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ON REDUCTIVE AUTOMORPHISM GROUPS OF REGULAR

EMBEDDINGS

GUIDO PEZZINI

Abstract. Let G be a connected reductive complex algebraic group acting on a smooth com-

plete complex algebraic variety X . We assume that X under the action of G is a regular

embedding, a condition satisfied in particular by smooth toric varieties and flag varieties. For

any set D of G-stable prime divisors, we study the action on X of the group Aut◦(X,D),

the connected automorphism group of X stabilizing D. We determine a Levi subgroup A of

Aut◦(X,D) and we compute relevant invariants of X as a spherical A-variety. As a byproduct,

we obtain a description of the open A-orbit on X and the inclusion relation between A-orbit

closures.

1. Introduction

In the 1970’s Demazure described the connected automorphism groups of two distinguished

classes of algebraic varieties equipped with the action of a connected reductive group G: the

complete homogeneous spaces G/P for P a parabolic subgroup (see [De77]), and the smooth

complete toric varieties, with G abelian (see [De70]). In the case of X = G/P , the group G

goes surjectively onto the connected automorphism group Aut◦(X) except for three particular

cases (with G a simple group) and products (G1×G2)/(P1×P2) where P1 ⊆ G1, P2 ⊆ G2, and

G1/P1 is one of these three exceptions. In the case where X is a toric G-variety, the image of

G in Aut◦(X) is a maximal torus of the latter, and the corresponding root datum of Aut◦(X) is

completely determined by the spaces of global sections H0(X,OX(Y )), with Y varying in the

set of G-stable prime divisors of X .

These two classes of G-varieties admit a common generalization: the regular embeddings, here

also called G-regular embeddings or G-regular varieties, defined independently in [BDP90] and

[Gi89]. With the additional assumption of completeness, Bien and Brion showed that these

varieties correspond to a relevant class of spherical varieties, namely the smooth, complete, and

toroidal ones (see [BB96]).

The spaces H0(X,OX(Y )) play again an important role, especially for the case where X is

wonderful in the sense of [Lu01] (see [Br07]), although they do not yield a direct description of

Aut◦(X) if X is not toric. Also, the group Aut◦(X) may be non-reductive. Nevertheless, X is a
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spherical variety under the action of A, where A is any reductive subgroup Aut◦(X) containing

the image of G, therefore it is natural to study the relationship between invariants of X as a

spherical G-variety, the structure of A, and invariants of X with respect to the A-action. The

results of [AG10] are also related to this problem, and classify those toric varieties that are

homogeneous under the action of a semisimple group.

In this paper we provide a complete description of the action of A on X if A is a Levi

subgroup of Aut◦(X,D). Here D is any subset of the set ∂X of G-stable prime divisors of X ,

and Aut◦(X,D) is the connected component of the group of automorphisms of X stabilizing

each element of D.

Our approach is based on the analysis of the following filtration:

θ(G) ⊆ Aut◦(X, ∂X) ⊆ Aut◦(X,D ∪ (∂X)ℓ) ⊆ Aut◦(X,D),

where θ(G) is the image ofG in Aut◦(X) and (∂X)ℓ is a certain subset of ∂X (see Definition 2.5).

The main motivation is the fact that the groups Aut◦(X, ∂X) and Aut◦(X,D ∪ (∂X)ℓ) are

reductive andX is regular under their actions, whereas both statements may fail for Aut◦(X,D).

For the group Aut◦(X, ∂X), we show in §4 that it is completely determined by results of

[Br07] and [Pe09]. Then we consider D′ = D ∪ (∂X)ℓ and show in §7 that Aut◦(X,D′) is

reductive, and that it can be studied using a certain G-equivariant map X → X, where X is

a wonderful G-variety canonically associated with X . Namely, the group Aut◦(X,D′) (up to a

central torus) is obtained lifting to X the action of the universal cover of a certain semisimple

subgroup of Aut◦(X). The latter is known thanks to the results of [Pe09], which are somewhat

similar to Demazure’s theorem on flag varieties: the image of G is the whole Aut◦(X), up to

some exceptions that can be explicitly described.

It is worth noticing that X is obtained from X using a procedure called wonderful closure,

which is closely related to the well-known construction of the spherical closure of a spherical

subgroup of G.

For the group Aut◦(X,D), we show that it is enough to deal with the case where D contains

(∂X) \ (∂X)ℓ (see the discussion at the end of §6). Under this assumption we show in §10 how

to recover a Levi subgroup A of Aut◦(X,D) by an analysis of the fibers of the map X → X,

which are finite unions of toric varieties.

We also give an explicit combinatorial description of all the invariants commonly associated

to X as a spherical A-variety, invariants which uniquely determine X up to A-equivariant

isomorphisms thanks to the classification of spherical varieties.

In particular, we describe both the invariants associated to the open A-orbit on X , the

so-called Luna invariants, and the invariants associated to X considered as an embedding of

its open A-orbit, according to the Luna-Vust theory of embeddings of spherical homogeneous
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spaces. Thanks to this theory, this accounts for a complete description of the structure of the

A-orbits on X .

We also discuss explicitly in §8 and §9 the two special cases of G semisimple and G abelian.

Acknowledgements. The author would like to thank Jacopo Gandini for stimulating dis-

cussions, and is especially grateful to Michel Brion for discussions and support during the

development of this work.

Notations. Through this paper G is a connected reductive linear algebraic group over the

field of complex numbers C. We assume that G = G′ × C where C is an algebraic torus and

G′ is semisimple and simply connected. We denote by Gm the multiplicative algebraic group

of non-zero complex numbers.

We fix a Borel subgroup B ⊆ G and a maximal torus T ⊆ B. We denote by B− the Borel

subgroup of G such that B ∩B− = T . If H is any algebraic group then we denote by Z(H) ist

center, by H◦ its connected subgroup containing the unit element eH , and by X (H) the set of

its characters, i.e. algebraic group homomorphisms H → Gm. If V is an H-module, then we

denote by V (H) the set of non-zero H-semiinvariants of V , and for any χ ∈ X (H) we set

V (H)
χ = {v ∈ V \ {0} | hv = χ(h)v ∀h ∈ H} .

