ON REDUCTIVE AUTOMORPHISM GROUPS OF REGULAR EMBEDDINGS

GUIDO PEZZINI

ABSTRACT. Let G be a connected reductive complex algebraic group acting on a smooth complete complex algebraic variety X. We assume that X under the action of G is a *regular embedding*, a condition satisfied in particular by smooth toric varieties and flag varieties. For any set \mathcal{D} of G-stable prime divisors, we study the action on X of the group $\operatorname{Aut}^{\circ}(X, \mathcal{D})$, the connected automorphism group of X stabilizing \mathcal{D} . We determine a Levi subgroup A of $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ and we compute relevant invariants of X as a spherical A-variety. As a byproduct, we obtain a description of the open A-orbit on X and the inclusion relation between A-orbit closures.

1. INTRODUCTION

In the 1970's Demazure described the connected automorphism groups of two distinguished classes of algebraic varieties equipped with the action of a connected reductive group G: the complete homogeneous spaces G/P for P a parabolic subgroup (see [De77]), and the smooth complete toric varieties, with G abelian (see [De70]). In the case of X = G/P, the group Ggoes surjectively onto the connected automorphism group $\operatorname{Aut}^{\circ}(X)$ except for three particular cases (with G a simple group) and products $(G_1 \times G_2)/(P_1 \times P_2)$ where $P_1 \subseteq G_1$, $P_2 \subseteq G_2$, and G_1/P_1 is one of these three exceptions. In the case where X is a toric G-variety, the image of G in $\operatorname{Aut}^{\circ}(X)$ is a maximal torus of the latter, and the corresponding root datum of $\operatorname{Aut}^{\circ}(X)$ is completely determined by the spaces of global sections $H^0(X, \mathcal{O}_X(Y))$, with Y varying in the set of G-stable prime divisors of X.

These two classes of G-varieties admit a common generalization: the regular embeddings, here also called G-regular embeddings or G-regular varieties, defined independently in [BDP90] and [Gi89]. With the additional assumption of completeness, Bien and Brion showed that these varieties correspond to a relevant class of spherical varieties, namely the smooth, complete, and toroidal ones (see [BB96]).

The spaces $H^0(X, \mathcal{O}_X(Y))$ play again an important role, especially for the case where X is wonderful in the sense of [Lu01] (see [Br07]), although they do not yield a direct description of Aut°(X) if X is not toric. Also, the group Aut°(X) may be non-reductive. Nevertheless, X is a

Date: June 5, 2012.

²⁰¹⁰ Mathematics Subject Classification. 14M27, 14M17, 14J50.

spherical variety under the action of A, where A is any reductive subgroup $\operatorname{Aut}^{\circ}(X)$ containing the image of G, therefore it is natural to study the relationship between invariants of X as a spherical G-variety, the structure of A, and invariants of X with respect to the A-action. The results of [AG10] are also related to this problem, and classify those toric varieties that are homogeneous under the action of a semisimple group.

In this paper we provide a complete description of the action of A on X if A is a Levi subgroup of Aut° (X, \mathcal{D}) . Here \mathcal{D} is any subset of the set ∂X of G-stable prime divisors of X, and Aut° (X, \mathcal{D}) is the connected component of the group of automorphisms of X stabilizing each element of \mathcal{D} .

Our approach is based on the analysis of the following filtration:

$$\theta(G) \subseteq \operatorname{Aut}^{\circ}(X, \partial X) \subseteq \operatorname{Aut}^{\circ}(X, \mathcal{D} \cup (\partial X)^{\ell}) \subseteq \operatorname{Aut}^{\circ}(X, \mathcal{D}),$$

where $\theta(G)$ is the image of G in Aut°(X) and $(\partial X)^{\ell}$ is a certain subset of ∂X (see Definition 2.5). The main motivation is the fact that the groups Aut°($X, \partial X$) and Aut°($X, \mathcal{D} \cup (\partial X)^{\ell}$) are reductive and X is regular under their actions, whereas both statements may fail for Aut°(X, \mathcal{D}).

For the group $\operatorname{Aut}^{\circ}(X, \partial X)$, we show in §4 that it is completely determined by results of [Br07] and [Pe09]. Then we consider $\mathcal{D}' = \mathcal{D} \cup (\partial X)^{\ell}$ and show in §7 that $\operatorname{Aut}^{\circ}(X, \mathcal{D}')$ is reductive, and that it can be studied using a certain *G*-equivariant map $X \to X$, where X is a wonderful *G*-variety canonically associated with X. Namely, the group $\operatorname{Aut}^{\circ}(X, \mathcal{D}')$ (up to a central torus) is obtained lifting to X the action of the universal cover of a certain semisimple subgroup of $\operatorname{Aut}^{\circ}(X)$. The latter is known thanks to the results of [Pe09], which are somewhat similar to Demazure's theorem on flag varieties: the image of *G* is the whole $\operatorname{Aut}^{\circ}(X)$, up to some exceptions that can be explicitly described.

It is worth noticing that X is obtained from X using a procedure called *wonderful closure*, which is closely related to the well-known construction of the *spherical closure* of a spherical subgroup of G.

For the group $\operatorname{Aut}^{\circ}(X, \mathcal{D})$, we show that it is enough to deal with the case where \mathcal{D} contains $(\partial X) \setminus (\partial X)^{\ell}$ (see the discussion at the end of §6). Under this assumption we show in §10 how to recover a Levi subgroup A of $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ by an analysis of the fibers of the map $X \to X$, which are finite unions of toric varieties.

We also give an explicit combinatorial description of all the invariants commonly associated to X as a spherical A-variety, invariants which uniquely determine X up to A-equivariant isomorphisms thanks to the classification of spherical varieties.

In particular, we describe both the invariants associated to the open A-orbit on X, the so-called *Luna invariants*, and the invariants associated to X considered as an embedding of its open A-orbit, according to the Luna-Vust theory of embeddings of spherical homogeneous

spaces. Thanks to this theory, this accounts for a complete description of the structure of the A-orbits on X.

We also discuss explicitly in $\S8$ and $\S9$ the two special cases of G semisimple and G abelian.

Acknowledgements. The author would like to thank Jacopo Gandini for stimulating discussions, and is especially grateful to Michel Brion for discussions and support during the development of this work.

Notations. Through this paper G is a connected reductive linear algebraic group over the field of complex numbers \mathbb{C} . We assume that $G = G' \times C$ where C is an algebraic torus and G' is semisimple and simply connected. We denote by \mathbb{G}_m the multiplicative algebraic group of non-zero complex numbers.

We fix a Borel subgroup $B \subseteq G$ and a maximal torus $T \subseteq B$. We denote by B^- the Borel subgroup of G such that $B \cap B^- = T$. If H is any algebraic group then we denote by Z(H) ist center, by H° its connected subgroup containing the unit element e_H , and by $\mathcal{X}(H)$ the set of its characters, i.e. algebraic group homomorphisms $H \to \mathbb{G}_m$. If V is an H-module, then we denote by $V^{(H)}$ the set of *non-zero* H-semiinvariants of V, and for any $\chi \in \mathcal{X}(H)$ we set

$$V_{\chi}^{(H)} = \{ v \in V \setminus \{0\} \mid hv = \chi(h)v \; \forall h \in H \}.$$

If $H \subseteq K$ are subgroups of G, then we denote by $\pi^{H,K} \colon G/H \to G/K$ the natural map sending $gH \in G/H$ to $gK \in G/K$.

For any subset R of a \mathbb{Z} -module Λ , we denote by R^{\vee} (resp. R^{\perp}) the subset of $\operatorname{Hom}_{\mathbb{Z}}(\Lambda, \mathbb{Q})$ of all elements that are ≥ 0 (resp. = 0) on R. We define in the same way *mutatis mutandis* the subsets $R^{\vee}, R^{\perp} \subseteq \Lambda$ for $R \subseteq \operatorname{Hom}_{\mathbb{Z}}(\Lambda, \mathbb{Q})$.

The term algebraic variety (or simply variety) stands here for separated, reduced and irreducible scheme of finite type over the field \mathbb{C} , and all actions of algebraic groups on varieties are be assumed to be algebraic. If X is a variety, the connected component containing id_X of its automorphism group is denoted by $\mathrm{Aut}^{\circ}(X)$. If a connected algebraic group H acts on X, we denote by

$$\theta_{H,X} \colon H \to \operatorname{Aut}^{\circ}(X)$$

the corresponding homomorphism.

If X is a G-variety, we denote by $\operatorname{Pic}^{G}(X)$ the group of isomorphism classes of G-linearized invertible sheaves. If X is normal and Y is a Cartier divisor, then the invertible sheaf $\mathcal{O}_{X}(Y)$ admits a (non unique) G-linearization (see [KKLV89, Remark after Proposition 2.4]). If in addition X is complete and Y is a G-stable prime divisor, we will always assume that the G-linearization is chosen in such a way that the induced G-action on $H^{0}(X, \mathcal{O}_{X}(Y))$ is equal to the action inherited via the usual inclusion $H^{0}(X, \mathcal{O}_{X}(Y)) \subset \mathbb{C}(X)$.

2. Complete regular embeddings

Definition 2.1. Suppose that an irreducible *G*-variety *X* has an open *G*-orbit. Then *X* is *G*-regular (or a *G*-regular embedding) if for any $x \in X$:

- (1) the closure \overline{Gx} of its orbit is smooth, and it is the transversal intersection of the G-stable prime divisors containing it;
- (2) the stabilizer G_x has a dense orbit on the normal space in X to the orbit G_x in the point x.

As an immediate consequence of the definition, a G-regular embedding is smooth and has only a finite number of G-orbits. Examples of G-regular embeddings are the G-homogeneous spaces for any G, and if G is an algebraic torus then any smooth toric G-variety. Other examples come from the family of *spherical varieties*, which are by definition irreducible normal G-varieties with a dense B-orbit.

More precisely, suppose that a G-variety X is smooth and complete. Then X is G-regular if and only if it is spherical and *toroidal*, i.e. any B-stable prime divisor containing a G-orbit is also G-stable (see [BB96, Proposition 2.2.1]).

We review some relevant invariants associated to any spherical G-variety X. They are actually invariants under birational G-equivariant maps, therefore they only depend on the open G-orbit of X. If x_0 is a point on this orbit, then we also denote the orbit Gx_0 simply by G/H, where $H = G_{x_0}$ is called a *generic stabilizer* of X. In this case, H is also called a *spherical* subgroup, and (X, x_0) (or simply X) is called an *embedding* of G/H. A morphism between two embeddings (X, x_0) and (X', x'_0) is a G-equivariant map $X \to X'$ sending x_0 to x'_0 .

We will always assume that x_0 is chosen in such a way that Bx_0 is dense in X. Then H is also called a *B*-spherical subgroup.

Definition 2.2. Let X be a spherical G-variety with open G-orbit G/H.

(1) We define¹ the lattice

$$\Lambda_G(X) = \left\{ \chi \in \mathcal{X}(B) \, \middle| \, \mathbb{C}(X)^{(B)}_{\chi} \neq \emptyset \right\},\,$$

whose rank is by definition the rank of X.

(2) We define

$$N_G(X) = Hom_{\mathbb{Z}}(\Lambda_G(X), \mathbb{Q}).$$

(3) We define $\Delta_G(X)$ to be the set of *colors* of X, i.e. the B-stable prime divisors of X having non-empty intersection with the open G-orbit G/H of X.

¹We ignore the dependence on B of all the invariants we define. This is justified by the fact that for any reductive group under consideration the choice of a Borel subgroup will be either unique (when the group is abelian) or always explicitly fixed.

(4) For any discrete valuation $\nu \colon \mathbb{C}(X) \setminus \{0\} \to \mathbb{Q}$ we define an element $\rho_{G,X}(\nu) \in N_G(X)$ with the formula

$$\langle \rho_{G,X}(\nu), \chi \rangle = \nu(f_{\chi}),$$

where $f_{\chi} \in \mathbb{C}(X)_{\chi}^{(B)}$. If D is a prime divisor of X and ν_D is the associated discrete valuation, then we will also write $\rho_{G,X}(D)$ for $\rho_{G,X}(\nu_D)$.

(5) We define

$$V_G(X) = \{ \rho_{G,X}(\nu) \mid \nu \text{ is } G\text{-invariant} \},\$$

which is a polyhedral convex cone of maximal dimension in $N_G(X)$; we denote its linear part by $V_G^{\ell}(X)$.

(6) We define the *boundary* of X, denoted by $\partial_G X$, to be the set of the irreducible components of $X \setminus (G/H)$.

For the above, and for all the invariants defined later, we will drop the indices G and X whenever it is clear which group and which variety are considered. In loose terms the colors of X can also be considered as invariants under G-equivariant birational maps, since they are the closures in X of the colors of G/H.

The Luna-Vust theory of embeddings of homogeneous spaces specializes for spherical toroidal varieties in the following way (for details and proofs see [Kn96]).

Definition 2.3. Let X be a G-regular embedding, and Y an irreducible G-stable locally closed subvariety. Then we define $c_{X,Y} \subseteq N(X)$ to be the polyhedral convex cone generated by $\rho(D_1), \ldots, \rho(D_n)$, where D_1, \ldots, D_n are the B-stable prime divisors containing Y. The fan of X is defined as

$$\mathcal{F}_G(X) = \{c_{X,Y} \mid Y \text{ a } G \text{-orbit of } X\}.$$

Notice that since X is toroidal then the divisors D_1, \ldots, D_n above are also G-stable for any Y. The collection of convex cones $\mathcal{F}(X)$ satisfies the following properties:

- (1) each cone of $\mathcal{F}(X)$ is contained in V(G/H), it is strictly convex, and all its faces belong to $\mathcal{F}(X)$,
- (2) any element of V(G/H) belongs to the relative interior of at most one cone of $\mathcal{F}(X)$.

The map $X \mapsto \mathcal{F}(X)$ induces a bijection between toroidal embeddings of G/H (up to isomorphism of embeddings) and *fans*, i.e. collections of strictly convex polyhedral convex cones satisfying (1) and (2).

The *support* of a fan \mathcal{F} is defined as

$$\operatorname{supp} \mathcal{F} = \bigcup_{c \in \mathcal{F}} c.$$

The embedding X is complete if and only if supp $\mathcal{F}(X) = V(X)$, and it is smooth if and only if for each $c \in \mathcal{F}(X)$ there exists a basis $\gamma_1 \dots, \gamma_r$ of $\Lambda(X)$ and an integer k between 1 and r such that

$$c = \{\gamma_1, \ldots, \gamma_k\}^{\vee}.$$

For later reference, we recall that if a spherical embedding X is not toroidal, then it is also described by a similar datum, called a fan of *colored convex cones*. Here, the convex cone associated to a G-orbit $Y \subseteq X$ is replaced by the pair $(c_{X,Y}, d_{X,Y})$ where $d_{X,Y}$ is the set of colors containing Y, and $c_{X,Y}$ is defined as above.

In general, the set V(X) is also a polyhedral convex cone, of maximal dimension, and its linear part $V^{\ell}(X)$ has the same dimension (as a Q-vector space) of $N_G H/H$ (as a complex algebraic group). The equations defining the maximal proper faces of V(X) are linearly independent (see [Br90, Corollaire 3.3]). In other words, there always exist $\sigma_1, \ldots, \sigma_k \in \Lambda(X)$ that are indivisible, linearly independent, and such that

$$\mathbf{V}(X) = \{-\sigma_1, \dots, -\sigma_k\}^{\vee}.$$

Definition 2.4. The elements $\sigma_1, \ldots, \sigma_k$ above are uniquely determined by G/H and called the *spherical roots* of X; their set is denoted as

$$\Sigma_G(X) = \{\sigma_1, \ldots, \sigma_k\}.$$

The map $Y \mapsto c_{X,Y}$ sends a *G*-orbit of codimension *d* in *X* to a cone of dimension *d*, and this restricts to a bijection between the boundary ∂X and the set of 1-dimensional cones in $\mathcal{F}(X)$.

Definition 2.5. For a subset $\mathcal{D} \subseteq \partial X$, we define the subsets

$$\mathcal{D}^{\ell} = \left\{ Y \in \mathcal{D} \, \big| \, c_{X,Y} \subset \mathcal{V}^{\ell}(X) \right\}$$

and

$$\mathcal{D}^{n\ell} = \mathcal{D} \setminus \mathcal{D}^{\ell}.$$

3. Spherical and wonderful closure

In this section we recall the notion, introduced in [Lu01], of the spherical closure \overline{H} of a spherical subgroup $H \subseteq G$. We also define another subgroup containing H, called its wonderful closure. This is essentially already known, but not yet found in the literature. We gather at first some results from [Lu01, §6].

An element *n* of the normalizer *N* of *H* induces a *G*-equivariant isomorphism $G/H \to G/H$ given by $gH \mapsto gnH$. This induces an action of *N* on the set of colors $\Delta(G/H)$: the *spherical* closure \overline{H} of *H* is defined as the kernel of this action. If $\overline{H} = H$ then we say that H is *spherically closed*, and for any spherical subgroup H the spherical closure \overline{H} is itself spherically closed. This is well known, but for lack of a detailed reference we provide a proof, also because $N_G\overline{H}$ may well be strictly bigger than N_GH .

Proposition 3.1. For any spherical subgroup $H \subseteq G$, the spherical closure \overline{H} is spherically closed.

