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RESTRICTED INVERTIBILITY AND THE BANACH-MAZUR
DISTANCE TO THE CUBE

PIERRE YOUSSEF

ABSTRACT. We prove a normalized version of the restricted invertibility principle obtained
by Spielman-Srivastava in [12]. Applying this result, we get a new proof of the proportional
Dvoretzky-Rogers factorization theorem recovering the best current estimate. As a consequence,
we also recover the best known estimate for the Banach-Mazurdistance to the cube: the distance
of everyn-dimensional normed space fromℓn

∞
is at most(2n)

5

6 . Finally, using tools from the
work of Batson-Spielman-Srivastava in [2], we give a new proof for a theorem of Kashin-Tzafriri
on the norm of restricted matrices.

1. INTRODUCTION

Given ann × m matrix U , viewed as an operator fromℓm
2 to ℓn

2 , the restricted invertibility
problem asks if we can extract a large number of linearly independent columns ofU and provide
an estimate for the norm of the restricted inverse. If we write Uσ for the restriction ofU to the
columnsUei, i ∈ σ ⊂ {1, . . . , m}, we want to find a subsetσ, of cardinalityk as large as
possible, such that‖Uσx‖2 > c‖x‖2 for all x ∈ R

σ and to estimate the constantc (which
will depend on the operatorU). This question was studied by Bourgain-Tzafriri (see [4])who
obtained a result for square matrices:

Given ann × n matrix T (viewed as an operator onℓn
2 ) whose columns are of norm one,

there existsσ ⊂ {1, . . . , n} with |σ| > d n
‖T ‖2

2

such that‖Tσx‖2 > c‖x‖2 for all x ∈ R
σ, where

d, c > 0 are absolute constants.

Here and in the rest of the paper,‖ · ‖2 denotes the Euclidean norm when applied to a vector
and the operator norm when applied to a matrix (seen as an operator onl2). For a matrixA,
‖A‖HS denotes the Hilbert-Schmidt norm, i.e.

‖A‖HS =
√

Tr(A · A∗) =

(

∑

i

‖Ci‖2
2

)1/2

whereCi are the columns ofA.
Since the identity operator can be decomposed in the formId =

∑

j eje
t
j where(ej) is the

canonical basis ofRn, the previous result states that one can find a large part of this basis (of
cardinality greater thand n

‖T ‖2
2

) on the span of which the operatorT is invertible and the norm
of its inverse is controlled by an absolute constant.

Vershynin generalized this result for any decomposition ofthe identity (see [16]) and im-
proved the estimate for the size of the subset. Using a technical iteration scheme based on the
previous result of Bourgain-Tzafriri, combined with a theorem of Kashin-Tzafriri which we
will discuss in the last section, he obtained the following :

Let Id =
∑

j6m xjx
t
j and letT be a linear operator onℓn

2 . For anyε ∈ (0, 1) one can find
σ ⊂ {1, . . . , m} with

|σ| > (1 − ε)
‖T‖2

HS

‖T‖2
2

1
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such that
∥

∥

∥

∥

∥

∥

∑

j∈σ

aj
Txj

‖Txj‖2

∥

∥

∥

∥

∥

∥

2

> c(ε)





∑

j∈σ

a2
j





1

2

for all scalars(aj).

One can easily check that, in the case of the canonical decomposition, this is a generalization
of the Bourgain-Tzafriri theorem, which was previously only proved for a fixed value ofε.
The constantc(ε) plays a crucial role in applications and we will be able to improve its value
significantly (see Proposition 2.1 for the precise statement).

Back to the original restricted invertibility problem, a recent work of Spielman-Srivastava
(see [12]) provides the best known estimate for the norm of the inverse matrix. Their proof uses
a new deterministic method based on linear algebra, while the previous works on the subject
employed probabilistic, combinatorial and functional-analytic arguments.

