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Abstract

The technological applications of hidden Markov models have been extremely diverse and
successful, including natural language processing, gesture recognition, gene sequencing, and
Kalman filtering of physical measurements. HMMs are highly non-linear statistical models,
and just as linear models are amenable to linear algebraic techniques, non-linear models are
amenable to commutative algebra and algebraic geometry.

This paper examines closely those HMMs in which all the random variables, called nodes,
are binary. Its main contributions are (1) minimal defining equations for the 4-node model,
comprising 21 quadrics and 29 cubics, which were computed using Gröbner bases in the
cumulant coordinates of Sturmfels and Zwiernik, and (2) a birational parametrization for
every binary HMM, with an explicit inverse for recovering the hidden parameters in terms of
observables. The new model parameters in (2) are hence rationally identifiable in the sense
of Sullivant, Garcia-Puente, and Spielvogel, and each model’s Zariski closure is therefore a
rational projective variety of dimension 5. Gröbner basis computations for the model and
its graph are found to be considerably faster using these parameters. Together, (1) and
(2) provide a nearly instantaneous computational test for whether an observed probability
distribution is due to a binary hidden Markov process, in comparison with a less specialized
algorithm of Schönhuth involving matrix row reduction. Defining equations such as (1) have
been used successfully in model selection problems in phylogenetics, and one can hope for
similar applications in the case of HMMs.

1 Introduction

The present work is motivated primarily by the problems of model selection and parameter
identifiability, viewed from the perspective of algebraic geometry. By beginning with the
simplest hidden Markov models (HMMs) — those with all nodes binary — the hope is that
eventually a very precise geometric understanding of HMMs can be attained that provides
insight into these central problems. This approach has two main branches of historical lineage:
that of hidden Markov models, and that of algebraic statistics.

Hidden Markov models were developed as statistical models in a series of papers by
Leonard E. Baum and others beginning with Baum and Petrie [1966], after the description
by Stratonovich [1960] of the “forward-backward” algorithm that would be used for HMM
parameter estimation. HMMs have been used extensively in natural language processing
and speech recognition since the development of DRAGON by Baker [1975]. As well, since
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Krogh, Mian, and Haussler [1994] used HMM for gene finding in the DNA of in E. coli bacte-
ria, they have had many applications in genomics and biological sequence alignment; see also
[Yoon, 2009]. Now, HMM parameter estimation is built into the measurement of so many
kinds of time-series data that it would be gratuitous to enumerate them. However, the meth-
ods of algebraic statistics are not so old, and the algebraic geometry of these models is far
from fully explored. They are hence an important early example for the theory to investigate.

Algebraic statistics is the application of commutative algebra and algebraic geometry to
the study of statistical models, especially those models involving non-linear relations between
parameters and observables. It was first described at length in the monograph Algebraic
Statistics by Pistone, Riccomagno, and Wynn [2001]1. Subsequent introductions to the sub-
ject include Algebraic Statistics for Computation Biology by Pachter and Sturmfels [2005],
and Lectures in Algebraic Statistics by Drton, Sturmfels, and Sullivant [2009]. Also notable
is Algebraic Geometry and Statistical Learning Theory by Watanabe [2009], for its focus on
the problem of model selection from data.

To the problem of model selection, the algebraic analogue is implicitization, i.e., finding
polynomial defining equations for the Zariski closures of binary hidden Markov models. Such
polynomials are called invariants of the model: if a polynomial f is equal to a constant c at
every point on the model (i.e. does not vary with the model parameters), then we encode
this equation by calling f−c an invariant. Model selection and implicitization are more than
simply analogous; polynomial invariants have been used successfully in model selection by
Casanellas and Fernandez-Sanchez [2006] and Eriksson [2008] for phylogenetic trees.

Invariants have been difficult to classify for hidden Markov models, perhaps due to the
high codimension of the models. Bray and Morton [2005] found many invariants using linear
algebra, but did not exhibit any generating sets of invariants, and in fact their search was
actually for invariants of a model that was slightly modified from the HMM proper. Schönhuth
[2011] found a large family of invariants arising as minors of certain non-abelian Hankel
matrices, and was able to verify that such invariants generate the ideal of the 3-node binary
HMM, the simplest non-degenerate HMM. However, this seemed not to be the case for models
with n ≥ 4 nodes: Schönhuth reported on a computation of J. Hauenstein which verified
numerically that the 4-node model was not cut out by the Hankel minors.

In Section 3, we will make use of moment and cumulant coordinates as exposited in
[Sturmfels and Zwiernik, 2011], as well as a new coordinate system on the parameter space,
to find explicit defining equations for the 4-node binary HMM. The shortest quadric and
cubic equations are fairly simple; to give the reader a visual sense, they look like this:

g2,1 = m23m13 −m2m134 −m13m12 +m1m124

g3,1 = m3
12 − 2m1m12m123 +m∅m

2
123 +m2

1m1234 −m∅m12m1234

Here each m is a moment of the observed probability distribution. These equations are not
generated by Schönhuth’s Hankel minors, and so provide a finer test for membership to any
binary HMM of length n ≥ 4 after marginalizing to any 4 consecutive nodes.

To the problem of parameter identifiability, the algebraic analogue is the generic or global
injectivity or finiteness of a map of varieties that parametrizes the model, or in the case of
identifying a single parameter, constancy of the parameter on the fibers of the parameteri-
zation. Sullivant et al. [2010] provide an excellent discussion of this topic in the context of
identifying causal effects; see also [Meshkat, Eisenberg, and DiStefano, 2009] for a striking
application to identification for ODE models in the biosciences.

In Section 4, for the purpose of parameter identification in binary hidden Markov models,

1Pistone et al. attribute their interest in the subject to a seminar paper of Diaconis and Sturmfels [1998] circu-
lated as a manuscript in 1993, which employed Gröbner bases to construct Markov random walks.
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we express the parametrization of a binary HMM as the composition of an invertible linear
map χ−1, a dominant and generically finite monomial map q, and a birationally invertible
map ψ. An explicit inverse to the birational map is given, which allows for the easy recovery
of hidden parameters in terms of observables. The components of the monomial map are
identifiable combinations in the sense of Meshkat et al. [2009]. The formulae for recovering
the hidden parameters are fairly simple when exhibited in a particular order, corresponding
to a particular triangular set of generators in a union of lexicographic Gröbner bases for the
model ideal. To show their simplicity, the most complicated recovery formula looks like this:

u =
m1m3 −m2

2 +m23 −m12

2(m3 −m2)

As a corollary, in Section 4.3 we find that the fibers of φn are generically zero-dimensional,
consisting of two points which are equivalent under a “hidden label swapping” operation.

Section 5 describes how every BHMM lives inside a particular 9-dimensional variety called
a trace variety, which is a GIT quotient of the space of triples of 2 × 2 matrices under a
simultaneous conjugation action by SL2. As a quotient, the trace variety is not defined
inside any particular ambient space. However, its coordinate ring, a trace algebra, was found
by Sibirskii [1968] to be generated by 10 elements, which means we can embed the trace
variety, and hence all BHMMs simultaneously, in C10. We prove the main results of Section 4
in the coordinates of this embedding. As a byproduct of this approach, in section Section 5.6
we find that the Zariski closures of all BHMMs with n ≥ 3 are birational to each other.

Finally, Section 6 explores some applications of our results, including model membership
testing, classification of identifiable parameters, a new grading on binary HMMs that can be
used to find low-degree invariants, the geometry of equilibrium binary HMMs, and HMMs
with more than two visible states.

I would like to thank my advisor, Bernd Sturmfels, and postdoctoral mentor, Shaowei
Lin, for many helpful conversations and editorial suggestions on this paper.

2 Definitions

In this paper, we will be referring to binary hidden Markov processes, distributions, maps,
models, varieties, and ideals. Each of these terms is used with a distinct meaning, and effort
is made to keep their usages consistent and separate.

2.1 Binary Hidden Markov processes and distributions

A binary hidden Markov process is a statistical process which generates random binary se-
quences. It is based on the simpler notion of a binary (and not hidden) Markov chain process.