Proof. Since \overline{H} is contained in N_GH the quotient \overline{H}/H is diagonalizable (see [Kn94, Theorem 6.1]), and thus H is defined inside \overline{H} as intersection of kernels of some characters. The colors of G/\overline{H} generate $\operatorname{Pic}^{G}(G/\overline{H})$ (see [Br89, Proposition 2.2]) and the latter is isomorphic to $\mathcal{X}(\overline{H})$ (see [KKV89, §3.1]), therefore $\overline{\overline{H}}$ acts trivially on $\mathcal{X}(\overline{H})$.

This implies that $\overline{\overline{H}}$ normalizes H. By definition, it fixes all colors of G/\overline{H} , but these correspond to the colors of G/H via the natural map $\pi^{H,\overline{H}}: G/H \to G/\overline{H}$. Hence $\overline{\overline{H}} \subseteq \overline{H}$. \Box

For later convenience we report the following auxiliary result. Recall that whenever $H \subseteq K$ are spherical subgroups of G, the lattice $\Lambda(G/K)$ is contained in the lattice $\Lambda(G/K)$, since B-semiinvariant functions can be lifted from G/K to G/H via the map $\pi^{H,K} \colon G/H \to G/K$. We sometimes denote this inclusion as a map $(\pi^{H,K})^* \colon \Lambda(G/K) \to \Lambda(G/H)$, which induces a surjection $\pi^{H,K}_* \colon \mathcal{N}(G/H) \to \mathcal{N}(G/K)$. Moreover, we have $\pi^{H,K}_*(\mathcal{V}(G/H)) = \mathcal{V}(G/K)$ and ker $\pi^{H,\overline{H}}_* = \mathcal{V}^{\ell}(G/H)$ (see [Kn96, Theorem 4.4 and Theorem 6.1]).

Lemma 3.2. Let $H \subseteq K \subseteq \overline{H}$ be spherical subgroups. Then $(\pi_*^{H,K})^{-1}(V(G/H)) = V(G/K)$.

Proof. The claim stems from $\pi^{H,K}_*(\mathcal{V}(G/H)) = \mathcal{V}(G/K)$, together with

$$\ker\left(\pi_*^{H,K}\right) \subseteq \mathcal{V}^\ell(G/H).$$

This inclusion follows from the fact that $\pi_*^{K,\overline{H}} \circ \pi_*^{H,K} = \pi_*^{H,\overline{H}}$, and that the latter has kernel $V^{\ell}(G/H)$.

A class of subgroups slightly broader then the spherically closed ones is the following.

Definition 3.3. Suppose that $\Sigma(G/H)$ is a basis of $\Lambda(G/H)$. Then we say that H is a *wonderful* subgroup of G. In this case there exists a fan \mathcal{F} having only one maximal cone equal to V(G/K); the associated toroidal embedding is denoted by $\mathbb{X}(G/H)$.

If H is wonderful then the embedding $\mathbb{X}(G/H)$ is smooth, has a unique closed G-orbit and it is *wonderful* in the sense of [Lu01]. A fundamental theorem of Knop (see [Kn96, Corollary 7.6]) states that a spherically closed subgroup is wonderful.

Example 3.4. The converse of the above statement is false: for example, if G = SO(2n + 1) with $n \ge 2$, then H = SO(2n) is a wonderful subgroup, with $\overline{H} = N_{SO(2n+1)}SO(2n) \ne H$ (see [Wa96, cases 7B, 8B of Table 1]).

It is possible to define canonically a minimal wonderful subgroup \widehat{H} between H and \overline{H} . As a byproduct, the automorphism groups of regular embeddings of G/H are more directly related to the automorphism group of $\mathbb{X}(G/\widehat{H})$ than to that of $\mathbb{X}(G/\overline{H})$.

Definition 3.5. Let H and I be spherical subgroups of G. Then I is a *wonderful closure* of H if it is wonderful, satisfies $H \subseteq I \subseteq \overline{H}$, and is minimal with respect to these properties.

We will show that a wonderful closure always exists and is unique; for this we need to describe combinatorially all spherical subgroups having spherical closure equal to \overline{H} .

Let us fix a spherically closed subgroup K, and consider the following diagram

$$0 \longrightarrow \Lambda(G/K) \xrightarrow{\overline{\rho}} \operatorname{Pic}^{G}(\mathbb{X}(G/K)) \xrightarrow{\tau} \operatorname{Pic}^{G}(G/K) \longrightarrow 0$$
$$\downarrow^{\sigma} \operatorname{Pic}^{G}(G/B)$$

where the row is exact (see also [Br07, Proposition 2.2.1].

The map τ is the pullback along the inclusion $G/K \to \mathbb{X}(G/K)$. For σ , observe that $\mathbb{X}(G/K)$ has a unique closed G-orbit Z, which is projective and therefore comes with a natural projection map $G/B \to Z$. The map σ is then the pullback along the composition $G/B \to Z \to \mathbb{X}(G/K)$.

The map $\overline{\rho}$ is defined in the following way: for any $\chi \in \Lambda(G/K)$ we take a function $f_{\chi} \in \mathbb{C}(G/K)_{\chi}^{(B)}$ and consider the *G*-stable part $D = \operatorname{div}(f_{\chi})^G$ of $\operatorname{div}(f_{\chi})$. Then we set $\overline{\rho}(\chi) = \mathcal{O}_{\mathbb{X}}(-D)$, which admits a unique *G*-linearization such that *C* acts trivially on the total space of the bundle.

These maps admit also a combinatorial definition, using the fact that $G = C \times G'$ and $K \supseteq C$, that $\Delta(G/K)$ is a basis of $\operatorname{Pic}(\mathbb{X}(G/K))$ (see [Br89, Proposition 2.2]), and the isomorphisms $\operatorname{Pic}^{G}(G/K) \cong \mathcal{X}(K)$, $\operatorname{Pic}^{G}(G/B) \cong \mathcal{X}(B)$. The resulting diagram

(3.1)
$$0 \longrightarrow \Lambda(G/K) \xrightarrow{\overline{\rho}} \mathcal{X}(C) \times \mathbb{Z}^{\Delta} \xrightarrow{\tau} \mathcal{X}(K) \longrightarrow 0$$
$$\downarrow^{\sigma} \mathcal{X}(B)$$

where $\Delta = \Delta(G/K)$, is also described in details in [Lu01, §6.3]. The map $\overline{\rho}$ is defined as:

$$\overline{\rho}(\chi) = (\chi|_C, \langle \rho_{G,G/K}(\cdot), \chi \rangle),$$

and $\sigma \circ \overline{\rho}$ is the identity on $\Lambda(G/K)$ (see loc.cit.).

Lemma 3.6. [Lu01, Lemme 6.3.1, Lemme 6.3.3] Let $K \subseteq G$ be a spherically closed subgroup. The application

$$H \to \tau^{-1} \left(\mathcal{X}(K)^H \right)$$

is an inclusion-reversing bijection between the set of normal subgroups H of K such that K/H is diagonalizable, and the set of subgroups of $\mathcal{X}(C) \times \mathbb{Z}^{\Delta}$ containing $\overline{\rho}(\Lambda(G/K))$. If the restriction of σ to $\tau^{-1}(\mathcal{X}(K)^{H})$ is injective then H is spherical.

Lemma 3.7. For any spherical subgroup $H \subseteq G$ contained and normal in K and all $D \in \Delta(G/H)$ we have $\pi^{H,K}(D) \in \Delta(G/K)$, and

$$\pi_*^{H,K}(\rho_{G,G/H}(D)) = \rho_{G,G/K}(\pi^{H,K}(D))$$

Proof. Since H is normal in K, then K stabilizes the open set $BH \subseteq G$ acting by right multiplication on G (see also [BP87, First part of the proof of Proposition 5.1]). The complement $G \setminus BH$ is the union of $\pi^{\{e_G\},H}(E)$ for E varying in $\Delta(G/H)$, whence the first statement.

For the second statement, it is enough to show that a local equation of D on G/H can be chosen to be the pull-back of a function on G/K along $\pi^{H,K}$. Let E_1, \ldots, E_n be all the distinct B-stable prime divisors of G such that $\pi^{\{e_G\},K}(E_i) = \pi^{H,K}(D)$. Since G is factorial we can choose a global equation $f_i \in \mathbb{C}[G]$ for each E_i , and consider the product $f = f_1 \cdot \ldots \cdot f_n$.

The divisor $\operatorname{div}(f)$ on G is B-stable under the left translation action of G on itself, but none of its components is G-stable therefore there exists an element $g \in G$ such that the function $f_0: x \mapsto f(gx)$ doesn't vanish on any divisor E_i . On the other hand $\operatorname{div}(f)$ is K-stable under the right translation action of G on itself, thus f is K-semiinvariant under this action. The function f_0 is then also K-semiinvariant, with same K-eigenvalue. It follows that

$$F = \frac{f}{f_0}$$

is K-invariant with respect to the right translation action. In other words $F = (\pi^{\{e_G\},K})^*(\widetilde{F})$ for some $\widetilde{F} \in \mathbb{C}(G/K)$.

Now for some i_0 the divisor E_{i_0} satisfies $\pi^{\{e_G\},H}(E_{i_0}) = D$. The function F is equal to the pull-back of $(\pi^{H,K})^*(\widetilde{F})$ along $\pi^{\{e_G\},H}$ and is a local equation of E_{i_0} on G, hence $(\pi^{H,K})^*(\widetilde{F})$ is a local equation of $\pi^{\{e_G\},H}(E_{i_0}) = D$ on G/H: the lemma follows.

Thanks to Lemma 3.7, we can extend the map $\overline{\rho}$ to $\Lambda(G/H)$ in the following way.

Definition 3.8. We denote again by $\overline{\rho}$ the extension of the above map $\overline{\rho} \colon \Lambda(G/K) \to \mathcal{X}(C) \times \mathbb{Z}^{\Delta}$ to $\Lambda(G/H)$ given by the following formula:

$$\overline{\rho}(\chi) = (\chi|_C, \langle \rho_{G,G/H}(\cdot), \chi \rangle).$$

Lemma 3.9. For any spherical subgroup $H \subseteq G$ contained and normal in K we have

(3.2)
$$\overline{\rho}(\Lambda_G(G/H)) = \tau^{-1} \left(\mathcal{X}(K)^H \right).$$

Proof. The equality stems from the description of the map τ given in [Lu01, §6.3], see in particular [Lu01, Proof of Proposition 6.3]. Indeed, for any $\chi \in \Lambda(G/H)$ the image $\tau(\overline{\rho}(\chi))$ is the K-eigenvalue of a rational function f on G such that f is the pull-back of a rational function on G/H. Hence its K-eigenvalue is trivial on H.

For the other inclusion, Lemma 3.7 implies that

$$\bigcup_{D \in \Delta(G/H)} \left(\pi^{\{e_G\},H} \right)^{-1} (D) = \bigcup_{D \in \Delta(G/K)} \left(\pi^{\{e_G\},K} \right)^{-1} (D)$$

is the union of all prime divisors of G that are B-stable under left translation and H-stable (or equivalently K-stable) under right translation. As a consequence, if $\tau(\gamma, (n_D)_{D \in \Delta})$ is a K-character that is trivial on H, then $\chi = \sigma(\tau(\gamma, (n_D)_{D \in \Delta}))$ is the B-eigenvalue of a Bsemiinvariant rational function on G/H. Since $\overline{\rho}(\chi) = (\gamma, (n_D)_{D \in \Delta})$, the proof is complete. \Box

Proposition 3.10. Let $H \subseteq G$ be a spherical subgroup, set $K = \overline{H}$ and $\Xi = \operatorname{span}_{\mathbb{Z}} \Sigma(G/H)$. Then

$$\Lambda(G/K) \subseteq \Xi \subseteq \Lambda(G/H).$$

The normal subgroup $\widehat{H} \subseteq K$ associated to $\overline{\rho}(\Xi)$ via the map of Lemma 3.6 is the unique wonderful closure of H. It has the same dimension of \overline{H} , and it is the unique wonderful subgroup between H and \overline{H} that satisfies $\Sigma_G(G/H) = \Sigma(G/\widehat{H})$. Moreover, the spherical closure of \widehat{H} is \overline{H} .

Proof. The inclusion $\Xi \subseteq \Lambda(G/H)$ is obvious. The map $\pi^{H,K}_* \colon \mathcal{N}(G/H) \to \mathcal{N}(G/K)$ has kernel $\mathcal{V}^{\ell}(G/H)$, and satisfies $\pi_*(\mathcal{V}(G/H)) = \mathcal{V}(G/K)$. The other inclusion $\Lambda(G/K) \subseteq \Xi$ follows. Hence the subgroup \widehat{H} contains H.

The lattice $\Lambda(G/\widehat{H}) = \Xi$ has basis $\Sigma(G/H)$ since the spherical roots are aways linearly independent. Since $\Lambda(G/\widehat{H})$ has finite index inside $V^{\ell}(G/H)^{\perp}$ and $\pi^{H,\widehat{H}}(V(G/H)) = V(G/\widehat{H})$ we deduce that $\Sigma(G/H) = \Sigma(G/\widehat{H})$.

If \widetilde{H} is another wonderful subgroup such that $H \subseteq \widetilde{H} \subseteq \overline{H}$, then $\Lambda(G/\widetilde{H})$ has also finite index in $V^{\ell}(G/H)^{\perp}$, and $\Sigma(G/\widetilde{H})$ is equal to $\Sigma(G/H)$ up to taking (positive) multiples of the elements of the latter. The dimension, minimality and uniqueness properties of \widehat{H} follow, since $\Lambda(G/\widetilde{H}) \subseteq \Lambda(G/\widehat{H})$ implies $\widetilde{H} \supseteq \widehat{H}$.

The last assertion follows from the last assertion of [Lu01, Lemme 6.3.3]: indeed the lattice $\sigma(\Phi')$ of loc.cit. is denoted here by Ξ , and the set S° of loc.cit. is here a subset of $\frac{1}{2}\Sigma(G/H)$. \Box

4. Automorphisms stabilizing all G-orbits

From now on, X denotes a complete G-regular variety, with open G-orbit G/H.

Definition 4.1. For any subset $\mathcal{D} \subseteq \partial_G X$ of *G*-stable prime divisors we define

$$\operatorname{Aut}^{\circ}\!(X,\mathcal{D}) = \{\phi \in \operatorname{Aut}^{\circ}\!(X) \, | \, \phi(D) = D, \ \ \forall D \in \mathcal{D} \}$$
 .

Since X is G-regular, the group $\operatorname{Aut}^{\circ}(X, \partial_G X)$ is also the connected group of automorphisms of X stabilizing each G-orbit.

We recall now some results from [BB96] (see also [Br07]). The group $\operatorname{Aut}^{\circ}(X)$ is a linear algebraic group, with Lie algebra

$$\operatorname{Lie}\operatorname{Aut}^{\circ}(X) = H^0(X, \mathcal{T}_X)$$

where \mathcal{T}_X is the sheaf of sections of the tangent bundle of X. The structure of G-module on Lie Aut°(X), induced by the adjoint action of $\theta_{G,X}(G) \subseteq \operatorname{Aut}^\circ(X)$, is given in [BB96, Proposition 4.1.1] in terms of global sections of the line bundles $\mathcal{O}_X(D)$ where $D \in \partial_G X$.

Namely, there exists an exact sequence of G-modules

(4.1)
$$0 \to \text{Lie}\operatorname{Aut}^{\circ}(X, \partial_G X) \to \text{Lie}\operatorname{Aut}^{\circ}(X) \to \bigoplus_{D \in \partial_G X} \frac{H^0(X, \mathcal{O}_X(D))}{\mathbb{C}} \to 0$$

Moreover, for any $\mathcal{D} \in \partial_G X$ the Lie algebra of the subgroup $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ is the inverse image of the sum

$$\bigoplus_{D \in (\partial_G X) \setminus \mathcal{D}} \frac{H^0(X, \mathcal{O}_X(D))}{\mathbb{C}}$$

Definition 4.2. Let $0 \neq \gamma \in \mathcal{X}(B)$. If it exists, we denote by $X(\gamma)$ the uniquely determined element of $\partial_G X$ such that $H^0(X, \mathcal{O}_X(X(\gamma)))^{(B)}_{\gamma} \neq \emptyset$.

A particular case of Aut°(X) has been studied in [Pe09], where X is a wonderful variety. Recall that C acts trivially on any wonderful G-variety, hence we can consider G'-varieties without loss of generality. Moreover, in this case Aut°(X, \mathcal{D}) is always semisimple and X is wonderful under its action (see [Br07, Theorem 2.4.2]). It is possible to summarize the results of [Pe09] as follows.