More precisely, Spielman-Srivastava proved the following:

Theorem 1.1. Let x1, . . . xm ∈ R
n such thatId =

∑

i xix
t
i and let0 < ε < 1. For every linear

operatorT : ℓn
2 → ℓn

2 there exists a subsetσ ⊂ {1, . . . , m} of size|σ| >
⌊

(1 − ε)2 ‖T ‖2
HS

‖T ‖2
2

⌋

for

which{Txi}i∈σ is linearly independent and

λmin

(

∑

i∈σ

(Txi)(Txi)
t

)

>
ε2‖T‖2

HS

m
,

whereλmin is computed onspan{Txi}i∈σ or simply hereλmin denotes the smallest nonzero
eigenvalue of the corresponding operator. .

One can view the previous result as an invertibility theoremfor rectangular matrices. Given,
as above, a decomposition of the identity and a linear operator T , we can associate to these an
n × m matrixU whose columns are the vectors(Txj)j6m. SinceId =

∑

j xjx
t
j , one can easily

check that
U · U t = T · T t =

∑

j

(Txj) · (Txj)
t.

Hence,
‖U‖HS = ‖T‖HS and ‖U‖2 = ‖T‖2,

and thus the previous result can be written in terms of the rectangular matrixU .
In the applications, one might need to extract multiples of the columns of the matrix. Adapt-

ing the proof of Spielman-Srivastava, we will generalize the restricted invertibility theorem for
any rectangular matrix and, under some conditions, for any choice of multiples.

If D is anm × m diagonal matrix with diagonal entries(αj)j6m, we setID := {j 6 m |
αj 6= 0} and writeD−1

σ for the restricted inverse ofD i.e the diagonal matrix whose diagonal
entries are the inverses of the respective entries ofD for indices inσ and zero elsewhere. The
main result of this paper is the following:

Theorem 1.2. Given ann × m matrix U and a diagonalm × m matrix D with (αj)j6m on
its diagonal, with the property thatKer(D) ⊂ Ker(U), then for anyε ∈ (0, 1) there exists
σ ⊂ {1, . . . , m} with

|σ| > (1 − ε)2 ‖U‖2
HS

‖U‖2
2

such that

smin

(

UσD−1
σ

)

>
ε‖U‖HS

‖D‖HS
,

wheresmin denotes the smallest singular value.
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Note that if we apply this fact to the matrixU which we associated with a linear operatorT
and a decomposition of the identity, and we takeD to be the identity operator, we recover the
restricted invertibility theorem of Spielman-Srivastava.

In Section 2, we discuss some applications of our result: an improved version of Vershynin’s
normalized invertibility theorem and an alternative proofof the best known estimates for the
proportional Dvoretzky-Rogers factorization and the Banach-Mazur distance to the cube. In
Section 3, we prove our main result. Finally, in Section 4 we give a new proof of a theorem due
to Kashin-Tzafriri which deals with the norm of coordinate projections of a matrix.

2. APPLICATIONS

2.1. Normalized restricted invertibility. Our first application is an improved version of a nor-
malized restricted invertibility principle for an arbitrary operator onln

2 and any decomposition
of the identity onRn. The formulation below is essentially due to Vershynin, where the con-
stant depending onε satisfiedc(ε) ∼ ε− log ε. We show that one can have a similar result with
c(ε) = ε. In [16], Vershynin established a non trivial upper bound aswell; he applied this to get
a Dvoretzky-Rogers type lemma and to deduce information about embeddings oflk

∞ into finite
dimensional spaces.

Proposition 2.1. Let Id =
∑

j6m xjx
t
j be a decomposition of the identity onRn and letT be a

linear operator onln
2 . For anyε > 0 there existsσ ⊂ {1, . . . , m} with

|σ| > (1 − ε)2 ‖T‖2
HS

‖T‖2
2

such that, for any choice of scalars(aj)j∈σ,
∥

∥

∥

∥

∥

∥

∑

j∈σ

aj
Txj

‖Txj‖2

∥

∥

∥

∥

∥

∥

2

> ε





∑

j∈σ

a2
j





1/2

.

Proof. Let U be then × m matrix whose columns are the vectors(Txj)j6m. As mentioned
before, we have‖U‖HS = ‖T‖HS and‖U‖2 = ‖T‖2. Let D be the matrix with diagonal entries
‖Txj‖2. Then,

‖D‖HS = ‖T‖HS.

Now, we apply Proposition 2.1 with theseU andD to findσ of the desired cardinality such that

smin(UσD−1
σ ) > ε.

