SEMICLASSICAL RESOLVENT ESTIMATES AT TRAPPED SETS

KIRIL DATCHEV AND ANDRÁS VASY

ABSTRACT. We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs χ microlocally supported away from the trapping: $\|\chi R_h(E+i0)\chi\| = \mathcal{O}(h^{-1})$, a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, $\tilde{\chi}$, to be supported at the trapped set, giving $\|\chi R_h(E+i0)\tilde{\chi}\| = \mathcal{O}(\sqrt{a(h)}h^{-1})$ when the a priori bound is $\|\tilde{\chi}R_h(E+i0)\tilde{\chi}\| = \mathcal{O}(a(h)h^{-1})$.

In this brief article we extend the resolvent and propagation estimates of [DaVa10].

Let (X, g) be a Riemannian manifold which is asymptotically conic or asymptotically hyperbolic in the sense of [DaVa10], let $V \in C_0^{\infty}(X)$ be real valued, let $P = h^2 \Delta_g + V(x)$, where $\Delta_g \geq 0$, and fix E > 0.

Theorem 1. [DaVa10, Theorem 1.2] Suppose that for any $\chi_0 \in C_0^{\infty}(X)$ there exist $C_0, k, h_0 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_0]$ we have

$$\|\chi_0(h^2\Delta_q + V - E - i\varepsilon)^{-1}\chi_0\|_{L^2(X)\to L^2(X)} \le C_0 h^{-k}.$$
 (1)

Let $K_E \subset T^*X$ be the set of trapped bicharacteristics at energy E, and suppose that $b \in C_0^{\infty}(T^*X)$ is identically 1 near K_E . Then there exist $C_1, h_1 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_1]$ we have the following nontrapping estimate:

$$\|\langle r \rangle^{-1/2-\delta} (1 - \operatorname{Op}(b)) (h^2 \Delta_g + V - E - i\varepsilon)^{-1} (1 - \operatorname{Op}(b)) \langle r \rangle^{-1/2-\delta} \|_{L^2(X) \to L^2(X)} \le C_1 h^{-1}.$$
 (2)

Here by bicharacteristics at energy E we mean integral curves in $p^{-1}(E)$ of the Hamiltonian vector field H_p of the Hamiltonian $p = |\xi|^2 + V(x)$, and the trapped ones are those which remain in a compact set for all time. We use the notation $r = r(z) = d_g(z, z_0)$, where d_g is the distance function on X induced by g and $z_0 \in X$ is fixed but arbitrary.

If $K_E = \emptyset$ then (1) holds with k = 1. If $K_E \neq \emptyset$ but the trapping is sufficiently 'mild', then (1) holds for some k > 1: see [DaVa10] for details and examples. The point is that the losses in (1) due to trapping are removed when the resolvent is cutoff away from K_E . Theorem 1 is a more precise and microlocal version of an earlier result of Burq [Bur02] and Cardoso and

Date: May 29, 2012.

²⁰¹⁰ Mathematics Subject Classification. 58J47, 35L05.

Key words and phrases. Resolvent estimates, trapping, propagation of singularities.

The first author is partially supported by a National Science Foundation postdoctoral fellowship, and the second author is partially supported by the National Science Foundation under grants DMS-0801226 and DMS-1068742.

Vodev [CaVo02], but the assumption (1) is not needed in [Bur02, CaVo02]. See [DaVa10] for additional background and references for semiclassical resolvent estimates and trapping.

In this paper we prove that an improvement over the a priori estimate (1) holds even when one of the factors of $(1 - \operatorname{Op}(b))$ is removed:

Theorem 2. Suppose that there exist k > 0 and $a(h) \le h^{-k}$ such that for any $\chi_0 \in C_0^{\infty}(X)$ there exists $h_0 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_0]$ we have

$$\|\chi_0(h^2\Delta_g + V - E - i\varepsilon)^{-1}\chi_0\|_{L^2(X)\to L^2(X)} \le a(h)/h.$$
 (3)

Suppose that $b \in C_0^{\infty}(T^*X)$ is identically 1 near K_E . Then there exist $C_1, h_1 > 0$ such that for any $\varepsilon > 0$, $h \in (0, h_1]$,

$$\|\langle r \rangle^{-1/2-\delta} (1 - \operatorname{Op}(b)) (h^2 \Delta_g + V - E - i\varepsilon)^{-1} \langle r \rangle^{-1/2-\delta} \|_{L^2(X) \to L^2(X)} \le C_1 \sqrt{a(h)}/h.$$
 (4)

Note that by taking adjoints, analogous estimates follow if 1 - Op(b) is placed to the other side of $(h^2\Delta_g + V - E - i\varepsilon)^{-1}$.