Theorem 4.3. [Pe09] Let X be a wonderful G'-variety and $\mathcal{D} \subseteq \partial_{G'}X$. Decompose G' and X into products

$$G' = G'_1 \times \ldots \times G'_n, \quad \mathbb{X} = \mathbb{X}_1 \times \ldots \times \mathbb{X}_n,$$

with a maximal number of factors in such a way that G'_i acts non-trivially only on \mathbb{X}_i for all $i = 1, \ldots, n$. Then

$$\operatorname{Aut}^{\circ}(\mathbb{X}, \mathcal{D}) = \operatorname{Aut}^{\circ}(\mathbb{X}_1, \mathcal{D}_1) \times \ldots \times \operatorname{Aut}^{\circ}(\mathbb{X}_n, \mathcal{D}_n),$$

where $\mathcal{D}_i = \{D \cap \mathbb{X}_i \mid D \in \mathcal{D}\} \subseteq \partial_{G'_i} \mathbb{X}_i$. Moreover, if the image of G'_i in Aut°($\mathbb{X}_i, \mathcal{D}_i$) is a proper subgroup, then (G'_i, \mathbb{X}_i) appears in the lists of "exceptions" of [Pe09, §§3.2 - 3.6]. If $\mathcal{D} = \partial_{G'} \mathbb{X}$ then all such exceptional factors have rank 0 or 1.

Let now $\mathbb{X} = \mathbb{X}(G/\overline{H})$: the group $\operatorname{Aut}^{\circ}(X, \partial_G X)$ is easily recovered from $\operatorname{Aut}^{\circ}(\mathbb{X}, \partial_G \mathbb{X})$. Indeed, thanks to [Br07, Theorem 4.4.1], there exists a split exact sequence of Lie algebras

(4.2)
$$0 \to \frac{\operatorname{Lie} \overline{H}}{\operatorname{Lie} H} \to \operatorname{Lie} \operatorname{Aut}^{\circ}(X, \partial_G X) \to \operatorname{Lie} \operatorname{Aut}^{\circ}(\mathbb{X}, \partial_G \mathbb{X}) \to 0$$

It follows that $\operatorname{Aut}^{\circ}(X, \partial_G X)$ is reductive, its connected center is $(\overline{H}/H)^{\circ} = (\widehat{H}/H)^{\circ}$, and its semisimple part can be computed using Theorem 4.3 and the lists of [Pe09].

We point out that in the above exact sequence we may as well use the variety $\mathbb{X} = \mathbb{X}(G/\widehat{H})$. Indeed, the results of [Br07, §4.4] hold (with same proofs) if we replace the spherical closure of H with its wonderful closure.

5. Relating $\operatorname{Aut}^{\circ}(X)$ to $\operatorname{Aut}^{\circ}(\mathbb{X})$

From now on, $\mathbb{X} = \mathbb{X}(G/\widehat{H})$ denotes the wonderful embedding of G/\widehat{H} . As a consequence of the last section, we may suppose from now on that $\theta_{G,X}(G) = \operatorname{Aut}^{\circ}(X, \partial_G X)$ and that $\theta_{G,\mathbb{X}}(G) = \operatorname{Aut}^{\circ}(\mathbb{X}, \partial_G \mathbb{X})$. Indeed, if this is not the case we may first apply Theorem 4.3 to \mathbb{X} , replace G'_i with the universal cover of $\operatorname{Aut}^{\circ}(\mathbb{X}_i, \partial_{G_i} \mathbb{X}_i)$ for all i such that these groups are different, and then replace C with $C \times (\widehat{H}/H)^{\circ}$.

Thanks to [Kn96, Theorem 4.1], the natural surjection $\pi^{H,\hat{H}}: G/H \to G/\hat{H}$ extends to a surjective *G*-equivariant map

$$\pi \colon X \to \mathbb{X} = \mathbb{X}(G/H).$$

Definition 5.1. We denote by

$$X \xrightarrow{\psi} X' \xrightarrow{f} \mathbb{X}$$

the Stein factorization of the map $\pi: X \to \mathbb{X}$.

In [Br07, §4.4] it is shown that $\operatorname{Aut}^{\circ}(X)$ acts on X' in such a way that ψ is equivariant; we denote the corresponding homomorphism as follows:

$$\psi_* \colon \operatorname{Aut}^{\circ}(X) \to \operatorname{Aut}^{\circ}(X').$$

Its kernel is the subgroup of automorphisms of X stabilizing each fiber of ψ .

Proposition 5.2. The inclusions $Z(\theta_{G,X}(G))^{\circ} \subseteq \ker \psi_* \cap \theta_{G,X}(G) \subseteq Z(\theta_{G,X}(G))$ between subgroups of Aut°(X) hold. Moreover, there is a local isomorphism

(5.1)
$$\operatorname{Aut}^{\circ}\left(X, \left(\partial_{G} X\right)^{n\ell}\right) \cong \theta_{G,X}(G') \ltimes (\ker \psi_{*})^{\circ}$$

induced by the inclusion of both factors of the right hand side in $\operatorname{Aut}^{\circ}(X)$.

Proof. The first inclusion stems from the fact that $C = Z(G)^{\circ}$ acts trivially on X, hence also on X'. On the other hand, if $g \in G$ stabilizes all fibers of ψ , then it acts trivially on X' and also on X. Therefore, to show the second inclusion, we only have to check that no simple factor of G acts trivially on X but not on X. This is true because \widehat{H}/H is abelian.

Let us prove the last statement. Both groups on the right hand side of (5.1) are subgroups of Aut° $(X, (\partial_G X)^{n\ell})$: this is obvious for $\theta_{G,X}(G')$, so we only have to check it for $(\ker \psi_*)^\circ$. Notice that ψ maps any element D of $(\partial_G X)^{n\ell}$ onto a proper G-stable closed subset of X'. It follows that D is an irreducible component of $\psi^{-1}(\psi(D))$, hence it is stable under the action of $(\ker \psi_*)^\circ$. It also follows that ψ_* maps Aut° $(X, (\partial_G X)^{n\ell})$ into Aut° $(X', \partial_G X')$.

The intersection $(\ker \psi_*)^\circ \cap \theta_{G,X}(G')$ is finite thanks to the first part of the proof, and $(\ker \phi_*)^\circ$ is a normal subgroup of $\operatorname{Aut}^\circ(X, (\partial_G X)^{n\ell})$. It only remains to prove that $\operatorname{Aut}^\circ(X, (\partial_G X)^{n\ell})$ is generated by $\theta_{G,X}(G')$ and $(\ker \psi_*)^\circ$.

By [Br07, Theorem 4.4.1], we know that $\operatorname{Aut}^{\circ}(X', \partial X')$ and $\operatorname{Aut}^{\circ}(X, \partial X)$ are both semisimple and locally isomorphic. It follows that the universal cover of $\operatorname{Aut}^{\circ}(X', \partial X')$ acts on X in such a way that f is equivariant. On the other hand no element of this universal cover could act trivially on X' and non-trivially on X, hence $\operatorname{Aut}^{\circ}(X', \partial X')$ itself acts on X, preserving all G-orbits. This produces a commutative diagram

$$G \xrightarrow{\theta_{G,X}} \operatorname{Aut}^{\circ} \left(X, (\partial_G X)^{n\ell} \right)$$
$$\downarrow^{\theta_{G,X}} \qquad \qquad \qquad \downarrow^{\psi_*}$$
$$\operatorname{Aut}^{\circ} (X, \partial_G X) \xleftarrow{f_*} \operatorname{Aut}^{\circ} (X', \partial_G X')$$

where $\theta_{G,\mathbb{X}}$ is surjective by our assumptions. Therefore $\operatorname{Aut}^{\circ}(X, (\partial_G X)^{n\ell})$ is generated by $\theta_{G,X}(G)$ and $\operatorname{ker}(f_* \circ \psi_*)$. Notice that f_* has finite kernel, that the kernel of ψ_* contains $\theta_{G,X}(C)$, and that $\operatorname{Aut}^{\circ}(X, (\partial_G X)^{n\ell})$ is connected: we deduce that $\operatorname{Aut}^{\circ}(X, (\partial_G X)^{n\ell})$ is indeed generated by $\theta_{G,X}(G')$ and $(\operatorname{ker} \psi_*)^{\circ}$, and the proof is complete. \Box

If we denote by

$$d\psi_* \colon \operatorname{Lie}\operatorname{Aut}^{\circ}(X) \to \operatorname{Lie}\operatorname{Aut}^{\circ}(X')$$

the corresponding homomorphism of Lie algebras, then the following corollary is an immediate consequence of the above proposition.

Corollary 5.3. The subspace ker $d\psi_* \subseteq \text{LieAut}^\circ(X)$ is G-stable, and its intersection with $\text{Lie}\,\theta_{G,X}(G)$ is equal to $\text{Lie}\,\theta_{G,X}(C)$. There exists a G-equivariant splitting of the exact sequence (4.1) such that

$$\ker d\psi_* = \operatorname{Lie} \theta_{G,X}(C) \oplus \bigoplus_{D \in (\partial_G X)^{\ell}} \frac{H^0(X, \mathcal{O}_X(D))}{\mathbb{C}}$$

6. Restricting automorphisms of X to fibers of ψ

We study now the automorphisms of a generic fiber of ψ induced by automorphisms of X belonging to ker ψ_* . For this it is convenient to exploit the *local structure* of spherical varieties.

Theorem 6.1. [Kn94, Theorem 2.3 and Proposition 2.4] Let Y be a spherical G-variety. Let $P_{G,Y} \supseteq B$ be the stabilizer in G of the open B-orbit of Y, let $L_{G,Y}$ be the Levi subgroup of $P_{G,Y}$ containing T, and consider the following open subset of Y:

$$Y_0 = Y \setminus \bigcup_{D \in \Delta_G(Y)} D.$$

Then there exists a closed $L_{G,Y}$ -stable and $L_{G,Y}$ -spherical subvariety $\mathcal{Z}_{G,Y}$ of Y_0 such that the map

$$\begin{array}{rccc} P^u_{G,Y} \times \mathcal{Z}_{G,Y} & \to & Y_0 \\ (p,z) & \mapsto & pz \end{array}$$

is a $P_{G,Y}$ -equivariant isomorphism, where $L_{G,Y}$ acts on $P_{G,Y}^u \times \mathcal{Z}_{G,Y}$ by $l \cdot (p, z) = (lpl^{-1}, lz)$. The commutator subgroup $(L_{G,Y}, L_{G,Y})$ acts trivially on $\mathcal{Z}_{G,Y}$, and if Y is toroidal then every G-orbit meets $\mathcal{Z}_{G,Y}$ in an $L_{G,Y}$ -orbit.

Definition 6.2. We define $T_{G,Y}$ to be the quotient of $L_{G,Y}^r$ by the kernel of its action on $\mathcal{Z}_{G,Y}$.

We get back to our complete G-regular variety X. The torus $T_{G,X}$ is a subquotient of T, and $\mathcal{Z}_{G,X}$ is a spherical (toric) $T_{G,X}$ -variety, with lattice $\Lambda_{T_{G,X}}(\mathcal{Z}_{G,X}) = \mathcal{X}(T_{G,X}) = \Lambda_G(G/H)$ and fan of convex cones equal to $\mathcal{F}_G(X)$.

Definition 6.3. For any x' in the open G-orbit of X' we denote by $\kappa_{x'}$ the restriction map

$$\kappa_{x'} \colon (\ker \psi_*)^\circ \to \operatorname{Aut}^\circ(X_{x'})$$

where $X_{x'} = \psi^{-1}(x')$.

Recall that H is chosen in such a way that BH is open in G, and $x_0 = eH \in G/H \subseteq X$. Let us consider $x'_0 = \psi(x_0)$: the fiber $X_{x'_0}$ is smooth and complete, and it is a toric variety under the action of the torus $S = (\hat{H}/H)^\circ = H'/H$, where H' is the stabilizer of x'_0 .

Moreover, S acts naturally on G/H by G-equivariant automorphisms, and since S is connected this S-action extends to X, stabilizing all colors of X and all fibers of ψ . We may fix $\mathcal{Z}_{G,X'} \subset X'$ containing x'_0 , and choose $\mathcal{Z}_{G,X}$ so that

$$\mathcal{Z}_{G,X} = \psi^{-1}(\mathcal{Z}_{G,X'}) \cap X_0$$

which implies that $\mathcal{Z}_{G,X}$ contains x_0 and is stable under the action of S.

The same action of S on $\mathcal{Z}_{G,X}$ can be realized sending S injectively into $T_{G,X}$, and then letting it act on $\mathcal{Z}_{G,X}$ via the restriction of the usual action of G on X. Indeed, if $nH \in S$ and $f \in \mathbb{C}(G/H)_{\chi}^{(B)}$, then $gH \mapsto f(gnH)$ also belongs to $\mathbb{C}(G/H)_{\chi}^{(B)}$, therefore there is a homomorphism (depending only on χ) $\iota_{\chi} \colon S \to \mathbb{C}^*$ such that $f(gnH) = \iota_{\chi}(n^{-1}H)f(gH)$ for all $g \in G$. This induces a homomorphism

$$\iota \colon S \to \operatorname{Hom}(\Lambda_G(G/H), \mathbb{C}^*) \cong T_{G,X},$$

which can be shown to be injective, with image equal to the subtorus of $T_{G,X}$ corresponding to the subspace $V_G^{\ell}(G/H) \subseteq N_G(G/H)$ (see [Br97, Proof of Theorem 4.3]). Let us check that restricting to $\iota(S)$ the usual $T_{G,X}$ -action on $\mathcal{Z}_{G,X}$ yields the action described above. The intersection $\mathcal{Z}_{G,X} \cap G/H$ is dense in $\mathcal{Z}_{G,X}$, and $\mathcal{Z}_{G,X}$ is a toric $T_{G,X}$ -variety with lattice equal to $\Lambda_G(G/H)$: it follows that $\iota(nH)gH = gnH$, because

$$f(\iota(nH)gH) = \chi(\iota(n^{-1}H))f(gH) = \iota_{\chi}(n^{-1}H)f(gH) = f(gnH)$$

for all $nH \in S$, $gH \in \mathcal{Z}_{G,X} \cap G/H$, $\chi \in \Lambda_G(G/H)$ and $f \in \mathbb{C}(G/H)_{\chi}^{(B)}$.

The fiber $X_{x'_0}$ is also the fiber over x'_0 of the S-equivariant map $\mathcal{Z}_{G,X} \to \mathcal{Z}_{G,X'}$, which implies that its fan of convex cones is

(6.1)
$$\mathcal{F}_S(X_{x'_0}) = \left\{ c \mid c \in \mathcal{F}_G(X), \ c \subset \mathcal{V}_G^{\ell}(G/H) \right\}.$$

Since the S-boundary of $X_{x'_0}$ is given intersecting $X_{x'_0}$ with the elements of $(\partial_G X)^{\ell}$, there is an exact sequence of S-modules

(6.2)
$$0 \to \operatorname{Lie} S \to \operatorname{Lie} \operatorname{Aut}^{\circ}(X_{x'_{0}}) \to \bigoplus_{D \in (\partial_{G}X)^{\ell}} \frac{H^{0}(X_{x'_{0}}, \mathcal{O}_{X}(D \cap X_{x'_{0}}))}{\mathbb{C}} \to 0$$

Lemma 6.4. If $V \subseteq \ker d\psi_*$ is a simple G-submodule and x' is in the open B-orbit of X', then $d\kappa_{x'}(V) = d\kappa_{x'}(\mathbb{C}v)$, where $v \in V$ is a highest weight vector.

Proof. We may assume that $x' = x'_0$ and that $v = [s] \in H^0(X, \mathcal{O}_X(D))/\mathbb{C}$ for some $D \in (\partial X)^\ell$, in view of Corollary 5.3. From the expression in local coordinates of [BB96, Remark after Proposition 2.3.2] and the proof of [BB96, Proposition 4.1.1], we see that $d\kappa_{x'_0}(v)$ is sent by the surjective map of (6.2) to $[s|_{X_{x'_0}}]$ where $s|_{X_{x'_0}}$ is a section of $\mathcal{O}_{X_{x'_0}}(D \cap X_{x'})$.

If s is a B-eigenvector then its zeros are B-stable. On the other hand, since Bx'_0 is open in X', the only zeros of s intersecting $X_{x'_0}$ are G-stable. It also follows that $(gs)|_{X_{x'_0}}$ and $s|_{X_{x'_0}}$ have the same zeros (hence are linearly dependent) for any $g \in G$ such that gx_0 doesn't lie on any color of G/H. This is true for g lying in a dense subset U of G, and since V is generated as a vector space by elements of the form [gs] for $g \in U$, the lemma follows.

Lemma 6.5. Let i = 1, 2 and $0 \neq \gamma_i \in \Lambda_G(X)$ be such that $X(\gamma_i)$ exists, with $X(\gamma_i) \in (\partial X)^{\ell}$. Suppose that $\langle m, \gamma_1 \rangle = -\langle m, \gamma_2 \rangle$ for all $m \in V_G^{\ell}(X)$. Then

$$\langle \rho_{G,X}(D), \gamma_i \rangle = 0$$

for all i = 1, 2, for all $D \in (\partial_G X)^{n\ell}$ and for all $D \in \Delta_G(X)$.