Observing that, for anya = (aj)j ∈ σ,

UσD−1
σ a =

∑

j∈σ

aj
Txj

‖Txj‖2
,

we conclude the proof. �

2.2. Dvoretzky-Rogers factorization. We say that ann-dimensional normed spaceX is in
John’s position if the Euclidean unit ballBn

2 is the ellipsoid of maximal volume inscribed in the
unit ball BX of X. In [9] (see also [1]) John characterized this position as follows: If X is in
John’s position, then we have a decompositionId =

∑

j xjx
t
j of the identity, where xj

‖xj‖2
are

contact points ofBX andBn
2 .

The proportional Dvoretzky-Rogers factorization is givenby the following statement.

Proposition 2.2. Let X be an-dimensional normed space. For anyε > 0, there existsk >

(1 − ε)2n such that the identityi2,∞ : lk
2 −→ lk

∞ can be written asi2,∞ = α ◦ β, where
β : lk

2 −→ X, α : X −→ lk
∞ and‖α‖ · ‖β‖ 6 1

ε
.
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Proof. By changing the Euclidean structure inRn, one may assume thatX is in John’s position.
Hence,‖.‖X∗ > ‖.‖2 and by John’s theorem one can writeId =

∑

j6m

xjx
t
j wherexj are multiples

of contact points ofX, i.e. ‖xj‖X = ‖xj‖X∗ = ‖xj‖2.
Now, we apply Proposition 2.1 withT = Id to findσ ⊂ {1, . . . , m} with |σ| = k > (1−ε)2n

such that:

(1)

∥

∥

∥

∥

∥

∥

∑

j∈σ

aj
xj

‖xj‖2

∥

∥

∥

∥

∥

∥

2

> ε





∑

j∈σ

a2
j





1/2

.

Obviously, the vectors{xj}j∈σ are linearly independent. Next, we defineα′ : lk
1 −→ X∗ by

settingα′(ej) =
xj

‖xj‖2
, andβ ′ : X∗ −→ lk

2 by settingβ ′(
xj

‖xj‖2
) = ej. Clearly,i1,2 = β ′ ◦ α′.

• Since‖xj‖2 = ‖xj‖X∗, we have‖α′‖lk
1

→X∗ 6 1.
• By (1), we have‖β ′‖X∗→lk

2
6 1

ε
.

Then we get the result by duality. �

Remark 2.3. This form of factorization was first proven by Bourgain-Szarek (see [3]) with
a weaker dependence onε. After that, came the work of Szarek-Talagrand (see [14]) and of
Giannopoulos (see [6]) that improved the dependence onε to ε−2 and ε− 3

2 respectively. In
these two works, the factorization fori1,1 was established by combining an isomorphic variant
of Sauer-Shelah’s lemma with a factorization theorem of Grothendieck. Finally, Giannopoulos
proved in [7] that the statement holds true withc(ε) = c

ε
, which is the best known dependence

onε. Our Proposition recovers this result (withc = 1) using a completely different method.

2.3. Banach-Mazur distance to the cube. Let BMn denote the space of alln-dimensional
normed spacesX, known as the Banach-Mazur compactum. IfX, Y are inBMn, we define the
Banach-Mazur distance betweenX andY as follows:

d(X, Y ) = inf{‖T‖ · ‖T −1‖ | T is an isomorphism between X and Y}
= inf {α/β | βBY ⊂ T (BX) ⊂ αBY }
= inf {α/β | β‖x‖X 6 ‖T (x)‖Y 6 α‖x‖X} .

More precisely,log(d) defines a distance (in the classical sense) in the quotient space ofBMn,
which is derived after we identify isometric spaces. By duality we haved(X, Y ) = d(X∗, Y ∗).