If H ⊆ K are subgroups of G, then we denote by πH,K : G/H → G/K the natural map sending

gH ∈ G/H to gK ∈ G/K.

For any subset R of a Z-module Λ, we denote by R∨ (resp. R⊥) the subset of HomZ(Λ,Q) of

all elements that are ≥ 0 (resp. = 0) on R. We define in the same way mutatis mutandis the

subsets R∨, R⊥ ⊆ Λ for R ⊆ HomZ(Λ,Q).

The term algebraic variety (or simply variety) stands here for separated, reduced and irre-

ducible scheme of finite type over the field C, and all actions of algebraic groups on varieties

are be assumed to be algebraic. If X is a variety, the connected component containing idX of

its automorphism group is denoted by Aut◦(X). If a connected algebraic group H acts on X ,

we denote by

θH,X : H → Aut◦(X)

the corresponding homomorphism.

If X is a G-variety, we denote by PicG(X) the group of isomorphism classes of G-linearized

invertible sheaves. If X is normal and Y is a Cartier divisor, then the invertible sheaf OX(Y )

admits a (non unique) G-linearization (see [KKLV89, Remark after Proposition 2.4]). If in

addition X is complete and Y is a G-stable prime divisor, we will always assume that the

G-linearization is chosen in such a way that the induced G-action on H0(X,OX(Y )) is equal

to the action inherited via the usual inclusion H0(X,OX(Y )) ⊂ C(X).
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2. Complete regular embeddings

Definition 2.1. Suppose that an irreducible G-variety X has an open G-orbit. Then X is

G-regular (or a G-regular embedding) if for any x ∈ X :

(1) the closure Gx of its orbit is smooth, and it is the transversal intersection of the G-stable

prime divisors containing it;

(2) the stabilizer Gx has a dense orbit on the normal space in X to the orbit Gx in the

point x.

As an immediate consequence of the definition, aG-regular embedding is smooth and has only

a finite number of G-orbits. Examples of G-regular embeddings are the G-homogeneous spaces

for any G, and if G is an algebraic torus then any smooth toric G-variety. Other examples come

from the family of spherical varieties, which are by definition irreducible normalG-varieties with

a dense B-orbit.

More precisely, suppose that a G-variety X is smooth and complete. Then X is G-regular if

and only if it is spherical and toroidal, i.e. any B-stable prime divisor containing a G-orbit is

also G-stable (see [BB96, Proposition 2.2.1]).

We review some relevant invariants associated to any spherical G-variety X . They are ac-

tually invariants under birational G-equivariant maps, therefore they only depend on the open

G-orbit of X . If x0 is a point on this orbit, then we also denote the orbit Gx0 simply by G/H ,

where H = Gx0 is called a generic stabilizer of X . In this case, H is also called a spherical

subgroup, and (X, x0) (or simply X) is called an embedding of G/H . A morphism between two

embeddings (X, x0) and (X ′, x′0) is a G-equivariant map X → X ′ sending x0 to x′0.

We will always assume that x0 is chosen in such a way that Bx0 is dense in X . Then H is

also called a B-spherical subgroup.

Definition 2.2. Let X be a spherical G-variety with open G-orbit G/H .

(1) We define1 the lattice

ΛG(X) =
{
χ ∈ X (B)

∣∣C(X)(B)
χ 6= ∅

}
,

whose rank is by definition the rank of X .

(2) We define

NG(X) = HomZ(ΛG(X),Q).

(3) We define ∆G(X) to be the set of colors of X , i.e. the B-stable prime divisors of X

having non-empty intersection with the open G-orbit G/H of X .

1We ignore the dependence on B of all the invariants we define. This is justified by the fact that for any

reductive group under consideration the choice of a Borel subgroup will be either unique (when the group is

abelian) or always explicitly fixed.
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(4) For any discrete valuation ν : C(X) \ {0} → Q we define an element ρG,X(ν) ∈ NG(X)

with the formula

〈ρG,X(ν), χ〉 = ν(fχ),

where fχ ∈ C(X)
(B)
χ . If D is a prime divisor of X and νD is the associated discrete

valuation, then we will also write ρG,X(D) for ρG,X(νD).

(5) We define

VG(X) = {ρG,X(ν) | ν is G-invariant} ,

which is a polyhedral convex cone of maximal dimension in NG(X); we denote its linear

part by Vℓ
G(X).

(6) We define the boundary of X , denoted by ∂GX , to be the set of the irreducible compo-

nents of X \ (G/H).

For the above, and for all the invariants defined later, we will drop the indices G and X

whenever it is clear which group and which variety are considered. In loose terms the colors of

X can also be considered as invariants under G-equivariant birational maps, since they are the

closures in X of the colors of G/H .

The Luna-Vust theory of embeddings of homogeneous spaces specializes for spherical toroidal

varieties in the following way (for details and proofs see [Kn96]).

Definition 2.3. Let X be a G-regular embedding, and Y an irreducible G-stable locally closed

subvariety. Then we define cX,Y ⊆ N(X) to be the polyhedral convex cone generated by

ρ(D1), . . . , ρ(Dn), where D1, . . . , Dn are the the B-stable prime divisors containing Y . The fan

of X is defined as

FG(X) = {cX,Y | Y a G-orbit of X} .

Notice that since X is toroidal then the divisors D1,. . . ,Dn above are also G-stable for any

Y . The collection of convex cones F(X) satisfies the following properties:

(1) each cone of F(X) is contained in V(G/H), it is strictly convex, and all its faces belong

to F(X),

(2) any element of V(G/H) belongs to the relative interior of at most one cone of F(X).

The map X 7→ F(X) induces a bijection between toroidal embeddings of G/H (up to iso-

morphism of embeddings) and fans, i.e. collections of strictly convex polyhedral convex cones

satisfying (1) and (2).

