rd,

Eei(ξ,AYt) = etΨ(AT ξ) =

∫

Rn

(
ei(ξ,Az) − 1

)
ν(dz) =

∫

Rd

(
ei(ξ,z) − 1

)
Aν(dz).

We also haveEf(x+ AYt) =
∫
f(x+ Ay)pt(dy) = PA

t f(x), where

PA
t f(x) =

∫
f(x+ Ay)pt(dy).

We proceed similarly for(BYt, t ≥ 0). We remark that(AYt) and (BYt) have
fairly general dependence structure, e.g. yield pairs of projections ofY .

We consider the filtrationFt = σ{Ys : 0 ≤ s ≤ t}. For0 ≤ t ≤ 1 we define
theparabolicmartingaleFt = Ft(x; f, A), where

Ft(x; f, A) = E[f(x+ AY1)|Ft] = E[f(x+ A(Y1 − Yt) + AYt)|Ft]

=

∫

Rd

f(x+ Ay + AYt)p1−t(dy) = PA
1−tf(x+ AYt).

ThusF is of function-type, i.e. a composition of a (parabolic) function with a
(space-time) stochastic process. By Itô formula [4, p.17] for(AYt),

Ft − F0 =
∑

0<v≤t
∆Yv 6=0

[PA
1−vf(x+ AYv)− PA

1−vf(x+ AYv−)]

−

∫ t

0

∫

Rd

[PA
1−vf(x+ A(Yv + z))− PA

1−vf(x+ AYv)]ν(dz)dv.
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Following [3, 4] we also define moregeneral(i.e. non function-type) martingales

Gt(x; g, B, φ) =
∑

0<v≤t
∆Yv 6=0

[PB
1−vg(x+BYv)− PB

1−vg(x+BYv−)]φ(∆Yv)

−

∫ t

0

∫

Rd

[PB
1−vg(x+B(Yv + z))− PB

1−vg(x+BYv)]φ(z)ν(dz)dv

driven by(BYt). We see thatFt(x; f, B) = Gt(x; f, B, 1). Let

Λ(f, g) =

∫

Rd

EF1(x; f, A)G1(x; g, B, φ)dx. (15)

By [4, p.17],Gt := Gt(x; g, B, φ) has quadratic variation

[G,G]t =
∑

0<v≤t

|PB
1−vg(x+BYv)− PB

1−vg(x+BYv−)|
2|φ(∆Yv)|

2.

The quadratic variation ofF is

[F, F ]t = |F0|
2 +

∑

0<v≤t

|PA
1−vf(x+ AYv)− PA

1−vf(x+ AYv−)|
2.

Thus,G(x; g, B, φ) is differentially subordinate toF (x; g, B). Let p, q ∈ (1,∞)
and1/p+ 1/q = 1. By Fubini-Tonelli,

∫

Rd

E|F1(x; f, A)|
pdx =

∫

Rd

E|f(x+ AY1)|
pdx =

∫

Rd

∫

Rd

|f(x+ Ay)|pp1(dy)dx

=

∫

Rd

∫

Rd

|f(x)|pp1(dy)dx = ||f ||pp. (16)

We then use Burkholder-Wang theory ([15]) and the identityp∗ − 1 = q∗ − 1:

E|G1|
q ≤ (q∗ − 1)qE|g(x+BY1)|

q = (p∗ − 1)qE|g(x+BY1)|
q.

Following (16), we now obtain
∫

Rd

E|G1(x; g, B, φ)|qdx ≤ (p∗ − 1)q
∫

Rd

|g(x)|qdx.

By Hölder inequality,|Λ(f, g)| ≤ (p∗−1)||f ||p||g||q, as required in (3). To obtain
(2), we recall thatEF1G1 = E[F,G]1. Furthermore,

P̂A
t f(ξ) = f̂(ξ)etΨ(−AT ξ).
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By this, the Lévy system (see [4, 15]) and Plancherel theorem,

Λ(f, g) =

∫

Rd

E

∑

0<v≤1
∆Yv 6=0

[PA
1−vf(x+ AYv)− PA

1−vf(x+ AYv−)]

×[PB
1−vg(x+BYv)− PB

1−vg(x+BYv−)]φ(∆Yv)dx

=

∫

Rd

∫ 1

0

∫

Rd

∫

Rd

[PA
1−vf(x+ A(y + z))− PA

1−vf(x+ Ay)]

×[PB
1−vg(x+B(y + z))− PB

1−vg(x+By)]φ(z)ν(dz)pv(dy)dvdx

= (2π)−d

∫

Rd

m(ξ)f̂(ξ)ĝ(−ξ)dξ,

where

m(ξ) =

∫ 1

0

∫

Rd

∫

Rd

(
e−i(ξ,A(y+z)) − e−i(ξ,Ay)

