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A TYPE (4) SPACE IN (FR)-CLASSIFICATION

SPIROS A. ARGYROS, ANTONIS MANOUSSAKIS, ANNA PELCZAR-BARWACZ

Abstract. We present a reflexive Banach space with an unconditional basis
which is quasi-minimal and tight by range, i.e. of type (4) in Ferenczi-Rosendal
list within the framework of Gowers’ classification program of Banach spaces.
The space is an unconditional variant of the Gowers Hereditarily Indecompos-
able space with asymptotically unconditional basis.

Introduction

In the celebrated papers [11, 12] W.T. Gowers started his classification program
for Banach spaces. The goal is to identify classes of Banach spaces which are

• hereditary, i.e. if a space belongs to a given class, then all of its closed
infinite dimensional subspaces belong to the same class as well as well,

• inevitable, i.e. any Banach space contains an infinite dimensional subspace
in one of those classes,

• defined in terms of richness of family of bounded operators in the space.

The famous Gowers’ dichotomy brought the first two classes: spaces with an uncon-
ditional basis and hereditary indecomposable spaces. Recall that a space is called
hereditarily indecomposable (HI) if none of its infinite dimensional subspaces can
be written as a direct sum of two closed infinite dimensional subspaces.

Further classes were defined in terms of the family of isomorphisms defined in
a space. Recall that a Banach space is minimal if it embeds isomorphically into
any of its closed infinite dimensional subspaces. Relaxing of this notion on obtains
quasi-minimality, which asserts that any two subspaces of a given space contain
further two isomorphic subspace. W.T. Gowers obtained a dichotomy between
quasi-minimality and tightness by support in [12]. The latter notion, among other
types of tightness, was explicity defined and studied in [6]. Recall that a subspace
Y of a Banach space X with a basis (en) is tight in X iff there is a sequence of
successive subsets I1 < I2 < . . . of N such that the support of any isomorphic
copy of Y in X intersects all but finitely many In’s. X is called tight if any of its
subspaces is tight in X . Adding requirements on the subsets (In) with respect to
the given Y one obtains more specific notions, in particular in tightness by support
mentioned above the subsets witnessing tightness of a subspace Y spanned by a
block sequence (xn) are chosen to be supports of (xn) [12].

V.Ferenczi and C.Rosendal have presented in [6] further dichotomies refining
Gowers list of classes: the ”third dichotomy” contrasting tightness with minimality
and the ”forth dichotomy” between tightness by range, where the subsets witnessing
the tightness of a subspace Y spanned by a block sequence (xn) are chosen to
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be ranges of (xn), with a stronger form of quasi-minimality, namely sequential
minimality. A Banach space X is sequentially minimal if it is quasi-minimal and
is block saturated with block sequences (xn) with the following property: any
subspace of X contains a sequence equivalent to a subsequence of (xn).

The obvious observations relate some of the properties listed above to HI/uncon-
ditional dichotomy - in particular clearly any HI space is quasi-minimal and any
tight basis is unconditional. V.Ferenczi and C.Rosendal in [7] studied the spaces
already known identifying their properties with respect to the dichotomies men-
tioned above. Their study left open two particular cases. Namely, an HI and
sequentially minimal space and also a quasi-minimal and tight by range space with
an unconditional basis. The answer to the first question was provided by a version
of Gowers-Maurey HI space, as it was proved by V.Ferenczi and Th.Schlumprecht
recently [8]. We recall now the list of classes developed in [6] as stated in [8],
mentioning also some already known examples.

Theorem 0.1 ((FR)-classification). Any infinite dimensional Banach space con-
tains a subspace from one of the following classes:

(1) HI, tight by range (Gowers space with asymptotically unconditional basis
[9, 7]),

(2) HI, tight, sequentially minimal (a version of Gowers-Maurey space, [8]),
(3) tight by support (Gowers space with unconditional basis [10, 6]),
(4) with unconditional basis, tight by range, quasi-minimal (?),
(5) with unconditional basis, tight, sequentially minimal (Tsirelson space [7]),
(6) with unconditional basis, minimal (ℓp, c0, dual to Tsirelson space [5], Schlum-

precht space [1])

The aim of the present paper is to construct a reflexive space of type (4) in the
above classification. Namely the following is proven.

Theorem 0.2. There exists a reflexive space X(4) with an unconditional basis which
is quasi-minimal and tight by range.

As we have mentioned the space X(4) is the unconditional version of Gowers HI
space which is asymptotically unconditional [10]. Banach spaces with an uncondi-
tional basis which are variants of HI spaces have occured with Gowers’ solution of
the hyperplane problem [9] and were followed by the most recent [2, 3]. Among
the features of those spaces is the non homogeneous structure. For example in
all [9, 2, 3] the spaces are tight by support. The new phenomenon in the present
construction is that the space X(4) is quasi-minimal. This is a consequence of the
definition of the norming set W , which is slightly different from the initial Gowers
definition, in the following manner. Starting with an appropriately chosen double
sequence (mj , nj)j we consider the following norming sets W1,W2.