Definition 2.1. A Binary Hidden Markov process will comprise 5 data: π, T , E, and
(Ht, Vt). The pair (Ht, Vt) denotes a jointly random sequence (H1, V1,H2, V2, . . .) of binary
variables, also respectively called hidden nodes and visible nodes, with range {0, 1}. Often a
bound n on the (discrete) time index t is also given. The joint distribution of the nodes is
specified by the following:

• A row vector π = (π0, π1), called the initial distribution, which specifies a probability
distribution on the first hidden node H1 by Pr(H1 = i) = πi;
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• Amatrix T =

[
T00 T01
T10 T11

]
, called the transition matrix, which specifies conditional “tran-

sition” probabilities by the formula Pr(Ht = j |Ht−1 = i) = Tij, read as the probability
of “transitioning from hidden state i to hidden state j”.2

• AmatrixE =

[
E00 E01

E10 E11

]
, called the emission matrix, which specifies conditional “emis-

sion” probabilities by the formula Pr(Vt = j |Ht = i) = Eij , read as the probability
that “hidden state i emits the visible state j”.

To be precise, the parameter vector θ = (π, T,E) determines a probability distribution
on the set of sequences of pairs ((H1, V1) . . . (Hn, Vn)) ∈ ({0, 1}2)n, or if no bound n is
specified, a compatible sequence of such distributions as n grows. In applications, only the
joint distribution on the visible nodes (V1, . . . , Vn) ∈ {0, 1}n is observed, and is called the
observed distribution. This distribution is given by marginalizing (summing) over the possible
hidden states of a BHM process:

Pr(V = v | θ = (π, T,E)) =
∑

h∈{0,1}n

Pr(h, v|π, T,E) =
∑

h∈{0,1}n

Pr(h |π, T ) Pr(v |h,E)

=
∑

h∈{0,1}n

πh1Eh1,v1

n∏

i=2

Thi−1hiEhi,vi (1)

Definition 2.2. A Binary Hidden Markov distribution is a probability distribution on
sequences v ∈ {0, 1}n of jointly random binary variables (V1, . . . , Vn) which arises as the
observed distribution of some BHM process according to (1).

As we will see in Section 4.1, different processes (π, T,E,Ht, Vt) can give rise to the same
observed distribution on the Vt, for example by permuting the labels of the hidden variables,
or by other relations among the parameters.

Those already familiar with Markov models in some form may note that:

• The data (π, T,Ht) alone specify what is ordinarily called a binary Markov chain process
on the nodes Ht. In the applications we have in mind, these nodes are unobserved
variables.

• The matrices T and E are assumed to be stationary, meaning that they are not allowed
to vary with the “time index” t of (Ht, Vt).

• The distribution π is not assumed to be at equilibrium, i.e. we do not assume that
πT = π. This allows for more diverse applications.

N.B. 2.3. The term “stationary” is sometimes also used for a process that is at equilibrium;
we will reserve the term “stationary” for the constancy of matrices T ,E over time.

2.2 Binary Hidden Markov maps, models, varieties, and ideals

Statistical processes come in families defined by allowing their parameters to vary, and in
short, the set of probability distributions that can arise from the processes in a given family
is called a statistical model. The Zariski closure of such a model in an appropriate complex
space is an algebraic variety, and the geometry of this variety carries information about the
purely algebraic properties of the model.

2[Schönhuth, 2011] uses T for different matrices, which I will later denote by P .

4



In a binary hidden Markov process, each row of π, T , and E must consist of non-negative
reals which sum to 1, since these rows are probability distributions. Taking the complex
Zariski closure of the classically compact set of such parameter vectors

θ = (π, T,E)

is simply a matter of allowing the matrices (π,E, T ) to have complex entries. So, for the
resulting parameter ring and affine space, we write

C[θ] := C[πj, Tij , Eij ]

/(
1 =

∑

j

πj =
∑

j

Tij =
∑

j

Eij for i = 0, 1
)

C5
θ := SpecC[θ]

Here Spec denotes the spectrum of a ring; see [Cox, Little, and O’Shea, 2007] for this and
other fundamentals of algebraic geometry.

Convention 2.4. We will always denote complex vector spaces by C to some power, with a
subscript indicating the coordinate functions on that space. For example, C5

θ is 5-dimensional
space of parameter vectors θ = (π, T,E). We will write projective spaces similarly using P
raised to the dimension. Rings will usually be denoted by R with some subscripts to indicate
its generators.

We denote by ∆5
θ the 5 real-dimensional cube of non-negative stochastic matrices (π, T,E),

i.e., the points of C5
θ where θ = (π, T,E) have non-negative real entries. Thus

∆5
θ ⊆ C5

θ

Now we a fix a length |v| = n for our binary sequences v, and write

Rp,n := C[pv | v ∈ {0, 1}n] C2n

p := Spec(Rp,n)

Rp,n := Rp,n
/
(1−

∑

|v|=n

pv) C2n−1
p := Spec(Rp,n)

P2n−1
p := Proj(Rp,n)

We will often have occasion to consider the natural inclusions,

ιn : C2n−1
p →֒ C2n

p ιn : C2n−1
p →֒ P2n−1

p

Definition 2.5. For n ≥ 3,

• The Binary Hidden Markov map or modeling map on n nodes is the map φBHM(n),
or simply φn, given by given by (1), i.e.

φn : C5
θ → C2n−1

p ,

φ#n (pv) :=
∑

h∈{0,1}n

πh1Eh1,v1

n∏

i=2

Thi−1hiEhi,vi

The word “model” is also frequently used for the map φn. This is a very reasonable
usage of the term, but I reserve “model” for the image of the allowed parameter values:

• MBHM(n), the Binary Hidden Markov model on n nodes, is the image

ιnφn
(
∆5
θ

)
⊆ P2n−1

p ,

i.e., the set of observed distributions which can arise from some BHM process, considered
as a subset of P2n−1

p via ιn. Being the continuous image of a classically compact set,
this set is classically compact and hence classically closed.
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• VBHM(n), the Binary Hidden Markov variety on n nodes, is the Zariski closure of

MBHM(n) in P2n−1
p .

• IBHM(n), the Binary Hidden Markov ideal on n nodes, is the set of homoge-
neous polynomials which vanish on MBHM(n), i.e., the homogeneous defining ideal of
VBHM(n). Elements of IBHM(n) are called invariants of the model.

In summary, probability distributions arise from processes according to modeling maps,
models are families of distributions arising from processes of a certain type, and the Zariski
closure of each model is a variety whose geometry reflects the algebraic properties of the
model. The ideal of the model is the same as the ideal of the variety: the definition of Zariski
closure is the largest set which has the same ideal of vanishing polynomials as the model. In
a rigorous sense (namely, the anti-equivalence of the categories of affine schemes and rings),
the variety encodes information about the “purely algebraic” properties of the model, i.e.
properties that can be stated by the vanishing of polynomials.

The number of polynomials that vanish on any given set is infinite, but by the Hilbert
Basis theorem, one can always find finitely many polynomials whose vanishing implies the
vanishing of all the others. This is called a generating set for the ideal. To compute a
generating set for IBHM(n), we will need the following proposition:

Proposition 2.6. The ideal IBHM(n) is the homogenization of ker(φ#n ◦ ι#n ) with respect to
pΣ :=

∑
|v|=n pv

Proof. The affine ideal ker(φ#n ◦ ι#n ) cuts out the Zariski closure X of ιn ◦φn(C5
θ) in C2n

p , and

this closure lies in the hyperplane {pΣ = 1} = C2n−1
p . Let X ′ be the projective closure of X

in P2n−1
p , so that I(X ′) is the homogenization of ker(φ#n ◦ ι#n ) with respect to pΣ.
The cube ∆5

θ is Zariski dense in C5
θ, so ιn ◦ φn(∆5

θ) is Zariski dense in ιn ◦ φn(C5
θ), which

is Zariski dense in X, which is Zariski dense in X ′. Therefore X ′ = VBHM(n), and I(X
′) =

IBHM(n), as required.

3 Defining equations of VBHM(3) and VBHM(4)

Theorem 3.1. The homogeneous ideal IBHM(4) of the binary hidden Markov variety VBHM(4)

is minimally generated by 21 homogeneous quadrics and 29 homogeneous cubics.