The support of a fan F is defined as

suppF =
⋃

c∈F

c.
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The embedding X is complete if and only if suppF(X) = V(X), and it is smooth if and only

if for each c ∈ F(X) there exists a basis γ1 . . . , γr of Λ(X) and an integer k between 1 and r

such that

c = {γ1, . . . , γk}
∨ .

For later reference, we recall that if a spherical embedding X is not toroidal, then it is also

described by a similar datum, called a fan of colored convex cones. Here, the convex cone

associated to a G-orbit Y ⊆ X is replaced by the pair (cX,Y , dX,Y ) where dX,Y is the set of

colors containing Y , and cX,Y is defined as above.

In general, the set V(X) is also a polyhedral convex cone, of maximal dimension, and its linear

part Vℓ(X) has the same dimension (as a Q-vector space) of NGH/H (as a complex algebraic

group). The equations defining the maximal proper faces of V(X) are linearly independent

(see [Br90, Corollaire 3.3]). In other words, there always exist σ1, . . . , σk ∈ Λ(X) that are

indivisible, linearly independent, and such that

V(X) = {−σ1, . . . ,−σk}
∨ .

Definition 2.4. The elements σ1, . . . , σk above are uniquely determined by G/H and called

the spherical roots of X ; their set is denoted as

ΣG(X) = {σ1, . . . , σk} .

The map Y 7→ cX,Y sends a G-orbit of codimension d in X to a cone of dimension d, and this

restricts to a bijection between the boundary ∂X and the set of 1-dimensional cones in F(X).

Definition 2.5. For a subset D ⊆ ∂X , we define the subsets

Dℓ =
{
Y ∈ D

∣∣ cX,Y ⊂ Vℓ(X)
}

and

Dnℓ = D \ Dℓ.

3. Spherical and wonderful closure

In this section we recall the notion, introduced in [Lu01], of the spherical closure H of a

spherical subgroup H ⊆ G. We also define another subgroup containing H , called its wonderful

closure. This is essentially already known, but not yet found in the literature. We gather at

first some results from [Lu01, §6].

An element n of the normalizer N of H induces a G-equivariant isomorphism G/H → G/H

given by gH 7→ gnH . This induces an action of N on the set of colors ∆(G/H): the spherical

closure H of H is defined as the kernel of this action.
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If H = H then we say that H is spherically closed, and for any spherical subgroup H the

spherical closure H is itself spherically closed. This is well known, but for lack of a detailed

reference we provide a proof, also because NGH may well be strictly bigger than NGH .

Proposition 3.1. For any spherical subgroup H ⊆ G, the spherical closure H is spherically

closed.

Proof. Since H is contained in NGH the quotient H/H is diagonalizable (see [Kn94, Theorem

6.1]), and thus H is defined inside H as intersection of kernels of some characters. The colors

of G/H generate PicG(G/H) (see [Br89, Proposition 2.2]) and the latter is isomorphic to X (H)

(see [KKV89, §3.1]), therefore H acts trivially on X (H).

This implies that H normalizes H . By definition, it fixes all colors of G/H, but these

correspond to the colors of G/H via the natural map πH,H : G/H → G/H . Hence H ⊆ H. �

For later convenience we report the following auxiliary result. Recall that whenever H ⊆ K

are spherical subgroups of G, the lattice Λ(G/K) is contained in the lattice Λ(G/K), since

B-semiinvariant functions can be lifted from G/K to G/H via the map πH,K : G/H → G/K.

We sometimes denote this inclusion as a map (πH,K)∗ : Λ(G/K) → Λ(G/H), which induces

a surjection πH,K∗ : N(G/H) → N(G/K). Moreover, we have πH,K∗ (V(G/H)) = V(G/K) and

ker πH,H∗ = Vℓ(G/H) (see [Kn96, Theorem 4.4 and Theorem 6.1]).

Lemma 3.2. Let H ⊆ K ⊆ H be spherical subgroups. Then (πH,K∗ )−1(V(G/H)) = V(G/K).

Proof. The claim stems from πH,K∗ (V(G/H)) = V(G/K), together with

ker
(
πH,K∗

)
⊆ Vℓ(G/H).

This inclusion follows from the fact that πK,H∗ ◦ πH,K∗ = πH,H∗ , and that the latter has kernel

Vℓ(G/H). �

A class of subgroups slightly broader then the spherically closed ones is the following.

Definition 3.3. Suppose that Σ(G/H) is a basis of Λ(G/H). Then we say that H is a

wonderful subgroup of G. In this case there exists a fan F having only one maximal cone equal

to V(G/K); the associated toroidal embedding is denoted by X(G/H).

If H is wonderful then the embedding X(G/H) is smooth, has a unique closed G-orbit and

it is wonderful in the sense of [Lu01]. A fundamental theorem of Knop (see [Kn96, Corollary

7.6]) states that a spherically closed subgroup is wonderful.

Example 3.4. The converse of the above statement is false: for example, if G = SO(2n + 1)

with n ≥ 2, then H = SO(2n) is a wonderful subgroup, with H = NSO(2n+1)SO(2n) 6= H (see

[Wa96, cases 7B, 8B of Table 1]).
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It is possible to define canonically a minimal wonderful subgroup Ĥ between H and H . As a

byproduct, the automorphism groups of regular embeddings of G/H are more directly related

to the automorphism group of X(G/Ĥ) than to that of X(G/H).

Definition 3.5. Let H and I be spherical subgroups of G. Then I is a wonderful closure of H

if it is wonderful, satisfies H ⊆ I ⊆ H , and is minimal with respect to these properties.

We will show that a wonderful closure always exists and is unique; for this we need to describe

combinatorially all spherical subgroups having spherical closure equal to H .

Let us fix a spherically closed subgroup K, and consider the following diagram

0 −−−→ Λ(G/K)
ρ

−−−→ PicG(X(G/K))
τ

−−−→ PicG(G/K) −−−→ 0yσ

PicG(G/B)

where the row is exact (see also [Br07, Proposition 2.2.1].