The set W1 is the smallest subset of c00(N) satisfying

(i) W1 contains (en)n
(ii) For every f ∈ W1 and g ∈ c00 with |g| = |f |, then g ∈ W1

(iii) It is closed in the projections on the subsets of N
(iv) It is closed in the even operations ( 1

m2j
,An2j

)

(v) It is closed in the odd operations ( 1
m2j+1

,An2j+1
) on special sequences

f1, f2, . . . , fn2j+1
(Here f1, f2, . . . , fn2j+1

is a special sequence if the weight
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if each fi is even and for 1 < i the weight of fi is uniquely determined by
the sequence |f1|, |f2|, . . . , |fi−1|)

Let ‖ · ‖1 be the norm induced on c00(N) by the set W1 and X1 its completion.
Then the space X1 is reflexive with a 1-unconditional basis, tight by support (hence
not quasi-minimal) and shares all the properties of Gowers space [9].

Consider next the norming set W2 which satisfies properties (i), (ii), (iv), (v) of
W1 and the following

(iii)′ The set W2 is closed in the projections of its elements on intervals of N.

Denoting by ‖·‖2 the norm induced byW2 and X2 the corresponding completion,
the space X2 is reflexive with a 1-unconditional basis and quasi-minimal.

This key difference between X1 and X2 permits the construction of the space
X(4). The norming set W of the space X(4) is the smallest subset of c00 satisfying
all the properties of the set W2 and an additional one, called “Gowers operation”
which is used to show that the space is tight by range.

It is unclear to us what the structure of the space of the operators L(X(4)) is.
We recall from [14] that every bounded linear operator on X1 is of the form D+ S
with D a diagonal operator and S a strictly singular one. Such a property seems
to fail for the space X2.

We describe now briefly the content of the paper. The first section is devoted
to the definition of the norming set of the space X4. The second section contains
the basic estimations, providing tools to be used in the last two sections in order
to show quasi-minimality and tightness by range of the space X(4).

1. The norming set W

Let us recall the usual basic notation. Let X be a Banach space with basis
(ei). The support of a vector x =

∑

i xiei is the set suppx = {i ∈ N : xi 6= 0},
the range of x - the minimal interval containing suppx. Given any x =

∑

i aiei
and finite E ⊂ N put Ex =

∑

i∈E aiei and |x| =
∑

i |ai|ei. We write x < y for
vectors x, y ∈ X , if max suppx < min supp y. A block sequence is any sequence
(xi) ⊂ X satisfying x1 < x2 < . . . , a block subspace of X - any closed subspace
spanned by an infinite block sequence. Given a family F of finite subsets of N we
say that a block sequence (xi)

d
i=1 is F -admissible if (minsupp(xi))

d
i=1 ∈ F . By the

(θ,F)-operation, for θ ∈ (0, 1], we mean an operation which associates with any
F -admissible sequence (x1, . . . , xd) the average θ(x1 + · · ·+ xd).

We define the space X(4) to be the completion of (c00(N) under the norm ‖·‖
given by some set W ⊂ c00(N), described below, as the norming set. (i.e. ‖x‖ =
sup{f(x) : f ∈W} for x ∈ c00(N)).

To define the set W we fix two sequences of natural numbers (mj)j and (nj)j
defined recursively as follows.

We set m1 = 2 and mj+1 = m5
j and n1 = 4 and nj+1 = (5nj)

sj where sj =

log2(m
3
j+1), j ≥ 1. We also fix a partition of N into two infinite sets N1, N2.

The set W is defined to be the smallest subset of c00(N) satisfying the following
properties
α) It is unconditional (i.e. for f ∈W , g ∈ c00(N) with |g| = |f | we have g ∈W ).
β) It contains (±e∗n)n, where (e∗n)n is the usual basis of c00(N).
γ) It is closed on the interval projections.
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δ) It is closed under the ( 1
m2j

,An2j
)-operations (i.e. for every f1 < f2 < · · · <

fn2j
in W the functional f = 1

m2j

∑n2j

i=1 fi ∈ W ).

ε) It is closed under the ( 1
m2j+1

,An2j+1
)-operations on (2j+1)-special sequences.

A sequence f1 < f2 < · · · < fn2q+1
in W is a (2j + 1)-special sequence if the

following are satisfied

(1) n2j+1 < m2j1 < · · · < m2j2j+1
,

(2) w(f1) = m2j1 for some j1 ∈ N1,
(3) w(fi) = m2σ(|f1|,...,|fi−1|) for any 1 < i ≤ n2j+1.
(4) For 1 < i ≤ 2q+1 the sequence (|f1|, |f2|, . . . , |fi−1|) is uniquely determined

by w(fi)

The special sequences can be defined in a similar manner as in [13],[4], with the use
of a coding function σ.