Obtaining sharp estimates for Banach-Mazur distances is a classical topic in the asymptotic
theory of finite dimensional normed spaces. The first result in this direction was a theorem
of John (see [1],[9]) which provided a sharp upper bound for the distance between anyn-
dimensional normed space and the Euclidean spaceℓn

2 . If we setRn
2 = max{d(X, ln

2 ) | X ∈
BMn}, John proved thatRn

2 =
√

n. A theorem of Gluskin (see [8]) established the existence of
spaces of dimensionn which are at distance proportional ton from each other; it follows that
ln
2 is at the center ofBMn and thatBMn is contained in a ball of radius

√
n with respect to the

Banach-Mazur distance centered atℓn
2 . One natural question is to ask for an analogous estimate

when ln
2 is replaced by some otherln

p -space, and in particular byln
∞. This problem was first

studied by Bourgain-Szarek (see [3]), then Szarek-Talagrand (see [14]) and finally Giannopou-
los (see [6]) who improved the work of Szarek-Talagrand and proved thatRn

∞ 6 cn
5

6 . This is
the best known result and it is probably not optimal. The Dvoretzky-Rogers factorization theo-
rem, stated above, plays a crucial role in estimating this distance, since Proposition 2.3 allows
us to find a “large subspace” of our space whose distance froml2 andl1 can be bounded well.
For the remaining part, which will be a “small subspace”, we use a trivial estimate and combine
it with the previous one.

Proposition 2.4. Rn
1 = Rn

∞ 6 (2n)
5

6 .
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Proof. Let X ∈ BMn and assume thatX∗ is in John’s position (by changing the Euclidean
structure inRn if necessary), i.e.Bn

2 is the ellipsoid of minimal volume containingBX .
By John’s theorem, one can findx1, . . . , xm which are multiples of contact points (‖xj‖X =
‖xj‖X∗ = ‖xj‖2) such thatId =

∑

j6m xjx
t
j . Note thatBn

2 ⊂ BX∗ ⊂ √
nBn

2 , and hence
‖x‖2 6 ‖x‖X 6

√
n‖x‖2.

Applying Proposition 2.1, one can findσ ⊂ {1, . . . , m} with |σ| = k > (1 − 2ε)n such that,
for any choice of scalars(aj),

∥

∥

∥

∥

∥

∥

∑

j∈σ

aj
xj

‖xj‖2

∥

∥

∥

∥

∥

∥

2

> ε





∑

j∈σ

a2
j





1/2

.

In order to simplify notation, we assume thatσ = {1, . . . , k}. Letyk+1, . . . , yn be an orthogonal
basis ofspan(x1, . . . , xk)⊥ normalized so that‖yj‖X 6 1. To do this, we require that‖yj‖2 =

1√
n
.
DefineT : ln

1 −→ X by settingT (ej) =
xj

‖xj‖2
if j 6 k andT (ej) = yj for j > k. Let

a = (aj)j6n ∈ R
n and

Ta =
k
∑

j=1

aj
xj

‖xj‖2
+

n
∑

j=k+1

ajyj.

Then,

‖a‖1 =
∑

j6k

|aj| +
∑

j>k

|aj | >
∥

∥

∥

∥

∥

∥

∑

j6k

aj
xj

‖xj‖2
+
∑

j>k

ajyj

∥

∥

∥

∥

∥

∥

X

>

∥

∥

∥

∥

∥

∥

∑

j6k

aj
xj

‖xj‖2
+
∑

j>k

ajyj

∥

∥

∥

∥

∥

∥

2

.

We write

‖Ta‖2 >







∥

∥

∥

∥

∥

∥

∑

j6k

aj
xj

‖xj‖2

∥

∥

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

∥

∑

j>k

ajyj

∥

∥

∥

∥

∥

∥

2

2







1

2

by orthogonality

>



ε2
∑

j6k

a2
j +

∑

j>k

a2
j‖yj‖2

2





1

2

>







ε2

n





∑

j6k

|aj |




2

+
1

n(n − k)





∑

j>k

|aj |




2






1

2

by Cauchy-Shwarz

>







ε2

n





∑

j6k

|aj |




2

+
1

2εn2





∑

j>k

|aj|




2






1

2

>
1√
2





ε√
n

∑

j6k

|aj| +
1

n
√

2ε

∑

j>k

|aj|




>
1

(2n)
5

6

n
∑

j=1

|aj | takingε = (2n)− 1

3 .