The map τ is the pullback along the inclusion G/K → X(G/K). For σ, observe that X(G/K)

has a unique closed G-orbit Z, which is projective and therefore comes with a natural projection

map G/B → Z. The map σ is then the pullback along the composition G/B → Z → X(G/K).

The map ρ is defined in the following way: for any χ ∈ Λ(G/K) we take a function fχ ∈

C(G/K)
(B)
χ and consider the G-stable part D = div(fχ)

G of div(fχ). Then we set ρ(χ) =

OX(−D), which admits a unique G-linearization such that C acts trivially on the total space

of the bundle.

These maps admit also a combinatorial definition, using the fact that G = C×G′ andK ⊇ C,

that ∆(G/K) is a basis of Pic(X(G/K)) (see [Br89, Proposition 2.2]), and the isomorphisms

PicG(G/K) ∼= X (K), PicG(G/B) ∼= X (B). The resulting diagram

(3.1)

0 −−−→ Λ(G/K)
ρ

−−−→ X (C)× Z∆ τ
−−−→ X (K) −−−→ 0yσ

X (B)

where ∆ = ∆(G/K), is also described in details in [Lu01, §6.3]. The map ρ is defined as:

ρ(χ) = (χ|C , 〈ρG,G/K(·), χ〉),

and σ ◦ ρ is the identity on Λ(G/K) (see loc.cit.).

Lemma 3.6. [Lu01, Lemme 6.3.1, Lemme 6.3.3] Let K ⊆ G be a spherically closed subgroup.

The application

H → τ−1
(
X (K)H

)
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is an inclusion-reversing bijection between the set of normal subgroups H of K such that K/H is

diagonalizable, and the set of subgroups of X (C)×Z∆ containing ρ(Λ(G/K)). If the restriction

of σ to τ−1
(
X (K)H

)
is injective then H is spherical.

Lemma 3.7. For any spherical subgroup H ⊆ G contained and normal in K and all D ∈

∆(G/H) we have πH,K(D) ∈ ∆(G/K), and

πH,K∗ (ρG,G/H(D)) = ρG,G/K(π
H,K(D)).

Proof. Since H is normal in K, then K stabilizes the open set BH ⊆ G acting by right multi-

plication on G (see also [BP87, First part of the proof of Proposition 5.1]). The complement

G \BH is the union of π{eG},H(E) for E varying in ∆(G/H), whence the first statement.

For the second statement, it is enough to show that a local equation of D on G/H can be

chosen to be the pull-back of a function on G/K along πH,K . Let E1, . . . , En be all the distinct

B-stable prime divisors of G such that π{eG},K(Ei) = πH,K(D). Since G is factorial we can

choose a global equation fi ∈ C[G] for each Ei, and consider the product f = f1 · . . . · fn.

The divisor div(f) on G is B-stable under the left translation action of G on itself, but none

of its components is G-stable therefore there exists an element g ∈ G such that the function

f0 : x 7→ f(gx) doesn’t vanish on any divisor Ei. On the other hand div(f) is K-stable under

the right translation action of G on itself, thus f is K-semiinvariant under this action. The

function f0 is then also K-semiinvariant, with same K-eigenvalue. It follows that

F =
f

f0

is K-invariant with respect to the right translation action. In other words F = (π{eG},K)∗(F̃ )

for some F̃ ∈ C(G/K).

Now for some i0 the divisor Ei0 satisfies π{eG},H(Ei0) = D. The function F is equal to the

pull-back of (πH,K)∗(F̃ ) along π{eG},H and is a local equation of Ei0 on G, hence (πH,K)∗(F̃ ) is

a local equation of π{eG},H(Ei0) = D on G/H : the lemma follows. �

Thanks to Lemma 3.7, we can extend the map ρ to Λ(G/H) in the following way.

Definition 3.8. We denote again by ρ the extension of the above map ρ : Λ(G/K) → X (C)×Z∆

to Λ(G/H) given by the following formula:

ρ(χ) = (χ|C , 〈ρG,G/H(·), χ〉).

Lemma 3.9. For any spherical subgroup H ⊆ G contained and normal in K we have

(3.2) ρ(ΛG(G/H)) = τ−1
(
X (K)H

)
.



10 GUIDO PEZZINI

Proof. The equality stems from the description of the map τ given in [Lu01, §6.3], see in

particular [Lu01, Proof of Proposition 6.3]. Indeed, for any χ ∈ Λ(G/H) the image τ(ρ(χ))

is the K-eigenvalue of a rational function f on G such that f is the pull-back of a rational

function on G/H . Hence its K-eigenvalue is trivial on H .

For the other inclusion, Lemma 3.7 implies that
⋃

D∈∆(G/H)

(
π{eG},H

)−1
(D) =

⋃

D∈∆(G/K)

(
π{eG},K

)−1
(D)

is the union of all prime divisors of G that are B-stable under left translation and H-stable

(or equivalently K-stable) under right translation. As a consequence, if τ(γ, (nD)D∈∆) is a

K-character that is trivial on H , then χ = σ(τ(γ, (nD)D∈∆)) is the B-eigenvalue of a B-

semiinvariant rational function on G/H . Since ρ(χ) = (γ, (nD)D∈∆), the proof is complete. �

Proposition 3.10. Let H ⊆ G be a spherical subgroup, set K = H and Ξ = spanZΣ(G/H).

Then

Λ(G/K) ⊆ Ξ ⊆ Λ(G/H).

The normal subgroup Ĥ ⊆ K associated to ρ(Ξ) via the map of Lemma 3.6 is the unique

wonderful closure of H. It has the same dimension of H, and it is the unique wonderful

subgroup between H and H that satisfies ΣG(G/H) = Σ(G/Ĥ). Moreover, the spherical closure

of Ĥ is H.