Proof. Consider the wonderful variety X. Both sets $\rho_{G,\mathbb{X}}(\Delta_G(\mathbb{X}))$ and $\rho_{G,\mathbb{X}}(\partial_G \mathbb{X})$ generate $N_G(\mathbb{X})$ as a vector space, and the convex cone generated by $\rho_{G,\mathbb{X}}(\Delta_G(\mathbb{X}))$ contains $-\rho_{G,\mathbb{X}}(\partial_G \mathbb{X})$ (see [Br07, Lemma 2.1.2]). On the other hand, the set $\pi_*(\rho_{G,X}((\partial_G X)^{n\ell})) \subset N_G(\mathbb{X})$ generates the same convex cone $V_G(\mathbb{X})$ generated by $\rho_{G,\mathbb{X}}(\partial_G \mathbb{X})$, and $\pi_*(\rho_{G,X}(\Delta_G(X))) = \rho_{G,\mathbb{X}}(\Delta_G(\mathbb{X}))$. It follows that there exists a linear combination

$$v = \sum_{Y \in (\partial_G X)^{n\ell}} n_Y \rho_{G,X}(Y) + \sum_{Z \in \Delta_G(X)} n_Z \rho_{G,X}(Z) \in \mathcal{V}_G^{\ell}(X)$$

where all the coefficients n_Y and n_Z are positive. From the assumptions on the characters γ_i , all the elements $\rho_{G,X}(Y)$ and $\rho_{G,X}(Z)$ above are non-negative on both γ_1 and γ_2 : we deduce that $\langle v, \gamma_i \rangle \geq 0$, which yields $\langle v, \gamma_i \rangle = 0$. The lemma follows.

In the next sections we will investigate $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ for any subset $\mathcal{D} \subseteq \partial_G X$, using the results above. It is harmless to assume that each $E \in \mathcal{E} = \partial_G X \setminus \mathcal{D}$ is not stable under $\operatorname{Aut}^{\circ}(X, \mathcal{D})$, and it is convenient to treat separately the two subsets $\mathcal{E}^{n\ell}$, \mathcal{E}^{ℓ} of \mathcal{E} .

More precisely, we first consider in §7 the special case where $\mathcal{E}^{\ell} = \emptyset$, i.e. $\mathcal{D} \supseteq (\partial_G X)^{\ell}$. We determine the group Aut°(X, \mathcal{D}): it is obtained lifting from X to X the action of a certain subgroup of Aut°(X), it is reductive and under its action X is G-regular, with boundary \mathcal{D} . Finally, we compute the related fan of convex cones.

For a general \mathcal{D} , we apply the above results to X where G is replaced by $\widetilde{G} = \operatorname{Aut}^{\circ}(X, \mathcal{D} \cup \mathcal{E}^{\ell})$. It turns out (see Corollary 7.19) that the elements of \mathcal{E}^{ℓ} lie on the linear part of the valuation cone both with respect to the G-action and to the \widetilde{G} -action.

Therefore we may finally replace G with the group \widetilde{G} , and develop further analysis on $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ where now X is a complete \widetilde{G} -regular variety satisfying $\mathcal{D} \supseteq (\partial_{\widetilde{G}} X)^{n\ell}$. This will be done in §10, after discussing the special cases of G abelian (§8) and G semisimple (§9).

7. G-STABLE PRIME DIVISORS NOT ON THE LINEAR PART OF THE VALUATION CONE

In this section we study $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ under the assumption that $\mathcal{D} \supseteq (\partial_G X)^{\ell}$. We also suppose that \mathcal{D} contains all the *G*-stable prime divisors *D* that satisfy $H^0(X, \mathcal{O}_X(D)) = \mathbb{C}$, since these prime divisors do not move under the action of $\operatorname{Aut}^{\circ}(X)$ anyway.

Before stating the main result of this section, Theorem 7.8, we need to establish a correspondence between the divisors in $\partial_G X \setminus \mathcal{D}$ and certain boundary divisors of X.

Recall that since X is wonderful the set $-\rho_{G,X}(\partial_X X)$ is a basis of $N_G(X)$, dual to $\Sigma_G(X)$.

Definition 7.1. For an element $D \in \partial_G X$, we denote by σ_D the spherical root of X dual to $-\rho_{G,X}(D)$.

Since $\Lambda_G(\mathbb{X})$ is a sublattice of $\Lambda_G(X)$, we consider σ_D also as an element of the latter.

Also recall that, thanks to [Br07, Theorem 2.2.3], if $D \in \partial_G \mathbb{X}$ satisfies $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(D)) \neq \mathbb{C}$ then $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(D))/\mathbb{C}$ is irreducible with highest weight σ_D .

Lemma 7.2. Let $E \in \mathcal{E} = \partial_G X \setminus \mathcal{D}$. Then:

- (1) the image $\pi(E)$ is an element of $\partial_G \mathbb{X}$, with $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(\pi(E))) \neq \mathbb{C}$, and E is the only element of $\partial_G X$ whose image is $\pi(E)$;
- (2) we have

$$\pi_*(\rho_{G,X}(E)) = \rho_{G,\mathbb{X}}(\pi(E)),$$

and

(7.1)
$$\forall c \in \mathcal{F}_G(X) \setminus \{c_{X,E}\}, c \text{ 1-dimensional:} \quad c \subset \sigma_{\pi(E)}^{\perp};$$

(3) the G-modules $H^0(X, \mathcal{O}_X(E))$ and $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(\pi(E)))$ are isomorphic.

Proof. Let $\gamma \neq 0$ be such that $H^0(X, \mathcal{O}_X(E))^{(B)}_{\gamma} \neq \emptyset$. Since $E \in (\partial_G X)^{n\ell}$, the character γ is non-negative on $\rho_{G,X}((\partial_G X)^{\ell})$, which generates the whole $V_G^{\ell}(X)$ as a convex cone, because Xis complete. It follows that $\gamma \in V_G^{\ell}(X)$, which implies that some positive integral multiple of γ , say $n\gamma$, lies in $\Lambda_G(\mathbb{X})$. Let us also assume that it is indecomposable in $\Lambda_G(\mathbb{X})$, i.e. that n is minimal satisfying n > 0 and $n\gamma \in \Lambda_G(X)$.

Consider $\pi(E)$: if it is not a *G*-stable prime divisor of X, then $\pi_*(\rho_{G,X}(E))$ is in $V_G(X)$ but doesn't lie on any 1-dimensional face of $V_G(X)$. On the other hand, each element of $\partial_G X$ is the image $\pi(D)$ of some *G*-stable prime divisor *D* of *X*, with $\pi_*(\rho_{G,X}(D))$ equal to a positive rational multiple of $\rho_{G,X}(\pi(D))$. This implies that $n\gamma \in \Lambda_G(X)$ is non-negative on $\rho_{G,X}(\partial_G X)$ and negative on $\pi_*(\rho_{G,X}(E))$, which is absurd because $\rho_{G,X}(\partial_G X)$ generates $V_G(X)$ as a convex cone.

We conclude that $\pi(E) \in \partial_G \mathbb{X}$, and that E is the unique element of $\partial_G X$ whose image is $\pi(E)$, because $n\gamma$ is non-negative on $\rho_{G,X}(E')$ for any $E' \in \partial_G X$ different from E. Let $0 > -m = \langle \rho_{G,\mathbb{X}}(\pi(E)), n\gamma \rangle$. Then $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(m\pi(E))) \neq \mathbb{C}$.

From [Br07, Theorem 2.2.3] it follows that $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(\pi(E))) \neq \mathbb{C}$, that $H^0(\mathbb{X}, \mathcal{O}_{\mathbb{X}}(\pi(E)))/\mathbb{C}$ is irreducible with highest weight $\sigma_{\pi(E)}$, and that any $\chi \in \Lambda_G(\mathbb{X})$ satisfying

(7.2)
$$\langle \rho_{G,\mathbb{X}}(D), \chi \rangle \ge 0 \quad \forall D \in (\partial_G \mathbb{X} \setminus \{\pi(E)\} \cup \Delta_G(\mathbb{X}), \qquad \langle \rho_{G,\mathbb{X}}(\pi(E)), \chi \rangle < 0$$

is a positive multiple of $\sigma_{\pi(E)}$. We have then shown (1). It also follows that $n\gamma$ is a positive multiple of $\sigma_{\pi(E)}$, whence γ is non-positive on $V_G(X)$ and so it is zero on $\rho_{G,X}(D)$ for all $D \in \partial_G X$ different from E. This shows (7.1).

Now recall that $n\gamma$ is indecomposable in $\Lambda_G(\mathbb{X})$. Since it is a positive multiple of $\sigma_{\pi(E)}$, it is equal to $\sigma_{\pi(E)}$. On the other hand $\Sigma_G(X) = \Sigma_G(\mathbb{X})$ and $\sigma_{\pi(E)}$ is also indecomposable in $\Lambda_G(X)$. Therefore n = 1, and we have

$$\langle \rho_{G,X}(E), \gamma \rangle = \langle \pi_*(\rho_{G,X}(E)), \gamma \rangle = -1 = \langle \rho_{G,X}(\pi(E)), \sigma_{\pi(E)} \rangle,$$

whence $\pi_*(\rho_{G,X}(E)) = \rho_{G,X}(\pi(E))$. The proof of part (2) is complete.

Since γ is the highest weight of an arbitrary non-trivial *G*-submodule of $H^0(X, \mathcal{O}_X(E))$, and the latter is multiplicity-free since X is spherical, the proof of (3) is also complete. \Box

Definition 7.3. We denote by

$$\Lambda_G(X,\mathcal{E}) \subseteq \Lambda_G(X)$$

the sublattice generated by the elements $\sigma_{\pi(E)}$ for all $E \in \mathcal{E}$.

Corollary 7.4.

$$\Lambda_G(X) = \rho_{G,X}(\mathcal{E})^{\perp} \oplus \Lambda_G(X,\mathcal{E}).$$

Proof. From Lemma 7.2 we deduce that for all $E \in \mathcal{E}$ the element $\rho_{G,X}(E)$ is -1 on the spherical root $\sigma_{\pi(E)}$ of X, and zero on all other spherical roots of X. The corollary follows.

Remark 7.5. In the proof of Lemma 7.2 we used the crucial fact that X and $\mathbb{X}(G/\widehat{H})$ have the same spherical roots. The decomposition of $\Lambda(G/H)$ into the above direct sum would indeed be false in general, if we had used $\mathbb{X}(G/\overline{H})$ instead of $\mathbb{X}(G/\widehat{H})$.

Definition 7.6. Define

$$\mathbb{E} = \{ \pi(E) \mid E \in \mathcal{E} \} \,,$$

and

$$\mathbb{D} = \partial \mathbb{X} \setminus \mathbb{E}.$$

Definition 7.7. Let $A' = A'(X, \mathcal{D})$ be the universal cover of Aut°(X, D), and $A = A(X, \mathcal{D}) = A' \times C$. We denote by

$$\vartheta' \colon G' \to A'$$

the lift of $\theta_{G',\mathbb{X}} \colon G' \to \operatorname{Aut}^{\circ}(\mathbb{X}, \mathbb{D})$ to A', and we set

$$\vartheta = \vartheta' \times \mathrm{id}_C \colon G \to A.$$

We also choose a Borel subgroup B_A of A such that $B_A \supseteq \vartheta(B)$.

Now we are ready to state the main result of this section.

Theorem 7.8. The action of $A(X, \mathcal{D})$ lifts from \mathbb{X} to X, and the image of $A(X, \mathcal{D})$ inside Aut°(X) is equal to Aut°(X, \mathcal{D}). As an $A = A(X, \mathcal{D})$ -variety, X is G-regular with boundary \mathcal{D} . The vector space $N_A(X)$ is naturally identified with $\Lambda_G(X, \mathcal{E})^{\perp} \subseteq N_G(X)$. The fan $\mathcal{F}_A(X)$ of X as an A-variety is given by intersecting all cones of $\mathcal{F}_G(X)$ with $\Lambda_G(X, \mathcal{E})^{\perp}$.

The proof occupies the rest of the section: the theorem follows from Lemma 7.13, Theorem 7.18, and Corollary 7.20. **Example 7.9.** It is necessary to define A' as the universal cover of $\operatorname{Aut}^{\circ}(\mathbb{X}, \mathbb{D})$. Consider for example $G = \operatorname{SL}(n+1)$ (with $n \ge 1$) acting linearly and diagonally on $\mathbb{P}^{n+1} \times (\mathbb{P}^n)^*$, where on the first factor it acts only on the first n+1 homogeneous coordinates. Then $X = \operatorname{Bl}_p(\mathbb{P}^{n+1}) \times (\mathbb{P}^n)^*$, with $p = [0, \ldots, 0, 1]$, is a G-regular variety with three G-stable prime divisors, of which only one lies in $(\partial_G X)^{n\ell}$. We have $\mathbb{X} = \mathbb{P}^n \times (\mathbb{P}^n)^*$, and if $\mathcal{D} = (\partial X)^{\ell}$ then $\mathbb{D} = \emptyset$. The action of $\operatorname{Aut}^{\circ}(\mathbb{X}, \mathbb{D}) = \operatorname{Aut}^{\circ}(\mathbb{X}) = \operatorname{PGL}(n+1) \times \operatorname{PGL}(n+1)$ doesn't lift to X, whereas the action of its universal cover does.

In view of proving Theorem 7.8, we start finding a candidate for a generic stabilizer of the A-action on X. Let $\hat{H}_A \subseteq A$ be² the stabilizer of the point $e\hat{H} \in G/\hat{H} \subseteq \mathbb{X}$. The colors of \mathbb{X} as a G-variety and as an A-variety coincide, thanks to [Br07, Theorem 2.4.2], and we have $\vartheta(\hat{H}) = \hat{H}_A \cap \vartheta(G)$.

We also notice that thanks to our general assumptions any *G*-linearization of an invertible sheaf \mathbb{X} can be uniquely extended to an *A*-linearization, inducing an identification of the two groups $\operatorname{Pic}^{G}(\mathbb{X})$ and $\operatorname{Pic}^{A}(\mathbb{X})$.

Lemma 7.10. (1) The pull-back of characters of B_A along $\vartheta|_B$ induces an injective map $r: \Lambda_A(\mathbb{X}) \to \Lambda_G(\mathbb{X})$. It maps $\Sigma_A(\mathbb{X})$ to the set of spherical roots $\{\sigma_D \mid D \in \mathbb{D}\}$.

(2) The dual map $r^* \colon N_G(\mathbb{X}) \to N_A(\mathbb{X})$ satisfies

$$r^*(V_G(\mathbb{X})) = V_A(\mathbb{X}).$$

(3) We have that $\partial_A \mathbb{X} = \mathcal{D}$, and

$$A/\widehat{H}_A = \mathbb{X} \setminus \bigcup_{D \in \mathbb{D}} D.$$

(4) The pull-back of characters of \widehat{H}_A along $\vartheta|_{\widehat{H}}$ is a surjective homomorphism $r' \colon \mathcal{X}(\widehat{H}_A) \to \mathcal{X}(\widehat{H})$ with free kernel of rank $|\mathbb{E}|$.

Proof. The injectivity of r is obvious, since it corresponds to taking a B_A -semiinvariant $f \in \mathbb{C}(\mathbb{X})$ and considering it as a B-semiinvariant. The rest of part (1) follows from the results of [Pe09], and it can also be shown directly using the following fact: the spherical roots of \mathbb{X} are the T-weights appearing in the quotient of tangent spaces

$$\frac{\mathrm{T}_z \mathbb{X}}{\mathrm{T}_z(G z)},$$

where $z \in \mathbb{X}$ is the unique fixed point of B^- . Let us choose a maximal torus T_A of A containing $\vartheta(T)$: if $B_A^- \subseteq A$ is the Borel subgroup satisfying $B_A \cap B_A^- = T_A$ then B_A^- contains $\vartheta(B^-)$.

 $^{^{2}}$ Our notation is consistent thanks to Corollary 7.14.

Hence z is also the unique B_A^- -fixed point, therefore the spherical roots of X as an A-variety are the T_A -weights appearing in the quotient of tangent spaces

$$\frac{\mathrm{T}_z \mathbb{X}}{\mathrm{T}_z(A\,z)},$$

form the set $\Sigma_A(\mathbb{X})$. This implies part (1), and part (2) is an immediate consequence.

The first statement of part (3) stems from the fact that each $E \in \mathbb{E}$ is not stable under the action of A, and the second follows from the first because \mathbb{X} is wonderful under the action of A.

For part (4), we notice that r' can be identified with the natural map

$$\frac{\mathcal{X}(C) \times \mathbb{Z}^{\Delta}}{\overline{\rho}_{A,\mathbb{X}}(\Lambda_A(\mathbb{X}))} \to \frac{\mathcal{X}(C) \times \mathbb{Z}^{\Delta}}{\overline{\rho}_{G,\mathbb{X}}(\Lambda_G(\mathbb{X}))}$$

(see diagram (3.1)). The kernel of r' is then $\Lambda_G(\mathbb{X})/r(\Lambda_A(\mathbb{X}))$ which is free, generated by the spherical roots σ_E for all $E \in \mathbb{E}$ by part (1).

Let us put together two copies of the diagram (3.1), one for the G- and one for the A-action, also adding the extensions of $\overline{\rho}_G$ and $\overline{\rho}_A$ resp. to $\Lambda_G(G/H)$ and $\Lambda_A(A/\widehat{H}_A)$, as in §3. We obtain a commutative diagram

where K_A is the spherical closure of \hat{H}_A , and K is the spherical closure of \hat{H} (and of H). The last arrow of the first row is the restriction map, which can be seen as the quotient

$$\mathcal{X}(K_A) \to \mathcal{X}(K_A) / \mathcal{X}(K_A)^{\widehat{H}_A} \cong \mathcal{X}(\widehat{H}_A).$$

The same remark holds for the last map of the second row and the groups K, \hat{H} .