)(
ei(ξ,B(y+z)) − ei(ξ,By)

)

×e(1−v)Ψ(−AT ξ)e(1−v)Ψ(BT ξ)φ(z)ν(dz)pv(dy)dv

=

∫ 1

0

∫

Rd

∫

Rd

ei(B
T ξ−AT ξ,y)e(1−v)(Ψ(BT ξ)+Ψ(−AT ξ))

×

(
ei(ξ,Bz) − 1

)(
e−i(ξ,Az) − 1

)
φ(z)ν(dz)pv(dy)dv

=

∫ 1

0

∫

Rd

evΨ(BT ξ−AT ξ)e(1−v)(Ψ(BT ξ)+Ψ(−AT ξ)) (17)

×

(
ei(ξ,Bz) − 1

)(
e−i(ξ,Az) − 1

)
φ(z)ν(dz)dv.

We directly verify (compare (9)) that

∫

Rd

(
ei(ξ,Bz)−1

)(
e−i(ξ,Az)−1

)
φ(z)ν(dz) = Ψ̃(BT ξ−AT ξ)−Ψ̃(BT ξ)−Ψ̃(−AT ξ).

We integrate (17) with respect todv and obtain (12).
We shall next give an extension to compound Poisson processes with drift. We

claim that the multiplier resulting fromφ and the Lévy - Khinchine exponent
∫

Rd

(
ei(ξ,z) − 1− i(ξ, z)1|z|≤1

)
ν(dz) + i(ξ, γ) =

∫

Rd

(ei(ξ,z) − 1)ν(dz) + i(ξ, h),

7



whereh = γ−
∫
Rd z1|z|≤1ν(dz), has the norm bounded byp∗− 1 onLp(Rd), too.

The operatorThf(x) = f(x − h) is an isometry ofLp(Rd), and also a Fourier
multiplier with symbolei(ξ,h). We can multiplym(ξ) in (12) by ei(B

T ξ−AT ξ,h),
without changing the norm of the multiplier. The exponential function absorbs
into the first factor on the right-hand side of (12), which grants the extension.

We will now pass to general Lévy processes, i.e. arbitraryΨ andΨ̃ given by
(5) and (6). We first note that the norm bound of our multipliers is preserved under
pointwise convergence of the symbols, which follows from Plancherel theorem
and Fatou’s lemma in the same way as in [4, the proof of Theorem 1.1]. Then we
remark thatm in (12) depends continuously onΨ andΨ̃. Finally we recall the
following approximation procedure: letε → 0+,

νε = 1{|z|>ε}ν , and µε(drdθ) = ε−2δε(dr)µ(dθ) .

Here(r, θ) ∈ (0,∞)× S are the polar coordinates inRn andδε is the probability
measure concentrated atε. We consider

Ψε(ξ) =

∫

Rd

(
ei(ξ,z) − 1− i(ξ, z)1|z|≤1

)
(νε + µε)(dz) + i(ξ, γ),

and

Ψ̃ε(ξ) =

∫

Rd

(
ei(ξ,z) − 1− i(ξ, z)1|z|≤1

)
φε(z)(νε + µε)(dz),

where φε(z) = 1{|z|>ε}φ(z) + 1{|z|=ε}ϕ(z/|z|). By dominated convergence,
Ψε(ζ) → Ψ(ζ) andΨ̃ε(ζ) → Ψ̃(ζ) (see [4, (3.3)]), which yields the convergence
of the resulting symbols (say,mε) to m in (12), and ends the proof.

3 Comments and examples

Unless stated otherwise the multipliers discussed in this section have norms
bounded byp∗ − 1 on Lp(Rd) for 1 < p < ∞, as results from the preceding
discussion. We will focus on the symbols.

We note thatm(ξ) given by (12) is continuous inξ, because so areΨ(ξ) and
Ψ̃(ξ). By (1), Plancherel theorem and (4) for p = 2 we also see that|m(ξ)| ≤ 1.

Letu > 0. We may consideruΨ anduΨ̃ instead ofΨ andΨ̃ in (12). If A = B,
ℜΨ(Aξ) < 0 for ξ ∈ Rd, andu → ∞, then in the limit we obtain the symbol

m(ξ) =
Ψ̃(AT ξ) + Ψ̃(−AT ξ)

Ψ(AT ξ) + Ψ(−AT ξ)
. (18)

8



Thus, the assumptionA = B rules out non-symmetric symbols. In fact, ifA 6= B,
then the corresponding Lévy processes (see the proof of Theorem1) separate over
time, and their parabolic martingales quickly decorrelate. We do not see a way
to reproduce a nontrivial analogue of (18) in this situation. In this connection
we also note that ifA = B = I andℜΨ(ξ) < 0, then (18) is equivalent to [4,
(1.4)]. Furthermore, ifA ∈ Rd×d anddetA 6= 0, then multipliers corresponding
to symbolsm(ξ) andm(AT ξ) have equal norms onLp(Rd). In such a case (18) is
merely a trivial extension of [4, (1.4)]. If ν = 0, then (18) yields, e.g., the symbols

m(ξ) =

∫
S
(ξ, θ)2 ϕ(θ)µ(dθ)∫
S
(ξ, θ)2 µ(dθ)

