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RESTRICTED INVERTIBILITY AND THE BANACH-MAZUR
DISTANCE TO THE CUBE

PIERRE YOUSSEF

ABSTRACT. We prove a normalized version of the restricted inveitipiprinciple obtained
by Spielman-Srivastava in [12]. Applying this result, wet genew proof of the proportional
Dvoretzky-Rogers factorization theorem recovering th& barrent estimate. As a consequence,
we also recover the best known estimate for the Banach-M#figtance to the cube: the distance
of everyn-dimensional normed space froffy, is at most(2n)¢. Finally, using tools from the
work of Batson-Spielman-Srivastavalin [2], we give a newgbfor a theorem of Kashin-Tzafriri
on the norm of restricted matrices.

1. INTRODUCTION

Given ann x m matrix U, viewed as an operator frodj’ to ¢, the restricted invertibility
problem asks if we can extract a large number of linearly peeelent columns df and provide
an estimate for the norm of the restricted inverse. If weenrjf for the restriction ofJ to the
columnsUe;, i € o C {1,...,m}, we want to find a subset, of cardinalityk as large as
possible, such thatU,z||s > ¢||x||2 for all z € R? and to estimate the constan{which
will depend on the operatdr). This question was studied by Bourgain-Tzafriri (S€e {4
obtained a result for square matrices:

Given ann x n matrix I (viewed as an operator aff) whose columns are of norm one,
there existgr C {1,...,n} with |o| > d—= such that|7,z||» > ¢||z||; for all z € R?, where

d,c > 0 are absolute constants.

17112

and the operator norm when applied to a matrix (seen as amtop@&n/,). For a matrixA,
|| Al|lus denotes the Hilbert-Schmidt norm, i.e.

1/2
[ Allns = /Tr(A - A7) = (z e Hz)

where(; are the columns ofl.

Since the identity operator can be decomposed in the ot Y°; e;e’ where(e;) is the
canonical basis oR", the previous result states that one can find a large pariob#sis (of
cardinality greater thad \TIP) on the span of which the operatdris invertible and the norm

of its inverse is controlled by an absolute constant.

Vershynin generalized this result for any decompositiothef identity (see [16]) and im-
proved the estimate for the size of the subset. Using a teahitération scheme based on the
previous result of Bourgain-Tzafriri, combined with a them of Kashin-Tzafriri which we
will discuss in the last section, he obtained the following :

Let Id = X, z;x} and letT be a linear operator off. For anye < (0, 1) one can find
o C{l,...,m} with

1T s
o] = (1 —¢)
~ . 17113
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such that

1
T, 2\

a; > cle as
jz: J|VT1UH2H2 ( ) (EE: J)

j€o je€o

for all scalarga;).

One can easily check that, in the case of the canonical dexsitign, this is a generalization
of the Bourgain-Tzafriri theorem, which was previously yoproved for a fixed value of.
The constant(¢) plays a crucial role in applications and we will be able to ioye its value
significantly (see Propositidn 2.1 for the precise statejnen

Back to the original restricted invertibility problem, acemt work of Spielman-Srivastava
(seel[12]) provides the best known estimate for the normefrtherse matrix. Their proof uses
a new deterministic method based on linear algebra, whdeptlevious works on the subject
employed probabilistic, combinatorial and functionakbic arguments.

More precisely, Spielman-Srivastava proved the following

Theorem 1.1. Letxy,. ..z, € R" such that/d = ¥, ;2! and let0 < ¢ < 1. For every linear
operator? : (3 — (% there exists a subset C {1,...,m} of size|o| > L(l — 5)2%J for
which{T'z;}c, is linearly independent and

Amin (Z(T:ci)(T:ci)t) >

€0

?|IT|ls
m Y

where A\, is computed orspan{Tz;};c, or simply here),;, denotes the smallest nonzero
eigenvalue of the corresponding operator. .

One can view the previous result as an invertibility theofenrectangular matrices. Given,
as above, a decomposition of the identity and a linear opefatwe can associate to these an
n x m matrix U whose columns are the vectqfBr;);<,,. Sinceld = Y-, z;x%, one can easily
check that

U . Ut =T. Tt - Z(T{L‘j) . (T{L‘j)t.
j
Hence,
|Ullss = I Tls and (U]l = |IT]l2.

and thus the previous result can be written in terms of theangular matrixJ.

In the applications, one might need to extract multipledhefcolumns of the matrix. Adapt-
ing the proof of Spielman-Srivastava, we will generalize testricted invertibility theorem for
any rectangular matrix and, under some conditions, for &eyce of multiples.