In order to determine a generic stabilizer in A for X, we start defining a lattice $\Lambda \subseteq \Lambda_G(G/H)$. A posteriori, it will be the lattice of B-eigenvalues χ_f of B_A -eigenvectors $f \in \mathbb{C}(X)^{(B_A)}$. Such a function f cannot have zeros nor poles on the divisors in \mathcal{E} , since these are not A-stable, nor are A-colors of X. This suggests the definition of Λ given in the following.

Definition 7.11. Let Λ be the lattice

$$\Lambda = \rho_{G,X}(\mathcal{E})^{\perp} \subseteq \Lambda_G(G/H).$$

Proposition 7.12. The following inclusion holds:

.

$$\overline{\rho}_G(\Lambda) \supseteq \overline{\rho}_A(\Lambda_A(A/K_A)).$$

The subgroup H_A of K_A corresponding to the lattice $\overline{\rho}_G(\Lambda)$ is a spherical subgroup of A, and we have $\vartheta(H) = H_A \cap \vartheta(G)$. This induces a G-equivariant identification of G/H with an open subset of A/H_A .

Proof. Let $\chi \in \Lambda_A(A/K_A) \subseteq \Lambda_A(A/\widehat{H}_A)$. If $f \in \mathbb{C}(A/\widehat{H}_A)_{\chi}^{(B_A)}$, then consider its pull-back on X, denoted by \widetilde{f} . It is also a *B*-eigenvector with *B*-eigenvalue $\widetilde{\chi} = r(\chi)$.

We know that the divisor $\operatorname{div}(\widetilde{f})$ on X is B_A -stable, so in general it is a linear combination of colors and A-stable prime divisors. In any case, its components do not belong to \mathcal{E} , because the latter consists of prime divisors moved by A. It follows that all discrete valuations in $V_G(G/H)$ coming from these elements of \mathcal{E} must take the value 0 on $\widetilde{\chi}$.

Therefore $\tilde{\chi} \in \Lambda$, and the first assertion is proved. In order to verify that H_A is spherical we have to show that σ_A restricted to $\overline{\rho}_G(\Lambda) = \tau_A^{-1} \left(\mathcal{X}(K_A)^{H_A} \right)$ is injective. But we already know that the restriction of σ_G on $\overline{\rho}_G(\Lambda_G(G/H))$ is injective, and that $\Lambda \subseteq \Lambda_G(G/H)$: this proves the second assertion.

Next, we claim that r' induces an isomorphism between $\mathcal{X}(\widehat{H}_A)^{H_A}$ and $\mathcal{X}(\widehat{H})^H$. This shows that $\widehat{H}_A/H_A \cong \widehat{H}/H$, and the rest of the lemma follows. To prove the claim, it is enough to notice that

$$\begin{split} \mathcal{X}(\widehat{H}_A)^{H_A} &\cong \frac{\overline{\rho}_G(\Lambda)}{\ker \tau_A} \\ &= \frac{\overline{\rho}_G(\Lambda)}{\overline{\rho}_G(r(\Lambda_A(A/\widehat{H}_A)))} \\ &\cong \frac{\overline{\rho}_G(\Lambda) \oplus \overline{\rho}_G(\Lambda_G(X,\mathcal{E}))}{\overline{\rho}_G(\Lambda_G(G/\widehat{H}))} \\ &= \frac{\overline{\rho}_G(\Lambda \oplus \Lambda_G(X,\mathcal{E}))}{\overline{\rho}_G(\Lambda_G(G/\widehat{H}))} \\ &= \frac{\overline{\rho}_G(\Lambda_G(G/\widehat{H}))}{\overline{\rho}_G(\Lambda_G(G/\widehat{H}))} \\ &\cong \mathcal{X}(\widehat{H})^H, \end{split}$$

and that the resulting isomorphism $\mathcal{X}(\widehat{H}_A)^{H_A} \cong \mathcal{X}(\widehat{H})^H$ is indeed induced by r'.

We build ex novo an embedding X_A of A/H_A , and then prove that we actually obtain X.

Lemma 7.13. The pull-back of characters of B_A to B along $\vartheta|_B$ induces an injective map $s \colon \Lambda_A(A/H_A) \to \Lambda_G(G/H)$ whose image is Λ . The dual map $s^* \colon N_G(G/H) \to N_A(A/H_A)$ satisfies

$$s^*(\mathcal{V}_G(G/H)) = \mathcal{V}_A(A/H_A),$$

and induces an isomorphism

$$s^*|_{\mathcal{V}^\ell_G(G/H)} \colon \mathcal{V}^\ell_G(G/H) \to \mathcal{V}^\ell_A(A/H_A)$$

Proof. Let $\gamma \in \Lambda_A(A/H_A)$: it is the B_A -eigenvalue of a B_A -eigenvector $f \in \mathbb{C}(A/H_A)^{(B_A)}$. But f is a B-eigenvector too and the character $\chi = s(\gamma)$ is its B-eigenvalue. Both the B- and the B_A -eigenvalue determine f up to a multiplicative constant, hence s is injective.

Consider the commutative diagram

From the definition of H_A we have $\overline{\rho}_A(\Lambda_A(A/H_A)) = \overline{\rho}_G(\Lambda)$, therefore we obtain $s(\Lambda_A(A/H_A)) = \Lambda$.

Let $v \in V_A(A/H_A)$. It corresponds to an A-invariant valuation, which is a fortiori G-invariant too: in other words we can compute v also on $\Lambda_G(G/H)$ obtaining an element of $V_G(G/H)$. This shows that $s^*(V_G(G/H)) \supseteq V_A(A/H_A)$.

Then we notice that s extends the map r of Lemma 7.10. This gives the commutative diagram

$$N_{G}(G/H) \xrightarrow{\pi_{*}^{H,\hat{H}}} N_{G}(G/\hat{H})$$

$$\downarrow_{s^{*}} \qquad \qquad \downarrow_{r^{*}}$$

$$N_{A}(A/H_{A}) \xrightarrow{\pi_{*}^{H_{A},\hat{H}_{A}}} N_{A}(A/\hat{H}_{A})$$

where $V_A(A/H_A)$ (resp. $V_G(G/H)$) is the inverse image of $V_A(A/\hat{H}_A)$ (resp. $V_G(G/\hat{H})$) thanks to Lemma 3.2.

This, together with Lemma 7.10, part (2), proves $s^*(V_G(G/H)) = V_A(A/H_A)$. The image of $V_G^{\ell}(G/H)$ is contained in $V_A^{\ell}(A/H_A)$, and we conclude the proof observing that the dimensions of $V_G^{\ell}(G/H)$ and $V_G^{\ell}(A/H_A)$ are both equal to the dimension of $\hat{H}/H \cong \hat{H}_A/H_A$.

Corollary 7.14. The wonderful closure of H_A is \hat{H}_A .

Proof. By construction $H_A \subseteq \widehat{H}_A \subseteq K_A = \overline{H_A}$. From Lemma 7.13 we deduce that A/H_A and A/\widehat{H}_A have the same spherical roots: the corollary follows then from Proposition 3.10.

We shall now define the fan of convex cones of X_A , using that of X. First, we collect some consequences on $\mathcal{F}(X)$ of the analysis we have developed so far.

Definition 7.15. Let \mathcal{F} be a fan of convex cones, consider a subset $\mathcal{F}' \subset \mathcal{F}$ and let $c \in \mathcal{F} \setminus \mathcal{F}'$ be 1-dimensional. Then \mathcal{F} is the *join* of \mathcal{F}' and c if each element of $\mathcal{F} \setminus \mathcal{F}'$ is the convex cone generated by c and an element of \mathcal{F}' .

- **Corollary 7.16.** (1) Let $E \in \mathcal{E}$, and let $\mathcal{F}_{G}^{\sigma_{\pi(E)}}(X)$ be the fan of convex cones obtained intersecting each element of $\mathcal{F}_{G}(X)$ with $\sigma_{\pi(E)}^{\perp}$. Then $\mathcal{F}_{G}(X)$ is the join of $\mathcal{F}_{G}^{\sigma_{\pi(E)}}(X)$ and $c_{X,E}$.
 - (2) Let $\mathcal{F}_{G}^{\Lambda}(X)$ be the fan of convex cones obtained intersecting each element of $\mathcal{F}_{G}(X)$ with $\Lambda_{G}(X, \mathcal{E})^{\perp}$. Then the restriction of s^{*} to supp $\mathcal{F}_{G}^{\Lambda}(X)$ is injective, and $s^{*}(\text{supp }\mathcal{F}_{G}^{\Lambda}(X)) = V_{A}(A/H_{A})$.
 - (3) The set

$$\left\{s^*(c) \,\middle|\, c \in \mathcal{F}_G^{\Lambda}(X)\right\}$$

is a fan of polyhedral convex cones in $N_A(A/H_A)$. The associated embedding of A/H_A is smooth and complete.

Proof. Part (1) follows from Lemma 7.2, part (2). Part (2) follows from part (1) applied to all $E \in \mathcal{E}$, together with Corollary 7.4 and Lemma 7.13. We turn to part (3). Completeness of this embedding is an immediate consequence of part (2). For smoothness, we observe that a maximal cone c of $\mathcal{F}_G(X)$ can be written as

$$c = (\{-\sigma_E \,|\, E \in \mathcal{E}\} \cup \Psi)^{\vee}$$

where Ψ is a basis of $\Lambda = \rho_{G,X}(\mathcal{E})^{\perp}$, thanks to the smoothness of X together with part (1) applied to all $E \in \mathcal{E}$ and Corollary 7.4. Therefore

$$s^*\left(c\cap\left(\Lambda_G(X,\mathcal{E})^{\perp}\right)\right) = \left(s^{-1}\left(\Psi\right)\right)^{\vee}.$$

The smoothness characterization recalled in §2 is verified, since $s^{-1}(\Psi)$ is a basis of $\Lambda_A(A/H_A)$, and the proof is complete.

Definition 7.17. We define

 $\mathcal{F}_A = \left\{ s^*(c) \, \big| \, c \in \mathcal{F}_G^{\Lambda}(X) \right\},\,$

and we denote by X_A the corresponding embedding of A/H_A .

Theorem 7.18. The inclusion $G/H \subseteq A/H_A$ extends to an A-equivariant isomorphism between X and X_A .

Proof. The group G acts on X_A via the map θ , and it is enough to show X_A is a toroidal embedding of G/H with fan $\mathcal{F}_G(X)$. Let us first prove the theorem with the assumption that $|\mathcal{E}| = 1$, say $\mathcal{E} = \{E\}$.

In addition to the *G*-equivariant map $\pi: X \to \mathbb{X}$ we also have by construction an *A*equivariant map $\pi_A: X_A \to \mathbb{X}$ extending the projection $\pi^{H_A, \hat{H}_A}: A/H_A \to A/\hat{H}_A$. The *A*-colors and the *G*-colors of \mathbb{X} coincide, and this implies the same for X_A : indeed any *A*-color (resp. *G*-color) of X_A is of the form $\pi_A^{-1}(D)$ for an *A*-color (resp. *G*-color) *D* of \mathbb{X} .

If $D \subset \mathbb{X}$ is a color such that $\pi_A^{-1}(D)$ contains a *G*-orbit $Y \subset X_A$, then *D* contains the *G*-orbit $\pi_A(Y)$: this is absurd because \mathbb{X} is a toroidal *G*-variety. In other words X_A is a toroidal *G*-variety.

Next, we claim that A/H_A is a *G*-embedding of G/H whose fan contains $c_{X,E}$ as its unique non-trivial cone. Part (3) of Lemma 7.10 implies that A/\hat{H}_A is an elementary embedding of G/\hat{H} , with orbits G/\hat{H} , $\pi(E) \cap A/\hat{H}_A$, and fan containing $c_{\mathbb{X},\pi(E)}$ as its unique non-trivial cone. The open subset $G/H \subset A/H_A (\subseteq X_A)$ is equal to $\pi_A^{-1}(G/\hat{H})$, and the *G*-stable closed subset $E' = (A/H_A) \setminus (G/H)$ is equal to $\pi_A^{-1}(\pi(E)) \cap A/H_A$.

Consider the *G*-invariant prime divisors contained in E': they are neither colors nor *A*-stable prime divisors. We claim that there is only one of them, with associated convex cone $c_{X,E}$. Then E' itself is a *G*-stable prime divisor, because we already proved that A/H_A is a toroidal embedding of G/H.

For this, consider $f \in \mathbb{C}(G/H)^{(B)}_{\lambda}$ with $\lambda \in \Lambda$. By Lemma 7.13 we have that f is also a B_A -eigenvector, therefore its divisor div(f) on A/H_A has components which are either colors or A-stable prime divisors. It follows that $\rho_{G,A/H_A}(F) \in \lambda^{\perp}$ for all $\lambda \in \Lambda$ and all G-stable prime divisor $F \subseteq E'$. Since $c_{X,E} = \Lambda^{\perp} \cap V_G(G/H)$, we deduce that there is only one such F and it satisfies $\rho_{G,A/H_A}(F) \in c_{X,E}$: the claim above follows.

Now Lemma 7.2, Lemma 7.13 and Corollary 7.16 part (1) hold also if we replace X with X_A and \mathcal{D} with the set $(\partial_G X_A) \setminus \{E'\}$. From Corollary 7.16 part (1) we deduce that $\mathcal{F}_G(X_A)$ is the join of $\mathcal{F}_G^{\sigma_{\pi(E)}}(X_A)$ and $c_{X,E}$. From Lemma 7.13 we deduce that every G-stable prime divisor D of X_A such that $\rho_{G,X_A}(D) \in \sigma_{\pi(E)}^{\perp}$ is also A-stable, hence each G-orbit $Y \subseteq X_A$ such that $c_{X_A,Y} \subset \sigma_{\pi(E)}^{\perp}$ is also an A-orbit.

In other words $\mathcal{F}_{G}^{\sigma_{\pi}(E)}(X_{A})$ and $\mathcal{F}_{G}^{\sigma_{\pi}(E)}(X)$ have the same image under s_{*} , which implies that they are equal. The theorem in the case |E| = 1 follows.

If $|\mathcal{E}| > 1$, we consider the chain of groups

$$\theta_{G,X}(G) \subseteq \operatorname{Aut}^{\circ}(X, \partial_G X \setminus \{E_1\}) \subseteq \operatorname{Aut}^{\circ}(X, \partial_G X \setminus \{E_1, E_2\}) \subseteq \ldots \subseteq \operatorname{Aut}^{\circ}(X, \mathcal{D})$$

where $\mathcal{E} = \{E_1, E_2, \ldots\}$, and proceed by induction on $|\mathcal{E}|$. Let $A_i \subseteq A_{i+1}$ be two consecutive groups of this chain: we may apply the first part of the proof, together with Corollary 7.19 below (whose proof in the case $|\mathcal{E}| = 1$ only depends on the case $|\mathcal{E}| = 1$ of this theorem) to the A_i -variety X. We obtain the construction of an A_{i+1} -variety $X_{A_{i+1}}$, which is A_i -equivariantly isomorphic to X.

Corollary 7.19. We have $\partial_A X = \mathcal{D}$ and $(\partial_A X)^{\ell} = (\partial_G X)^{\ell}$.

Proof. This is obvious from the definition of \mathcal{F}_A .

Corollary 7.20. The image of A in Aut°(X) is equal to Aut°(X, \mathcal{D}).

Proof. By construction A moves each element of \mathbb{E} on \mathbb{X} and stabilizes all elements of \mathbb{D} , hence $\mathbb{D} = \partial_A \mathbb{X}$.

Moreover \widehat{H}_A is the wonderful closure of H_A , hence we can apply the exact sequence (4.2) to Xas an A-variety, mapping onto the wonderful A-variety \mathbb{X} . Since the image of A contains by construction both the universal cover of $\operatorname{Aut}^{\circ}(\mathbb{X}, \mathbb{D}) = \operatorname{Aut}^{\circ}(\mathbb{X}, \partial_A \mathbb{X})$ and $(\widehat{H}_A/H_A)^{\circ} \cong (\widehat{H}/H)^{\circ} \subseteq C$, it follows that the image of A contains $\operatorname{Aut}^{\circ}(X, \partial_A X) = \operatorname{Aut}^{\circ}(X, \mathcal{D})$. \Box

8. Abelian case

In this section we will assume that G = C is an algebraic torus, X as usual a complete G-regular variety, and $\mathcal{D} \subseteq \partial_G X$ any subset. Hence X is a toric variety under the acton of a quotient of G. Since G is equal to its own Borel subgroups, X has no G-color.

We recall now the description of $\operatorname{Aut}^{\circ}(X)$ given in [Oda88]. In this setting the study of $\operatorname{Aut}^{\circ}(X)$ is simplified by the fact that, for all $D \in \partial_G X$, the *G*-module $H^0(X, \mathcal{O}_X(D))$ splits into the sum of 1-dimensional *G*-submodules.

Definition 8.1. Suppose that for some non-zero $\alpha \in \Lambda_G(X)$ the divisor $X(\alpha)$ exists, i.e. that there exist $X(\alpha) \in \partial_G X$ and an element $f_\alpha \in H^0(X, \mathcal{O}_X(X(\alpha)))^{(B)}_{\alpha}$. Then we denote by $u_\alpha \colon \mathbb{C} \to \operatorname{Aut}^{\circ}(X)$ the unipotent 1-PSG corresponding to α defined in [Oda88, Proposition 3.14], and such that $X(\alpha)$ is the unique *G*-stable prime divisor not stable under $U_\alpha = u_\alpha(\mathbb{C})$.