, ξ ∈ R
d. (19)

Further discussion and examples related to (18) may be found in [4]. In particular
[4] gives remarks on the integral form of the quadratic form (the second term) in
(5), as opposed to the more usual matrix form, and yields the following symbols

m(ξ) =
ln
(
1 + ξ−2

j

)

ln
(
1 + ξ−2

1

)
+ · · ·+ ln

(
1 + ξ−2

d

) ,

m(ξ) = −2ξjξk/|ξ|
2 .

Hereξ ∈ R
d \ {0}, j, k = 1, . . . , d, andj 6= k.

To exhibit a non-symmetric symbol resulting from our construction, we let
n = d, α ∈ (0, 2) andΨ(ξ) = −|ξ|α, so thatµ = 0, γ = 0, ν(dz) = cα|z|

d−αdz,
and cα = Γ(d+α

2
)2απ−d/2/|Γ(−α

2
)| in (5) (see [7]). These correspond to the

isotropicα-stable Lévy process. Ifα ∈ (0, 1) andB = I = −A in (12), then
by (7) and (9),

m(ξ) =
e−|2ξ|α − e−2|ξ|α

−|2ξ|α + 2|ξ|α

∫

Rd

(
ei(ξ,z) − 1

)2

φ(z)ν(dz).

Let d = 1 andφ(z) = sgn(z). We have(eiξz − 1)2 = (e2iξz − 1)− 2(eiξz − 1) and

∫

R

eiξz − 1

|z|1+α
φ(z)dz = 2i

∫ ∞

0

sin ξz

|z|1+α
dz = −2iΓ(−α) sin

πα

2
sgn(ξ)|ξ|α.

By this and the multiplication and reflection formulas for the gamma function,

∫

R

(
eiξz − 1

)2

φ(z)ν(dz) = −i tan
πα

2
[|2ξ|α − 2|ξ|α] . (20)

9



Therefore,

m(ξ) = i tan
πα

2
sgn(ξ)(e−|2ξ|α − e−2|ξ|α), ξ ∈ R. (21)

We may letα → 1 in (21), and use l’Hospital’s rule to obtain

m(ξ) =
4i ln 2

π
ξ exp(−2|ξ|).

This agrees well with with (8) and (11), see (20). By analytic continuation, (21)
extends toα ∈ (1, 2).

As seen in the proof of Theorem1, the drift γ plays little role in our results,
according with the conclusions of [4].

4 Gaussian case

For multipliers resulting from the linear transformationsof the Brownian motion
there is an alternative direct approach based on the classical Itô calculus. The
calculations are simpler and may shed some light on the procedures in Section2.

Theorem 2. Letd, n ∈ N andA,B ∈ R
d×n. LetK ∈ C

n×n satisfy

|Kz| ≤ |z| for z ∈ C
n . (22)

For eachp ∈ (1,∞), the Fourier multiplierM with the symbol

m(ξ) =

[
e−|AT ξ−BT ξ|2 − e−|AT ξ|2−|BT ξ|2

]
(AT ξ,KBT ξ)

(AT ξ, BT ξ)
, (23)

is bounded inLp(Rd). In fact,‖Mf‖p ≤ (p∗−1)‖f‖p for f ∈ Lp(Rd), where we
assumem(ξ) = e−|AT ξ|2−|BT ξ|2(AT ξ,KBT ξ) if the denominator in(23) is zero.

Proof. Let (Wt)t≥0 be the Brownian motion inRn. Let pt denote the distribu-
tion of Wt. Thus, for t > 0 we havept(dw) = pt(w)dw, wherept(w) =
(2πt)−n/2 exp(−|w|2/(2t)). Let f, g ∈ C∞

c (Rd) andx ∈ Rd. We consider the
filtration

Ft = σ{Ws ; 0 ≤ s ≤ t} , t ≥ 0 ,

and the parabolic martingaleFt = Ft(x; f, A), where

Ft(x; f, A) = E[f(x+ AW1)|Ft] = E[f(x+ AWt + A(W1 −Wt)|Ft]

=

∫

Rd

f(x+ AWt + Az)p1−t(dz).

10



Note thatF1 = f(x + AW1) andF0 = Ef(x + AW1). Let f̃(z) = f(Az). We
have∇f̃(y) = AT∇f(Ay). For0 ≤ t ≤ 1, w ∈ Rd, we define

h(t, w) =

∫

Rd

f(x+ Aw + Az)p1−t(dz). (24)

We observe thath is parabolic, i.e.