Such results were proved by Burq and Zworski [BuZw04, Theorem A] and Christianson [Chr07, (1.6)] when K_E consists of a single hyperbolic orbit. Theorem 2 implies an optimal semiclassical resolvent estimate for the example operator of [DaVa10, §5.3]: it improves [DaVa10, (5.5)] to

$$\|\chi_0(P-\lambda)^{-1}\chi_0\| \le C\log(1/h)/h.$$

Further, this improved estimate can be used to extend polynomial resolvent estimates from complex absorbing potentials to analogous estimates for damped wave equations; this is a result of Christianson, Schenk, Wunsch and the second author [CSVW].

Theorems 1 and 2 follow from microlocal propagation estimates in a neighborhood of K_E , or more generally in a neighborhood of a suitable compact invariant subset of a bicharacteristic flow.

To state the general results, suppose X is a manifold, $P \in \Psi^{m,0}(X)$ a self adjoint, order m > 0, semiclassical pseudodifferential operator on X, with principal symbol p. For $I \subset \mathbb{R}$ compact and fixed, denote the characteristic set by $\Sigma = p^{-1}(I)$, and suppose that the projection to the base, $\pi \colon \Sigma \to X$, is proper (it is sufficient, for example, to have p classically elliptic). Suppose that $\Gamma \in T^*X$ is invariant under the bicharacteristic flow in Σ . Define the forward, resp. backward flowout Γ_+ , resp. Γ_- , of Γ as the set of points $\rho \in \Sigma$, from which the backward, resp. forward bicharacteristic segments tend to Γ , i.e. for any neighborhood O of Γ there exists T > 0 such that $-t \geq T$, resp. $t \geq T$, implies $\gamma(t) \in O$, where γ is the bicharacteristic with $\gamma(0) = \rho$. Here we think of Γ as the trapped set or as part of the trapped set, hence points in Γ_- , resp. Γ_+ are backward, resp. forward, trapped. Suppose V, W are neighborhoods of Γ with $\overline{V} \subset W$, \overline{W} compact. Suppose also that

If
$$\rho \in W \setminus \Gamma_+$$
, resp. $\rho \in W \setminus \Gamma_-$,
$$(5)$$

then the backward, resp. forward bicharacteristic from ρ intersects $W \setminus \overline{V}$.

This means that all bicharacteristics in V which stay in V for all time tend to Γ .

The main result of [DaVa10], from which the other results in the paper follow, is the following:

Theorem 3. [DaVa10, Theorem 1.3] Suppose that $||u||_{H_h^{-N}} \leq h^{-N}$ for some $N \in \mathbb{N}$ and $(P - \lambda)u = f$, $\operatorname{Re} \lambda \in I$ and $\operatorname{Im} \lambda \geq -\mathcal{O}(h^{\infty})$. Suppose f is $\mathcal{O}(1)$ on W, $\operatorname{WF}_h(f) \cap \overline{V} = \emptyset$, and u is $\mathcal{O}(h^{-1})$ on $W \cap \Gamma_- \setminus \overline{V}$. Then u is $\mathcal{O}(h^{-1})$ on $W \cap \Gamma_+ \setminus \Gamma$.

Here we say that u is $\mathcal{O}(a(h))$ at $\rho \in T^*X$ if there exists $B \in \Psi^{0,0}(X)$ elliptic at ρ with $||Bu||_{L^2} = \mathcal{O}(a(h))$. We say u is $\mathcal{O}(a(h))$ on a set $E \subset T^*X$ if it is $\mathcal{O}(a(h))$) at each $\rho \in E$.

Note that there is no conclusion on u at Γ ; typically it will be merely $\mathcal{O}(h^{-N})$ there. However, to obtain $\mathcal{O}(h^{-1})$ bounds for u on Γ_+ we only needed to assume $\mathcal{O}(h^{-1})$ bounds for u on Γ_- and nowhere else. Note also that by the propagation of singularities, if u is $\mathcal{O}(h^{-1})$ at one point on any bicharacteristic, then it is such on the whole forward bicharacteristic. If $|\operatorname{Im} \lambda| = \mathcal{O}(h^{\infty})$ then the same is true for backward bicharacteristics.