If D is anm x m diagonal matrix with diagonal entriés;),<,,, we set/p := {j < m |
a; # 0} and write D, * for the restricted inverse db i.e the diagonal matrix whose diagonal
entries are the inverses of the respective entriel &@r indices ino and zero elsewhere. The
main result of this paper is the following:

Theorem 1.2. Given ann x m matrix U and a diagonabn x m matrix D with (a;);<,, on
its diagonal, with the property thder(D) C Ker(U), then for any= € (0,1) there exists
o CA{l,...,m} with

2 [ U][s

o] > (1 —¢)
IU113

such that
e||U]|ns

soin (UoD7") > Jp

wheres,;, denotes the smallest singular value.
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Note that if we apply this fact to the matrix which we associated with a linear operafor
and a decomposition of the identity, and we tdkeo be the identity operator, we recover the
restricted invertibility theorem of Spielman-Srivastava

In Section 2, we discuss some applications of our resultmgamaved version of Vershynin’s
normalized invertibility theorem and an alternative prodthe best known estimates for the
proportional Dvoretzky-Rogers factorization and the BdmB&lazur distance to the cube. In
Section 3, we prove our main result. Finally, in Section 4 \we @ new proof of a theorem due
to Kashin-Tzafriri which deals with the norm of coordinatejections of a matrix.

2. APPLICATIONS

2.1. Normalized restricted invertibility. Our first application is an improved version of a nor-
malized restricted invertibility principle for an arbityaoperator on; and any decomposition
of the identity onR™. The formulation below is essentially due to Vershynin, vehiéhe con-
stant depending on satisfiedc(e) ~ £~'°6¢. We show that one can have a similar result with
c(e) = e. In [186], Vershynin established a non trivial upper boundvadi; he applied this to get

a Dvoretzky-Rogers type lemma and to deduce informationiadmbeddings oft into finite
dimensional spaces.

Proposition 2.1. Let/d = Y, ;25 be a decomposition of the identity &t and letT be a

linear operator on;. For anye > 0 there exister C {1, ..., m} with
17 I[fis
ol > (1 —e)*
g 17113
such that, for any choice of scala(s;) <.,
Tx i
a; J =€ a? .
PO T Il PO

Proof. Let U be then x m matrix whose columns are the vectdiBz;),<.,. As mentioned
before, we havdU ||us = ||T'||us and||U||s = ||T'||2- Let D be the matrix with diagonal entries
”T.’L'J”Q Then,

[Pl = [T [|s-

Now, we apply Proposition 2.1 with thegeand D to find o of the desired cardinality such that
$min(UsD; 1) > €.
Observing that, for any = (a;)j € o,

Tx;

UsD'a=Y aj—21—
2T,

we conclude the proof. O

2.2. Dvoretzky-Roger s factorization. We say that am-dimensional normed spacg is in
John’s position if the Euclidean unit baly is the ellipsoid of maximal volume inscribed in the
unit ball By of X. In [9] (see alsol[ll]) John characterized this position dgvies: If X is in
John’s position, then we have a decompositidn= 3; z;z' of the identity, wher ‘;joQ are
contact points oBx andBY.

The proportional Dvoretzky-Rogers factorization is gilsrthe following statement.

Proposition 2.2. Let X be an-dimensional normed space. For any> 0, there existg: >
(1 — £)?n such that the identity, ., : I5 — [* can be written as, ., = « o 3, where
Bl — X, a: X — I5 and||of - |8 < 1.
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Proof. By changing the Euclidean structureliri, one may assume thX[ is in John’s position.
. wherez; are multiples

Jj<m
of contact points ofX, i.e. ||z;||x = [|z;]|x+ = ||z;||2.
Now, we apply Propositidn 2.1 with = Idtofindo C {1,...,m} with |o] =k > (1—¢)*n

such that:
1/2
/ 19 Z a? .
JjEo

Obviously, the vector$x]}Jeo are linearly mdependent. Next, we define: I¥ — X* by
settinga/(e;) = H:v = andf’ s Xt — 15 by settingﬁ’(l‘ijlb) = ¢;. Clearly,i;» = 3’ o /.

e Since||z;|[> = [l;]|x-, we havef|a/|| ;s x» < 1.

o By (@), we have| 5| - < <.
Then we get the result by duality. O

1)

j€o

Remark 2.3. This form of factorization was first proven by Bourgain-S#afsee [[3]) with

a weaker dependence en After that, came the work of Szarek-Talagrand (see [14%) ain
Giannopoulos (se€¢[6]) that improved the dependence tms~2 and e 3 respectively. In
these two works, the factorization féor; was established by combining an isomorphic variant
of Sauer-Shelah’s lemma with a factorization theorem oftlB¥ondieck. Finally, Giannopoulos
proved in [7] that the statement holds true with) = <, which is the best known dependence
one. Our Proposition recovers this result (with= 1) using a completely different method.