It follows that (2n)− 5

6 ‖a‖1 6 ‖Ta‖X 6 ‖a‖1 and therefored(X, ln
1 ) 6 (2n)

5

6 for all X ∈
BMn. �

Remark 2.5. Here we are interested in high dimensional results; this is why the constant is not
that important for us. If we want an estimate for “small” dimensions, then the value of the con-
stant becomes important. Note that a trivial estimate wouldbeRn

∞ 6 n. In [6], Giannopoulos
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proved thatRn
∞ 6 cn

5

6 with c = 2
7
6

(
√

2−1)
1
3

∼ 3, 0116, and thus his result becomes nontrivial

when the dimension is larger than746. On the other hand, our result becomes nontrivial when-
ever the dimension is bigger than32. Moreover, if we are interested in small dimensions, we
can obtain a better result by choosingε in the last inequality in a different way: in fact we have
chosen(2n)− 1

3 in the asymptotic regime, otherwise one just needs to optimizeε so that it sat-
isfies ε√

(1−ε)2n
= 1

n
√

1−(1−ε)2
; then our result becomes nontrivial when the dimension is larger

than15. In [15], Taschuk has also obtained an estimate for the Banach-Mazur distance to the
cube of “small”-dimensional spaces. One can check that our result improves on that whenever
the dimension is larger than15.

3. PROOF OFTHEOREM 1.2

Since the rank and the eigenvalues of(UσD−1
σ )t · (UσD−1

σ ) and(UσD−1
σ ) · (UσD−1

σ )t are the
same, it suffices to prove that(UσD−1

σ ) · (UσD−1
σ )t has rank equal tok = |σ| and its smallest

positive eigenvalue is greater thanε2 ‖U‖2
HS

‖D‖2
HS

. Note that

(UσD−1
σ ) · (UσD−1

σ )t =
∑

j∈σ

(

UD−1
σ ej

)

·
(

UD−1
σ ej

)t
=
∑

j∈σ

(

Uej

αj

)

·
(

Uej

αj

)t

We are going to construct the matrixAk =
∑

j∈σ

(

UD−1
σ ej

)

·
(

UD−1
σ ej

)t
by iteration. We begin

by settingA0 = 0 and at each step we will be adding a rank one matrix (
(

Uej

αj

)

·
(

Uej

αj

)t
for

a suitablej) which will give a new positive eigenvalue. This will guarantee that the vector
UD−1

σ ej chosen in each step is linearly independent from the previous ones.
If A andB are symmetric matrices, we writeA � B if B − A is a positive semidefinite

matrix. Recall the Sherman-Morrison Formula which will be needed in the proof. For any
invertible matrixA and any vectorv we have

(A + v · vt)−1 = A−1 − A−1v · vtA−1

1 + vtA−1v
.

We will also apply the following lemma which appears as Lemma6.3 in [13]:

Lemma 3.1. Suppose thatA � 0 hasq nonzero eigenvalues, all greater thanb′ > 0. If v 6= 0
and

(2) vt(A − b′I)−1v < −1,

thenA + vvt hasq + 1 nonzero eigenvalues, all greater thanb′.

The proof of the lemma is simple and makes use of the Sherman-Morrison formula.

For any symmetric matrixA and anyb > 0, we define

φb(A) = Tr
(

U t(A − bI)−1U
)

as the potential corresponding to the barrierb.
At each stepl, the matrix already constructed is denoted byAl and the barrier bybl and to
simplify the notations, we will useφl for the potentialφbl

. Al hasl nonzero eigenvalues all
greater thanbl. As mentioned before, we will try to constructAl+1 by adding a rank one matrix
v · vt to Al so thatAl+1 has l + 1 nonzero eigenvalues all greater thanbl+1 = bl − δ and
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φl+1(Al+1) 6 φl(Al). Note that

φl+1(Al+1) = Tr
(

U t(Al + vvt − bl+1I)−1U
)

= Tr
(

U t(Al − bl+1I)−1U
)

− Tr

(

U t(Al − bl+1I)−1vvt(Al − bl+1I)−1U

1 + vt(Al − bl+1I)−1v

)

= φl+1(Al) − vt(Al − bl+1I)−1UU t(Al − bl+1I)−1v

1 + vt(Al − bl+1I)−1v
.