A functional f = 1
m2j+1

∑n2j+1

i=1 fi with (f1, . . . , fn2j+1
) an (2j + 1)-special se-

quence is called a (2j + 1)-special functional.
ζ) It is closed under the G-operation, defined as follows.

For any set F = {n1 < · · · < n2q} ⊂ N which is Schreier (i.e. 2q ≤ n1) we set

SF f = χ∪q
p=1

[n2p−1,n2p)f.

The G-operation associates with any f ∈ c00 the vector g = 1
2SF f , for any F as

above.

Remarks 1.1. (i) Clearly the natural basis (en)n is 1-unconditional in X4. More-
over, standard argument shows that X is a reflexive space.

(ii) The space X(4) is an unconditional variant of W.T. Gowers, [10], HI space
with an asymptotically unconditional basis. The key ingredient in Gowers con-
struction beyond the standard ones is an operation similar to ζ). V.Ferenczi and
C.Rosendal, [7], have shown that the Gowers space is tight by range.

(iii) It is worth pointing out that the quasi-minimal property of X(4) is a result
of the fact that the set W is not closed in rational convex combinations. Indeed
if we include the rational convex combinations in the set W (even if we exclude
property ζ)) we will get a space similar to Gowers space with an unconditional
basis [9] which is tight by support and hence not quasi-minimal [7].

1.1. The analysis of a norming functional. As in the previous cases of norming
sets defined to be closed under certain operations every functional f ∈W admits a
tree-analysis which in the present case is described as follows.

Definition 1.2. Let f ∈ W . A family (fα)α∈A with A is a rooted finite tree of
finite sequences of N is a tree-analysis of f if the following are satisfied

1) f = f0 where 0 denotes the root of f .
2) If α is maximal element of A then fα = εe∗n for some ε = 1 or −1 and

n ∈ N.
If α ∈ A is not maximal, then one of the following conditions hold

3) fα = 1
mj

∑

β∈Sα
fβ where fα = Eαf̃α, Eα interval of N, f̃α = 1

mj

∑nj

i=1 fi,

Sα = {(a, i) : Eαfi 6= 0} and fβ = Eαfi for β = (α, i). In this case we set
the weight w(fα) of fα to be w(fα) = mj .

4) fα = 1
2SFα

fβ with β = (α, 1), Sα = {β}, Fα Schreier and range(fα) =
range(fβ).
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Since the (2j + 1)-special sequences (fi)i≤n2j+1
is determined by (|fi|)i≤n2j+1

it
is easy to see the following

Lemma 1.3. Let f ∈ W with a tree-analysis (fα)a∈A and g ∈ W with |g| = |f |.
Then g admits a tree analysis (gα)α∈A such that |gα| = |fα| for all α ∈ A. In
particular if fα is a weighted functional then gα is also weighted functional and
w(fα) = w(gα). If fα is a G-functional, i.e. of the form fα = 1

2SFα
fβ then also

gα = 1
2SFα

gβ.

The following follows easily.

Lemma 1.4. Let f ∈ W with a tree-analysis (fα)α∈A. Let also D ⊂ A be a set
of incomparable nodes of A and for every α ∈ D let gα ∈ W such that |gα| = |fα|.
Then there exists g ∈W satisfying

i) |g| = |f |
ii) g admits a tree analysis (g̃α)α∈A such that for every α ∈ A, |g̃α| = |fα| and

for every α ∈ D, g̃α = gα.

2. Basic estimations

In this section we shall give the definition of some special vectors as well as
estimations of the functionals of the norming set on these special vectors. All the
definitions and estimations have appeared in a series of papers, [15, 13, 4], so for
the proofs we shall refer to a paper where the corresponding result has appeared.

2.1. Special vectors.

Definition 2.1. A C − ℓn1 -average, C ≥ 1, n ∈ N, is a vector x = x1+···+xn

n where
‖xi‖ ≤ C, ‖x‖ > 1 and n ≤ x1 < x2 < · · · < xn.

Lemma 2.2. Let (xk)k be a normalized block sequence. Then for every n ∈ N there
exists l(n) ∈ N such that for every finite subsequence (xn)n∈F with #F ≥ l(n)
of (xk)k there exists a block sequence y1 < y2 < · · · < yn of (xk)k∈F such that
y1+···+yn

n =
∑

n∈F anxn is an 2− ℓn1 -average.

The proof of the above lemma originates from [15, 13]. For a proof we refer to
[4], Lemma II.22.

Definition 2.3. A block sequence (xk)k is said to be a (C, ε) rapidly increasing
sequence (RIS) if ‖xk‖ ≤ C for each k and there exists a strictly increasing sequence
(jk) of positive integers such that

(1) max range(xk)m
−1
jk+1

< ε,

(2) for every k = 1, 2, . . . and every f ∈W with w(f) = mi < mjk the following

holds, |f(xk)| ≤
C
mi

.