2.3. Banach-Mazur distance to the cube. Let BM,, denote the space of all-dimensional
normed space&’, known as the Banach-Mazur compactumXIfY” are inBM,,,, we define the
Banach-Mazur distance betwe&nandY as follows:

d(X,Y) =inf{|T||-||T"" | Tisanisomorphism between X and}Y
=inf{a/B | BBy C T(Bx) C aBy}
=inf{a/B| Bllzlx <T@y < allz]x}-

More preciselylog(d) defines a distance (in the classical sense) in the quotienesgBM,,,
which is derived after we identify isometric spaces. By @yale haved(X,Y) = d(X*, Y™*).
Obtaining sharp estimates for Banach-Mazur distanceslassaical topic in the asymptotic
theory of finite dimensional normed spaces. The first resuthis direction was a theorem
of John (seel]1].[9]) which provided a sharp upper bound far distance between amy
dimensional normed space and the Euclidean sgack we setR) = max{d(X,l}) | X €
BM., }, John proved thak} = /n. A theorem of Gluskin (se€|[8]) established the existence of
spaces of dimensiom which are at distance proportional tofrom each other; it follows that
I5 is at the center odBM,, and thafBM,, is contained in a ball of radiug'n with respect to the
Banach-Mazur distance centeredatOne natural question is to ask for an analogous estimate
whenl; is replaced by some othéf-space, and in particular by, . This problem was first
studled by Bourgain-Szarek (sée [3]), then Szarek-Tatat(see[14]) and finally Glannopou-
los (seel[6]) who improved the work of Szarek-Talagrand amued thatR”, < cns. This is
the best known result and it is probably not optimal. The @vzty-Rogers factorization theo-
rem, stated above, plays a crucial role in estimating thetadice, since Propositibn?.3 allows
us to find a “large subspace” of our space whose distance fr@amd/,; can be bounded well.
For the remaining part, which will be a “small subspace”, we & trivial estimate and combine
it with the previous one.

(SIS

Proposition 2.4. R} = R < (2n)s.



5

Proof. Let X € BM,, and assume that'™* is in John’s position (by changing the Euclidean
structure iNR™ if necessary), i.eBY is the ellipsoid of minimal volume containingy .
By John’s theorem, one can find, ..., z,, which are multiples of contact point§«;||x =
|2j]lx+ = |lz;ll2) such thatid = ;.. v;2%. Note thatBy C Bx- C /nBj, and hence

Applying Proposition2]1, one can firdC {1,...,m} with || = k£ > (1 — 2¢)n such that,
for any choice of scalarg;),

1/2
=€ Z a? .
JjEo

ZCLJ
| ]H

JjET
In order to simplify notation, we assume th;at: {1,...,k}. Letyyq, ..., y, be an orthogonal
basis ofspan(z1, ..., z;)" normalized so thafty;||x < 1. To do this, we require thafty; ||, =
1
%.

DefineT : I} — X by settingT'(e;) =
a = (a,j)jgn € R" and

[ 7H if j < kandT(e;) = y; forj > k. Let

Zaj + Z a;Y;-

ijHQ j=k+1

Then,
allx :ZWJH‘Z‘CLJ" > ZCLJ Iz H +Zaﬂ/] ZCLJ” ” +Zajy]
j<k >k j<k 5 >k ¥ j<k L5 >k 9
We write
1
2
|Tall, > Z a;y; by orthogonality
: 1
2
> ) a4+, a?H%H%]
i<k >k
[ 2 273
> | = > ayl Z |a;] by Cauchy-Shwarz
n i<k >k

WV
3| %
™
S
~
[N}
+
&
—_
3[\’)
™
g8
N———
[N}

WV

j<k >k

1 € 1
o) [ﬁZ\%’Hn—@Z\M]

1
3 .

takinge = (2n)

It follows that (2n)~§|jall; < ||Talx < |la|l; and thereforel(X, i) < (2n)s for all X €
BM,,. O