So, in order to haveφl+1(Al+1) 6 φl(Al), we must choose a vectorv verifying

(3) − vt(Al − bl+1I)−1UU t(Al − bl+1I)−1v

1 + vt(Al − bl+1I)−1v
6 φl(Al) − φl+1(Al).

Sincevt(Al − bl+1I)−1UU t(Al − bl+1I)−1v andφl(Al) − φl+1(Al)) are positive, choosingv
verifying conditions (2) and (3) is equivalent to choosingv which satisfies the following:

(4) vt(Al − bl+1I)−1UU t(Al − bl+1I)−1v 6 (φl(Al) − φl+1(Al))
(

−1 − vt(Al − bl+1I)−1v
)

.

SinceUU t � ‖U‖2
2Id and(Al − bl+1I)−1 is symmetric, it is sufficient to choosev so that

(5) vt(Al − bl+1I)−2v 6
1

‖U‖2
2

(φl(Al) − φl+1(Al))
(

−1 − vt(Al − bl+1I)−1v
)

.

Recall the notationID := {j 6 m | αj 6= 0} where(αj)j6m are the diagonal entries ofD.
Since we have assumed thatKer(D) ⊂ Ker(U), we have

‖U‖2
HS =

∑

j6m

‖Uej‖2
2 =

∑

j∈ID

‖Uej‖2
2 6 |ID| · ‖U‖2

2,

and thus|ID| > ‖U‖2
HS

‖U‖2
2

. At each step, we will select a vectorv satisfying (5) among(Uej

αj
)j∈ID

.
Our task therefore is to findj ∈ ID such that

(6) (Uej)
t(Al − bl+1I)−2Uej 6

φl(Al) − φl+1(Al)

‖U‖2
2

(

−α2
j − (Uej)

t(Al − bl+1I)−1Uej

)

.

The existence of such aj ∈ ID is guaranteed by the fact that condition (6) holds true if we take
the sum over all(Uej

αj
)j∈D. The hypothesisKer(D) ⊂ Ker(U) implies that:

•
∑

j∈ID

(Uej)
t(Al − bl+1I)−2Uej = Tr

(

U t(Al − bl+1I)−2U
)

,

•
∑

j∈ID

(Uej)
t(Al − bl+1I)−1Uej = Tr

(

U t(Al − bl+1I)−1U
)

.

Therefore it is enough to prove that, at each step, one has

(7) Tr(U t(Al − bl+1I)−2U) 6
φl(Al) − φl+1(Al)

‖U‖2
2

(

−‖D‖2
HS − φl+1(Al)

)

.

The rest of the proof is similar to the one in [13]. One just needs to replacem by ‖D‖2
HS. For

the sake of completeness, we include the proof. The next lemma will determine the conditions
required at each step in order to prove (7).

Lemma 3.2. Suppose thatAl hasl nonzero eigenvalues all greater thanbl, and writeZ for the
orthogonal projection onto the kernel ofAl. If

(8) φl(Al) 6 −‖D‖2
HS − ‖U‖2

2

δ
and

(9) 0 < δ < bl 6 δ
‖ZU‖2

HS

‖U‖2
2

,
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then there existsi ∈ ID such thatAl+1 := Al +
(

Uei

αi

)

·
(

Uei

αi

)t
hasl + 1 nonzero eigenvalues all

greater thanbl+1 := bl − δ andφl+1(Al+1) 6 φl(Al).

Proof. As mentioned before, it is enough to prove inequality (7). Weset ∆l := φl(Al) −
φl+1(Al+1). By (8), we get

φl+1(Al) 6 −‖D‖2
HS − ‖U‖2

2

δ
− ∆l.

Inserting this in (7), we see that it is sufficient to prove thefollowing inequality:

(10) Tr
(

U t(Al − bl+1I)−2U
)

6 ∆l

(

∆l

‖U‖2
2

+
1

δ

)

.

Now, denote byP the orthogonal projection onto the image ofAl. We set

φP
l (Al) := Tr

(

U tP (Al − blI)−1P U
)

and ∆P
l := φP

l (Al) − φP
l+1(Al)

and use similar notation forZ. SinceP , Z andAl commute, one can write

∆l = ∆P
l + ∆Z

l and φl(Al) = φP
l (Al) + φZ

l (Al).