We recall that [Oda88, Proposition 3.14] gives explicit formulae for u_{α} , and that this 1-PSG can also be defined in the following way. The element $\alpha \in \Lambda_G(X)$ naturally corresponds to a semisimple 1-PSG of Aut°(X) through the action of G on X. Denote by δ_{α} its derivative, which is a tangent vector field on X. Then the tangent vector field du_{α} is equal to $f_{\alpha}\delta_{\alpha}$.

Remark 8.2. If $X(\alpha)$ exists for some α , then $\langle \rho_{G,X}(X(\alpha)), \alpha \rangle = -1$ and $\langle \rho_{G,X}(D), \alpha \rangle \geq 0$ for all $D \in \partial_G X$ different from $X(\alpha)$. However, the difference in signs from our discussion and [Oda88, §3.4] is only apparent: a character $\lambda \in \mathcal{X}(\theta_{G,X}(G))$ is indeed a rational function on Xand a G-eigenvector, but of G-eigenvalue $-\lambda$.

Notice that the assignment $\alpha \mapsto X(\alpha)$ might be not injective. Also, if both $X(\alpha)$ and $X(-\alpha)$ exist, then $\rho_{G,X}(X(\alpha))$ is not necessarily $-\rho_{G,X}(X(-\alpha))$. However, $X(\alpha)$ and $X(-\alpha)$ are the only G-stable prime divisors whose images through $\rho_{G,X}$ are non-zero on α .

Definition 8.3. Let $\mathcal{D} \subseteq \partial_G X$ any subset, and define $\Phi = \Phi(X, \mathcal{D})$ to be the maximal set of roots of X such that:

- (1) if $\alpha \in \Phi(X, \mathcal{D})$ then also $-\alpha \in \Phi(X, \mathcal{D})$;
- (2) if $\alpha \in \Phi(X, \mathcal{D})$ then $X(\alpha) \in \mathcal{E} = \partial X \setminus \mathcal{D}$.

The following result is an immediate consequence of [Oda88, Demazure's Structure Theorem, §3.4].

Theorem 8.4. The subgroup of $\operatorname{Aut}^{\circ}(X)$ generated by $\theta_{G,X}(G)$ and U_{α} for all $\alpha \in \Phi(X, \mathcal{D})$ has $\Phi(X, \mathcal{D})$ as root system with respect to its maximal torus $\theta_{G,X}(G)$, and is a Levi subgroup of $\operatorname{Aut}^{\circ}(X, \mathcal{D})$.

Definition 8.5. Define $A = A(X, \mathcal{D})$ the subgroup of Aut°(X) generated by $\theta_{G,X}(G)$ and U_{α} for all $\alpha \in \Phi(X, \mathcal{D})$. Let us also choose a Borel subgroup $B_A \subseteq A$ containing G and, consequently, a subdivision of Φ into positive and negative roots, resp. denoted by $\Phi_+ = \Phi_+(X, \mathcal{D})$ and $\Phi_- = \Phi_-(X, \mathcal{D})$, and denote by $\Psi = \Psi(X, \mathcal{D})$ the basis of positive roots.

Since B_A is generated by $\theta_{G,X}(G)$ together with the subgroups U_{α} for all $\alpha \in \Psi$, we have that any G-stable prime divisor which doesn't appear as $X(\alpha)$ for some $\alpha \in \Psi$ is B_A -stable. In other words

(8.1)
$$\{X(\alpha) \mid \alpha \in \Phi_+\} = \{X(\alpha) \mid \alpha \in \Psi\},\$$

and for the same reason (replacing Ψ with $-\Psi$)

(8.2)
$$\{X(\alpha) \mid \alpha \in \Phi_{-}\} = \{X(\alpha) \mid \alpha \in (-\Psi)\}.$$

Lemma 8.6. Let $\alpha, \beta \in \Phi$, and suppose that $X(\alpha) = X(\beta)$. Then $\gamma = \alpha - \beta$ and $-\gamma$ are also in Φ , with $X(\gamma) = X(-\beta)$ and $X(-\gamma) = X(-\alpha)$.

Proof. Suppose that $X(-\alpha) = X(-\beta)$. Then $\alpha - \beta$ is zero on $\rho_{G,X}(X(\pm \alpha))$ and on $\rho_{G,X}(X(\pm \beta))$. On the other hand, if a *G*-stable prime divisor $D \subset X$ is not of the form $X(\pm \alpha)$ nor $X(\pm \beta)$, then both α and β are zero on $\rho_{G,X}(D)$. It follows that supp $\mathcal{F}_G(X)$ is contained in the hyperplane $(\alpha - \beta)^{\perp}$ of $N_G(X)$, which contradicts the completeness of *X*. Therefore $X(-\alpha) \neq X(-\beta)$, i.e. $X(\alpha), X(-\alpha)$ and $X(-\beta)$ are three different prime divisors. The statement of the lemma is now obvious.

Lemma 8.7. The matrix

(8.3)
$$(\langle \rho_{G,X}(X(\alpha)), \alpha \rangle)_{\alpha \in \Psi}$$

is non-degenerate. In particular, the elements $\rho_{G,X}(X(\alpha))$, for α varying in Ψ , are linearly independent.

Proof. Thanks to Lemma 8.6, the elements $\rho_{G,X}(X(\alpha))$ for $\alpha \in \Psi$ are pairwise distinct. If the matrix (8.3) is degenerate, there exists a linear combination

(8.4)
$$\sum_{\alpha \in \Psi'} a_{\alpha} \rho_{G,X}(X(\alpha)) \in \Psi^{\perp}$$

where $\emptyset \neq \Psi' \subseteq \Psi$ and $a_{\alpha} \neq 0$ for all $\alpha \in \Psi'$. Applying $\langle -, \alpha \rangle$ for a fixed $\alpha \in \Psi'$ to the linear combination (8.4), we see that both $\rho_{G,X}(X(\alpha))$ and $\rho_{G,X}(X(-\alpha))$ must appear in the sum. Indeed, the former appears, and the latter is the only other possible summand that is nonzero on α . The elements $\rho_{G,X}(X(-\alpha))$ for $\alpha \in \Psi$ are distinct, thanks to the first part of the proof applied to the set of simple roots $-\Psi$.

Hence each summand in (8.4) can also be rewritten as $a_{\alpha}\rho_{G,X}(X(-\tau(\alpha)))$ where $\tau: \Psi' \to \Psi'$ is a bijection. We also know that $\rho_{G,X}(X(\alpha)) \neq \rho_{G,X}(X(-\alpha))$, therefore τ has no fixed points. Now consider

$$\gamma = \sum_{\alpha \in \Psi'} \alpha.$$

Its value on $\rho_{G,X}(D)$ is zero, if $D \subset X$ is a *G*-stable prime divisor not of the form $X(\pm \alpha)$ for some $\alpha \in \Psi'$. On the other hand, for a fixed $\alpha \in \Psi'$ we have that $X(\alpha) = X(-\tau(\alpha))$, but $X(\alpha) \neq X(\beta)$ for all $\beta \in \Psi$ different from α , and $X(\alpha) \neq X(-\beta)$ for any $\beta \in \Psi$ different from $\tau(\alpha)$. Therefore

$$\langle \rho_{G,X}(X(\alpha)), \gamma \rangle = \langle \rho_{G,X}(X(\alpha)), \alpha \rangle + \langle \rho_{G,X}(X(\alpha)), \tau(\alpha) \rangle + \left\langle \rho_{G,X}(X(\alpha)), \sum_{\beta \in \Psi', \beta \neq \alpha, \tau(\alpha)} \beta \right\rangle$$
$$= -1 + 1 + 0 = 0.$$

We obtain that supp $\mathcal{F}_G(X)$ is contained in the hyperplane γ^{\perp} , which is absurd because X is complete.

Proposition 8.8. As an A-variety, X is spherical (not necessarily toroidal). The set of its A-stable prime divisors is

$$\partial_A X = \partial_G X \setminus \{ X(\alpha) \mid \alpha \in \Phi \},\$$

and these are exactly the G-stable prime divisors D such that $\rho_{G,X}(D) \in \Psi^{\perp}$. Given the identification $\mathcal{X}(\theta_{G,X}(G)) = \mathcal{X}(B_A)$, we have an inclusion

$$\iota \colon \Lambda_A(X) \to \Lambda_G(X)$$

whose image is the sublattice

(8.5)
$$\{\rho_{G,X}(X(\alpha)) \mid \alpha \in \Psi\}^{\perp} \subseteq \Lambda(X).$$

The restriction map $\iota^* \colon N_G(X) \to N_A(X)$ induces an isomorphism

$$\iota^*|_{\Psi^{\perp}} \colon \Psi^{\perp} \xrightarrow{\cong} \mathrm{N}_A(X).$$

For any B_A -stable prime divisor $D \subset X$ we have $\rho_{A,X}(D) = \iota^* \rho_{G,X}(D)$, and the set of A-colors of X is the following:

$$\Delta_A(X) = \{X(\alpha) \mid \alpha \in (-\Psi)\} \setminus \{X(\alpha) \mid \alpha \in \Psi\}.$$

Finally, let $\alpha \in \Psi$ with $X(-\alpha) \in \Delta_A(X)$. For all $\beta \in \Phi_+$ different from α , we have $X(-\alpha) \neq X(\beta)$ and $X(\alpha) \neq X(\beta)$. In particular, if in addition $\beta \in \Psi$, we also have $\rho_{G,X}(X(-\alpha)) \in \beta^{\perp}$.

Proof. Since $\theta_{G,X}(G) \subseteq B_A$ has already an open orbit on X, the first statement is obvious. The statement about the A-stable prime divisors is also immediate.

Let us prove that the A-colors are the set $\Delta_A(X)$ as above defined. A color must be $X(\alpha)$ for some $\alpha \in \Phi$ otherwise it is A-stable, and at this point not being of the form $X(\alpha)$ for any $\alpha \in \Phi_+$ is equivalent to be stable under B_A . Then, we conclude using (8.1) and (8.2).

The inclusion ι is given by the simple observation that a B_A -eigenvector in $\mathbb{C}(X)$ is a fortiori a *G*-eigenvector, with same eigenvalue; the identity $\rho_{A,X}(D) = \iota^* \rho_{G,X}(D)$ for any B_A -stable prime divisor is also obvious.

Let us prove that the image of ι is the lattice (8.5). If $\gamma \in \Lambda_A(X)$, then a corresponding B_A -eigenvector $f_{\gamma} \in \mathbb{C}(X)$ cannot have zeros nor poles on prime divisors $X(\alpha)$ for $\alpha \in \Psi$, since the latter divisors are not B_A -stable. Hence $\iota(\Lambda_A(X)) \subseteq \{\rho_{G,X}(X(\alpha)) \mid \alpha \in \Psi\}^{\perp}$. On the other hand, if $\chi \in \{\rho_{G,X}(X(\alpha)) \mid \alpha \in \Psi\}^{\perp}$, then a corresponding *G*-eigenvector $f_{\chi} \in \mathbb{C}(X)$ has zeros and poles only on *A*-stable prime divisors or on colors. It follows that f_{χ} is also a B_A -eigenvector, and the other inclusion is proved.

We prove now that $\iota^*|_{\Psi^{\perp}}$ is an isomorphism between Ψ^{\perp} and $N_A(X)$. From the first part of the proof, this follows if we prove that

$$\Lambda \otimes_{\mathbb{Z}} \mathbb{Q} = (\Psi \otimes_{\mathbb{Z}} \mathbb{Q}) \oplus \left(\{ \rho_{G,X}(X(\alpha)) \mid \alpha \in \Psi \}^{\perp} \otimes_{\mathbb{Z}} \mathbb{Q} \right),$$

and this equality is an easy consequence of Lemma 8.7.

Let us check the last statement, so let $\alpha \in \Psi$ be such that $X(-\alpha) \in \Delta_A(X)$, and consider $\beta \in \Phi_+, \beta \neq \alpha$. We know that $X(-\alpha) \neq X(\beta)$ because of the definition of $\Delta_A(X)$ together with (8.1). This also implies that $X(\alpha) \neq X(\beta)$, because otherwise we would have $\beta - \alpha \in \Phi_+$ with $X(-\alpha) = X(\beta - \alpha)$, thanks to Lemma 8.6.

Remark 8.9. The two above results imply in particular that the A-colors of X, seen as elements of $N_A(X)$, are linearly independent.

Example 8.10. An example where X is not toroidal as an A-variety can be given as follows. Let $X = \mathbb{P}^n$ with $n \ge 2$, under the linear action of the group G of $(n + 1) \times (n + 1)$ invertible diagonal matrices. Then $\partial_G X$ has n+1 elements, each given by the vanishing of an homogeneous coordinate. If \mathcal{D} is the set of all of them except for one, then $\operatorname{Aut}^{\circ}(X, \mathcal{D})$ is a maximal parabolic subgroup of $\operatorname{PGL}(n+1)$. Its Levi subgroup A containing the image of G acts with a fixed point, contained in all elements of \mathcal{D} therefore contained in any L-color of X.

We can now state the main theorem of this section.

Theorem 8.11. If we identify $N_A(X)$ and Ψ^{\perp} via the map $\iota^*|_{\Psi^{\perp}}$ of Proposition 8.8, the fan of colored convex cones $\mathcal{F}_A(X)$ of X as a spherical A-variety is obtained from the fan $\mathcal{F}_G(X)$ as follows:

$$\mathcal{F}_A(X) = \left\{ (c \cap \Psi^{\perp}, d(c)) \mid c \in \mathcal{F}_G(X) \right\}.$$

Here d(c) is the set of A-colors D of X such that if $\beta \in \Phi_+$ satisfies $X(-\beta) = D$, then both $\rho_{G,X}(X(\beta))$ and $\rho_{G,X}(X(-\beta))$ lie on 1-dimensional faces of c.

Proof. First, we consider $c \in \mathcal{F}_G(X)$ and we show that the colored cone $(c \cap \Psi^{\perp}, d(c))$ belongs to $\mathcal{F}_A(X)$.

The cone c is equal to $c_{X,Y}$ for some G-orbit Y. We claim that the colored cone associated to the A-orbit AY is given by $(c \cap \Psi^{\perp}, d(c))$, with d(c) defined as in the theorem. To show the claim, it is enough to prove that:

- (1) the A-stable prime divisors containing AY are the G-stable prime divisors D such that $D \supseteq Y$ and $\rho_{G,X}(D) \in \Psi^{\perp}$;
- (2) the set of the A-colors containing AY is d(c);
- (3) the convex cone c' generated by the image of elements of (1) and (2) under the map $\iota^* \circ \rho$ is $c \cap \Psi^{\perp}$.

Part (1) is obvious, thanks to the results on $\partial_A X$ contained in Proposition 8.8. For part (2), let us first prove that a color D not belonging to d(c) doesn't contain AY. If D doesn't contain Y there is nothing to prove, therefore we may assume that $\rho_{G,X}(D)$ lies on a 1-dimensional face of c. Suppose at first that $X(-\beta) = D$ for some $\beta \in \Phi_+$, in such a way that $X(\beta)$ doesn't contain Y.

Let X_c be the affine G-stable open subset of X associated to the cone c, i.e.:

$$X_c = \left\{ x \in X \mid \overline{Gx} \supseteq Y \right\}.$$

It is isomorphic to an affine space, and in [Oda88, Proof of Proposition 3.14] it is shown that X_c is stable under the action of $U_{-\beta}$.

More precisely, there exist global coordinates (x_1, \ldots, x_n) on X_c such that $X(-\beta) \cap X_c$ is the hyperplane defined by the equation $x_1 = 0$, and in these coordinates $U_{-\beta}$ acts as follows:

(8.6)
$$u_{-\beta}(\xi)(x_1, x_2, \dots, x_n) = (x_1 + \xi, x_2, \dots, x_n).$$

One may easily check this formula using [Oda88, Proposition 3.14] and the fact that $X(-\beta)$ is the only *G*-stable prime divisor that contains *Y* and where β is non-zero. The hyperplane defined in X_c by $x_1 = 0$ contains *Y*, but from (8.6) we deduce that it doesn't contain $U_{\beta}Y$. As a consequence, *AY* is not contained in $X(-\beta)$.

Now we show that a color D in d(c) contains AY. At first, consider $\beta \in \Phi_+$ such that $X(-\beta) = D$. Both $X(-\beta)$ and $X(\beta)$ contain Y, and we consider again the affine space X_c .

Applying [Oda88, Proposition 3.14] once again, there exist coordinates (x_1, x_2, \ldots, x_n) such that $X(-\beta) \cap X_c$ is defined by the equation $x_1 = 0$, and $X(\beta) \cap X_c$ by the equation $x_2 = 0$, and such that

(8.7)
$$u_{-\beta}(\xi)(x_1, x_2, \dots, x_n) = (x_1 + \xi x_2, x_2, \dots, x_n)$$

and

(8.8)
$$u_{\beta}(\xi)(x_1, x_2, \dots, x_n) = (x_1, x_2 + \xi x_1, \dots, x_n).$$

We obtain that Y is both $U_{-\beta}$ -stable and U_{β} -stable, being contained in the subset of X_c defined by $x_1 = x_2 = 0$. Therefore $X(-\beta) = D$ contains $Y = U_{\beta}U_{-\beta}Y$.