Remark 2.5. Here we are interested in high dimensional results; thidig tve constant is not
that important for us. If we want an estimate for “small” dimseons, then the value of the con-
stant becomes important. Note that a trivial estimate woel®&”, < n. In [6], Giannopoulos
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proved thatR?, < cns with ¢ = \/;61) ~ 3,0116, and thus his result becomes nontrivial
3

when the dimension is larger than6. On the other hand, our result becomes nontrivial when-
ever the dimension is bigger th&2. Moreover, if we are interested in small dimensions, we
can obtain a better result by choosinm the last inequality in a different way: in fact we have
chosen(2n)~3 in the asymptotlc regime, otherwise one just needs to opimso that it sat-

isfies —= = ; then our result becomes nontrivial when the dimensionrgela
(1-e)2n  ny/1- (1 )2

than15. In [15], Taschuk has also obtained an estimate for the Baiazur distance to the
cube of “small”-dimensional spaces. One can check thatesultimproves on that whenever
the dimension is larger thalr.

3. PROOF OFTHEOREMIL.Z
Since the rank and the eigenvalues@f D, ') - (U,D;') and(U,D;') - (U,D;')" are the
same, it suffices to prove that/, D, ') - (U,D;')! has rank equal té = |o| and its smallest

positive eigenvalue is greater th JgHsz Note that
HS

(U,D;") - (U,D;1) = 32 (UD; e;) - (UD; ;) = (E) ' <%)t

j€o jeo \ 9 Q;

We are going to construct the matrity, = > (UD;lej) : (UD;lej)t by iteration. We begin
JjET
by settingA, = 0 and at each step we will be adding a rank one mat(rfﬁé() (Uef) for

a SUIt&b'Gj) which will give a new positive eigenvalue. This will guataa that the vector
UD;,'e; chosen in each step is linearly independent from the prewoes.

If A and B are symmetric matrices, we writé < B if B — A is a positive semidefinite
matrix. Recall the Sherman-Morrison Formula which will beeded in the proof. For any
invertible matrixA and any vectov we have

A v tA!
1+vtA-to
We will also apply the following lemma which appears as Len@&ain [13]:

(A_i_,U.,Ut)fl:Afl_

Lemma 3.1. Suppose thatl = 0 hasg nonzero eigenvalues, all greater than> 0. If v # 0
and

(2) V(AT < 1,
thenA + vv! hasq + 1 nonzero eigenvalues, all greater than
The proof of the lemma is simple and makes use of the Shern@migdn formula.
For any symmetric matrixl and anyb > 0, we define
o(A) = Tr (U'(A = b))

as the potential corresponding to the barbier

At each step, the matrix already constructed is denotedAyand the barrier by, and to
simplify the notations, we will use; for the potentiaky,,. A; has! nonzero eigenvalues all
greater thar,. As mentioned before, we will try to construdt,; by adding a rank one matrix
v - o' to A; so thatA,,; hasl + 1 nonzero eigenvalues all greater than, = b, — ¢ and



¢l+1(14l+1) < (bl(Al) Note that
Sri1(Arpr) = Tr (U'(Ay + 00’ = by I)7'U)

=T (U'(A = b)) 'U) = T <

Ut(Al — blHI)_lvvt(Al — bprll)_lU
1+ Ut<Al — bl+1])711)
Ut(Al — bH_lI)*lUUt(Al — bH_l])*lU
= ria(A) - — =
+ v (Al — bl+1I) (%
So, in order to have, ;(A;;1) < ¢;(A4;), we must choose a vectorverifying
v (A — b D) TTUUN A — bl+1])
3 A)) — A).
3) T4 0 (A — by )0 < oi(A) — drra (A)
Sincev!(A; — by ) TTUUN A — b D)Mo and<Z>l(Al) — ¢141(4;)) are positive, choosing
verifying conditions[(R) and{3) is equivalent to choosinghich satisfies the following:
(4) o' (A = by D) UU (A = by 1) o < (A1) = ria(A) (=1 = o' (A = b 1) o).
SinceUU" < ||U||31d and(A; — bl+1I)*1 is symmetric, it is sufficient to chooseso that

G) V(A= bl) P < HUHQ (61(A) = draa(A)) (=1 = v (A = bra ) 7'0) |

Recall the notatiod, := {j < m | o; # 0} where(«;),<,, are the diagonal entries @l.
Since we have assumed théatr(D) C Ker(U), we have

1UllGs = > el = 3 1Uell; < 1ol - U3,

Jjsm J€lp

and thug/p| > ”ﬂ'ﬁ?. At each step, we will select a vectorsatisfying [(b) amonq({)—?)j@).
2 p