In this paper we show that a (lesser) improvement on the a priori bound holds even when f is not assumed to vanish microlocally near Γ :

Theorem 4. Suppose that $||u||_{H_h^{-N}} \leq h^{-N}$ for some $N \in \mathbb{N}$ and $(P - \lambda)u = f$, $\operatorname{Re} \lambda \in I$ and $\operatorname{Im} \lambda \geq -\mathcal{O}(h^{\infty})$. Suppose f is $\mathcal{O}(1)$ on W, u is $\mathcal{O}(a(h)h^{-1})$ on W, and u is $\mathcal{O}(h^{-1})$ on $W \cap \Gamma_- \setminus \overline{V}$. Then u is $\mathcal{O}(\sqrt{a(h)}h^{-1})$ on $W \cap \Gamma_+ \setminus \Gamma$.

In [DaVa10] Theorem 1 is deduced from Theorem 3. Theorem 2 follows from Theorem 4 by the same argument.

Proof of Theorem 4. The argument is a simple modification of the argument of [DaVa10, End of Section 4, Proof of Theorem 1.3]; we follow the notation of this proof. Recall first from [DaVa10, Lemma 4.1] that if U_- is a neighborhood of $(\Gamma_- \setminus \Gamma) \cap (\overline{W} \setminus V)$ then there is a neighborhood $U \subset V$ of Γ such that if $\alpha \in U \setminus \Gamma_+$ then the backward bicharacteristic from α enters U_- . Thus, if one assumes that u is $\mathcal{O}(h^{-1})$ on Γ_- and f is $\mathcal{O}(1)$ on \overline{V} , it follows that that u is $\mathcal{O}(h^{-1})$ on $U \setminus \Gamma_+$, provided U_- is chosen small enough that u is $\mathcal{O}(h^{-1})$ on U_- . Note also that, because $U \subset V$, f is $\mathcal{O}(1)$ on U. We will show that u is $\mathcal{O}(\sqrt{a(h)}h^{-1})$ on $U \cap \Gamma_+ \setminus \Gamma$: the conclusion on the larger set $W \cap \Gamma_+ \setminus \Gamma$ follows by propagation of singularities.

Next, [DaVa10, Lemma 4.3] states that if U_1 and U_0 are open sets with $\Gamma \subset U_1 \subseteq U_0 \subseteq U$ then there exists a nonnegative function $q \in C_0^{\infty}(U)$ such that

$$q = 1 \text{ near } \Gamma, \qquad H_p q \leq 0 \text{ near } \Gamma_+, \qquad H_p q < 0 \text{ on } \Gamma_+^{\overline{U_0}} \setminus U_1.$$

Moreover, we can take q such that both \sqrt{q} and $\sqrt{-H_pq}$ are smooth near Γ_+ .

Remark. The last paragraph in the proof of [DaVa10, Lemma 4.3] should be replaced by the following: To make $\sqrt{-H_p\tilde{q}}$ smooth, let $\psi(s)=0$ for $s\leq 0$, $\psi(s)=e^{-1/s}$ for s>0, and assume as we may that $U_\rho\cap\mathcal{S}_\rho$ is a ball with respect to a Euclidean metric (in local coordinates near ρ) of radius $r_\rho>0$ around ρ . We then choose φ_ρ to behave like $\psi(r'_\rho{}^2-|.|^2)$ with $r'_\rho< r_\rho$ for |.| close to r'_ρ , bounded away from 0 for smaller values of |.|, and choose $-\chi'_\rho$

to vanish like ψ at the boundary of its support. That sums of products of such functions have smooth square roots follows from [Hö94, Lemma 24.4.8].

The proof of Theorem 4 proceeds by induction: we show that if u is $\mathcal{O}(h^k)$ on a sufficiently large compact subset of $U \cap \Gamma_+ \setminus \Gamma$, then u is $\mathcal{O}(h^{k+1/2})$ on $\Gamma_+^{\overline{U}_0} \setminus U_1$, provided $\sqrt{a(h)}h^{-1} \leq Ch^{k+1/2}$.