Our fastest derivation of this result in Macaulay2 [Grayson and Stillman] uses the bira-
tional parametrization of Section 4, but in only a single step, so we defer the lengthier dis-
cussion of the parametrization until then. Modulo this dependency, the proof is described in
Section 3.3, using moment coordinates (Section 3.1) and cumulant coordinates (Section 3.2).

In probability coordinates, the generators found for IBHM(4) had the following sizes:

• Quadrics g2,1, . . . , g2,21: respectively 8, 8, 12, 14, 16, 21, 24, 24, 26, 26, 28, 32, 32, 41,
42, 43, 43, 44, 45, 72, 72 probability terms.

• Cubics g3,1, . . . , g3,29: respectively 32, 43, 44, 44, 44, 52, 52, 56, 56, 61, 69, 71, 74, 76, 78,
81, 99, 104, 109, 119, 128, 132, 148, 157, 176, 207, 224, 236, 429 probability terms.

As a motivation for introducing moment coordinates, we note here that these generators have
considerably fewer terms when written in terms of moments:

• Quadrics g2,1, . . . , g2,21: respectively 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 10, 10, 10, 17
moment terms.
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• Cubics g3,1, . . . , g3,29: respectively 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 10, 12,
12, 13, 14, 16, 18, 21, 27, 35 moment terms.

To give a sense of how these polynomials look in moment coordinates, the shortest quadric
and cubic are

• g2,1 = m23m13 −m2m134 −m13m12 +m1m124, and

• g3,1 = m3
12 − 2m1m12m123 +m∅m

2
123 +m2

1m1234 −m∅m12m1234.

Let us compare this ideal with IBHM(3), the homogeneous defining ideal ofVBHM(3). Schönhuth
[2011] found that IBHM(3) is precisely the ideal of 3× 3 minors of the following matrix:

A3,3 =




p000 + p001 p000 p100
p010 + p011 p001 p101
p100 + p101 p010 p110
p110 + p111 p011 p111


 (2)

Schönhuth defines an analogous matrix An,3 for VBHM(n), but then remarks that J.
Hauenstein has found, using numerical rank deficiency testing [Bates, Hauenstein, Peterson, and Sommese,
2010] with the algebraic geometry package Bertini [Bates, Hauenstein, Sommese, and Wampler],
that minors3(An,3) does not cut out VBHM(n) when n = 4. In general, Schönhuth shows that
IBHM(n) = (minors3(An,3) : minors2(Bn,2)) for a particular 2×3 matrix Bn,2, but computing
generators for this colon ideal is a costly operation, and so no generating set for IBHM(n) was
found for any n ≥ 4 by this method. Instead, here we will make use of moment coordinates
and cumulant coordinates as exposited in [Sturmfels and Zwiernik, 2011].

3.1 Moment coordinates

Moments are particular linear expressions in probabilities. They can be derived from a
moment generating function as in [Sturmfels and Zwiernik, 2011], but in our case, moments
can be expressed simply by the following rule: we order {0, 1}n by strict dominance, i.e.v ≥ w
iff vi ≥ wi for all i, and then

mv :=
∑

w≥v

pw ∈ Rp,n (3)

Since all our variables are binary, with the usual algebraic statistical convention that a “+”
subscript denotes an index to be summed over, we can view the conversion from moments
to probabilities as “replacing zeros by + signs”. For example, m10010 = p1++1+. The ring
elements mv ∈ Rp,n provide alternative linear coordinates on P2n−1

p in which it turns out that
some previously intractable BHM computations are simplified and become feasible.

For a more compact notation, a binary string v of length n is the indicator function of
a unique subset I of [n] = {1, . . . , n}, so we also write mI to represent mv. For example,
m0000 = m∅, m1000 = m1, and m0101 = m24. From (3) we can see that mI actually represents
a marginal probability: mI = Pr(Vi = 1 for all i ∈ I). Thus, in the context of BHMMs , no
confusion results if we write mI without specifying the value of n. To be precise, if I ⊆ [n]
and I ′ denotes I considered as a subset of [n′] for some n′ > n, then

φ#n (mI) = φ#n′(mI′) (4)

This can be seen in many ways, for example using the Baum formula for moments (Proposition 5.1)
as explained in Section 5.3.
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Just as for probabilities, for moments we define rings and spaces

Rm,n := C[mI | I ⊆ [n]] C2n

m := Spec(Rm,n)

Rm,n := Rm,n
/
〈1−m∅〉 C2n−1

m := Spec(Rm,n) (5)

P2n−1
m := Proj(Rm,n),

To avoid having notation for too many ring isomorphisms, we adopt:

Convention 3.2. Using (3), we will usually treat mI as a literal element of Rp,n, thus
creating literal identifications

Rm,n = Rp,n, Rm,n = Rp,n, C2n
m = C2n

p , P2n−1
m = P2n−1

p , and C2n−1
m = C2n−1

p . (6)

Note that, for example, we obtain natural ring inclusions

Rm,n ⊆ Rm,n′

whenever n < n′, which respect the BHM maps φn by (4).
As a first application of moment coordinates, we have

Proposition 3.3. The homogeneous ideal IBHM(3) is generated in moment coordinates by
the 3× 3 minors of the matrix

A′
3,3 =




m000 m000 m100

m010 m001 m101

m100 m010 m110

m110 m011 m111


 =




m∅ m∅ m1

m2 m3 m13

m1 m2 m12

m12 m23 m123




In particular, the projective variety VBHM(3) is cut out by these minors.

Proof. Observe that Schönhuth’s matrix A3,3 in (2) is equivalent under elementary row/column
operations to A′

3,3, so minors3A
′
3,3 = minors3A3,3 = IBHM(3).

Proposition 3.4. The ideal IBHM(n) is the homogenization of ker(φ#n ) with respect to m∅.

Proof. From Proposition 2.6 we know that IBHM(n) is the homogenization of ker(φ#n ◦ ι#n )
with respect to m∅ =

∑
|v|=n pv. From (5), we can identify Rm,4 with the polynomial subring

of Rm,4 obtained by omitting m∅, so that ker(φ#4 ◦ ι#4 ) = ker(φ#4 ) + 〈1 − m∅〉. Since the

additional generator 1 − m∅ homogenizes to 0, ker(φ#4 ) has the same homogenization as

ker(φ#4 ◦ ι#4 ), hence the result.

3.2 Cumulant coordinates

Cumulants are non-linear expressions in moments or probabilities which seem to allow even
faster computations with binary hidden Markov models. Let

Rk,n := C[kI | I ⊆ [n]]

Rk,n := Rk,n
/
〈k∅〉

C2n−1
k := Spec(Rk,n)

where, as with moments, we may freely alternate between writing kv and writing kI , where
I is the set of positions where 1 occurs in v. For building generating functions, let x1, . . . , xn

8



be indeterminates, and write xv = xI for xv11 · · · xvnn =
∏
i∈I xi. Let J be the ideal generated

by all the squares x2i . Following [Sturmfels and Zwiernik, 2011], we define the moment and
cumulant generating functions, respectively, as

fm(x) :=
∑

I⊆[n]

mIx
I ∈ Rm,n[x]/J fk(x) :=

∑

I⊆[n]

kIx
I ∈ Rk,n[x]/J

We now define changes of coordinates

κn : C2n−1
m → C2n−1

k κ−1
n : C2n−1

k → C2n−1
m

by the formulae

κ#n (fk) = log(fm) =
(fm − 1)

1
+ · · · + (−1)n+1 (fm − 1)n

n
(7)

κ−#
n (fm) = exp(fk) = 1 +

(fk)

1
+ · · ·+ (fk)

n

n!

That is, we let κ#n (kI) be the coefficient of xI in the Taylor expansion of log fm about 1, and

let κ−#
n (mI) be the coefficient of xI in the Taylor expansion of exp fk about 0. Note that in

the relevant coordinate rings Rm,n and Rk,n, m∅ = 1 and k∅ = 0. This is why we only need
to compute the first n terms of each Talyor expansion: the higher terms all vanish modulo
the ideal J .