Note that:

(Al − blI)−1 − (Al − bl+1I)−1 = (Al − blI)−1(blI − Al + Al − bl+1I)(Al − bl+1I)−1

= δ(Al − blI)−1(Al − bl+1I)−1

and sinceP (Al − blI)−1P andP (Al − bl+1I)−1P are positive semidefinite, we have:

U tP (Al − blI)−1P U − U tP (Al − bl+1I)−1P U � δU tP (Al − bl+1I)−2P U.

Inserting this in (10), it is enough to prove that:

Tr
(

U tZ(Al − bl+1I)−2ZU
)

6 ∆l

(

∆l

‖U‖2
2

+
1

δ

)

− ∆P
l

δ
.

SinceAlZ = 0, we have:

• Tr(U tZ(Al − bl+1I)−2ZU) =
‖ZU‖2

HS

b2
l+1

and

• ∆Z
l = −‖ZU‖2

HS

bl
+

‖ZU‖2
HS

bl+1
= δ

‖ZU‖2
HS

blbl+1
,

so taking into account the fact that∆l > ∆Z
l > 0, it remains to prove the following:

(11)
‖ZU‖2

HS

b2
l+1

6 δ2 ‖ZU‖4
HS

‖U‖2
2b2

l b2
l+1

+
‖ZU‖2

HS

blbl+1

.

By Hypothesis (9), this last inequality follows by

(12)
‖ZU‖2

HS

b2
l+1

6 δ
‖ZU‖2

HS

blb2
l+1

+
‖ZU‖2

HS

blbl+1
,

which is trivially true sincebl+1 = bl − δ. �

We are now able to complete the proof of Theorem 1.2. To this end, we must verify that
conditions (8) and (9) hold at each step. At the beginning we haveA0 = 0 andZ = Id, so we
must choose a barrierb0 such that:

(13) − ‖U‖2
HS

b0
6 −‖D‖2

HS − ‖U‖2
2

δ

and

(14) b0 6 δ
‖U‖2

HS

‖U‖2
2

.
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We choose

b0 := ε
‖U‖2

HS

‖D‖2
HS

and δ :=
ε

1 − ε

‖U‖2
2

‖D‖2
HS

,

and we note that (13) and (14) are verified. Also, at each step (8) holds becauseφl+1(Al+1) 6

φl(Al). Since‖ZU‖2
HS decreases at each step by at most‖U‖2

2, the right-hand side of (9)
decreases by at mostδ, and therefore (9) holds once we replacebl by bl − δ.

Finally note that, afterk = (1 − ε)2 ‖U‖2
HS

‖U‖2
2

steps, the barrier will be

bk = b0 − kδ = ε2 ‖U‖2
HS

‖D‖2
HS

.

This completes the proof.

4. PROJECTION ON COORDINATE SUBSPACES

Given ann × m rectangular matrix, a theorem of Kashin-Tzafriri (see [10]) allows us to find
a coordinate projection of arbitrary size (sayλm with λ < 1) and to estimate its norm in terms
of the norm of the matrix andλ. The precise formulation of the result (see [16] for another
formulation and proof) is the following.

Theorem 4.1 (Kashin-Tzafriri). Let U be ann × m matrix. Fixλ with 1/m 6 λ 6 1
4
. Then,

there exists a subsetν of {1, . . . , m} of cardinality|ν| > λm such that

‖Uν‖ 6 c

(√
λ‖U‖2 +

‖U‖HS√
m

)

,

whereUν = UPν andPν denotes the coordinate projection ontoRν .

The proof of this theorem uses a standard selection argumentcombined with a factorization
theorem of Grothendieck. We will give an alternative proof of this result which exploits the
method introduced by Batson-Spielman-Srivastava in [2]. This allows us to slightly improve
Theorem 4.1 by obtaining an estimate for all possible valuesof the rank of the projection with
the constantc replaced by

√
2√

1−λ
.

Theorem 4.2. Let U be ann × m matrix and let0 < λ 6 η < 1. Then, there existsσ ⊂
{1, . . . , m} with |σ| = k > λm such that

‖Uσ‖2 6
1√

1 − λ

(

√

λ + η‖U‖2 +

√

1 +
λ

η

‖U‖HS√
m

)

,

In particular,

‖Uσ‖2 6

√
2√

1 − λ

(√
λ‖U‖2 +

‖U‖HS√
m

)

,

whereUσ denotes the selection of the columns ofU with indices inσ.