Our task therefore is to fing € I such that

D1( A1) — dry1(Ay) (_
U3
The existence of suchjac I is guaranteed by the fact that conditigh (6) holds true if aket

the sum over all U? )jep- The hypothesi&er(D) C Ker(U) implies that:

o > (Uep)' (A= biyal)Uej = Tr (U(A — by 1) 2U),
Jj€lp
o > (Ue))' (A= b D) Uej = Tr (U'(A = by )7'0).
Jj€lp
Therefore it is enough to prove that, at each step, one has

ou(A) — dria (A) )
l l||U||é+ = (<lID s = dria(A) -

The rest of the proof is similar to the one n]13]. One justdew® replacen by || D||fg. For
the sake of completeness, we include the proof. The next Eemithdetermine the conditions
required at each step in order to provk (7).

(6) (Uej)t(Al — bl+1[)72U€j < Oéj2 — (Uej)t(Al — bprll)ierj) .

(7) Tl"(Ut(Al - bl+1])_2U) <

Lemma 3.2. Suppose thatl; has/ nonzero eigenvalues all greater thgnand writeZ for the
orthogonal projection onto the kernel df. If

U 2
® 51(4) < ~[1Dlfss — 1212
and

2
(9) 0<d<b < 5%

U113
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t
then there exists€ I such thatd;,; :== A; + (i—e) . (‘{I—e) has/ + 1 nonzero eigenvalues all
greater than,,; := b, — 6 and ¢y 1 (A1) < di(A)).

Proof. As mentioned before, it is enough to prove inequalily (7). $&eA; = ¢;(4;) —
é111(As1). By 8), we get

G (A) < =l Dllfs — 5 — A
Inserting this in[(¥), we see that it is sufficient to prove fibldlowing inequality:
A 1
10 Tr (UH(A, — b 1) 72U) < A a———
(10) 1"<U( 1 — b l) U) l<||U||§ +5>

Now, denote byP the orthogonal projection onto the imageAf We set
o1 (A1) = Tr (U'P(A = b)'PU)  and AL = 6] (A) — ¢111(A)
and use similar notation fof. SinceP, Z and A; commute, one can write
Ap=A7+ A7 and ¢(A) = o (A) + 67 (A).
Note that:
(A= b )™ = (A = by )™ = (A = b)Y — A+ Ay — by D) (A — by )™
= §(A; — b )N (A — b D)
and sinceP(A; — b I)~*P andP(A; — b1 1)~ ! P are positive semidefinite, we have:
U'P(A; — bI)'PU — U'P(A; — by 1) LPU = SU'P(A; — by I)"2PU.
Inserting this in[(1D), it is enough to prove that:
A 1 AP
Te (U'Z(A1 = b )2 ZU) < A (m + 5) - Tl
SinceA;Z = 0, we have:

o Tr(U'Z(A, — bl+1[)_QZU) _ % and
1+1

o AZ = _I\Zlglllf{s + 1Z2UNGs _ 512Ul%s

biy1 biby11

so taking into account the fact thag > AZ > 0, it remains to prove the following:

1) 12Uls _ o 1ZUllks 1 2UllRs
b1 |U136707, bibi41
By Hypothesis[(P), this last inequality follows by
1ZUl%s _ (NZUllEs | 1ZU]lEs
12 <0 + ;
(12) 512+1 blb12+1 bibi41
which is trivially true sincé), ., = b, — 0. O

We are now able to complete the proof of Theofem 1.2. To this @ must verify that
conditions[(8) and {9) hold at each step. At the beginning axaehl, = 0 andZ = Id, so we
must choose a barriég such that:

Ul Ull?
(13) o || ||HS < _HDHI%IS o || ||2

bo )
and

0 .
-l



We choose , )
po e elUls g 5. = IIVIE
1Dl 1 —e||Dllfis
and we note thaf (13) anf (14) are verified. Also, at each Bepalds because; (A1) <
#1(A;). Sincel||ZU||%s decreases at each step by at m@st|2, the right-hand side of19)

decreases by at mostand therefore (9) holds once we replacby b; — 6.

Finally note that, aftek = (1 — ¢)? Ilﬁéllﬁés steps, the barrier will be
2

U1l
by = by — k§ = e* 5.
1Dl

This completes the proof.

4. PROJECTION ON COORDINATE SUBSPACES

Given ann x m rectangular matrix, a theorem of Kashin-Tzafriri (Se€ JEdlows us to find
a coordinate projection of arbitrary size (say. with A < 1) and to estimate its norm in terms
of the norm of the matrix and. The precise formulation of the result (s€el[16] for another
formulation and proof) is the following.