Proposition 3.5. The expressions κ#n (kI) and κ
−#
n (mI), i.e. writing of cumulants in terms

of moments and conversely, do not depend on n.

Proof. In [Sturmfels and Zwiernik, 2011], these formulae are re-expressed using Möbius func-
tions, which do not depend on the generating function description above, and in particular
do not depend on n.

3.3 Deriving IBHM(4) in Macaulay2

This section describes the proof of Theorem 3.1 using Macaulay2. These computations were
carried out on a Toshiba Satellite P500 laptop running Ubuntu 10.04, with an Intel Core i7
Q740 .73 GHz CPU and 8gb of RAM. In light of Proposition 3.4, we will aim to compute
ker(φ#4 ◦ ι#4 ), which can be understood geometrically as the (non-homogeneous) ideal of the
standard affine patch of VBHM(4) where m∅ =

∑
|v|=4 pv = 1. To reduce the number of

variables, as in Proposition 3.4 we continue to make the identification

Rm,4 = C[mI |∅ 6= I ⊆ [4]] ⊆ Rm,4

We begin by providing Macaulay2 with the map φ#4 : Rm,4 → C[θ] in moment coordinates
(Section 3.1), because probability coordinates result in longer, higher degree expressions. This

can be done by composing the expression of φ#n (pv) in Definition 2.5 with the expression of
mv = mI in (3), or alternatively using the Baum formula for moments (Proposition 5.1),
which involves many fewer arithmetic operations.

Macaulay2 runs out of memory (8gb) trying to compute ker(φ#4 ), and as expected, this
memory runs out even sooner in probability coordinates, so we use cumulant coordinates
instead (Section 3.2). We input

κ#4 : Rk,4 → Rm,4

9



using coefficient extraction from (7), and compute the composition φ#4 ◦ κ#4 . Then, it is
possible to compute

Ik,4 := ker(φ#4 ◦ κ#4 )
which takes around 1.5 hours. Alternatively, we can compute Ik,4 using the birational
parameterization ψ4 of Section 4 in place of φ4, which takes less than 1 second and yields
100 generators for Ik,4.

Subsequent computations run out of memory with this set of 100 generators, so we must
take some steps to simplify it. Macaulay2’s trim command reduces the number of generators
of Ik,4 to 46 in under 1 second. We then order these 46 generators lexicographically, first
by degree and then by number of terms, and eliminate redundant generators in reverse order,
which takes 19 seconds. The result is an inclusion-minimal, non-homogeneous generating
set for Ik,4 with 35 generators: 24 quadrics and 11 cubics.

Now we compute Im,4 := κ#(Ik,4) = κ#(ker(φ#4 ◦ κ#4 )) = ker(φ#4 ), i.e., we push forward

the 35 generators for Ik,4 under the non-linear ring isomorphism κ#4 to obtain 35 generators

for Im,4 = ker(φ#4 ): 2 quadrics, 7 cubics, 16 quartics, 5 quintics, and 5 sextics. In under 1

second, Macaulay2’s trim command computes a new set of 39 generators for Im,4 with lower
degrees: 21 quadrics, 14 cubics, and 4 quartics, which turns out to save around 1 hour of
computing time in what follows. These generators have many terms each, and eliminating
redundant generators as in the previous paragraph turns out to be too slow to be worth it
here, taking more than 2 hours, so we omit this step.

Finally, we apply Proposition 3.4 to compute IBHM(4) as the homogenization of Im,4 with
respect to m∅. In Macaulay2, this is achieved by homogenizing the 39 generators for Im,4 with
respect to m∅ and then saturating the ideal they generate with respect to m∅. This saturation
operation takes about 29 minutes, and yields a minimal generating set of 50 polynomials:
21 quadrics and 29 cubics. Since probabilities are linear in moments, their degrees are the
same in probability coordinates. Moreover, since these are homogeneous generators for a
homogeneous ideal, they are minimal in a very strong sense:

Corollary 3.6. Any inclusion-minimal homogeneous generating set for IBHM(4) in probabil-
ity or moment coordinates must contain exactly 21 quadrics and 29 cubics.

We still do not know a generating set for IBHM(5). Macaulay2 runs out of memory (8gb)
attempting to compute Ik,5, even using the birational parametrization of Section 4. The
author has also attempted this computation using the tree cumulants of Smith and Zwiernik
[2010] in place of cumulants, but again Macaulay2 runs out of memory trying to compute the
first kernel. Presumably the subsequent saturation step would be even more difficult.

4 Birational parametrization of BHMMs

Theorem 4.1 (Birational Parameter Theorem). There is a generically two-to-one, dominant
morphism C5

θ → C5 such that, for each n ≥ 3, the binary hidden Markov map φn factors
uniquely as

C5 C2n−1
p

ψn
C5
θ

φn

and each ψn : C5 → VBHM(n) has a birational inverse map ρn:

10



C5 VBHM(n)

ψn

ρn

In particular, VBHM(n) is always a rational projective variety, i.e., birationally equivalent to
P5.

This theorem will be proven in Section 5.6 using trace algebras and the Baum formula for
moments. In the course of this section and Section 5 we will exhibit formulae for ψn and their
inverses ρn. The inverse map ρ3 has a number of practical uses, to be explored in Section 6.

Our first step toward Theorem 4.1 is to re-parametrize C5
θ.

4.1 A linear reparametrization of C5
θ

Since the hidden variables Ht are never observed, there is no change in the final expression of
pv in Definition 2.5 if we swap the labels {0, 1} of all the Ht simultaneously. This swapping
is equivalent to an action of the elementary permutation matrix σ = ( 0 1

1 0 ):

sw : C5
θ → C5

θ

θ = (π, T,E) 7→ (πσ, σ−1Tσ, σ−1E) (8)

(In our case σ−1 = σ, but the form above generalizes to permutations of larger hidden
alphabets.) Hence we have that Pr(v |π, T,E) = Pr(v | sw(π, T,E)), i.e. φn = φn ◦ sw.

We will make essential use of a linear parametrization of C5
θ in which sw has a simple

form. Our new parameter vector will be η0 := (a0, b, c0, u, v0), with subscript 0’s to be
explained shortly. Although we have already used the letter v at times to represent visible
binary strings, we hope that the context will be clear enough to avoid confusion between
these usages. We let

C[η0] := C[a0, b, c0, u, v0], C5
η0

:= Spec(C[η0]),

π =
1

2

[
1− a0, 1 + a0

]

T =
1

2

[
1 + b− c0, 1− b+ c0
1− b− c0, 1 + b+ c0

]
E =

[
1− u+ v0, u− v0
1− u− v0, u+ v0

] (9)

(The rightmost column of E is made intentionally homogeneous in the parameters.) This
defines a linear isomorphism χ : C5

η0

∼−→ C5
θ. For convenience, we write sw also for χ◦sw ◦χ−1.

In these coordinates, sw acts by

a0 7→ −a0, b 7→ b, c0 7→ −c0, u 7→ u, v0 7→ −v0
In other words, swapping the signs of the subscripted variables a0, c0, v0 has the same effect
as acting on the matrices π, T,E by σ as in (8), i.e., relabeling the hidden alphabet.

We will write ∆5
η0

:= χ−1∆5
θ, the classically compact set of real points giving rise to

non-negative stochastic matrices. Let us write ψn for the new parametrization φn ◦ χ:

ψn : C5
η0

χ−→ C5
θ

φn−→ C2n−1
p

Recall that we write ιn : C2n−1
p →֒ C2n

p and ιn : C2n−1
p →֒ P2n−1

p for the natural inclusions, so

that nowVBHM(n) = image(ιnψn). The morphism ψn defines a ring map ψ#
n : Rp,n → C[η0],

and kerψ#
n = ker φ#n cuts out VBHM(n) in image(ιn), i.e., the standard affine patch where∑

|v|=n pv = 1.

11



4.2 Introducing the birational parameters

Since ψn ◦ sw = ψn, by classical invariant theory the ring map ψ#
n : Rp,n → C[η0] must land

in the subring of invariants C[η0]sw = C[b, u, a20, c
2
0, v

2
0 , a0c0, a0v0, c0v0]. However, ψ

#
n in fact

factors through a smaller subring, conveniently generated by 5 elements:

Lemma 4.2 (Parameter Subring Lemma). For all n ≥ 3, the ring map ψ#
n lands in the

subring
C[η] := C[a, b, c, u, v]

of C[η0], where a = a0v0, c = c0v0, v = v20.

