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Abstract

Many of the 2-adic properties of the 3x + 1 map generalize to the

analogous mx + r map, where m and r are odd integers. We introduce

the corresponding autoconjugacy map, prove some simple properties of it

and make some further conjectures in the general setting, including weak

versions of the periodicity and divergent trajectories conjectures.

1 Introduction

The Collatz (or 3x + 1, or Syracuse) problem concerns the behaviour under
iteration of the map T defined on the integers by:

T (x) =

{

x/2 x ≡ 0 (mod 2)
(3x+ 1)/2 x ≡ 1 (mod 2)

.

This map is easily extended to the 2-adic integers Z2. (The definition is the
same, parity being determined by the first coefficient in the 2-adic expansion.)
This proves to be an interesting context in which to study the problem.

Lagarias[2] introduced a useful encoding of the behaviour of T under itera-
tion by means of the function Q∞ : Z2 → Z2 defined by Q∞(x) =

∑

k∈N
tk2

k

where tk ∈ {0, 1} and tk ≡ T (k)(x) (mod 2). Bernstein[1] showed that the
inverse function Φ = Q−1

∞ is given by the formula

Φ(2d0 + 2d1 + 2d2 + . . .) = − 3−12d0 − 3−22d1 − 3−32d2 − . . .

where 0 ≤ d0 < d1 < d2 < . . ..
The functions Φ and Q∞ are continuous, measure-preserving bijections on

Z2.
If we define the shift map σ : Z2 → Z2 by

σ(x) =

{

x/2 x ≡ 0 (mod 2)
(x− 1)/2 x ≡ 1 (mod 2)

,

then we have Q∞T = σQ∞ and TΦ = Φσ. The automorphism group of σ is
just {1, V } where V (x) = −1− x. Monks and Yazinski[3] consider the function

Ω = ΦV Q∞ : Z2 → Z2 .
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This is an autoconjugacy of T : that is, ΩT = TΩ and Ω2 = 1. It is the only
nontrivial autoconjugacy of T .

WriteQ2 for the set of rational numbers with odd denominator (when written
in lowest terms). This is just the set of 2-adic integers whose 2-adic expansion
is eventually periodic.

Periodicity conjecture These three statements are equivalent:

• Q∞(Q2) ⊆ Q2;

• Ω(Q2) ⊆ Q2;

• The T -orbit of every rational 2-adic integer is eventually periodic.

Divergent trajectories conjecture These three statements are equivalent:

• Q∞(Z+) ⊆ Q2;

• Ω(Z+) ⊆ Q2;

• The T -orbit of every positive integer is eventually periodic.

Thus the map Ω is of some interest in relation to the Collatz problem and its
variants.

2 A generalized Collatz map

The map T is a special case of the more general map

Tm,r(x) =

{

x/2 x ≡ 0 (mod 2)
(mx+ r)/2 x ≡ 1 (mod 2)

, (1)

in which m and r are odd integers. Similarly to the definition of Q∞, one may
define the corresponding map

Qm,r(x) =
∑

k∈N

tk2
k where tk ∈ {0, 1}, tk ≡ T (k)

m,r (mod 2) . (2)

We clearly haveQm,rT = σQm,r. Note that T3,1 = T , Q3,1 = Q∞, T1,−1 = σ
and Q1,−1 = 1Z2

. By ’long division’, one can show that if r is any odd number
then

Q1,r(x) = −x/r .

The methods described by Lagarias[2] suffice to show that Qm,r : Z2 → Z2

is continuous, one-to-one and onto, and it preserves the 2-adic norm. Write
Φm,r = Q−1

m,r.
The function Φm,r satisfies a pair of identities that ’reverse’ the definition 1:

Φm,r(x) =

{

Φm,r(2x)/2
(mΦm,r(1 + 2x) + r)/2

. (3)

The second of these identities may be derived as follows:

Φm,r(x) = Φm,rσ(1 + 2x)

= Φm,rσQm,rΦm,r(1 + 2x)

= Φm,rQm,rTm,rΦm,r(1 + 2x)

= Tm,rΦm,r(1 + 2x)

= (mΦm,r(1 + 2x) + r)/2
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since Φm,r(1 + 2x) ≡ 1 (mod 2).
This tells us that:

Φm,r(1 + 2x) = −
r

m
+

2

m
Φm,r(x) ,

which allows us to generalize Bernstein’s formula for Φ3,1: indeed,

Φm,r(2
d0 + 2d1 + 2d2 + . . .) = −r(m−12d0 +m−22d1 +m−32d2 + . . .) . (4)

A notable corollary is that

Φm,r(x) = rΦm,1(x) .

So in some sense, the mx+ r problem ’looks like’ the mx+ 1 problem.
We define the generalized autoconjugacy by

Ωm,r = Φm,rV Qm,r .

Just like the Ω = Ω3,1 defined above, this satisfies Ωm,rTm,r = Tm,rΩm,r

and Ω2
m,r = 1.

For the case m = 1, we have

Ω1,r(x) = r − x .

3 Properties of Ωm,r

The map Ωm,r is a bijection between the sets of odd and even 2-adic integers.
The following corollary of equation 3 effectively reduces the study of Ωm,r to its
behaviour on the odd integers.

Theorem 1. For all x ∈ Z2 and all n ∈ N,

r

m− 2
+ Ωm,r(2

nx) =
( 2

m

)n( r

m− 2
+ Ωm,r(x)

)

.

Proof. We have:

r

m− 2
+ Ωm,r(2x) =

r

m− 2
+ Φm,r(−1−Qm,r(2x))

=
r

m− 2
+ Φm,r(−1− 2Qm,r(x))

=
r

m− 2
+ Φm,r(1 + 2(−1−Qm,r(x)))

=
r

m− 2
−

r

m
+

2

m
Φm,r(−1−Qm,r(x))

=
2

m

( r

m− 2
+ Ωm,r(x)

)

.