Definition 2.4. A pair (x, φ) with x ∈ X(4) and φ ∈W is said to be a (C, 2j)-exact
pair, where C ≥ 1, j ∈ N, if the following conditions holds

(1) 1 ≤ ‖x‖ ≤ C, for every ψ ∈ W with w(ψ) < m2j we have |ψ(x)| ≤ 3C
w(ψ) ,

while for ψ ∈ W with w(ψ) > m2j , |ψ(x)| ≤
C
m2

2j

,

(2) w(φ) = m2j ,
(3) φ(x) = 1 and range(x) = range(φ).
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Definition 2.5. We shall call the sequence (xi, x
∗
i )
n2j+1

i=1 a (C, 2j + 1)-dependent
sequence if

(1) j1 ∈ N1 and m2j1 ≥ n2j+1,
(2) for every i ≤ n2j+2, (xi, x

∗
i ) is an (C, 2ji)-exact pair,

(3) (x∗1, . . . , x
∗
n2j+1

)-is a special sequence.

2.2. Basic estimations.

Lemma 2.6. Let x be a 2− ℓ
nj

1 -average. Then for every f ∈W with w(f) = mi <
mjk the following holds

|f(xk)| ≤ 3
1

mi
. (2.1)

We refer to [15],[13] Lemma 5, [4] Lemma II.23 for the proof.
The following result follows from Lemmas 2.6 and 2.2

Proposition 2.7. For every ε > 0 and every block subspace Z of X(4) there exists
a (3, ε)-RIS (xk)k in Z.

The following proposition will be the main tool for the estimations we shall need
in the sequel. For the proof we refer to [4], Propositions II.14, II.19.

Proposition 2.8. Let (xk)
nj

k=1 be a (C, ε)-RIS with ε ≤ m−2
j and f ∈ W . Then

|f(
mj

nj

nj
∑

k=1

xk)| ≤

{

3Cw(f)−1 if w(f) < mj

C(w(f)−1mj +
mj

nj
+mjε) if w(f) ≥ mj

(2.2)

In particular ‖mj

nj

∑nj

k=1 xk‖ ≤ 2C.

Moreover if (fα)α∈A is a tree analysis of f and for every α ∈ A with w(fα) = mj

and every interval E of positive integers we have that

|fα(
∑

k∈E

xk)| ≤ C(1 + ε#E)

then |f(mj

nj

∑nj

k=1 yk)| ≤
4C
mj

.

Proposition 2.8 yields the following

Proposition 2.9. For every block subspace Z, every ε > 0 and j ∈ N there exists
a (6, 2j)-exact pair (x, φ) with x ∈ Z.

Proof. From Proposition 2.7 there exists (xk)
n2j

k=1 (3, ε) RIS with ε < 1/m5
2j. Choose

x∗k ∈ W with x∗k(xk) = 1 and range(x∗k) = range(xk). Then Proposition 2.8 yields
that

(
mj

nj

n2j
∑

k=1

xk,
1

m2j

n2j
∑

i=1

x∗k)

is an (6, 2j)-exact pair. �

Corollary 2.10. Let (xi, x
∗
i )
n2j+1

i=1 be a (6, 2j + 1)-dependent sequence and f =
1

m2j+1
E
∑n2k+1

r=1 fr a special functional such that w(fr) 6= w(x∗i ) for every i, r ≤

n2j+1. Then

|f(

n2j+1
∑

i=1

xi)| ≤
1

m2j+1m2
2j+2

. (2.3)
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Proof. For every i ≤ n2j+1 set

Ri,1 = {r ≤ n2j+1 : range(fr) ∩ range(xi) 6= ∅ andw(fr) < m2ji}

and
Ri,2 = {r ≤ n2j+1 : range(fr) ∩ range(xi) 6= ∅ andw(fr) > m2ji}.

Note that for every r there exists at most two i’s such that r ∈ Ri,1 and range(xi) $
range(fr). From (2.2) we get

|
∑

r∈Ri,1

fr(xi)| ≤
∑

r∈Ri,1

18

w(fr)
. (2.4)

and

|
∑

r∈Ri,2

fr(xi)| ≤
6

m2
2ji

#Ri,2 (2.5)

Using that w(fr) ≥ m2j1 ≥ n2j+1, by (2.4),(2.5) we finish the proof. �

3. The quasi-minimality

We shall prove the quasi-minimality in two steps. In the first step we shall handle
a special case. More precisely we shall consider block sequences (yk)

n2j+1

k=1 , (zk)
n2j+1

k=1

such that xk = yk + zk, k ∈ N for some dependent sequence (xk, fk)
n2j+1

k=1 . For a
suitable splittings of (xk) we show that for every f ∈ W there exists g ∈ W such
that 1

2f(
m2j+1

n2j+1

∑

k yk)− 2 31
m2j+1

≤ g(
m2j+1

n2j+1

∑

k zk)).