Proof. We denote by(ej)j6m the canonical basis ofRm. Since

Uσ · U t
σ =

∑

j6σ

(Uej) · (Uej)
t ,

our problem reduces to the question of estimating the largest eigenvalue of this sum of rank
one matrices. We will follow the same procedure as in the proof of the restricted invertibility
theorem: at each step, we would like to add a column of the original matrix and then study
the evolution of the largest eigenvalue. However, it will beconvenient for us to add suitable
multiples of the columns ofU in order to construct thek-th matrix; for eachk we will choose
a subsetσk of cardinality|σk| = k and consider the matrixAk =

∑

j∈σk

sj (Uej) · (Uej)
t where
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(sj)j∈σ will be positive numbers which will be suitably chosen. At the stepl, the barrier will
be denoted bybl, namely the eigenvalues ofAl will be all smaller thanbl. The corresponding
potential isφl(Al) := Tr (U t(blI − Al)

−1U). We setA0 = 0, while b0 will be determined later.
As we did before, at each step the value of the potentialφl(Al) will decrease so that we

can continue the iteration, while the value of the barrier will increase by a constantδ, i.e.
bl+1 = bl + δ. We will use a lemma which appears as Lemma 3.4 in [13]. We state it here in the
notation introduced above.

Lemma 4.3. Assume thatλmax(Al) 6 bl. Letv be a vector inRn satisfying

Vl(v) :=
vt(bl+1I − Al)

−2v

φl(Al) − φl+1(Al)
‖U‖2 + vt(bl+1I − Al)

−1v 6
1

s
.

Then, if we defineAl+1 = Al + svvt we have

λmax(Al+1) 6 bl+1 and φl+1(Al+1) 6 φl(Al).

We writeα for the initial potential, i.e.α =
‖U‖2

HS

b0
. Suppose thatAl =

∑

j∈σl

sj (Uej)·(Uej)
t is

constructed so thatφl(Al) 6 φl−1(Al−1) 6 α andλmax(Al) 6 bl. We will now use Lemma 4.3
in order to constructAl+1. To this end, we must find a vectorUej not chosen before and a scalar
sl+1 so thatVl(Uej) 6 1

sl+1
, and then use the lemma. We choosej by calculating the sum of

Vl(Uej) over allj /∈ σl. Since(blI − Al)
−1 and(bl+1I − Al)

−1 are positive semidefinite, one
can easily check that

(blI − Al)
−1 − (bl+1I − Al)

−1 � δ(bl+1I − Al)
−2.

Therefore,

Tr
(

U t(bl+1I − Al)
−2U

)

6
1

δ
(φl(Al) − φl+1(Al)) .

It follows that
∑

j 6∈σl

Vl(Uej) 6
∑

j6m

Vl(Uej) =
Tr (U t(bl+1I − Al)

−2U)

φl(Al) − φl+1(Al)
‖U‖2

2 + φl+1(Al)

6
‖U‖2

2

δ
+ α,

and therefore one can findi 6∈ σl such that

Vl(Uei) 6
1

|σc
l |

(

‖U‖2
2

δ
+ α

)

6
1

|σc
k|

(

‖U‖2
2

δ
+ α

)

,

wherek is the maximum number of steps (which is in our caseλm).
We are going to choose allsj equal tos := (1−λ)m

α+
‖U‖2

2
δ

. By the previous lemma, it is sufficient to

takeAl+1 = Al + s (Uei) · (Uei)
t. After k = λm steps, we getσ = σk such that

λmax





∑

j∈σk

(Uej) · (Uej)
t



 6
1

s
(b0 + kδ) =

α +
‖U‖2

2

δ

(1 − λ)m
(b0 + kδ)

=
1

1 − λ

[

‖U‖2
HS

m
+ λ‖U‖2

2 + λ‖U‖2
HS

δ

b0

+
‖U‖2

2

m

b0

δ

]

The result follows by takingb0 = ηmδ. �
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