The proof of this key lemma will be given in Section 5.5 after introducing trace algebras.
To interpret its geometric consequences, write q

# for the subring inclusion

q
# : C[η] →֒ C[η0]

a 7→ a0v0, b 7→ b, c 7→ c0v0, u 7→ u, v 7→ v20 ,

write ψ
#
n : Rp,n → C[η] for the factorization of ψ#

n through q
#, and write C5

η := SpecC[η].
The result:

Corollary 4.3. The following diagram of dominant maps commutes:

C5
η VBHM(n)

ψn
C5
η0C5

θ

φn

qχ−1

where χ : C5
η0
→ C5

θ is the isomorphism given by (9), and q is generically two-to-one.

This corollary in particular implies the first part of the Birational Parameter Theorem
(4.1), by taking q ◦ χ−1 : C5

θ → C5
η as the generically 2 : 1 map.

Remark 4.4. The map q is only dominant, and not surjective; for example, it misses the
point (1, 0, 0, 0, 0).

Corollary 4.5. For all n ≥ 3, VBHM(n) = image(ιnψn).

Proof. Since q is dominant and χ−1 is an isomorphism, image(ιnψn) = image(ιnψnq) =
image(ιnψnqχ

−1) = image(ιnφn) =: VBHM(n).

The unique factorization map ψ
#
n can be computed directly in Macaulay2 for small n.

The expressions in moment coordinates are simpler than in probabilities, so we present these
in the following proposition.
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Proposition 4.6. The map ψ
#
3 is given in moment coordinates by

m∅ = m000 7→ 1

m1 = m100 7→ a+ u

m2 = m010 7→ ab+ c+ u

m3 = m001 7→ ab2 + bc+ c+ u

m12 = m110 7→ abu+ ac+ au+ cu+ u2 + bv

m13 = m101 7→ ab2u+ abc+ bcu+ b2v + ac+ au+ cu+ u2

m23 = m011 7→ ab2u+ abc+ abu+ bcu+ c2 + 2cu+ u2 + bv

m123 = m111 7→ ab2u2 + 2abcu+ abu2 + bcu2 + b2uv + ac2 + 2acu

+ c2u+ au2 + 2cu2 + u3 + abv + bcv + 2buv

We will eventually prove the Birational Parameter Theorem (4.1) by marginalization to
the case n = 3, which we can prove here:

Proposition 4.7. The following triangular set of equations hold on the graph of ψ3, after
clearing denominators, and can thus be used to recover parameters from observed moments
where the denominators are non-zero:

b =
m3 −m2

m2 −m1

u =
m1m3 −m2

2 +m23 −m12

2(m3 −m2)

a = m1 − u
c = a− ba+m2 −m1

v = a2 − m1m2 −m12

b

(This result actually holds for all φn with n ≥ 3, because of Proposition 5.2.)

Proof. These equations can be checked with direct substitution by hand from Proposition 4.6.
Regarding the derivation, they can be obtained in Macaulay2 by computing two Gröbner bases
of the elimination ideal I = 〈mv − ψ3(mv)|v ∈ {0, 1}3〉 over the ring C23

m , in Lex monomial
order: once in the ring Rm,3[v, c, a, b, u], and once in Rm,3[v, c, u, b, a]. Each variable occurs
in the leading term of a some generator in one of these two bases with a simple expression
in moments as its leading coefficient. We solve each such generator (set to 0) for the desired
parameter.

Corollary 4.8. The map ψ3 : C5 → VBHM(3) has a birational inverse ρ3. The map ρ#3 on
moment coordinate functions is given by:

a 7→ m2
2 +m3m1 − 2m2m1 −m23 +m12

2(m3 −m2)
u 7→ −m

2
2 +m3m1 +m23 −m12

2(m3 −m2)

b 7→ m3 −m2

m2 −m1
v 7→ num(v)

4(m3 −m2)2

c 7→ num(c)

2(m2 −m1)(m3 −m2)
, where
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num(c) =−m1m
2
2 +m2

1m3 +m2
2m3 −m1m

2
3 −m1m12

+ 2m2m12 −m3m12 +m1m23 − 2m2m23 +m3m23, and

num(v) = m4
2 − 2m1m

2
2m3 +m2

1m
2
3 − 2m2

2m12 − 2m1m3m12 + 4m2m3m12

+ 4m1m2m23 − 2m2
2m23 − 2m1m3m23 +m2

12 − 2m12m23 +m2
23.

(This result will also hold for all φn with n ≥ 3 by Proposition 5.2.)

Proof. This can be derived by substituting the solutions for u, a, and b in the previous
propositions into the subsequent solutions for a, c, and v. Alternatively, it can be checked by

direct substitution in Macaulay2, i.e., one computes that ψ
#
3 ◦ ρ#(θ) = θ for each birational

parameter θ ∈ {a, b, c, u, v}.

The expressions in Corollary 4.8 are considerably simpler in moment coordinates than in
probabilities. Comparing the number of terms, the numerators for a, b, c, u, v respectively
have sizes 5, 2, 10, 4, and 12 in moment coordinates, versus sizes 22, 4, 56, 22, and 190 in
probability coordinates. This explains in part why Macaulay2’s Gröbner basis computations
execute in moment coordinates with much less time and memory.

4.3 Statistical interpretation of the birational inverse ρ3

It turns out that the factors appearing in the denominators of Corollary 4.8 defining ρ3 have
simple factorizations in terms of the rational and birational parameters:

• m3 −m2 appears in the denominator of all ρ3(θ) except ρ3(b), and

m3 −m2
ψ37→ (b)(ab− a+ c)

q7→ (b)(v0)(a0b− a0 + c0)

• m2 −m1 appears in the denominator of ρ3(b) and ρ3(c), and

m2 −m1
ψ37→ ab− a+ c

q7→ (v0)(a0b− a0 + c0)

Let us pause to reflect on the meaning of these factors.

• The factor v0 occurs in det(E) = 2v0, hence v = v20 = 0 iff the hidden Markov chain
has “no effect” on the observed variables. The image locus ψ3({v0 = 0}) can thus be
modeled by a sequence of IID coin flips with distribution E0 = E1 = (1 − u, u), so the
BHMM is an unlikely model choice. This is a one-dimensional submodel.

• The factor b occurs in det(T ) = b, hence b = 0 iff each hidden node has “no effect” on
the subsequent hidden nodes. In this case, the observed process can be modeled as a
sequence of independent coin flips, the first flip having distribution πE and subsequent
flips being IID having distribution T0E = T1E, a process which requires one parameter
for each of these two different distributions. The image locus ψ3({b = 0}) is hence a
two-dimensional submodel.

• The factor a0b − a0 + c0 occurs in πT − π = 1
2(−a0b + a0 − c0, a0b − a0 + c0). Hence

a0b−a0+c0 = 0 iff π is a fixed point of T , i.e. the hidden Markov chain is at equilibrium.
We may define the Equilibrium Binary Hidden Markov model, EBHMM, by restricting
ψ3 to the locus {a0b − a0 + c0 = 0}), which turns out to yield a four-dimensional

submodel. The geometry of this submodel will be examined in future work in order
to identify the learning coefficients of BHMM fibers.
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4.4 Computational advantages of moments, cumulants, and

birational parameters

Our approach has been to work with moments mv and cumulants kv instead of probabilities
pv, and the birational parameters a, b, c, u, v instead of the matrix entries π1, ti1, ei1. Other
than the theoretical advantage that the model map is generically injective on the birational
parameter space, significant computation gains in Macaulay2 also result from these choices
(see Section 3.3 for laptop specifications):

• Computing kerψ3 = ker φ3, the affine defining ideal of VBHM(3), took less than 1
second in Macaulay2 when using the birational parameters, compared to 25 seconds
when using the matrix entries and moments, and 15 minutes when using the matrix
entries and probabilities.