In the second step we prove the quasi-minimality of X4 basing on the first step.
Let (xk, fk)

n2j+1

k=1 be a (6, 2j + 1)-dependent sequence such that each exact pair
(xk, fk) is of the form as in the proof of Proposition 2.9. Split each xk and fk as
follows.

xk = yk + zk =
m2jk

n2jk

n2jk
/2

∑

i=1

(yk,i + zk,i), fk =
1

m2jk

n2jk
/2

∑

i=1

(y∗k,i + z∗k,i),

where for every i, yk,i < zk,i < yk,i+1, y
∗
k,i(yk,i) = 1 = z∗k,i(zk,i) and range(y∗k,i) =

range(yk,i), range(z
∗
k,i) = range(zk,i).

Set

y =
m2j+1

n2j+1

n2j+1
∑

k=1

yk =
m2j+1

n2j+1

n2j+1
∑

k=1

m2jk

n2jk

n2jk
/2

∑

i=1

yk,i

and

z =
m2j+1

n2j+1

n2j+1
∑

k=1

zk =
m2j+1

n2j+1

n2j+1
∑

k=1

m2jk

n2jk

n2jk
/2

∑

i=1

zk,i

Proposition 3.1. Let y, z be as above. For all f ∈ W there exists g ∈ W such
that |f | = |g| and

g(z) ≥
1

2
f(y)− 2

31

m2j+1
(3.1)

Proof. Let (fα)α∈A be a tree analysis of f . Set I1 to be the set of k ∈ {1, . . . , n2j+1}
such that there exists αk ∈ A with w(fαk

) = m−1
2j+1, fαk

= Eαk

1
m2j+1

∑n2j+1

i=1 fαk

i

be a special functional satisfying

A) range(xk) ⊂ Eαk
.

B) |fαk

k | = |fk|.
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C)
∏

β≺αk
w(fβ) < m2j+1.

We define I2 as I1 with the exception that C) is replaced by

C1)
∏

β≺αk
w(fβ) ≥ m2j+1.

The complement of I1 ∪ I2 is denoted by I3. Set

wi =
m2j+1

n2j+1

∑

k∈Ii

xk for i = 1, 2, 3.

We shall estimate f on w1, w2, w3.

Lemma 3.2. The following holds

|f(w3)| <
24

m2j+1
. (3.2)

Proof. By Proposition 2.8 it is enough to show that for every α ∈ A with w(fα) =
m2j+1 and every interval E the following holds

|fα(
∑

k∈I3∩E

xk)| < 6(1 + #E/m2
2j+1). (3.3)

Note that if k ∈ I3, α ∈ A with fα = m−1
2j+1Eα

∑n2j+1

k=1 fαk and range(fα) ∩
range(xk) 6= ∅

either |fαk | 6= |fk| or |fαk | = |fk| and range(xk) * Eα.

Let k0 = min{k : range(fα) ∩ range(xk) 6= ∅} and k1 = minΣ where

Σ = {k ≤ n2j+1 : |fαk | 6= |fk| and range(fα) ∩ range(xk) 6= ∅}

If Σ = ∅ it follows that range(fα)∩range(xk) 6= ∅ for at most two k and hence (3.3)
holds. For every k > k1 we have that w(fαi ) 6= m2jk for every i. Corollary 2.10
yields that

|fα(
∑

k>k1

xk)| ≤
1

m2
2j+2m2j+1

. (3.4)

For all k0 < k < k1, k ∈ (I1 ∪ I2) except maybe for k0. Indeed assume that
some k0 < k < k1 is not in (I1 ∪ I2). Then by the definition of k1 it follows that
|fαk | = |fk| and range(xk) * range(Eα), which yields a contradiction since k ∈ I3
and range(fαk ) = range(fk) ⊂ range(xk) ⊂ range(Eα).

Thus for k0 (or k1) there exists at most one i with w(fαi ) = m2jk0
(or w(fαi ) =

m2jk1
), hence

|fα(xk0 + xk1)| ≤
12

m2j+1
+

1

m2j+1m2
2j+2

. (3.5)

To finish the proof note that (3.4) and (3.5) yield (3.3). �

Lemma 3.3. The following holds

|f(w2)| = |f(
m2j+1

n2j+1

∑

k∈I2

xk)| ≤
6

m2j+1
. (3.6)

Proof. Note that for k ∈ I2 it holds that range(fk) ⊂ range(xk) and |fαk

k | = |fk|.
It follows

|fαk
(
m2j+1

n2j+1
xk)| =

1

m2j+1

m2j+1

n2j+1
|fk(xk)| ≤

6

n2j+1
.
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Property C1) implies that |f(m2j+1

n2j+1
xk)| ≤

6
n2j+1m2j+1

. Summing over I2 we obtain

(3.6). �

It remains to estimate f on w1. We shall consider a partition of w1 into three
vectors which is imposed by the G-functionals.