Now observe that the image of the multiplication map

$$\theta_{G,X}(G) \times \prod_{\gamma \in \Phi} U_{\gamma} \to A$$

(where the product is taken in any fixed order) is dense in A. It follows that D contains AY, if we prove that D is U_{γ} -stable for all $\gamma \in \Phi$ such that $\gamma \neq \pm \beta$ for all $\beta \in \Phi_{+}$ satisfying $X(-\beta) = D$. For $\gamma \in \Phi_{-}$ there is nothing to prove. But also for $\gamma \in \Phi_{+}$ we know that $D \neq X(\gamma)$: this fact stems from the last statement of Proposition 8.8 together with (8.1). The proof of (2) is complete.

Let us prove (3). Call S the set of A-stable prime divisors containing AY. Then we can describe a minimal set of generators of c (as a convex cone) as the union of the following subsets:

- (a) the set $\rho_{G,X}(S)$;
- (b) for each color $D \in d(c)$, the set $\{\rho_{G,X}(D)\} \cup \{\rho_{G,X}(X(\beta)) \mid \beta \in \Phi_+, X(-\beta) = D\};$
- (c) other generators, different from any of the above.

We show that $c \cap \Psi^{\perp}$ is contained in c', and recall that the latter is generated by $\rho_{G,X}(S)$ together with $\iota^*(\rho_{G,X}(d(c)))$. An element $x \in c \cap \Psi^{\perp}$ is a linear combination with non-negative coefficients of the above generators, and we may assume that the elements of (a) do not contribute. This indeed implies the general case, since $\rho_{G,X}(S) \subseteq c'$.

Also, we may suppose that any generator z involved in the linear combination giving x satisfies $\iota^*(z) \neq 0$. Indeed, otherwise we may suppress it using the fact that $x = \iota^*(x)$. Hence, all generators in the linear combination of x are not of the form $\rho_{G,X}(X(\beta))$ for $\beta \in \Psi$.

It remains the generators $\rho_{G,X}(D)$ where $D \in d(c)$, and generators of (c) of the form $\rho_{G,X}(X(-\alpha))$ for some $\alpha \in \Psi$. In the second case $X(-\alpha)$ is a color, because it cannot be equal to $X(\beta)$ for any $\beta \in \Psi$. Being not in d(c), each such $X(-\alpha)$ admits a positive root β satisfying $X(-\beta) = X(-\alpha)$ and D_{β} not a generator of c. This implies that β is non-positive on c, and the only chance for x to be in β^{\perp} is that such a generator $X(-\beta) = X(-\alpha)$ doesn't occur.

As a consequence, x is a linear combination of the elements $\rho_{G,X}(D)$ with $D \in d(c)$, and we easily conclude that $x \in c'$ using again $\iota^*(x) = x$.

Finally, let $x \in c'$, and let us show that $x \in c \cap \Psi^{\perp}$. As before, we ignore the generators of c' lying in Ψ^{\perp} , and we assume that x is a linear combination with non-negative coefficients of $\iota^*(d(c))$. In other words:

$$x = \sum_{\alpha \in \Psi, X(-\alpha) \in d(c)} a_{\alpha} \iota^* \left(\rho_{G,X} \left(X(-\alpha) \right) \right)$$

with $a_{\alpha} \geq 0$. Consider a summand $a_{\alpha}\iota^*(\rho_{G,X}(X(-\alpha)))$. For each positive root $\beta \neq \alpha$ such that $X(-\beta) = X(-\alpha)$, Lemma 8.6 implies that $\gamma = \beta - \alpha$ and $-\gamma$ are also roots in Φ , and that $X(-\alpha) = X(-\beta)$, $X(\alpha) = X(-\gamma)$, $X(\gamma) = X(\beta)$ are three distinct prime divisors. Then, we take the sum

(8.9)
$$y = \sum_{\alpha \in \Psi, X(-\alpha) \in d(c)} a_{\alpha} y_{\alpha}$$

where

$$y_{\alpha} = \rho_{G,X} \left(X(-\alpha) \right) + \sum_{\substack{\beta \in \Phi_+, \\ X(-\beta) = X(-\alpha)}} \rho_{G,X} \left(X(\beta) \right).$$

We claim that all simple roots in Ψ are zero on this element, hence $\iota^*(y) = y$ and we immediately conclude that y = x. On the other hand, y is in c thanks to the definition of the set d(c), therefore $x \in c \cap \Psi^{\perp}$.

Let us prove the claim. Let $\gamma \in \Psi$, and pick a y_{α} . If $\gamma = \alpha$, then it is easy to check using the last assertion of Proposition 8.8 that y_{α} is the sum of $\rho_{G,X}(X(-\alpha))$ and $\rho_{G,X}(X(\alpha))$, plus other terms where α is zero. It follows $\langle y_{\alpha}, \gamma \rangle = 0$.

If $\gamma \neq \alpha$, then $\langle \rho_{G,X}(X(-\alpha)), \gamma \rangle = 0$ thanks to Proposition 8.8. Moreover, in this case γ does not appear as a β in the sum expressing y_{α} , because we know that $X(-\alpha) \neq X(-\gamma)$. Also, if $X(\pm \gamma)$ is different from $\rho_{G,X}(X(\beta))$ for all $\beta \in \Phi_+$ such that $X(-\beta) = X(-\alpha)$, then again $\langle y_{\alpha}, \gamma \rangle = 0$.

Therefore we may suppose that γ is different from all the β appearing in the expression of y_{α} , but some of them, say $\beta_{i,\gamma}$ for i = 1, ..., k, satisfy $X(\beta_{i,\gamma}) = X(\epsilon_{i,\gamma}\gamma)$ where $\epsilon_{i,\gamma} = 1$ or -1. In this case Lemma 8.6 implies that $\beta_{i,\gamma} - \epsilon_{i,\gamma}\gamma$ also appears in the sum, with $X(\beta_{i,\gamma} - \epsilon_{i,\gamma}\gamma) =$ $X(-\epsilon_{i,\gamma}\gamma)$. We obtain:

$$y_{\alpha} = \rho_{G,X} (X(-\alpha)) + \sum_{i=1}^{k} (\rho_{G,X} (X(\beta_{i,\gamma})) + \rho_{G,X} (X(\beta_{i,\gamma} - \epsilon_{i,\gamma}\gamma))) + \sum_{\substack{\beta \in \Phi_{+}, X(\beta) \neq X(\pm \gamma) \\ X(-\beta) = X(-\alpha)}}^{k} \rho_{G,X} (X(\beta)) = \rho_{G,X} (X(-\alpha)) + \sum_{i=1}^{k} (\rho_{G,X} (X(\gamma)) + \rho_{G,X} (X(-\gamma))) + \sum_{\substack{\beta \in \Phi_{+}, X(\beta) \neq X(\pm \gamma) \\ X(-\beta) = X(-\alpha)}}^{k} \rho_{G,X} (X(\beta)).$$

From this expression it is evident that $\langle y_{\alpha}, \gamma \rangle = 0$, and the proof of (3) is complete.

To finish the proof of the theorem, we must check that all colored cones of $\mathcal{F}_A(X)$ appear as $(c \cap \Psi^{\perp}, d(c))$ for some $c \in \mathcal{F}_G(X)$. For this, it is enough to notice that for each A-orbit Z there is a G-orbit Y such that AY = Z.

Corollary 8.12. The A-variety is horospherical, i.e. $\Sigma_A(X) = \emptyset$.

Proof. There exists a smooth complete toroidal A-variety Y equipped with a surjective birational A-equivariant morphism $Y \to X$ (it is enough to choose an A-equivariant resolution of singularities of the variety given in [Kn91, Lemma 5.2], where X'' in the proof of *loc.cit.* is our X).

Then $\Sigma_A(Y) = \Sigma_A(X)$, and Y is also a complete G-regular embedding. Applying Theorem 8.11 to Y, it follows that supp $\mathcal{F}_A(Y)$ is a vector space, and it is equal to $V_A(Y)$ because Y is toroidal and complete. We conclude that $\Sigma_A(Y) = \emptyset$.

Remark 8.13. With a slightly more involved proof, one can derive the above corollary directly from Proposition 8.8 and avoid using Theorem 8.11.

Remark 8.14. It is easy to check that $d(c) = \emptyset$ if and only if $c \cap \Psi^{\perp}$ is a face of c.

Example 8.15. Let us compute the colored fan of $X = \mathbb{P}^2$, as in Example 8.10 with n = 2. Choose $\mathcal{E} = \{E_3\}$ where $E_i = \{x_i = 0\}$ and x_1, x_2 and x_3 are homogeneous coordinates on \mathbb{P}^2 . Then $A = \operatorname{Aut}^{\circ}(\mathbb{P}^2, \mathcal{D})$ is isomorphic to SL(2), and we choose the Borel subgroup of A stabilizing the point [1, 0, 0]. The lattice $\Lambda_G(\mathbb{P}^2)$ is then the root lattice of PGL(3), and we have $X_1 = X(\alpha_1) = X(\alpha_1 + \alpha_2), X_2 = X(\alpha_2) = X(-\alpha_1)$ and $X_3 = X(-\alpha_1 - \alpha_2) = X(-\alpha_2)$, where α_1 and α_2 are the simple roots of PGL(3). The lattice $\Lambda_A(\mathbb{P}^2)$ is $\rho_{G,\mathbb{P}^2}(X_1)^{\perp} = \mathbb{Z}\alpha_2$, which is the weight lattice of SL(2), and \mathbb{P}^2 has only one A-color, namely X_2 . The maximal colored cones of $\mathcal{F}_A(\mathbb{P}^2)$ are $(\mathbb{Q}_{\geq 0}\rho_{G,\mathbb{P}^2}(X_3), \emptyset)$ and $(-\mathbb{Q}_{\geq 0}\rho_{G,\mathbb{P}^2}(X_3), \{X_2\})$.

9. Semisimple case

In this section we assume that G is a semisimple group, i.e. $C = \{e\}$. In this setting the functionals associated to the colors of X generate $N_G(X)$ as a vector space. Indeed, if $\lambda \in \Lambda_G(X)$ is in $\rho_{G,X}(\Delta_G(X))^{\perp}$, then a rational function $f \in \mathbb{C}(G/H)^{(B)}_{\lambda}$ is regular on G/Hand nowhere zero. It can be then lifted to a nowhere-vanishing function $F \in \mathbb{C}[G]$, which is then constant since G has no non-trivial character (see [KKV89, Proposition 1.2]). We conclude that $\lambda = 0$, and the claim follows.

This essentially implies the following main result of this section.

Theorem 9.1. If G is semisimple and \mathcal{D} is any subset of $\partial_G X$, then $\operatorname{Aut}^{\circ}(X, \mathcal{D} \cup (\partial_G X)^{\ell})$ is a Levi subgroup of $\operatorname{Aut}^{\circ}(X, \mathcal{D})$.

The proof is at the end of this section. The theorem implies that if G is semisimple then §7 is enough to describe a Levi subgroup of Aut° (X, \mathcal{D}) and its action on X, without any restriction on \mathcal{D} .

Recall from $\S5$ the restriction map

$$\kappa_{x'} \colon (\ker \psi_*)^\circ \to \operatorname{Aut}^\circ(X_{x'})$$

where x' lies on the open G-orbit of X', and $X_{x'} = \psi^{-1}(x')$.

Lemma 9.2. For all x' in the open B-orbit of X', the image of $\kappa_{x'}$ in Aut°($X_{x'}$) is very solvable (i.e. contained in a Borel subgroup).

Proof. To simplify notations we assume that $x' = x'_0$. Let $\mathcal{E}' \subseteq \partial_S X_{x'_0}$ be the following subset:

$$\mathcal{E}' = \{ E \cap X_{x'_0} \mid E \in \mathcal{E} \},\$$

and define $\mathcal{D}' = \partial_S X_{x'_0} \setminus \mathcal{E}'$. Let us also denote by $K_{x'_0}$ the image of $\kappa_{x'_0}$: it is obviously a subgroup of $\operatorname{Aut}^{\circ}(X_{x'_0}, \mathcal{D}')$. On the other hand $K_{x'_0}$ contains the maximal torus S of $\operatorname{Aut}^{\circ}(X_{x'_0})$, hence we only have to compute the root subgroup it contains. Thanks to Lemma 6.4 and Corollary 5.3, they are the root spaces $U_{\alpha} \subset \operatorname{Aut}^{\circ}(X_{x'_0})$ for α varying in the set

$$R = \left\{ \gamma |_S \mid 0 \neq \gamma \in \Lambda_G(G/H), \ X(\gamma) \text{ exists and } X(\gamma) \in \mathcal{E}^{\ell} \right\}.$$

From Lemma 6.5, we obtain that R doesn't contain the opposite of any of its elements, therefore $K_{x'_0}$ is very solvable.

Proof of Theorem 9.1. First, observe that $(\ker \psi_*)^\circ$ is solvable. This stems from Lemma 9.2, and the obvious observation that

(9.1)
$$\bigcap_{x' \text{ in the open } B \text{-orbit of } X'} \ker(\kappa_{x'}) = \{ \mathrm{id}_X \}.$$

Consider now the variety X under the action of $A = \operatorname{Aut}^{\circ}(X, \mathcal{D} \cup (\partial_G X)^{\ell})$. Thanks to Theorem 7.8, the group A is semisimple (because here G is semisimple) and under its action X is a G-regular embedding with boundary $\mathcal{D} \cup (\partial_G X)^{\ell}$. Corollary 7.19 implies $(\partial_A X)^{n\ell} = \mathcal{D}^{n\ell} \subseteq \mathcal{D}$, and we deduce that $\operatorname{Aut}^{\circ}(X, \mathcal{D}) \subseteq \operatorname{Aut}^{\circ}(X, (\partial_A X)^{n\ell})$.

Then we may apply Proposition 5.2 with G replaced by the universal cover of A: the theorem follows. \Box

Remark 9.3. Let X and G be as in Example 7.9. Then the full automorphism group of X is non-reductive. Indeed, it must fix the point $p \in \mathbb{P}^{n+1}$, and one concludes easily that $\operatorname{Aut}^{\circ}(X)$ is the corresponding maximal proper parabolic subgroup of $\operatorname{PGL}(n+2) \times \operatorname{PGL}(n+1)$. The unipotent radical $\operatorname{Aut}^{\circ}(X)^u$ can be studied restricting its elements to the generic fiber $X_{x'_0}$; however, the example shows that for any given fiber the restriction may be non-injective, therefore a global analysis of these restrictions is needed. This goes beyond the scope of the present work.

10. G-stable prime divisors on the linear part of the valuation cone

In this section $G = G' \times C$ is neither abelian nor semisimple. For simplicity, and thanks to §8, we may assume that G' acts non-trivially on X. The variety X' is then not a single point. Recall that S acts on X naturally by G-equivariant automorphisms preserving the fibers of ψ , so we can consider S as a subgroup of $\operatorname{Aut}^{\circ}(X, \partial_G X) \cap (\ker \psi_*)^{\circ}$.

We study the automorphism group Aut^o(X, \mathcal{D}), where $\mathcal{D} \subseteq \partial_G X$ satisfies $\mathcal{D} \supseteq (\partial_G X)^{n\ell}$. Denote as usual $\mathcal{E} = \partial_G X \setminus \mathcal{D} \subseteq (\partial_G X)^{\ell}$, and recall that all elements $D \in (\partial_G X)^{\ell}$ intersect $X_{x'_0}$ in an S-stable prime divisor.

Proposition 10.1. Let x' in the open G-orbit of X', and $L = L(X, \mathcal{D})$ be a Levi subgroup of $(\operatorname{Aut}^{\circ}(X, \mathcal{D}) \cap \operatorname{ker}(\psi_*))^{\circ}$ containing S. Then $L_{x'} = \kappa_{x'}(L)$ is isomorphic to L, and the group

$$(\theta_{G,X}(G), \theta_{G,X}(G)) \times L(X, \mathcal{D})$$

is locally isomorphic to a Levi subgroup of $Aut^{\circ}(X, \mathcal{D})$.

Proof. Thanks to formula (9.1) and the fact that x' is generic in X', we know that the map $L \to L_{x'}$ has unipotent kernel, therefore is an isomorphism. The rest follows from Proposition 5.2. \Box

Definition 10.2. We define the following group:

$$A = A(X, \mathcal{D}) = (\theta_{G,X}(G), \theta_{G,X}(G)) \times L(X, \mathcal{D}),$$

where $L(X, \mathcal{D})$ is defined as in Proposition 10.1.

We describe now the reductive group $L_{x'_0}$ in terms of the root subspaces it contains with respect to its maximal torus S.

Definition 10.3. We define

$$R = R(X, \mathcal{D}) = \{ \gamma |_S \mid 0 \neq \gamma \in \Lambda_G(G/H), \ X(\gamma) \text{ exists and } X(\gamma) \in \mathcal{E} \},\$$

and we denote by $\Phi = \Phi(X, \mathcal{D})$ the maximal subset of R such that $-\alpha \in R$ for every $\alpha \in R$.