The proposition follows.

It is presumably not the case in general that Ωm,r(x) ∈ Q2 ⇒ Qm,r(x) ∈ Q2:
for a likely counterexample, take x = Ω5,1(7). However, one can make the
following conjecture.

Conjecture 1. If {x,Ωm,r(x)} ⊆ Q2, then Qm,r(x) ∈ Q2.

This may be regarded as a weak version of the periodicity conjecture. Note
that the assertion is symmetrical in x and Ωm,r(x), because Ωm,r(Ωm,r(x)) = x
and Qm,r(Ωm,r(x)) = −1−Qm,r(x).
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4 The autoconjugacy as a real-valued function

For k ∈ N, define the function

Qk,m,r : Z2 → N ⊆ Z2

by the condition
Qk,m,r(x) ≡ Qm,r(x) (mod 2k) .

In other words, Qk,m,r(x) is the sum of the first k terms of Qm,r as defined in
equation 2.

When restricted to Z, Qk,m,r is periodic with period 2k, and the induced
function Qk,m,r : Z/2kZ → Z/2kZ is a permutation, whose order divides 2k.
The proof of these statements for m = 3, k = 1 is outlined by Lagarias[2]; the
same proof works in the more general case.

Define
Ωk,m,r = Φm,rV Qk,m,r .

Since Qk,m,r(x) → Qm,r(x) in the 2-adic metric as k → ∞, by continuity
Ωk,m,r(x) → Ωm,r(x) in the 2-adic metric as k → ∞.

Since Qk,m,r(x) ∈ N ⊆ Q2, we have Ωk,m,r(x) ∈ Q2 ⊆ R for all x. Therefore
we can ask whether Ωk,m,r(x) tends to some limit in the real metric as k → ∞.

Let
Ω̂m,r(x) = lim

k→∞
Ωk,m,r(x) ∈ R

when this limit exists.
The conditions for Ω̂m,r(x) to exist depend upon m and on the limiting

density of even iterates of Tm,r starting at x.
Let

νm,r(x) = lim inf
k→∞

1

k

∣

∣

∣

{

i < k : T (i)
m,r(x) ≡ 0 (mod 2)

}

∣

∣

∣
.

Theorem 2. If νm,r(x) >
log 2
logm , then Ω̂m,r(x) exists. If in addition Qm,r(x) ∈

Q2, then Ω̂m,r(x) = Ωm,r(x).

Proof. Let 0 ≤ i0 < i1 < i2 < . . . be the set of i such that T
(i)
m,r(x) ≡ 0 (mod 2),

arranged in increasing order. If ij ≤ k < ij+1, then

Ωk,m,r(x) = Φm,r(−1−Qk,m,r(x))

= Φm,r

(

∑

l<j

2il +
∑

i≥k

2i
)

= −
r

m

(

∑

l<j

m−l2il +
2k

mj

(

1−
2

m

)−1
)

by equation 4. The condition on the density of the ij implies that the second
term tends to zero. Furthermore, it implies that

lim inf
j→∞

j

ij
>

log 2

logm
.

Thus, for some δ > 0 and sufficiently large j,

2ij/mj < 2j/(
log 2
log m

+δ)/mj

= m−ǫj
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x Ω5,1(x) ∈ Z2 Ω̂5,1(x) ∈ R

−9 21(1 + 21 + 24 + . . .) −1.129 . . .× 104

−7 −160532/78125 −160532/78125
−5 −3662262/1953125 −3662262/1953125
−3 −321064/78125 −321064/78125
−1 −2 −2
0 −1/3 −1/3
1 −52/31 −52/31
3 −26/31 −26/31
5 −464/31 −464/31
7 21(1 + 21 + 23 + . . .) −1.426 . . .× 102

9 22(1 + 21 + 25 + . . .) −1.777 . . .× 102

Table 1: Some values of Ω5,1 and Ω̂5,1

where ǫ = 1− (1 + logm
log 2 δ)

−1 > 0. Thus the first term converges.

If Qm,r(x) ∈ Q2, then the sequence of ij eventually settles into a periodic
pattern (in other words, for some M and m, and sufficiently large j, ij+m =
ij + M); the infinite sum can then be evaluated exactly, and gives the same
(rational) result in Z2 or R.

Thus if Conjecture 1 is true, then if we know that {x,Ωm,r(x)} ⊆ Q2 and

νm,r(x) >
log 2
logm , we can conclude that Ω̂m,r(x) = Ωm,r(x). The following con-

jecture is slightly stronger.

Conjecture 2. If {x,Ωm,r(x)} ⊆ Q2 and Ω̂m,r(x) exists then Ω̂m,r(x) =
Ωm,r(x).

Note that there are {x,Ω5,1(x)} ⊆ Q2 such that Ω̂5,1(x) doesn’t exist: for
example, x = − 14

17 = Ω5,1(
1
3 ) = Φm,r(−

6
7 ).

Finally, we conjecture (on the basis of limited numerical evidence) that for

integer x and m ≥ 5, there is a sufficient density of even iterates of T
(k)
m,r(x) that

Ω̂m,r(x) exists.

Conjecture 3. If m ≥ 5 and x ∈ Z, then Ω̂m,r(x) exists.

This would follow from Theorem 2 if we could show that the sequence of

iterates T
(k)
m,r(x) (for integer x) does not grow too fast. In this sense, it is a (very)

weak version of the divergent trajectories conjecture. It would be interesting to
try and better understand how νm,r(x) is constrained. Can we even show that
νm,r(x) > 0?

Table 1 shows a few values of Ω5,1(x) and Ω̂5,1(x) for integer x.
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