• Computing kerψ4 = kerφ4, the affine defining ideal of VBHM(4) took less than 1
second in Macaulay2 when using the birational parameters and cumulant coordinates
[Sturmfels and Zwiernik, 2011], compared to 1.5 hours when using the matrix entries
and cumulant coordinates, and running out of memory (8gb) when using the matrix
entries and probabilities.

5 A simultaneous embedding of all BHMMs

In this section, we exhibit an embedding of every BHMM in a particular trace variety called
SpecC2,3, which itself can be embedded in C10. We use these coordinates to prove the
Birational Parameter Theorem (4.1) and the Parameter Subring Lemma (4.2), which were
stated without proof.

For this, we will define a map φ∞ through which all the φn factor, and using a version of
the Baum formula for moments, we factor this map further though SpecC2,3. Then we use
a finite set 10 of generators of the ring C2,3 exhibited by [Sibirskii, 1968] to show that the

image of ψ#
∞ := χ# ◦φ#∞ lands in the desired subring C[η], and write ψn for the factorization.

Finally, by marginalizing to the case n = 3, we obtain a birational inverse for ψn from the
map ρ3 given in Corollary 4.8.

5.1 Marginalization maps

For each pair of integers n′ ≥ n ≥ 1, the marginalization map µn
′

n : C2n
′

p → C2n
p is given by

µn
′

n

#
(pv) :=

∑

|w|=n′−n

pvw

These restrict to maps µn
′

n : C2n
′

−1
p → C2n−1

p , and define rational maps µn
′

n : P2n
′

−1
p 99K P2n−1

p .

In moment coordinates, these maps are actually coordinate projections: µn
′

n

#
(mv) = mv0

where 0 denotes a sequence of n′ − n zeros. In fact, using the subset notation for moments

mI , the corresponding ring maps are literal inclusions: µn
′

n

#
(mI) = mI . In other words,

µn
′

n : C2n
′

m → C2n
m is just the map which forgets those mI where I * [n].

5.2 The Baum formula for moments

Equation (1) involves O(2n) addition operations. There is a faster way to compute φ#n (pv), us-
ing O(n) arithmetic operations, by treating the BHM process as a finitary process [Schönhuth,
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2011]. We define two new matrices3

(Pi)jk := EjiTjk = Pr(Vt = i and Ht+1 = k |Ht = j and π,E, T ), that is,

P0 :=

[
T00E00 T01E00

T10E10 T11E10

]
and P1 :=

[
T00E01 T01E01

T10E11 T11E11

]

Writing 1 for the vector ( 11 ) we obtain the matrix expression φ#(pv) = πPv1Pv2 · · ·Pvv1
which involves only 4n+2 multiplications and 2n+ 1 additions. This is known as the Baum
formula. We can rewrite this formula as a trace product of 2× 2 matrices:

φ#(pv) = trace(πPv1Pv2 · · ·Pvn1) = trace((1π)Pv1Pv2 · · ·Pvn)

To create an analogue of this formula in moment coordinates, we let

M0 := P0 + P1 = T M1 := P1 M2 := 1π =

[
π0 π1
π0 π1

]

Proposition 5.1 (Baum formula for moments). The binary hidden Markov map φn can be
written in moment coordinates as

φ#n (mv) = trace(M2Mv1Mv2 · · ·Mvn)

For example, φ#n (m01001) = trace(M2M0M1M0M0M1).

Proof. By our definition of mv (3), we have

φ#n (mv) =
∑

w≥v

φ#n (pw) =
∑

w≥v

trace((1π)Pw1
Pw2
· · ·Pwn

)

= trace


(1π)



∑

w1≥v1

Pw1





∑

w2≥v2

Pw2


 · · ·



∑

wn≥vn

Pwn






= trace(M2Mv1Mv2 · · ·Mvn)

5.3 Truncation and ψ∞
Proposition 5.2. The binary hidden Markov maps φn form a directed system of maps under
marginalization, meaning that, for each n′ ≥ n ≥ 1, the following diagrams commute:

C5
θ

C2n−1
m

C2n
′

−1
mφn′

φn

µn
′

n
C[θ]

Rm,n

Rm,n′φ#n′

φ#n

µn
′

n

#

Proof. This can be seen directly from the definition of φn using (1) and of mv in (3). Alter-
natively, observe that because M0 = T is stochastic, M0M2 = M2, so for any sequence 0 of
length n′ − n, the Baum formula for moments (Proposition 5.1) implies that

φ#n′(mv0) = φ#n (mv) (10)

3P can be thought of naturally as a 2× 2× 2 tensor, but we will not make use of this interpretation.
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Thus, to compute φn for all n, it is only necessary to compute those φ#nmv′ where v
′ ends

in 1. Motivated by this observation, let Rm,∞ := C[mv1 | v ∈ {0, 1}n for some n ≥ 0] =
C[m1,m01,m11,m001,m101,m011, . . .], which in subset index notation is simply

Rm,∞ := C[mI | I ⊆ [n] for some n ≥ 0]

= C[m1,m2,m12,m3,m13,m23, . . .]

Then we define φ∞ : C5
θ → SpecRm,∞ and φ#∞ : C[θ] ← Rm,∞ by the formula φ#∞(mv10) :=

φ#length(v1)(mv1), i.e.

φ#∞(mI) := φ#size(I)(mI) (11)

Note that by locating the position of the last 1 in a binary sequence v′ 6= 0 . . . 0, we can write v′

in the form v10 for a unique string v (possibly empty if v′ = 1), so this map is well-defined. By
the same principle, for each n we can also define a “truncation” map τ : SpecRm,∞ → C2n−1

m

by τ#(mv10) := mv1, which, in subset index notation, is a literal ring inclusion:

τ#(mI) := mI (12)

With this definition, φ#n factorizes as φ#n = φ#∞ ◦ τ#n . Because we need to work with the
new parameters η0 = (a0, b, c0, u, v0), we define ψ#

∞ := χ# ◦ φ#∞ so that ψ#
n = χ# ◦ φ#n =

χ# ◦φ#∞ ◦τ#n = ψ#
∞ ◦τ#n . We can summarize this and Proposition 5.2 in terms of ψ as follows:

Proposition 5.3. For all n′ ≥ n ≥ 1, the following diagrams commute:

C5
η0

C2n−1
m C2n

′

−1
m

SpecRm,∞

ψn
ψn′

ψ∞

µn
′

n
τn′

C[η0]

Rm,n Rm,n′ Rm,∞

ψ#
n

ψ#
n′

ψ#
∞

µn
′

n

# τ#n′

Remark 5.4. These diagrams exhibit the rings Rm,n and maps ψ#
n as a directed system

under the inclusion maps µn
′

n

#
, such that Rm,∞ = colimn→∞Rm,n and ψ#

∞ = limn→∞ ψ#
n .

Now, to prove that ψn factors through q, we need only show that ψ∞ does.

5.4 Factoring ψ∞ through a trace variety

Let X0,X1,X2 be 2× 2 matrices of indeterminates,

X0 =

[
x000 x001
x010 x011

]
X1 =

[
x100 x101
x110 x111

]
X2 =

[
x200 x201
x210 x211

]

and following the notation of [Drensky, 2007], Ω2,3 := C[entries of X0,X1,X2] denotes the
polynomial ring on the entries xijk of these three 2 × 2 matrices. The trace algebra C2,3 is
defined as the subring of Ω2,3 generated by the traces of products of these matrices, C2,3 :=
C[trace(Xi1Xi2 · · ·Xir) | r ≥ 1] ⊆ Ω2,3 and we refer to SpecC2,3 as a trace variety. We write

ν : SpecΩ2,3 → SpecC2,3 and ν# : C2,3 →֒ Ω2,3
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for the natural dominant map and corresponding ring inclusion. To relate these varieties to
binary HMMs , we define two new maps ω# : Ω2,3 → C[η0] and ξ# : Rm,∞ → C2,3 by

ω#(Xi) := χ#(Mi) and ξ#(mv1) := trace

((
X2

∏

i∈v

Xi

)
X1

)
.