Let α ∈ A such that α ≺ αk for some k ∈ I1 and fα = 1
2Sfβ is G-functional

determined by the intervals qα ≤ nα1 < · · · < nαqα . We set

Lα1 = {(k, i) : k ∈ I1, α ≺ αk and exists d ≤ qα withn
α
d ∈ range(yk,i + zk,i) for some i},

Lα2 = {(k, i) : k ∈ I1, α ≺ αk and exists d ≤ qα/2with range(yk,i + zk,i) ⊂ (nα2d, n
α
2d+1)},

Lα3 = {(k, i) : k ∈ I1, α ≺ αk and (k, i) 6∈ Lα1 ∪ Lα2 }.

We also set

Γ = {α ∈ A : α ≺ αk for some k ∈ I1 and fα is G-functional},

and Li = ∪α∈ΓL
α
i for i = 1, 2, 3. Without loss of generality we can assume that

these sets define a partition of the whole vector w1.

Remark 3.4. An easy inductive argument yields that for every (k, i) ∈ L3 and
every α ≺ αk we have that supp(yk,i+zk,i)∩supp(fα) = supp(yk,i+zk,i)∩supp(fαk

).
Indeed, for a G-functional fα the above follows from the definition of the set Lα3 ,

as fα has one successor fβ and satisfies fα(yk,i + zk,i) =
1
2fβ(xk,i + zk,i).

If fα is weighted functional then there exists a unique β ∈ Sα such that supp(yk,i+
zk,i) ⊂ supp(fβ) and fα(yk,i + zk,i) =

1
w(fα)fβ(xk,i + zk,i).

The following lemma give us an upper bound for the cardinality of the set Γ.

Lemma 3.5. Let (fα)α∈A be a tree analysis of a functional. Let

B = {α ∈ A :
∏

β�α

w(fβ) < m2j+1}

Then #B ≤ (5n2j)
log2(m2j+1)−1 ≤ n

1/3
2j+1.

For the proof we refer to the proof of Lemma II.9, [4].
The sets Lα1 , L

α
2 and Lα3 implies the following partition of w1.

ui =
m2j+1

n2j+1

∑

k∈I1

m2jk

n2jk

∑

(k,i)∈Li

(yk,i + zk,i), i = 1, 2, 3.

Lemma 3.6. We have that f(u2) = 0.

Proof. Let (k, i) ∈ Lα2 for some α. From the definition of Lα2 it follows that
supp(fβ) ∩ supp(xk,i) = ∅ for every β � α. It follows that f(u2) = 0. �

Lemma 3.7. It holds that

|f(u1)| = |f(
m2j+1

n2j+1

∑

k∈I1

m2jk

n2jk

∑

i:(k,i)∈L1

(yk,i + zk,i))| ≤
1

m2
2j+1

. (3.7)

Proof. Let fα be a G-functional determined by the intervals qα ≤ nα1 < · · · < nαqα .
Let k0 be the smallest k such that (k, i) ∈ Lα1 for some i ≤ n2jk . It follows that
qα ≤ maxsuppxk0 . If k0 < n2j+1, as (xk, x

∗
k)k is a dependent sequence, we have

that qα ≤ maxsuppxk0 ≤ m2jk0+1
. Therefore

#{(k, i) ∈ Lα1 : k > k0} ≤ m2jk0+1
.
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The above inequality implies the following.

|fα(
∑

(k,i)∈Lα
1

m2jk

n2jk

(yk,i + zk,i))| =
∑

k∈I1

|fα(
m2jk

n2jk

∑

i:(k,i)∈Lα
1

(yk,i + zk,i))|

≤ ‖xk0‖+
∑

k>k0

6m2jk0+1

m2jk

n2jk

≤ 6 +
1

n2j+2
≤ 7.

Since for every k ∈ I1 we have
∏

β≺αk
w(fβ) < m2j+1, Lemma 3.5 yields that

#Γ ≤ (5n2j)
log2(m2j+1)−1 ≤ n

1/3
2j+1. Therefore

|f(u1)| ≤
m2j+1

n2j+1

∑

α∈Γ

|fα(
∑

(k,i)∈Lα
1

m2jk

n2jk

(yk,i + zk,i))|

≤
m2j+1

n2j+1
7n

1/3
2j+1 ≤

1

m2
2j+1

.

�

It remains to estimate the action of f on u3.