Proof. The inclusion Ξ ⊆ Λ(G/H) is obvious. The map πH,K∗ : N(G/H) → N(G/K) has kernel

Vℓ(G/H), and satisfies π∗(V(G/H)) = V(G/K). The other inclusion Λ(G/K) ⊆ Ξ follows.

Hence the subgroup Ĥ contains H .

The lattice Λ(G/Ĥ) = Ξ has basis Σ(G/H) since the spherical roots are aways linearly

independent. Since Λ(G/Ĥ) has finite index inside Vℓ(G/H)⊥ and πH,Ĥ(V(G/H)) = V(G/Ĥ)

we deduce that Σ(G/H) = Σ(G/Ĥ).

If H̃ is another wonderful subgroup such that H ⊆ H̃ ⊆ H, then Λ(G/H̃) has also finite

index in Vℓ(G/H)⊥, and Σ(G/H̃) is equal to Σ(G/H) up to taking (positive) multiples of the

elements of the latter. The dimension, minimality and uniqueness properties of Ĥ follow, since

Λ(G/H̃) ⊆ Λ(G/Ĥ) implies H̃ ⊇ Ĥ .

The last assertion follows from the last assertion of [Lu01, Lemme 6.3.3]: indeed the lattice

σ(Φ′) of loc.cit. is denoted here by Ξ, and the set S◦ of loc.cit. is here a subset of 1
2
Σ(G/H). �

4. Automorphisms stabilizing all G-orbits

From now on, X denotes a complete G-regular variety, with open G-orbit G/H .

Definition 4.1. For any subset D ⊆ ∂GX of G-stable prime divisors we define

Aut◦(X,D) = {φ ∈ Aut◦(X) |φ(D) = D, ∀D ∈ D} .
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Since X is G-regular, the group Aut◦(X, ∂GX) is also the connected group of automorphisms

of X stabilizing each G-orbit.

We recall now some results from [BB96] (see also [Br07]). The group Aut◦(X) is a linear

algebraic group, with Lie algebra

LieAut◦(X) = H0(X, TX)

where TX is the sheaf of sections of the tangent bundle of X . The structure of G-module on

LieAut◦(X), induced by the adjoint action of θG,X(G) ⊆ Aut◦(X), is given in [BB96, Proposition

4.1.1] in terms of global sections of the line bundles OX(D) where D ∈ ∂GX .

Namely, there exists an exact sequence of G-modules

(4.1) 0 → LieAut◦(X, ∂GX) → LieAut◦(X) →
⊕

D∈∂GX

H0(X,OX(D))

C
→ 0.

Moreover, for any D ∈ ∂GX the Lie algebra of the subgroup Aut◦(X,D) is the inverse image of

the sum
⊕

D∈(∂GX)\D

H0(X,OX(D))

C
.

Definition 4.2. Let 0 6= γ ∈ X (B). If it exists, we denote by X(γ) the uniquely determined

element of ∂GX such that H0(X,OX(X(γ)))
(B)
γ 6= ∅.

A particular case of Aut◦(X) has been studied in [Pe09], where X is a wonderful variety.

Recall that C acts trivially on any wonderful G-variety, hence we can consider G′-varieties

without loss of generality. Moreover, in this case Aut◦(X,D) is always semisimple and X is

wonderful under its action (see [Br07, Theorem 2.4.2]). It is possible to summarize the results

of [Pe09] as follows.

Theorem 4.3. [Pe09] Let X be a wonderful G′-variety and D ⊆ ∂G′X. Decompose G′ and X

into products

G′ = G′
1 × . . .×G′

n, X = X1 × . . .× Xn,

with a maximal number of factors in such a way that G′
i acts non-trivially only on Xi for all

i = 1, . . . , n. Then

Aut◦(X,D) = Aut◦(X1,D1)× . . .× Aut◦(Xn,Dn),

where Di = {D∩Xi |D ∈ D} ⊆ ∂G′

i
Xi. Moreover, if the image of G′

i in Aut◦(Xi,Di) is a proper

subgroup, then (G′
i,Xi) appears in the lists of “exceptions” of [Pe09, §§3.2 – 3.6]. If D = ∂G′X

then all such exceptional factors have rank 0 or 1.
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Let now X = X(G/H): the group Aut◦(X, ∂GX) is easily recovered from Aut◦(X, ∂GX).

Indeed, thanks to [Br07, Theorem 4.4.1], there exists a split exact sequence of Lie algebras

(4.2) 0 →
LieH

LieH
→ LieAut◦(X, ∂GX) → LieAut◦(X, ∂GX) → 0.

It follows that Aut◦(X, ∂GX) is reductive, its connected center is (H/H)◦ = (Ĥ/H)◦, and its

semisimple part can be computed using Theorem 4.3 and the lists of [Pe09].

We point out that in the above exact sequence we may as well use the variety X = X(G/Ĥ).

Indeed, the results of [Br07, §4.4] hold (with same proofs) if we replace the spherical closure of

H with its wonderful closure.

5. Relating Aut◦(X) to Aut◦(X)

From now on, X = X(G/Ĥ) denotes the wonderful embedding of G/Ĥ. As a consequence

of the last section, we may suppose from now on that θG,X(G) = Aut◦(X, ∂GX) and that

θG,X(G) = Aut◦(X, ∂GX). Indeed, if this is not the case we may first apply Theorem 4.3 to

X, replace G′
i with the universal cover of Aut◦(Xi, ∂Gi

Xi) for all i such that these groups are

different, and then replace C with C × (Ĥ/H)◦.

Thanks to [Kn96, Theorem 4.1], the natural surjection πH,Ĥ : G/H → G/Ĥ extends to a

surjective G-equivariant map

π : X → X = X(G/Ĥ).

Definition 5.1. We denote by

X
ψ

// X ′
f

// X

the Stein factorization of the map π : X → X.

In [Br07, §4.4] it is shown that Aut◦(X) acts on X ′ in such a way that ψ is equivariant; we

denote the corresponding homomorphism as follows:

ψ∗ : Aut
◦(X) → Aut◦(X ′).