Now let U_- be an open neighborhood of $\Gamma_+ \cap \text{supp } q$ which is sufficiently small that $H_p q \leq 0$ on U_- and that $\sqrt{-H_p q}$ is smooth on U_- . Let U_+ be an open neighborhood of supp $q \setminus U_-$ whose closure is disjoint from Γ_+ and from $T^*X \setminus \overline{U}$. Define $\phi_{\pm} \in C^{\infty}(U_+ \cup U_-)$ with supp $\phi_{\pm} \subset U_{\pm}$ and with $\phi_+^2 + \phi_-^2 = 1$ near supp q.

Put

$$b \stackrel{\text{def}}{=} \phi_{-} \sqrt{-H_{p}q^{2}}, \qquad e \stackrel{\text{def}}{=} \phi_{+}^{2} H_{p}q^{2}.$$

Let $Q, B, E \in \Psi^{-\infty,0}(X)$ have principal symbols q, b, e, and microsupports supp q, supp b, supp e, so that

$$\frac{i}{h}[P, Q^*Q] = -B^*B + E + hF,$$

with $F \in \Psi^{-\infty,0}(X)$ such that $\operatorname{WF}'_h F \subset \operatorname{supp} dq \subset U \setminus \Gamma$. But

$$\frac{i}{h}\langle [P, Q^*Q]u, u \rangle = \frac{2}{h} \operatorname{Im}\langle Q^*Q(P - \lambda)u, u \rangle + \frac{2}{h}\langle Q^*Q \operatorname{Im}\lambda u, u \rangle
\geq -2h^{-1} \|Q(P - \lambda)u\| \|Qu\| - \mathcal{O}(h^{\infty})\|u\|^2 \geq -Ch^{-2}a(h) - \mathcal{O}(h^{\infty}),$$

where we used Im $\lambda \geq -\mathcal{O}(h^{\infty})$ and that on supp q, $(P-\lambda)u$ is $\mathcal{O}(1)$. So

$$||Bu||^2 \le \langle Eu, u \rangle + h \langle Fu, u \rangle + Ch^{-2}a(h) + \mathcal{O}(h^{\infty}).$$

But $|\langle Eu, u \rangle| \leq Ch^{-2}$ because WF'_h $E \cap \Gamma_+ = \emptyset$ gives that u is $\mathcal{O}(h^{-1})$ on WF'_h E by the first paragraph of the proof. Meanwhile $|\langle Fu, u \rangle| \leq C(h^{-2} + h^{2k})$ because all points of WF'_h F are either in $U \setminus \Gamma_+$, where we know u is $\mathcal{O}(h^{-1})$ from the first paragraph of the proof, or on a single compact subset of $U \cap \Gamma_+ \setminus \Gamma$, where we know that u is $\mathcal{O}(h^k)$ by inductive hypothesis. Since $b = \sqrt{-H_p q^2} > 0$ on $\Gamma_+^{\overline{U_0}} \setminus U_1$, we can use microlocal elliptic regularity to conclude that u is $\mathcal{O}(h^{k+1/2})$ on $\Gamma_+^{\overline{U_0}} \setminus U_1$, as desired.

References

[Bur02] Nicolas Burq. Lower bounds for shape resonances widths of long range Schrödinger operators. *Amer. J. Math.*, 124(4):677–735, 2002.

[BuZw04] Nicolas Burq and Maciej Zworski. Geometric control in the presence of a black box. *J. Amer. Math. Soc.* 17:2, 443–471, 2004.

[CaVo02] Fernando Cardoso and Georgi Vodev. Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II. Ann. Henri Poincaré, 3(4):673–691, 2002.

[Chr07] Hans Christianson. Semiclassical non-concentration near hyperbolic orbits. J. Funct. Anal. 246(2):145–195, 2007. Corrigendum. J. Funct. Anal. 258(3):1060–1065, 2010.

[CSVW] Hans Christianson, Emmanuel Schenk, András Vasy and Jared Wunsch. From resolvent estimates to damped waves. *In preparation*.

[DaVa10] Kiril Datchev and András Vasy. Propagation through trapped sets and semiclassical resolvent estimates. *Annales de l'Institut Fourier*, to appear.

[Hö94] Lars Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Springer Verlag, 1994.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4397, U.S.A.

 $E ext{-}mail\ address: datchev@math.mit.edu}$

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CA 94305-2125, U.S.A.

 $E ext{-}mail\ address: and ras@math.stanford.edu}$