Theorem 4.1 (Kashin-Tzafriri) Let U be ann x m matrix. Fix A with 1/m < A < i Then,
there exists a subsetof {1, ..., m} of cardinality|v| > Am such that
1U|lus
Ul < MUl + ==,
o1 < e (VAo + 1708

whereU, = UP, and P, denotes the coordinate projection origé.

The proof of this theorem uses a standard selection argucoembined with a factorization
theorem of Grothendieck. We will give an alternative probttas result which exploits the
method introduced by Batson-Spielman-Srivastavalin [2jis Bllows us to slightly improve
Theorem 4.1 by obtaining an estimate for all possible vatiid¢lse rank of the projection with

the constant replaced b\/y\lf—_ix

Theorem 4.2. Let U be ann x m matrix and let0 < A < n < 1. Then, there exists C
{1,...,m} with |o| = & > Am such that

1 AMU|lus
Usll2 < VAF U2 + /1 + = :
1T 12 T < nUll 1 m

In particular,

V2 U]
10l < A= (VAo + 190,

wherelU, denotes the selection of the columng/ofvith indices ino.

Proof. We denote bye;);<,, the canonical basis &™. Since
Us - Uy = (Uey) - (Uey)',
j<o

our problem reduces to the question of estimating the lagjgenvalue of this sum of rank
one matrices. We will follow the same procedure as in the fopbthe restricted invertibility
theorem: at each step, we would like to add a column of ther@ignatrix and then study
the evolution of the largest eigenvalue. However, it willdmvenient for us to add suitable
multiples of the columns of/ in order to construct thé-th matrix; for eacht we will choose

a subset, of cardinality|o;| = k and consider the matriX, = >_ s; (Ue;) - (Ue;)" where
JEok
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(sj)jes Will be positive numbers which will be suitably chosen. Aetstepl, the barrier will
be denoted by;, namely the eigenvalues af; will be all smaller tharb,. The corresponding
potential isg;(A;) := Tr (Ut (b I — A;)~'U). We setd, = 0, while b, will be determined later.

As we did before, at each step the value of the poteniigl;) will decrease so that we
can continue the iteration, while the value of the barriell imcrease by a constart i.e.
b1 = b + 0. We will use a lemma which appears as Lemma 3.4.ih [13]. We #there in the
notation introduced above.

Lemma4.3. Assume thak,,..(A;) < b;,. Letv be a vector inR™ satisfying

o Ut(bprl[ — Al)_QU
Vi) = G A = dr (A

Then, if we defingl;,; = A; + svv® we have
Amax (A1) < bipr and ¢ (Air) < di(Ay).

We write« for the initial potential, i.ea = % . Suppose that, = Y s; (Ue;)-(Ue;)' is
Jj€o;
constructed so that;(A;) < ¢;_1(A4;-1) < a and .. (4;) < b We will now use Lemm@a4]3
in order to construct, ;. To this end, we must find a vectble; not chosen before and a scalar
si+1 SO thatV;(Ue;) < ﬁ and then use the lemma. We chogdey calculating the sum of
Vi(Ue;) over allj ¢ o,. Since(b,I — A;)~* and (b1 — A;)~! are positive semidefinite, one
can easily check that

(il — A7 — (bl — A7 = 5(bp I — A2

U]z + v"(bra — A) Mo <

[V

Therefore,

Te (U (biad — A)720) < 5 (61(A) — b (A1)

| =

It follows that
Tr (Ut(lerl[ — Al)_QU)
V Ue‘ g V Ue- —_=
J%l l( J) J;n l( J) ¢l(Al)—¢l+1(Al)
U3

S — to
4]

and therefore one can findz o; such that

1 2 1 2
e < <wg2+a>< <wy2+a>

|o7] |7kl

U3 + dri1(A)

wherek is the maximum number of steps (which is in our case.
We are going to choose all equal tos := (U-Mm By the previous lemma, it is sufficient to

2 .
U112
B

takeA; 1 = A+ s (Ue;) - (Uei)t. After k = Am steps, we get = o}, such that

i) 1 o + 195
Amax Ue;) - (Ue; < —(bg+ kd) = —2—(bg+ ké
T (U6) - (Ue)'| & Slbo-+0) = G (kD
L [IU]l&s 2 > 0 U3 b
s [T o + sy + 12125
The result follows by taking, = nmJd. O
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