(
∂

∂t
+

1

2
∆w)h(t, w) =

∫

Rd

f(x+ Aw + Az)
∂

∂t

[
p1−t(z)

]
dz

+
1

2

∫

Rd

∆z [f(x+ Aw + Az)]p1−t(z)dz = 0. (25)

Here∆w =
∑n

i=1 ∂
2/∂w2

i is the Laplacian, and the last inequality follows from
integrating by parts and the heat equation

∂

∂s
ps(z) =

1

2
∆zps(z), s > 0, z ∈ R

n.

Let pAt (dy) be the distribution ofAWt, i.e. pAt = Apt (the pushforward measure).
We have

p̂At (ξ) = exp(−t|AT ξ|2/2), ξ ∈ R
d,

h(t, w) = f ∗ pA1−t(x + Aw), andh(1, w) = f(x + Aw). Thus,Ft(x; f, A) =
h(t,Wt). By (25) and Itô formula forh we obtain

Ft − F0 =

∫ t

0

AT (∇f) ∗ pA1−v(x+ AWv)dWv. (26)

For t ∈ [0, u] we define

Gt = Gt(x; g, B,K) =

∫ t

0

KBT (∇g) ∗ pB1−v(x+BWv)dWv,

wherepBt = Bpt. The quadratic variations of these martingales are:

[F, F ]t = |F0|
2 +

∫ t

0

|AT (∇f) ∗ pA1−v(x+ AWv)|
2dv, (27)

[G,G]t =

∫ t

0

|KBT (∇g) ∗ pB1−v(x+BWv)|
2dv. (28)
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By Burkholder-Wang theory of differentially subordinatedmartingales [15],

E|Gt(x; g, B,K)|p ≤ (p∗ − 1)pE|Ft(x; g, B)|p. (29)

Therefore we have
∫

Rd

|F1(x; f)|
pdx =

∫

Rd

|f(x+ AW1)|
pdx =

∫

Rd

∫

Rd

|f(x+ Ay)|pp1(dy)dx

=

∫

Rd

∫

Rd

|f(x)|pp1(dy)dx = ||f ||pp. (30)

A similar identitity holds forg andq = p/(p− 1). Therefore,
∫

Rd

E|G1(x; g, B,K)|pdx ≤ (p∗ − 1)p||g||pp. (31)

We define

Λ(f, g) =

∫

Rd

E[F,G]1dx.

By (30), (31) and Hölder inequality for the measureP ⊗ dx, we have

Λ(f, g) ≤ (p∗ − 1)||f ||q||g||p. (32)

By Plancherel theorem,

Λ(f, g) =

∫ 1

0

∫

Rd

(2π)−d

∫

Rd

(AT ξ,KBT ξ)e−(1−t)|AT ξ|2/2

×e−(1−t)|BT ξ|2/2e−i(AT ξ,y)ei(B
T ξ,y)pt(y)f̂(ξ)ĝ(−ξ)dξdydt

=

∫ 1

0

∫

Rd

(2π)−d(AT ξ,KBT ξ)e−(1−t)(|AT ξ|2+|BT ξ|2)/2e−t|BT ξ−AT ξ|2/2

×f̂(ξ)ĝ(−ξ)dξdt

=

∫

Rd

(2π)−df̂(ξ)ĝ(−ξ)(AT ξ,KBT ξ)e−(|AT ξ|2+|BT ξ|2)/2

×

∫ 1

0

e−t[|BT ξ−AT ξ|2−|AT ξ|2−|BT ξ|2]/2dtdξ (33)

=

∫

Rd

(2π)−df̂(ξ)ĝ(−ξ)(AT ξ,KBT ξ)e−(|AT ξ|2+|BT ξ|2)/2 e
(AT ξ,BT ξ) − 1

(AT ξ, BT ξ)
dξ.

Here we used the identity|AT ξ|2 + |BT ξ|2 − 2(AT ξ, BT ξ) = |BT ξ − AT ξ|2 (if
(AT ξ, BT ξ) = 0, then the inner integral in (33) equals1). The symbolm obtains.
The multiplier’s norm bound follows from (32), as in the proof of Theorem1.
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If Aξ = Bξ 6= 0 for all ξ 6= 0, and we multiply the matrices byu → ∞, then

m(ξ) =
(AT ξ,KAT ξ)

(AT ξ, AT ξ)
,

obtains, and the corresponding multiplier has the same normboundp∗ − 1 (see
remarks in Theorem1). Such symbols were discussed in some detail in [3, 4].
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[1] R. Bañuelos and A. Osȩkowski. Martingales and sharp bunds for Fourier
multipliers.ArXiv e-prints, Nov. 2011.
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