A Note on the Voting Problem

M.A. Fiol

Universitat Politècnica de Catalunya, BarcelonaTech Departament de Matemàtica Aplicada IV Barcelona, Catalonia (e-mail: fiol@ma4.upc.edu)

Abstract

Let v(n) be the minimum number of voters with transitive preferences which are needed to generate any strong preference pattern (ties not allowed) on n candidates. Let $k = \lfloor \log_2 n \rfloor$. We show that $v(n) \leq n - k$ if n and k have different parity, and $v(n) \leq n - k + 1$ otherwise.

1 Introduction

Let us consider a set of n candidates or options $A = \{a, b, c, ...\}$ which are ordered by order of preference by each individual of a set U of voters. Thus, each $\alpha \in U$ can be identified with a permutation $\alpha = x_1 x_2 \cdots x_n$ of the elements of A, where x_i is preferred over x_j (denoted $x_i \to x_j$) if and only if i < j. The set of voters determine what is called a *preference pattern* which summarizes the majority opinion about each pair of options.

In this note only *strong* preference patterns are considered, that is, it is assumed that there are no ties. So, each preference pattern on n options is fully represented by a tournament T_n on n vertices where the arc (a, b) means $a \to b$, that is, a is preferred over b by a majority of voters. Conversely, given any pattern T_n we may be interested in finding a minimum set of voters, denoted $U(T_n)$, which generates T_n . Let $v(T_n) = |U(T_n)|$ and let $v(n) = \max\{v(T_n)\}$ computed over all tournaments with n vertices. In [2] McGarvey showed that v(n) is well defined, that is, for any T_n there always exist a set $U(T_n)$ and $v(n) \leq 2\binom{n}{2}$. Sterns [3] showed that $v(n) \leq n+2$ if n is even and $v(n) \leq n+1$ if n is odd. Finally, Erdös and Moser [1] were able to prove that v(n) is of the order $O(n/\log_2 n)$. In fact all the above results were given for preference patterns which are not necessarily strong (in this case a tie between a and b can be represented either by an absence of arcs between a and b or by an edge $\{a, b\}$). It is worth noting that, contrarily to the method of Erdös and Moser, the approaches of McGarvey and Sterns give explicit constructions of a set of voters which generate any desired pattern. In the case of strong patterns we improve the results of the latter authors by giving and inductive method to obtain a suitable set of voters.

2 Strong preference patterns

Let us begin with a very simple but useful result, which is a direct consequence of the fact that in our preference patterns there are no ties.

Lemma 2.1. Let v(n) be defined as above. Then, v(n) is odd.

Proof. By contradiction, suppose that, for a given strong pattern T_n , v(n) is even. Then, for any two options a, b we have that either $a \to b$ or $b \to a$ with at least two votes of difference. Consequently, the removing of a voter does not change the preference pattern. \Box

Notice that, from this lemma, Sterns' result particularized for strong patterns are $v(n) \le n+1$ for n even and $v(n) \le n$ for n odd.

Our results are based on the following theorem.

Theorem 2.2. Let T_{n+2} be a strong pattern containing two options, say a and b. Let $T_n = T_{n+2} \setminus \{a, b\}$. Then, $v(T_{n+2}) \leq v(T_n) + 2$.

Proof. Let $U(T_n) = \{\alpha_1, \alpha_2, \ldots, \alpha_r\}$ be a minimum set of $r = v(T_n)$ voters generating T_n . By Lemma 2.1, r is odd. Besides, suppose without loss of generality that $a \to b$, and consider the sets $A_1 = \{x \neq a \mid x \to b\}$ and $A_2 = \{x \neq b \mid a \to x\}$. Assuming $A_1 \cap A_2 \neq \emptyset, A_1, A_2$ (any other case follows trivially from this one), we can write $A_1 = \{y_1, y_2, \ldots, y_s, \ldots, y_t\}$ and $A_2 = \{y_s, y_{s+1}, \ldots, y_t, \ldots, y_m\}$, $1 < s \leq t < m$. Now, let us define the sequences $\gamma = y_1 y_2 \cdots y_{s-1}, \delta = y_s y_{s+1} \cdots y_t, \sigma = y_{t+1} y_{t+2} \cdots y_m$ and $\mu = y_{m+1} y_{m+2} \cdots y_n$, and consider the following set of r + 2 voters:

$$\begin{array}{rcl} \boldsymbol{\beta}_{i} &=& b\boldsymbol{\alpha}_{i}a, & 1 \leq i \leq (r+1)/2, \\ \boldsymbol{\beta}_{j} &=& a\boldsymbol{\alpha}_{j}b, & (r+3)/2 \leq j \leq r, \\ \boldsymbol{\beta}_{r+1} &=& \gamma a \delta b \boldsymbol{\sigma} \boldsymbol{\mu}, \\ \boldsymbol{\beta}_{r+2} &=& \overline{\boldsymbol{\mu}} a \overline{\boldsymbol{\sigma}} \overline{\boldsymbol{\delta}} \overline{\boldsymbol{\gamma}} b, \end{array}$$

where $\overline{\gamma} = y_{s-1} \cdots y_2 y_1$, $\overline{\delta} = y_t \cdots y_{s+1} y_s$, etc. Now it is routine to verify that these voters generate the pattern T_{n+2} and, hence, $v(T_{n+2}) \leq r+2 = v(T_n)+2$. \Box

A tournament or strong preference pattern T is called *transitive* if $a \to b$ and $b \to c$ implies $a \to c$. In this case it is clear that v(T) = 1. The proof of the following result can be found in [1].

Theorem 2.3 ([1]). Let f(n) be the maximum number such that every tournament on n vertices has a transitive subtournament on f(n) vertices. Then,

$$|\log_2 n| + 1 \le f(n) \le 2|\log_2 n| + 1.$$

The proof of the lower bound, due to Sterns, gives a very simple algorithm to find a subtournament which attains such a bound, see again [1].

From Theorems 2.2 and 2.3 we get the following corollary.

Corollary 2.4. Given $n \ge 2$, set $k = \lfloor \log_2 n \rfloor$. Then $v(n) \le n - k$ if n and k have different parity, and $v(n) \le n - k + 1$ otherwise.

Proof. Let T_n be any tournament on n vertices. First, use Theorem 2.3 to find a transitive subtournament T on k + 1 vertices. If n and k have different parity, then n-k-1 is even. So, starting from T, we can apply Theorem 2.2 repeatedly, (n-k-1)/2 times, to obtain a set of n-k voters which generates T_n . Otherwise, we consider a subtournament of T on k vertices and proceed as above with the remaining n-k vertices. \Box

References

- P. Erdös and L. Moser, On the representation of directed graphs as unions of orderings, *Publ. Math. Inst. Hung. Acad. Sci.* 9 (1964), 125–132.
- [2] D.C. McGarvey, A theorem on the construction of voting paradoxes, *Econometria* 21 (1953), 608–610.
- [3] R. Stearns, The voting problem, Amer. Math. Monthly 66 (1959), 761–763.