Proposition 5.5 (Baum factorization). The ring map ψ#
∞ factorizes as ψ#

∞ = ω# ◦ ν# ◦ ξ#,
i.e., the following diagram commutes:

C5
η0

SpecΩ2,3 SpecC2,3

SpecRm,∞

ω

ν

ξ

ψ∞

Proof. This is just a restatement of the Baum formula for moments (Proposition 5.1):

ω#(ν#(ξ#(mv1))) = ω# trace

(
X2

∏

i∈v1

Xi

)
= χ# trace

(
M2

∏

i∈v1

Mi

)

= χ#(φ#(mv1)) = ψ#
∞(mv1)

5.5 Proving the Parameter Subring Lemma (4.2)

We begin by seeking a factorization of the map ω# ◦ ν#. For this we apply the following
commutative algebra result of Sibirkskii on the trace algebras C2,r:

Proposition 5.6 (Sibirskii, 1968). The trace algebra C2,r is generated by the elements

trace(Xi) : 0 ≤ i ≤ r
trace(XiXj) : 0 ≤ i ≤ j ≤ r

trace(XiXjXk) : 0 ≤ i < j < k ≤ r

Corollary 5.7. The algebra C2,3 is generated by the 10 elements

trace(X0), trace(X1), trace(X2),

trace(X2
0 ), trace(X

2
1 ), trace(X

2
2 ), trace(X0X1), trace(X0X2), trace(X1X2),

trace(X0X1X2)

Proposition 5.8. The ring map ω# ◦ ν# factors through the inclusion

q
# : C[η] := C[a, b, c, u, v] →֒ C[η0] := C[a0, b, c0, u, v0],

i.e. we can write ω# ◦ ν# = q
# ◦ r# so that the following diagram commutes:

C5
η0

SpecΩ2,3 SpecC2,3

C5
η

ω

ν

r

q
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Proof. We apply ω# to the ten generators of C2,3 given in Corollary 5.7 and check that they
land in C[η]. Explicit, we find that:

trace(χ#M0) = b+ 1 trace(χ#M1) = bu+ c+ u trace(χ#M2) = 1

trace(χ#M2
0 ) = b2 + 1 trace(χ#M2

1 ) = b2u2 + 2bcu+c2 + 2cu+ u2 + 2bv

trace(χ#M2
2 ) = 1 trace(χ#M0M1) = b2u+ bc+ c+ u trace(χ#M0M2) = 1

trace(χ#M1M2) = a+ u trace(χ#M0M1M2) = ab+ c+ u

Now, by letting ψ
#
∞ := r

# ◦ ξ# we may factor the ring map ψ#
∞ as

ψ#
∞ = ω# ◦ ν# ◦ ξ# = q

# ◦ r# ◦ ξ# = q
# ◦ ψ#

∞.

Corollary 5.9. The following diagram commutes:

C5
ηC5

η0

SpecΩ2,3 SpecC2,3

SpecRm,∞
q

r

ψ∞

ψ∞

ω

ν

ξ

Proof of the Parameter Subring Lemma (4.2). Proposition 5.3 and Corollary 5.9 together im-
ply that the following diagrams commute:

C5
ηC5

η0 SpecRm,∞ C2n−1
m

q ψ∞ τn

ψn

C[η]C[η0] Rm,∞ Rm,n
q
# ψ

#
∞ τ#n

ψ#
n

In particular, the map ψ#
n factors through C[η], as required.

5.6 Proving the Birational Parameter Theorem (4.1)

Recall that Corollary 4.3 implies the first part of the Birational Parameter Theorem (4.1),
by taking

q ◦ χ−1 : C5
θ −→ C5

η

as the generically 2 : 1 map. Thus, it remains to show that the maps

ψn : C5
η −→ VBHM(n)

19



have birational inverses ρn. The inverse map ρ3 was already exhibited in Corollary 4.8, and
we obtain ρn by marginalization: let

ρn = ρ3 ◦ µn3 .

Let U ⊆ C5
η be the Zariski open set on which ψ3 is an isomorphism with inverse ρ3. Consider

the set ψn(U) ⊆ VBHM(n). It is Zariski dense in VBHM(n), and by Chevalley’s theorem
(Grothendieck and Dieudonné, 1966, EGA IV, 1.8.4), it is constructible, so it must contain a

dense open set W ′ ⊆ VBHM(n). Now let W = ψ
−1
n (W ′), so we have ψn(W ) =W ′ ⊆ ψn(U).

Proposition 5.10. ρn ◦ ψn = Id on W and ψn ◦ ρn = Id on W ′.

Proof. Suppose η̂ ∈W . Then ρn ◦ψn(η̂) = ρ3 ◦µn3 ◦ψn(η̂) = ρ3 ◦ψ3(η̂) = η̂ since η̂ ∈ U . Now
suppose p̂ ∈W ′, so p̂ = ψn(η̂) for some η̂ ∈W . Then, applying Proposition 5.2,

ψn ◦ ρn(p̂) = ψn ◦ ρn ◦ ψn(η̂) = ψn ◦ ρ3 ◦ µn3 ◦ ψn(η̂)
= ψn ◦ ρ3 ◦ ψ3(η̂) = ψn(η̂) = p̂

This completes the proof of the Birational Parameter Theorem (4.1). In fact we have also
proven the following:

Theorem 5.11. For each n ≥ 3, there is a commutative diagram of dominant maps:

C5
η

VBHM(n)

VBHM(n+1)
ψn+1

ψn

µn+1
nC5

η0

ψn

ψn+1

q
C5
θ

χ−1

6 Applications and future directions

Besides attempting to compute a set of generators for IBHM(5), there are many other questions
to be answered about HMMs that can be approached immediately with the techniques of this
paper.

6.1 A nonnegative distribution in VBHM(3) but not MBHM(3)

It turns out that not all the non-negative real points of VBHM(n) lie in the model MBHM(n).

The following real point θ̂ of C5
θ does not lie in ∆5

θ, but maps under φ3 to a point p̂ of ∆7
p:

θ̂ = (π̂, T̂ , Ê) =

(
[
−1

8
9
8

]
,

[
3
4

1
4

1
4

3
4

]
,

[
3
4

1
4

1
4

3
4

])
(13)

Moreover, the analysis of Section 4.3 reveals that the fiber φ−1
3 (p̂) consists only of the

point θ̂ and the “swapped” point

θ̂′ = (π̂′, T̂ ′, Ê′) =

(
[
9
8 −1

8

]
,

[
3
4

1
4

1
4

3
4

]
,

[
1
4

3
4

3
4

1
4

])
(14)
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which is also not in ∆5
θ. Hence the image point p̂ = φ3(θ̂) = φ3(θ̂

′) is a non-negative point of
VBHM(3) that does not lie in MBHM(3).

6.2 Testing model membership

In light of the fact that not every nonnegative distribution in VBHM(n) is in MBHM(n),
the defining equations of VBHM(n) are not sufficient to test a probability distribution for
membership to the model.

So, suppose we are given a distribution p ∈ ∆2n−1
p and asked to determine if p ∈MBHM(n).

The following procedure yields either

(1) a proof by contradiction that p /∈MBHM(n),

(2) a parameter vector θ ∈ ∆5
θ such that φn(θ) = p ∈MBHM(n), or

(3) a reduction of the question to whether p lies in one of the lower-dimensional submodels
of MBHM(n) discussed in Section 4.3.

How to proceed from (3) is not difficult, and will be discussed explicitly in future work.
To begin, we let p′ = µn3 (p) ∈ ∆23−1

p , i.e. we marginalize p to the distribution p′ it induces
on the first three visible nodes. Note that if p ∈MBHM(n) then p

′ ∈MBHM(3). Observing
the moments mI of p′, if any denominators in the formulae of Corollary 4.8 vanish, then we
end in case (3).

Otherwise, we let (a, b, c, u, v) = ψ
−1
3 (p′), choose v0 to be either square root of v, and let

a0 = a/v0, c0 = c/v0. If p were due to some BHM process, then by Theorem 5.11, these
would be its parameters, up to a simultaneous sign change of (a0, b0, v0). With this in mind,
we define θ = (π, T,E) using (9). If (π, T,E) are not non-negative stochastic matrices, then
p /∈MBHM(n) and we end in case (1). If they are, we compute p′′ = φn(θ), and if p = p′′ then
we end in case (2). Otherwise p must not have been in MBHM(n), so we end in case (1).