Its kernel is the subgroup of automorphisms of X stabilizing each fiber of ψ.

Proposition 5.2. The inclusions Z(θG,X(G))
◦ ⊆ kerψ∗ ∩ θG,X(G) ⊆ Z(θG,X(G)) between sub-

groups of Aut◦(X) hold. Moreover, there is a local isomorphism

(5.1) Aut◦
(
X, (∂GX)nℓ

)
∼= θG,X(G

′)⋉ (kerψ∗)
◦

induced by the inclusion of both factors of the right hand side in Aut◦(X).
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Proof. The first inclusion stems from the fact that C = Z(G)◦ acts trivially on X, hence also on

X ′. On the other hand, if g ∈ G stabilizes all fibers of ψ, then it acts trivially on X ′ and also

on X. Therefore, to show the second inclusion, we only have to check that no simple factor of

G acts trivially on X but not on X . This is true because Ĥ/H is abelian.

Let us prove the last statement. Both groups on the right hand side of (5.1) are subgroups

of Aut◦(X, (∂GX)nℓ): this is obvious for θG,X(G
′), so we only have to check it for (kerψ∗)

◦.

Notice that ψ maps any element D of (∂GX)nℓ onto a proper G-stable closed subset of X ′. It

follows that D is an irreducible component of ψ−1(ψ(D)), hence it is stable under the action of

(kerψ∗)
◦. It also follows that ψ∗ maps Aut◦(X, (∂GX)nℓ) into Aut◦(X ′, ∂GX

′).

The intersection (kerψ∗)
◦∩θG,X(G

′) is finite thanks to the first part of the proof, and (ker φ∗)
◦

is a normal subgroup of Aut◦(X, (∂GX)nℓ). It only remains to prove that Aut◦(X, (∂GX)nℓ) is

generated by θG,X(G
′) and (kerψ∗)

◦.

By [Br07, Theorem 4.4.1], we know that Aut◦(X ′, ∂X ′) and Aut◦(X, ∂X) are both semisimple

and locally isomorphic. It follows that the universal cover of Aut◦(X ′, ∂X ′) acts on X in such

a way that f is equivariant. On the other hand no element of this universal cover could act

trivially on X ′ and non-trivially on X, hence Aut◦(X ′, ∂X ′) itself acts on X, preserving all

G-orbits. This produces a commutative diagram

G
θG,X

//

θG,X

��

Aut◦
(
X, (∂GX)nℓ

)

ψ∗

��

Aut◦(X, ∂GX) oo
f∗

Aut◦(X ′, ∂GX
′)

where θG,X is surjective by our assumptions. Therefore Aut◦(X, (∂GX)nℓ) is generated by

θG,X(G) and ker(f∗ ◦ ψ∗). Notice that f∗ has finite kernel, that the kernel of ψ∗ contains

θG,X(C), and that Aut◦(X, (∂GX)nℓ) is connected: we deduce that Aut◦(X, (∂GX)nℓ) is indeed

generated by θG,X(G
′) and (kerψ∗)

◦, and the proof is complete. �

If we denote by

dψ∗ : LieAut
◦(X) → LieAut◦(X ′)

the corresponding homomorphism of Lie algebras, then the following corollary is an immediate

consequence of the above proposition.

Corollary 5.3. The subspace ker dψ∗ ⊆ LieAut◦(X) is G-stable, and its intersection with

Lie θG,X(G) is equal to Lie θG,X(C). There exists a G-equivariant splitting of the exact sequence

(4.1) such that

ker dψ∗ = Lie θG,X(C)⊕
⊕

D∈(∂GX)ℓ

H0(X,OX(D))

C
.
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6. Restricting automorphisms of X to fibers of ψ

We study now the automorphisms of a generic fiber of ψ induced by automorphisms of X

belonging to kerψ∗. For this it is convenient to exploit the local structure of spherical varieties.

Theorem 6.1. [Kn94, Theorem 2.3 and Proposition 2.4] Let Y be a spherical G-variety. Let

PG,Y ⊇ B be the stabilizer in G of the open B-orbit of Y , let LG,Y be the Levi subgroup of PG,Y

containing T , and consider the following open subset of Y :

Y0 = Y \
⋃

D∈∆G(Y )

D.

Then there exists a closed LG,Y -stable and LG,Y -spherical subvariety ZG,Y of Y0 such that the

map

P u
G,Y × ZG,Y → Y0

(p, z) 7→ pz

is a PG,Y -equivariant isomorphism, where LG,Y acts on P u
G,Y × ZG,Y by l · (p, z) = (lpl−1, lz).

The commutator subgroup (LG,Y , LG,Y ) acts trivially on ZG,Y , and if Y is toroidal then every

G-orbit meets ZG,Y in an LG,Y -orbit.

Definition 6.2. We define TG,Y to be the quotient of LrG,Y by the kernel of its action on ZG,Y .

We get back to our complete G-regular variety X . The torus TG,X is a subquotient of T , and

ZG,X is a spherical (toric) TG,X-variety, with lattice ΛTG,X
(ZG,X) = X (TG,X) = ΛG(G/H) and

fan of convex cones equal to FG(X).

Definition 6.3. For any x′ in the open G-orbit of X ′ we denote by κx′ the restriction map

κx′ : (kerψ∗)
◦ → Aut◦(Xx′)

where Xx′ = ψ−1(x′).

Recall that H is chosen in such a way that BH is open in G, and x0 = eH ∈ G/H ⊆ X . Let

us consider x′0 = ψ(x0): the fiber Xx′0
is smooth and complete, and it is a toric variety under

the action of the torus S = (Ĥ/H)◦ = H ′/H , where H ′ is the stabilizer of x′0.

Moreover, S acts naturally on G/H by G-equivariant automorphisms, and since S is con-

nected this S-action extends to X , stabilizing all colors of X and all fibers of ψ. We may fix

ZG,X′ ⊂ X ′ containing x′0, and choose ZG,X so that

ZG,X = ψ−1(ZG,X′) ∩X0,

which implies that ZG,X contains x0 and is stable under the action of S.