Proposition 10.4. The set $\Phi(X, \mathcal{D})$ is a subset of $\Phi(X_{x'_0}, \mathcal{D}')$, where $\mathcal{D}' = \{D \cap X_{x'_0} \mid D \in \mathcal{D}^\ell\}$. Moreover, $L_{x'_0} \subseteq \operatorname{Aut}^{\circ}(X_{x'_0})$ is generated by S together with all subgroups U_{α} such that $\alpha \in \Phi(X, \mathcal{D})$.

Proof. For the first assertion, it is enough for any $\alpha = \gamma|_S \in \Phi(X, \mathcal{D})$ to restrict the function $f \in H^0(X, \mathcal{O}_X(X(\gamma)))^{(B)}_{\gamma}$ to $X_{x'_0}$. Since S is a maximal torus of $\operatorname{Aut}^{\circ}(X_{x'_0})$, the second assertion follows from Lemma 6.4 and Corollary 5.3.

This provides a complete description of the group A. It remains now to describe the fan associated to X as an A-variety.

Let $0 \neq \gamma \in \Lambda(G/H)$ be such that $\gamma|_S = \alpha \in \Phi$, and choose $f_{\gamma} \in H^0(X, \mathcal{O}_X(X(\gamma)))_{\gamma}^{(B)}$ such that $f_{\gamma}(x_0) = 1$. Then $\rho_{G,X}(X(\gamma)) \in \mathcal{V}_G^{\ell}(G/H)$ can be considered as an element of $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{X}(S), \mathbb{Z})$, and therefore it is canonically associated with a 1-PSG $\mu_{\gamma} \colon \mathbb{C}^* \to S$. The torus S acts on X through the identification with a subtorus of $T_{G,X}$, as we have seen in §5; in this way μ_{γ} induces a tangent vector field $\delta_{\gamma} \in H^0(X, \mathcal{T}_X)$ on X.

Lemma 10.5. The product $\xi_{\gamma} = f_{\gamma}\delta_{\gamma}$ is a well-defined tangent vector field of X, and it is sent to $H^0(X, \mathcal{O}_X(X(\gamma)))$ via the surjective map of (4.1). Its restriction to $X_{x'_0}$ is a tangent vector field and is a generator of the Lie algebra of $U_{\alpha} \subset \operatorname{Aut}^{\circ}(X_{x'_0})$. Moreover, the 1-PSG of $\operatorname{Aut}^{\circ}(\mathcal{Z}_{G,X})$ induced by ξ_{γ} is expressed in local coordinates by the formulae of [Oda88, Proposition 3.14].

Proof. The rational function f_{γ} has its only pole in $X(\gamma)$, which means that we only have to check the first assertion on points of $X(\gamma)$. On $\mathcal{Z}_{G,X} \cap X(\gamma)$ it can be checked easily using the fact that $\mathcal{Z}_{G,X}$ is a toric $T_{G,X}$ -variety, and expressing ξ_{γ} in local coordinates. This also implies that ξ_{γ} is a well-defined vector field on $E \cap X_0$, thanks to the $P^u_{G,X}$ -invariance of both f_{γ} and δ_{γ} . Then the locus where ξ_{γ} might not be a well-defined vector field has codimension at least 2, which implies the first statement.

Since S acts on X stabilizing both $\mathcal{Z}_{G,X}$ and $X_{x'_0}$, we deduce that ξ_{γ} can be restricted to a vector field on both these varieties. The rest follows easily by expressing ξ_{γ} on $\mathcal{Z}_{G,X}$ explicitly in local coordinates.

Definition 10.6. We choose a Borel subgroup B_A of A such that $\theta_{A,X}(B_A) \cap \theta_{G,X}(G) = \theta_{G,X}(B)$ and such that $B_A \cap L$ is a Borel subgroup of L. Let us also denote by $\Psi = \Psi(X, \mathcal{D}) \subset \Phi(X, \mathcal{D})$ the set of simple roots and by $\Phi_+ = \Phi_+(X, \mathcal{D}) \subset \Phi(X, \mathcal{D})$ the set of positive roots associated to the Borel subgroup $B_{L_{x'_0}} = \kappa_{x'_0}(B_A \cap L)$ of $L_{x'_0}$. Finally, let

$$r \colon \Lambda_G(X) \to \mathcal{X}(S) = \Lambda_S(X_{x'_0})$$

be the restriction of characters of $\Lambda_G(X)$ to S (see §5).

We may apply Proposition 8.8 and Theorem 8.11 to the toric S-variety $X_{x'_0}$ and the sets of roots Φ and Ψ . We obtain a description of $X_{x'_0}$ as an $L_{x'_0}$ -variety, and in particular the lattice

$$\Lambda_{L_{x_0'}}(X_{x_0'}) \subseteq \Lambda_S(X_{x_0'}),$$

together with the projection

$$N_S(X_{x'_0}) \to N_{L_{x'_0}}(X_{x'_0}).$$

Proposition 10.7. The restriction of weights from $\theta_{A,X}(B_A)$ to $\theta_{G,X}(B)$ induces an isomorphism

$$\Lambda_A(X) \cong r^{-1}(\Lambda_{L_{x'_0}}(X_{x'_0})) \subseteq \Lambda_G(X).$$

We denote the corresponding surjective map by

$$s: \mathrm{N}_G(X) \to \mathrm{N}_A(X).$$

The set of colors of X as a spherical A-variety is the following disjoint union:

$$\Delta_A(X) = \Delta_G(X) \cup \left\{ E \in \mathcal{E} \mid E \cap X_{x'_0} \text{ is a color of the spherical } L_{x'_0} \text{-variety } X_{x'_0} \right\}$$

and for each $E \in \Delta_A(X)$, we have

$$\rho_{A,X}(E) = s(\rho_{G,X}(E)).$$

Proof. A B_A -eigenvector in $\mathbb{C}(X)$ is a fortiori a B-eigenvector, thanks to the choice of B_A . This induces an inclusion $\Lambda_A(X) \subseteq \Lambda(X)$.

Moreover, a *B*-eigenvector $f \in \mathbb{C}(X)$ is also a B_A -eigenvector if and only if its restriction $f|_{X_{x'_0}}$ is a $B_{L_{x'_0}}$ -eigenvector, thanks to the structure of *A* as described in Proposition 10.1. This proves the first assertion.

Secondly, a color of X as an A-variety maps either dominantly onto X', or not. In the first case, its intersection with the (generic) fiber $X_{x'_0}$ is $B_{L_{x'_0}}$ -stable but not $L_{x'_0}$ -stable (otherwise it would have been A-stable).

In the second case, it maps onto a G-color of X', i.e. it is a color of X with respect to the G action. The second assertion follows.

Let c be a cone of the fan $\mathcal{F}(X)$. Then c is generated as a convex cone by a set of 1-dimensional faces F(c). We denote by c^{ℓ} the intersection $c \cap V_G^{\ell}(X)$, by $F^{\ell}(c)$ the 1-dimensional faces of F(c) generating c^{ℓ} , and $F^{n\ell}(c) = F(c) \setminus F^{\ell}(c)$.

Since c^{ℓ} is a cone of the toric S-variety $X_{x'_0}$, it corresponds to an S-orbit Y on $X_{x'_0}$. As in the proof of Theorem 8.11, the corresponding $L_{x'_0}$ -orbit $L_{x'_0}Y$ on $X_{x'_0}$ has colored cone $(c^{\ell} \cap \Psi^{\perp}, d(c^{\ell}))$, where the orthogonal Ψ^{\perp} is taken inside $V^{\ell}_G(G/H)$, and $d(c^{\ell})$ is a set of $L_{x'_0}$ colors of $X_{x'_0}$. **Definition 10.8.** For any $c \in \mathcal{F}(X)$, we define a colored cone $(c_A(c), d_A(c))$, where $c_A(c) \subset N_A(X)$ and $d_A(c) \subseteq \Delta_A(X)$, as follows. The cone $c_A(c)$ is the convex cone in $N_A(X)$ generated by $s(F^{n\ell}(c))$ and $s(c^{\ell} \cap \Psi^{\perp})$. The set $d_A(c)$ is the set of colors $E \in \Delta_A(X)$ such that $E \notin \Delta_G(X)$, and $E \cap X_{x'_0} \in d(c^{\ell})$.

Theorem 10.9. The colored fan $\mathcal{F}_A(X)$ as an A-variety is

$$\mathcal{F}_A(X) = \{ (c_A(c), d_A(c)) \mid c \in \mathcal{F}_G(X) \}.$$

Proof. Let Y be a G-orbit of X, with associated cone $c = c_{X,Y}$. We claim that the colored cone associated to the A-orbit AY is $(c_A(c), d_A(c))$: arguing as in the proof of Theorem 8.11, this is enough to show the theorem.

To prove the claim, first we show that the set d' of A-colors containing AY is equal to $d_A(c)$. Since X is toroidal, no G-color contains Y, nor AY. Therefore any A-color E in d' is indeed a G-stable prime divisor whose functional lies in $V_G^{\ell}(X)$. It intersects $X_{x'_0}$ in an $L_{x'_0}$ -color of $X_{x'_0}$, by Proposition 10.7, and we only have to show that $E \cap X_{x'_0}$ is in $d(c^{\ell})$.

We check this fact using the definition of $d(c^{\ell})$. Take a positive root $\beta \in \Phi_+$ of $X_{x'_0}$, the prime divisors $X_{x'_0}(\beta)$, $X_{x'_0}(-\beta)$ of $X_{x'_0}$ as in Definition 8.1, and suppose that $X_{x'_0}(-\beta) = E \cap X_{x'_0}$, so $\rho_{S,X_{x'_0}}(X_{x'_0}(-\beta))$ lies on a 1-codimensional face of c^{ℓ} . We have to show that $\rho_{S,X_{x'_0}}(X_{x'_0}(\beta))$ also lies on a 1-codimensional face of c^{ℓ} , in other words that $X_{x'_0}(\beta)$ contains the S-orbit of $X_{x'_0}$ associated c^{ℓ} .

Now $E = E_1$ and some other element $E_2 \in \mathcal{E}$ satisfy $E_1 \cap X_{x'_0} = X_{x'_0}(-\beta)$, $E_2 \cap X_{x'_0} = X_{x'_0}(\beta)$, and $-\beta$ and β are the restrictions to S of resp. $\gamma_1, \gamma_2 \in \Lambda_G(X)$, such that $X(\gamma_i) = E_i$ for i = 1, 2. Suppose that E_2 doesn't contain Y. Then we consider $\mathcal{Z}_{G,X}$: intersecting it with E_1 , E_2 and Y two $T_{G,X}$ -stable prime divisors and a $T_{G,X}$ -orbit, such that $E_1 \cap \mathcal{Z}_{G,X} \supseteq Y \cap \mathcal{Z}_{G,X}$ and $E_2 \cap \mathcal{Z}_{G,X} \supseteq Y \cap \mathcal{Z}_{G,X}$.

At this point we follow the same approach of the proof of Theorem 8.11, statement (2), applied to the toric variety $\mathcal{Z}_{G,X}$ and the automorphisms induced by the tangent vector field ξ_{γ_1} (as defined in Lemma 10.5). This yields the formula (8.6) for ξ_{γ_1} , which shows that $E_1 \cap \mathcal{Z}_{G,X}$ doesn't contain $AY \cap \mathcal{Z}_{G,X}$: a contradiction. As a consequence $E_2 \supseteq Y$, so $X_{x'_0}(\beta)$ contains the *S*-orbit of $X_{x'_0}$ associated c^{ℓ} . This concludes the proof of the inclusion $d' \subseteq d_A(c)$.

Let now $D \in d_A(c)$. Then, by Theorem 8.11, the intersection $D \cap X_{x'_0}$ contains the $L_{x'_0}$ -orbit of $X_{x'_0}$ corresponding to $(c^{\ell} \cap \Psi^{\perp}, d(c^{\ell}))$. Let y be a point on this orbit: then D contains \overline{Ay} .

On the other hand, from the proof of Theorem 8.11, we see that $\overline{L_{x'_0}y}$ contains the S-orbit of $X_{x'_0}$ corresponding to $c^{\ell} \subset N_S(X_{x'_0})$. It follows that \overline{Ay} contains the G-orbit of X associated to $c^{\ell} \subset N_G(X)$, and thus also the G-orbit Y associated to $c \subset N_G(X)$. Being A-stable, \overline{Ay} must then contain AY too, and since D is closed, we obtain $D \supseteq AY$. I.e., D is in d'.

We now prove that the convex cone c' associated to AY is $c_A(c)$. First observe that Y and AY are contained in the same elements of $(\partial_G X)^{n\ell}$, since L stabilizes all fibers of ψ . Therefore

c' is generated by $s(F^{n\ell}(c))$ and its intersection with $s(\mathcal{V}^{\ell}_G(X))$. It remains to prove that $c' \cap s(\mathcal{V}^{\ell}_G(X)) = s(c^{\ell} \cap \Psi^{\perp})$.

The cone $c' \cap s(\mathcal{V}^{\ell}_G(X))$ is generated by $\rho_{A,X}(E)$ where $E \in (\partial_G X)^{\ell}$ is:

- (1) an A-color of X containing AY, i.e. $E \in d_A(c)$, or
- (2) an A-stable prime divisor containing AY.

On the other hand the generators of $s(c^{\ell} \cap \Psi^{\perp})$ are the elements $\rho_{A,X}(E)$ where $E \in (\partial_G X)^{\ell}$ is:

- (1') an A-color such that $E \cap X_{x'_0}$ is a color containing the $L_{x'_0}$ -orbit Z of $X_{x'_0}$ associated to $(c^{\ell} \cap \Psi^{\perp}, d(c^{\ell}))$, or
- (2) an A-stable prime divisor such that $E \cap X_{x'_0}$ is a $L_{x'_0}$ -stable prime divisor containing Z.

Thanks to the first part of the proof, the prime divisors E of type (1) and of type (1') are the same.

If E is of type (2') then it contains AZ, whose closure in turn contains AY. Therefore Eis of type (2). Let now E be of type (2). Then $E \cap \mathcal{Z}_{G,X}$ is an L-stable (and $T_{G,X}$ -stable) prime divisor of $\mathcal{Z}_{G,X}$ containing $Y \cap \mathcal{Z}_{G,X}$, which is the $T_{G,X}$ -orbit of $\mathcal{Z}_{G,X}$ associated to c, and $\rho_{T_{G,X},\mathcal{Z}_{G,X}}(E \cap \mathcal{Z}_{G,X})$ lies on $V_G^\ell(G/H)$. Hence $E \cap X_{x'_0}$ is an $L_{x'_0}$ -stable prime divisor of $X_{x'_0}$ containing the S-orbit of $X_{x'_0}$ associated to c^ℓ . Thanks to the proof of Theorem 8.11, we deduce that $E \cap X_{x'_0}$ contains Z, i.e. E is of type (2').

Corollary 10.10. $\Sigma_A(X) = \Sigma_G(X)$.

Proof. The proof is similar to the proof of Corollary 8.12.

References

- [AG10] I. Arzhantsev, S.A. Gaifullin: Homogeneous toric varieties, Journal of Lie Theory 20 (2010), no. 2, 283–293.
- [BB96] F. Bien, M. Brion: Automorphisms and local rigidity of regular varieties, Compositio Math. 104 (1996), no. 1, 1–26.
- [BDP90] E. Bifet, C. De Concini, C. Procesi: Cohomology of regular embeddings, Adv. in Math. 82 (1990), 1–34.
- [Br89] M. Brion: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58 (1989), no. 2, 397–424.
- [Br90] M. Brion: Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143.
- [Br97] M. Brion: Variétés sphériques, http://www-fourier.ujf-grenoble.fr/~mbrion/spheriques.ps
- [Br07] M. Brion: The total coordinate ring of a wonderful variety, J. Algebra **313** (2007), no. 1, 61–99.
- [BP87] Brion, F. Pauer. Valuations des espaces homogènes sphériques. Commentarii Mathematici Helvetici 62 (1987), no. 2, 265–285.
- [De70] M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. 3, (1970), no. 4, 507–588.
- [De77] M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179–186.

38

- [Gi89] V. Ginzburg: Admissible modules on a symmetric space, Astérisque 173–174 (1989), 199–255.
- [Kn91] F. Knop: The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991.
- [Kn94] F. Knop: The assymptotic behaviour of invariant collective motion, Invent. Math. 114, 1994, 309–328.
- [Kn96] F. Knop: Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.
- [KKLV89] F. Knop, H. Kraft, D. Luna, T. Vust: Local properties of algebraic group actions, in Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhäuser Verlag (Basel-Boston) (1989) 63-76.
- [KKV89] F. Knop, H. Kraft, T. Vust: The Picard group of a G-variety, in Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhäuser Verlag (Basel-Boston) (1989) 77-87.
- [Lu01] D. Luna: Variétés sphériques de type A, Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226.
- [Oda88] T. Oda: Convex Bodies and Algebraic Geometry: An Introduction to Toric Varieties, Springer-Verlag, New York-Berlin-Heidelberg, 1988.
- [Pe09] G. Pezzini: Automorphisms of wonderful varieties, Transform. Groups 14 (2009), no. 3, 677–694.
- [Wa96] B. Wasserman: Wonderful varieties of rank two, Transform. Groups 1 (1996), no. 4, 375–403.

DEPARTEMENT MATHEMATIK, FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG, CAUER-STRASSE 11, 91058 ERLANGEN, DEUTSCHLAND

E-mail address: pezzini@mi.uni-erlangen.de