Lemma 3.8. Let y3 = u3|supp y and z3 = u3|supp z. There exist a functional g ∈W
with |g| = |f | satisfying

g(z3) ≥
1

2
f(y3). (3.8)

Recall that for every k ∈ I1 it holds that |fαk

k | = |fk| and range(xk) ⊂ Eαk
. Also

since
∏

β≺αk
w(fβ) < m2j+1 it follows that the nodes αk, αl are incomparable for

k 6= l ∈ I1.
Let g be the functional defined by a tree-analysis we obtain by replacing each

fαk

k by fk for every k ∈ I1. Lemma 1.4 yields that the resulting functional is a
norming functional.

Setting y3,k = u3|supp yk and z3,k = u3|supp zk and using that |fαk

k | = |fk| we
have the following

|fαk

k (y3,k)| ≤ 2fk(z3,k) (3.9)

Remark 3.4 yields that for every γ ≺ αk we have that

|fγ(yk,3)| ≤





∏

γ�δ�αk

w(fδ)
−1



 |fαk

k (yk,3)|.

Lemma 1.4 yields also that gγ(z3,k) = (
∏

γ�δ�αk

w(fδ)
−1)fk(z3,k) for every γ ≺ αk.

Therefore

|fγ(y3,k)| ≤





∏

γ�δ�αk

w(fδ)
−1



 |fαk

k (y3,k)| ≤ 2gγ(z3,k). (3.10)

The above inequality proves (3.8). �

Combining (3.2), (3.6), (3.7) and (3.8) we obtain that

g(z) ≥
1

2
f(y)− 2

31

m2j+1
.

Theorem 3.9. The space X(4) is quasi-minimal.
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Proof. The proof is based on the arguments we use in the proof of Proposition 3.1.
Let Y, Z be two block subspaces of X(4). Inductively, by Proposition 2.9, we

choose a a sequence (xl, x
∗
l )l∈N such that (xl, x

∗
l ) is a (2jl+1)-dependent sequence,

3 < jl ր +∞, which splits as in the first step i.e.

xl = yl + zl =
m2jl+1

n2jl+1

n2jl+1/2
∑

k=1

yl,k + zl,k

where yl,k + zl,k =
m2jk,l

n2jl,k

(yl,k,1 + zl,k,1 + · · ·+ yl,k,n2jl,k
+ zl,k,n2jl,k

) and addition-

ally yl,k,i ∈ Y , zl,k,i ∈ Z.
We may also assume that the weights that appear in the choice of the dependent

sequence (xl, x
∗
l ) are bigger than the weights we use in (xl−1, x

∗
l−1).

Let ‖
∑

l alyl‖ = 1 and let f ∈ W with f(
∑

l alyl) > 1/2. Let (fα)α∈A be a
tree-analysis of f .

We define for every l ∈ N the set Il,1, Il,2, Il,3 as in Proposition 3.1. For each of
the sets Il,1, Il,2 we get

f(
∑

k∈Il,3

(yl,k + zl,k)) ≤
24

m2jl+1

and

f(
∑

k∈Il,2

(yl,k + zl,k)) ≤
6

m2jl+1

For the sets Il,1 as in Proposition 3.1 we define the sets Ll,1, Ll,2 and Ll,3 and
vectors ul,1, ul,2, ul,3. As before we obtain that f(ul,2) = 0 and f(ul,1) is dominated

by m−1
2jl+1.

For the sets Ll,1 we work as in Lemma 3.8 substituting fαk

l,k (which corresponds to

fαk

k of Lemma 3.8) by the functional fl,k (which corresponds to fk of Lemma 3.8).
In this way we get a functional g such that |g| = |f | and

g(
∑

l

alul,3|supp zl) ≥
1

2
f(
∑

l

alul,3|supp zl).

The above yields that

g(
∑

l

alzl) ≥
1

2
f(
∑

l

alyl)− 2
∑

l

|al|
31

m2jl+1
≥

1

5
.

which ends the proof. �

4. Tightness by range

We show now, using G-operations, the following

Theorem 4.1. The space X4 is tight by range.

Proof. Let (xi) be normalized block sequence. We show that there exists no
bounded operator T such that suppT (xi) ∩ range(xi) = ∅ and T can be extended
to an isomorphism from [(xi)] to X . This will prove that X(4) is tight by range.

Let T be an operator as above and assume without loss of generality that ‖T ‖ ≤
1. By the reflexivity of the space and passing to a subsequence we may assume that
(T (xi))i is a block sequence and moreover

range(xi + Txi) < range(xi+1 + Txi+1) ∀i ∈ N.
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Let j ∈ N. By Lemma 2.2 we can choose w =
∑l(n2j)

k=1 akxr(j)+k such that w is an
2− ℓn2j -average and l(n2j) ≤ w.

Let f0 ∈ W be a functional such that f0(w) ≥ 1. Without loss of generality we
may assume that range(f0) = range(w). For k ≤ l(n2j)/2 set

E2k−1 = range(xr(j)+2k−1) and E2k = (maxranxr(j)+2k−1,minsuppxr(j)+2k+1),

It follows that (Ek)
l(n2j)
k=1 are consecutive intervals and l(n2j) ≤ E1 < · · · < En2j

.