The same action of S on ZG,X can be realized sending S injectively into TG,X , and then

letting it act on ZG,X via the restriction of the usual action of G on X . Indeed, if nH ∈ S
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and f ∈ C(G/H)
(B)
χ , then gH 7→ f(gnH) also belongs to C(G/H)

(B)
χ , therefore there is a

homomorphism (depending only on χ) ιχ : S → C∗ such that f(gnH) = ιχ(n
−1H)f(gH) for all

g ∈ G. This induces a homomorphism

ι : S → Hom(ΛG(G/H),C∗) ∼= TG,X ,

which can be shown to be injective, with image equal to the subtorus of TG,X corresponding

to the subspace Vℓ
G(G/H) ⊆ NG(G/H) (see [Br97, Proof of Theorem 4.3]). Let us check

that restricting to ι(S) the usual TG,X-action on ZG,X yields the action described above. The

intersection ZG,X ∩ G/H is dense in ZG,X , and ZG,X is a toric TG,X-variety with lattice equal

to ΛG(G/H): it follows that ι(nH)gH = gnH , because

f(ι(nH)gH) = χ(ι(n−1H))f(gH) = ιχ(n
−1H)f(gH) = f(gnH)

for all nH ∈ S, gH ∈ ZG,X ∩G/H , χ ∈ ΛG(G/H) and f ∈ C(G/H)
(B)
χ .

The fiber Xx′0
is also the fiber over x′0 of the S-equivariant map ZG,X → ZG,X′, which implies

that its fan of convex cones is

(6.1) FS(Xx′0
) =

{
c
∣∣ c ∈ FG(X), c ⊂ Vℓ

G(G/H)
}
.

Since the S-boundary of Xx′0
is given intersecting Xx′0

with the elements of (∂GX)ℓ, there is

an exact sequence of S-modules

(6.2) 0 → LieS → LieAut◦(Xx′0
) →

⊕

D∈(∂GX)ℓ

H0(Xx′0
,OX(D ∩Xx′0

))

C
→ 0.

Lemma 6.4. If V ⊆ ker dψ∗ is a simple G-submodule and x′ is in the open B-orbit of X ′, then

dκx′(V ) = dκx′(Cv), where v ∈ V is a highest weight vector.

Proof. We may assume that x′ = x′0 and that v = [s] ∈ H0(X,OX(D))/C for some D ∈ (∂X)ℓ,

in view of Corollary 5.3. From the expression in local coordinates of [BB96, Remark after

Proposition 2.3.2] and the proof of [BB96, Proposition 4.1.1], we see that dκx′0(v) is sent by the

surjective map of (6.2) to [s|Xx′
0
] where s|Xx′

0
is a section of OXx′

0
(D ∩Xx′).

If s is a B-eigenvector then its zeros are B-stable. On the other hand, since Bx′0 is open in

X ′, the only zeros of s intersecting Xx′0
are G-stable. It also follows that (gs)|Xx′

0
and s|Xx′

0

have the same zeros (hence are linearly dependent) for any g ∈ G such that gx0 doesn’t lie on

any color of G/H . This is true for g lying in a dense subset U of G, and since V is generated

as a vector space by elements of the form [gs] for g ∈ U , the lemma follows. �

Lemma 6.5. Let i = 1, 2 and 0 6= γi ∈ ΛG(X) be such that X(γi) exists, with X(γi) ∈ (∂X)ℓ.

Suppose that 〈m, γ1〉 = −〈m, γ2〉 for all m ∈ Vℓ
G(X). Then

〈ρG,X(D), γi〉 = 0

for all i = 1, 2, for all D ∈ (∂GX)nℓ and for all D ∈ ∆G(X).
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Proof. Consider the wonderful variety X. Both sets ρG,X(∆G(X)) and ρG,X(∂GX) generate NG(X)

as a vector space, and the convex cone generated by ρG,X(∆G(X)) contains −ρG,X(∂GX) (see

[Br07, Lemma 2.1.2]). On the other hand, the set π∗(ρG,X((∂GX)nℓ)) ⊂ NG(X) generates the

same convex cone VG(X) generated by ρG,X(∂GX), and π∗(ρG,X(∆G(X))) = ρG,X(∆G(X)). It

follows that there exists a linear combination

v =
∑

Y ∈(∂GX)nℓ

nY ρG,X(Y ) +
∑

Z∈∆G(X)

nZρG,X(Z) ∈ Vℓ
G(X)

where all the coefficients nY and nZ are positive. From the assumptions on the characters γi,

all the elements ρG,X(Y ) and ρG,X(Z) above are non-negative on both γ1 and γ2: we deduce

that 〈v, γi〉 ≥ 0, which yields 〈v, γi〉 = 0. The lemma follows. �

In the next sections we will investigate Aut◦(X,D) for any subset D ⊆ ∂GX , using the results

above. It is harmless to assume that each E ∈ E = ∂GX \ D is not stable under Aut◦(X,D),

and it is convenient to treat separately the two subsets Enℓ, E ℓ of E .

More precisely, we first consider in §7 the special case where E ℓ = ∅, i.e. D ⊇ (∂GX)ℓ. We

determine the group Aut◦(X,D): it is obtained lifting from X to X the action of a certain

subgroup of Aut◦(X), it is reductive and under its action X is G-regular, with boundary D.

Finally, we compute the related fan of convex cones.

For a general D, we apply the above results to X where G is replaced by G̃ = Aut◦(X,D∪E ℓ).

It turns out (see Corollary 7.19) that the elements of E ℓ lie on the linear part of the valuation

cone both with respect to the G-action and to the G̃-action.

Therefore we may finally replace G with the group G̃, and develop further analysis on

Aut◦(X,D) where now X is a complete G̃-regular variety satisfying D ⊇ (∂G̃X)nℓ. This will be

done in §10, after discussing the special cases of G abelian (§8) and G semisimple (§9).

