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Abstract

Let v(n) be the minimum number of voters with transitive preferences which are
needed to generate any strong preference pattern (ties not allowed) on n candidates.
Let k = ⌊log

2
n⌋. We show that v(n) ≤ n − k if n and k have different parity, and

v(n) ≤ n− k + 1 otherwise.

1 Introduction

Let us consider a set of n candidates or options A = {a, b, c, . . .} which are ordered by
order of preference by each individual of a set U of voters. Thus, each α ∈ U can be
identified with a permutation α = x1x2 · · · xn of the elements of A, where xi is preferred
over xj (denoted xi → xj) if and only if i < j. The set of voters determine what is called
a preference pattern which summarizes the majority opinion about each pair of options.

In this note only strong preference patterns are considered, that is, it is assumed that there
are no ties. So, each preference pattern on n options is fully represented by a tournament
Tn on n vertices where the arc (a, b) means a → b, that is, a is preferred over b by a
majority of voters. Conversely, given any pattern Tn we may be interested in finding a
minimum set of voters, denoted U(Tn), which generates Tn. Let v(Tn) = |U(Tn)| and
let v(n) = max{v(Tn)} computed over all tournaments with n vertices. In [2] McGarvey
showed that v(n) is well defined, that is, for any Tn there always exist a set U(Tn) and
v(n) ≤ 2

(

n
2

)

. Sterns [3] showed that v(n) ≤ n+2 if n is even and v(n) ≤ n+1 if n is odd.
Finally, Erdös and Moser [1] were able to prove that v(n) is of the order O(n/ log2 n).
In fact all the above results were given for preference patterns which are not necessarily
strong (in this case a tie between a and b can be represented either by an absence of arcs
between a and b or by an edge {a, b}). It is worth noting that, contrarily to the method of
Erdös and Moser, the approaches of McGarvey and Sterns give explicit constructions of a
set of voters which generate any desired pattern. In the case of strong patterns we improve
the results of the latter authors by giving and inductive method to obtain a suitable set
of voters.
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2 Strong preference patterns

Let us begin with a very simple but useful result, which is a direct consequence of the fact
that in our preference patterns there are no ties.

Lemma 2.1. Let v(n) be defined as above. Then, v(n) is odd.

Proof. By contradiction, suppose that, for a given strong pattern Tn, v(n) is even.
Then, for any two options a, b we have that either a → b or b → a with at least two
votes of difference. Consequently, the removing of a voter does not change the preference
pattern. ✷

Notice that, from this lemma, Sterns’ result particularized for strong patterns are v(n) ≤
n+ 1 for n even and v(n) ≤ n for n odd.

Our results are based on the following theorem.

Theorem 2.2. Let Tn+2 be a strong pattern containing two options, say a and b. Let

Tn = Tn+2 \ {a, b}. Then, v(Tn+2) ≤ v(Tn) + 2.

Proof. Let U(Tn) = {α1,α2, . . . ,αr} be a minimum set of r = v(Tn) voters generating
Tn. By Lemma 2.1, r is odd. Besides, suppose without loss of generality that a → b,
and consider the sets A1 = {x 6= a |x → b} and A2 = {x 6= b | a → x}. Assuming
A1 ∩ A2 6= ∅, A1, A2 (any other case follows trivially from this one), we can write A1 =
{y1, y2, . . . , ys, . . . , yt} and A2 = {ys, ys+1, . . . , yt, . . . , ym}, 1 < s ≤ t < m. Now, let
us define the sequences γ = y1y2 · · · ys−1, δ = ysys+1 · · · yt, σ = yt+1yt+2 · · · ym and
µ = ym+1ym+2 · · · yn, and consider the following set of r + 2 voters:

βi = bαia, 1 ≤ i ≤ (r + 1)/2,

βj = aαjb, (r + 3)/2 ≤ j ≤ r,

βr+1 = γaδbσµ,

βr+2 = µaσδγb,

where γ = ys−1 · · · y2y1, δ = yt · · · ys+1ys, etc. Now it is routine to verify that these voters
generate the pattern Tn+2 and, hence, v(Tn+2) ≤ r + 2 = v(Tn) + 2. ✷

A tournament or strong preference pattern T is called transitive if a → b and b → c implies
a → c. In this case it is clear that v(T ) = 1. The proof of the following result can be
found in [1].

Theorem 2.3 ([1]). Let f(n) be the maximum number such that every tournament on n
vertices has a transitive subtournament on f(n) vertices. Then,

⌊log2 n⌋+ 1 ≤ f(n) ≤ 2⌊log2 n⌋+ 1.

The proof of the lower bound, due to Sterns, gives a very simple algorithm to find a
subtournament which attains such a bound, see again [1].

From Theorems 2.2 and 2.3 we get the following corollary.
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Corollary 2.4. Given n ≥ 2, set k = ⌊log2 n⌋. Then v(n) ≤ n − k if n and k have

different parity, and v(n) ≤ n− k + 1 otherwise.

Proof. Let Tn be any tournament on n vertices. First, use Theorem 2.3 to find a
transitive subtournament T on k + 1 vertices. If n and k have different parity, then
n−k−1 is even. So, starting from T , we can apply Theorem 2.2 repeatedly, (n−k−1)/2
times, to obtain a set of n − k voters which generates Tn. Otherwise, we consider a
subtournament of T on k vertices and proceed as above with the remaining n−k vertices.

✷
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