Then the functional f = 1
2

∑n2j/2
k=1 E2k−1f0 ∈ W and without loss of general-

ity we may assume f(w) ≥ 1/2. Otherwise we can take the restriction of f to
∪k range(xr(j)+2k). It follows that f satisfies

f(w) ≥
1

2
and supp(Txi) ∩ supp(f) = ∅ ∀i ∈ N. (4.1)

Definition 4.2. We shall call the pair (w, f) a (2, n2j)-special pair disjoint from
(Txi) if w is an 2− ℓ

n2j

1 -average and (4.1) holds.

Let j ∈ N. Inductively, by Proposition 2.9, we choose a (6, n2j+1)-dependent
sequence ((ui, fi))i≤n2j+1

such that

P1) (ui, fi) is a (6, εi)-exact pair of the form ui =
m2ji

n2ji

∑n2ji

k=1 ui,k and fi =
1

m2ji

∑n2ji

k=1 fi,k for any i,

P2) (ui,k, fi,k) is a (2, n2ji,k)-special pair disjoint from (Txi)i for every i, k,
P3) (f1, . . . , fn2j+1

) is a (2j + 1)-special sequence.

Note that

‖
m2j+1

n2j+1

n2j+1
∑

i=1

ui‖ ≥
1

m2j+1

n2j+1
∑

i=1

fi(
m2j+1

n2j+1

n2j+1
∑

i=1

ui) ≥
1

2
. (4.2)

Moreover supp(f)∩ supp(Txj) = ∅ for all f = 1
m2j+1

E
∑n2j+1

i=1 hi and |hi| = |fi| for

all i.

Lemma 4.3. The following holds

‖
1

n2j+1

n2j+1
∑

i=1

Tui‖ ≤ 25m−2
2j+1 (4.3)

Proof of Lemma 4.3. Let ui,k =
∑

j∈Di,k
ajxj = 1

n2ji,k

(x̄i,k,1 + . . . x̄i,k,n2ji,k
) be a

2− ℓ
n2ji,k

1 average. We set yi,k =
∑

j∈D∗

i,k
ajTxj where D

∗
i,k = Di,k \ {maxDi,k}.

Note that maxsupp yi,k < maxsuppui,k,

yi,k =
1

n2ji,k

(ȳi,k,1 + · · ·+ ȳi,k,n2ji,k
)

and ‖ȳi,k,j‖ ≤ ‖T ‖‖x̄i,k,j‖ ≤ 2 for all j.

Set wi =
m2ji

n2ji

∑n2ji

k=1 yi,k. Since

‖Tui − wi‖ ≤
m2ji

n2ji

n2ji
∑

k=1

‖Tui,k − yi,k‖ ≤
m2ji

n2ji

n2ji
∑

k=1

1

n2ji,k

≤
1

m2
2ji

it is enough to show that

‖
1

n2j+1

n2j+1
∑

i=1

wi‖ ≤ 24m−2
2j+1
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To get the above inequality we shall use Proposition 2.8. We show that (yi,k)
n2ji

k=1

is a (3, εi)-RIS.
Indeed as in Lemma 2.6 we obtain that for all f ∈ W with w(f) = mp < m2ji,k

it holds that

|f(yi,k)| ≤
3

mp
.

Also since m−1
2ji,k+1

max suppui,k ≤ εi and maxsupp yi,k < maxsuppui,k we get that

(yi,k)k≤n2ji
is a (3, εi)-RIS. By Proposition 2.8 and P3) we have that (wi)

n2j+1

i=1 is a

(6, n−1
2j+1)-RIS.

We will show now that for every f ∈ W with w(f) = m−1
2j+1 and every interval

E we have that

|f(
∑

i∈E

wi)| ≤ 6(1 +
#E

m2
2j+1

)

Let f = E 1
m2j+1

∑n2j+1

r=1 hr be a special functional. Let i0 = min{i : |hi| 6= |fi|}.

If i0 > 1 it follows that for every i < i0 f(wi) = 0, since by P2) f(Tui,k) = 0 for
every (i, k) with i < i0. For every i > i0 the assumptions of Corollary 2.10 hold,
hence

|f(
∑

i>i0

wi)| ≤
1

m2
2j+2

(4.4)

For the wi0 , w(hi0 ) = w(fi0) and hence using Corollary 2.10 we get

|f(wi0)| ≤ 6 +
1

m2
2j+2

(4.5)

It follows

|f(
∑

i∈E

wi)| ≤ 6(1 +
#E

m2
2j+1

)

Proposition 2.8 yields

‖
m2j+1

n2j+1

n2j+1
∑

i=1

wi‖ ≤
24

m2j+1
,

which ends the proof of the lemma. �

Notice that combining (4.2) and (4.3) we get that T is not an isomorphism,
which ends the proof of the theorem. �
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