Note that since all the criteria in this test are algebraic equalities and inequalities, this
procedure implicitly describes a semialgebraic characterization of MBHM(n) for all n ≥ 3.

6.3 Identifiability of parameters

By a rational map on a possibly non-algebraic subset Θ ⊆ Ck, we mean any rational map on
the Zariski closure of Θ, which will necessarily be defined as a function on a Zariski dense
open subset of Θ. We define polynomial maps on Θ similarly.

Let φ : Θ → Cn be an algebraic statistical model, where as usual we assume Θ ⊆ Ck

is Zariski dense, and therefore Zariski irreducible. A (rational) parameter of the model is
any rational map s : Θ → C. Such parameters form a field, K ≃ Frac(Ck). In applications
such as [Meshkat, Eisenberg, and DiStefano, 2009], it is important to know to what extent a
parameter can be identified from observational data alone. In other words, given φ(θ), what
can we say about s(θ)? This leads to several different notions of parameter identifiability, as
discussed by Sullivant, Garcia-Puente, and Spielvogel [2010].

Definition 6.1. We say that a rational parameter s ∈ K is

• (set-theoretically) identifiable if s = σ ◦ φ for some set-theoretic function σ : φ(Θ)→ C.
In other words, for all θ, θ′ ∈ Θ, if φ(θ) = φ(θ′) then s(θ) = s(θ′).

• rationally identifiable if s = σ ◦ φ for some rational map σ : φ(Θ) → C (this notion is
used without a name by Sullivant et al. [2010]).

• generically identifiable if there is a (relatively) Zariski dense open subset U ⊆ Θ such
that s|U = σ ◦ φ|U for some set-theoretic function σ : φ(U)→ C.
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• algebraically identifiable if there is a polynomial function g(p, q) :=
∑

i gi(p1, . . . , pn)q
i

on φ(Θ) × C of degree d > 0 in q (so that gd is not identically 0 on φ(Θ)) such that
g(φ(θ), s(θ)) = 0 for all θ ∈ Θ (and hence all θ ∈ Ck).

Question 6.2. What combinations of BHM parameters are rationally identifiable, generically
identifiable, or algebraically identifiable?

To answer this question we introduce a lemma on algebraic statistical models in general:

Lemma 6.3. For any algebraic statistical model φ as above, the sets Kri, Kgi, and Kai, of
rationally, generically, and algebraically identifiable parameters, respectively, are all fields.

Proof. Since Θ is Zariski irreducible, so is φ(Θ). Hence the set of rational maps on φ(Θ) is
simply the fraction field of its Zariski closure (an irreducible variety), and Kri is the image
of this field under φ#, which must be a field.

For Kgi, the crux is to show that if s, s′ ∈ Kgi and s 6= 0 then s′/s ∈ Kgi. Let U ⊆ Θ
and σ : φ(U) → C be as in the definition for s, and likewise U ′ ⊆ Θ and σ : φ(U ′) → C for
s′. Let U ′′ = {θ ∈ U ∩ U ′ | s(θ) 6= 0}, which, being an intersection of three Zariski dense
open subsets of Θ, is a dense open. We have σ 6= 0 on φ(U ′′) ⊆ φ(U) ∩ φ(U ′), so we can let
σ′′ = σ′/σ : φ(U ′′) → C, and then σ′′ ◦ φ = s′/s, so s′/s ∈ Kgi. Thus Kgi is stable under
division, and simpler arguments show it is stable stable under +,−, and ·, so it is a field.

Finally, Kai is expressly the relative algebraic closure in K of the image under φ# of the
coordinate ring of φ(Θ), which is therefore a field.

Proposition 6.4. For any algebraic statistical model φ as above, Kri ⊆ Kgi ⊆ Kai ⊆ K.

Proof. This is now just a restatement of Proposition 3 in [Sullivant et al., 2010].

Now, the answer to our identifiability question for BHM parameters can be given easily in
the coordinates of Section 4. Here φ is the BHM map φn. The field Kri is simply the image
q
#(Frac(C5

η)) because by Theorem 4.1,

ψ
#
: Frac(VBHM(n))→ Frac(C5

η)

is an isomorphism. Hence the rationally identifiable parameters are precisely the field of
rational functions in (a, b, c, u, v) = (a0v0, b, c0v0, u, v

2
0) (see (9) for the meanings of these

parameters). Since K is a quadratic field extension of Kri given by adjoining v0 =
√
v, and

Kai is the algebraic closure of Kri in K (almost by definition), it follows that Kai = K,
i.e. all parameters are algebraically identifiable. Finally, we observe that, by the action of
sw in Section 4.1, there are generically two possible values of v0 = 1

2(E11 − E01) for a given
observed distribution, namely ±√v. Hence v0 /∈ Kgi, and since a quadratic field extension
has no intermediate extensions, it follows that Kri = Kgi, i.e. all generically identifiable
parameters are in fact rationally identifiable. In summary,

Proposition 6.5. For MBHM(n) where n ≥ 3,

C(a, b, c, u, v) = Kri = Kgi ( Kai = C(a0, b, c0, u, v0)

6.4 A new grading on BHMM invariants

The re-parametrized model map ψn is homogeneous in cumulant and moment coordinates,
with respect to a Z-grading where deg(mv) = deg(kv) = sum(v), deg(b) = 0, deg(a) =
deg(c) = deg(u) = 1, and deg(v) = 2. This grading allows for fast linear algebra techniques
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that solve for low degree model invariants as in [Bray and Morton, 2005], except that this
grading is intrinsic to the model. Bray and Morton’s grading, which is in probability coor-
dinates, is not on the binary HMM proper, but on a larger variety obtained by relaxing the
parameter constraints that the transition and emission matrix row sums are 1. The invariants
obtained in their search are hence invariants of this larger variety, and exclude some invari-
ants of MBHM(n). The grading presented here can thus be used to complete their search for
invariants up to any finite degree.

6.5 Equilibrium BHM processes

In Section 4.3 we found that if a BHM process is at equilibrium, our formula for ψ
−1
3 is unde-

fined. We may define Equilibrium Binary Hidden Markov Models, EBHMMs, by restricting
ψn to the locus {a0b − a0 + c0 = 0}, which turns out to yield a four-dimensional submodel
of MBHM(n) for each n ≥ 3. The same techniques used here to study BHMMs reveal that
the EBHMMs, too, have birational parametrizations, and when n = 3, the EBHMM has
even simpler defining equations than the BHMM. The geometry of EBHMMs will need to be
considered explicitly in future work to identify the learning coefficients of BHMM fibers.

6.6 HMMs with more visible states

The results of this paper can be used directly to identify the parameters of a generic hidden
Markov process with two hidden states and k visible states α1, . . . , αk. Such a process can be
specified by a 2× k matrix E of emission probabilities, along with a triple (a0, b, c0) defining
the π and T of the two-state hidden Markov chain as in (9).

To obtain E0j and E1j from the observed probability distribution for any fixed j, we simply
define a BHM process by letting αj = 1 and αi = 0 for i 6= j. Applying Proposition 4.7 to the
moments of the distribution yields values for (a, b, c, u, v) provided the genericity condition
that the denominators involved do not vanish. Letting v0 =

√
v, a0 = a/v0, and c0 = c/v0,

we obtain (a0, b, c0, u, v0) up to a simultaneous sign change on (a0, c0, v0) corresponding to
swapping the hidden alphabet as in Section 4.1. Then E0j = u − v and E1j = u + v, and
we get π, T as well from (a0, b, c0). We can repeat this for each j = 1, . . . , k to obtain all
the emission parameters, and hence identify all the process parameters modulo the swapping
operation. With any luck, perhaps similar techniques could elucidate the algebraic statistics
and geometry of HMMs with any number of hidden states.
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A. Krogh, I. S. Mian, and D. Haussler. A Hidden Markov Model that finds genes in E. coli
DNA. Nucleic Acids Research, page 47684778, 1994.

N. Meshkat, M. Eisenberg, and J. J. DiStefano. An algorithm for finding globally identifi-
able parameter combinations of nonlinear ode models using Gröbner bases. Mathematical
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