7. G-stable prime divisors not on the linear part of the valuation cone

In this section we study Aut◦(X,D) under the assumption that D ⊇ (∂GX)ℓ. We also suppose

that D contains all the G-stable prime divisors D that satisfy H0(X,OX(D)) = C, since these

prime divisors do not move under the action of Aut◦(X) anyway.

Before stating the main result of this section, Theorem 7.8, we need to establish a correspon-

dence between the divisors in ∂GX \ D and certain boundary divisors of X.

Recall that since X is wonderful the set −ρG,X(∂XX) is a basis of NG(X), dual to ΣG(X).

Definition 7.1. For an element D ∈ ∂GX, we denote by σD the spherical root of X dual to

−ρG,X(D).

Since ΛG(X) is a sublattice of ΛG(X), we consider σD also as an element of the latter.
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Also recall that, thanks to [Br07, Theorem 2.2.3], if D ∈ ∂GX satisfies H0(X,OX(D)) 6= C

then H0(X,OX(D))/C is irreducible with highest weight σD.

Lemma 7.2. Let E ∈ E = ∂GX \ D. Then:

(1) the image π(E) is an element of ∂GX, with H0(X,OX(π(E))) 6= C, and E is the only

element of ∂GX whose image is π(E);

(2) we have

π∗(ρG,X(E)) = ρG,X(π(E)),

and

(7.1) ∀c ∈ FG(X) \ {cX,E}, c 1-dimensional : c ⊂ σ⊥
π(E);

(3) the G-modules H0(X,OX(E)) and H
0(X,OX(π(E))) are isomorphic.

Proof. Let γ 6= 0 be such that H0(X,OX(E))
(B)
γ 6= ∅. Since E ∈ (∂GX)nℓ, the character γ is

non-negative on ρG,X((∂GX)ℓ), which generates the whole Vℓ
G(X) as a convex cone, because X

is complete. It follows that γ ∈ Vℓ
G(X), which implies that some positive integral multiple of

γ, say nγ, lies in ΛG(X). Let us also assume that it is indecomposable in ΛG(X), i.e. that n is

minimal satisfying n > 0 and nγ ∈ ΛG(X).

Consider π(E): if it is not a G-stable prime divisor of X, then π∗(ρG,X(E)) is in VG(X) but

doesn’t lie on any 1-dimensional face of VG(X). On the other hand, each element of ∂GX is

the image π(D) of some G-stable prime divisor D of X , with π∗(ρG,X(D)) equal to a positive

rational multiple of ρG,X(π(D)). This implies that nγ ∈ ΛG(X) is non-negative on ρG,X(∂GX)

and negative on π∗(ρG,X(E)), which is absurd because ρG,X(∂GX) generates VG(X) as a convex

cone.

We conclude that π(E) ∈ ∂GX, and that E is the unique element of ∂GX whose image

is π(E), because nγ is non-negative on ρG,X(E
′) for any E ′ ∈ ∂GX different from E. Let

0 > −m = 〈ρG,X(π(E)), nγ〉. Then H
0(X,OX(mπ(E))) 6= C.

From [Br07, Theorem 2.2.3] it follows that H0(X,OX(π(E))) 6= C, that H0(X,OX(π(E)))/C

is irreducible with highest weight σπ(E), and that any χ ∈ ΛG(X) satisfying

(7.2) 〈ρG,X(D), χ〉 ≥ 0 ∀D ∈ (∂GX \ {π(E)} ∪∆G(X), 〈ρG,X(π(E)), χ〉 < 0

is a positive multiple of σπ(E). We have then shown (1). It also follows that nγ is a positive

multiple of σπ(E), whence γ is non-positive on VG(X) and so it is zero on ρG,X(D) for all

D ∈ ∂GX different from E. This shows (7.1).

Now recall that nγ is indecomposable in ΛG(X). Since it is a positive multiple of σπ(E), it is

equal to σπ(E). On the other hand ΣG(X) = ΣG(X) and σπ(E) is also indecomposable in ΛG(X).

Therefore n = 1, and we have

〈ρG,X(E), γ〉 = 〈π∗(ρG,X(E)), γ〉 = −1 = 〈ρG,X(π(E)), σπ(E)〉,



18 GUIDO PEZZINI

whence π∗(ρG,X(E)) = ρG,X(π(E)). The proof of part (2) is complete.

Since γ is the highest weight of an arbitrary non-trivial G-submodule of H0(X,OX(E)), and

the latter is multiplicity-free since X is spherical, the proof of (3) is also complete. �

Definition 7.3. We denote by

ΛG(X, E) ⊆ ΛG(X)

the sublattice generated by the elements σπ(E) for all E ∈ E .

Corollary 7.4.

ΛG(X) = ρG,X(E)
⊥ ⊕ ΛG(X, E).

Proof. From Lemma 7.2 we deduce that for all E ∈ E the element ρG,X(E) is −1 on the spherical

root σπ(E) of X , and zero on all other spherical roots of X . The corollary follows. �

Remark 7.5. In the proof of Lemma 7.2 we used the crucial fact that X and X(G/Ĥ) have the

same spherical roots. The decomposition of Λ(G/H) into the above direct sum would indeed

be false in general, if we had used X(G/H) instead of X(G/Ĥ).

Definition 7.6. Define

E = {π(E) | E ∈ E} ,

and

D = ∂X \ E.

Definition 7.7. Let A′ = A′(X,D) be the universal cover of Aut◦(X,D), and A = A(X,D) =

A′ × C. We denote by

ϑ′ : G′ → A′

the lift of θG′,X : G
′ → Aut◦(X,D) to A′, and we set

ϑ = ϑ′ × idC : G→ A.

We also choose a Borel subgroup BA of A such that BA ⊇ ϑ(B).

Now we are ready to state the main result of this section.

Theorem 7.8. The action of A(X,D) lifts from X to X, and the image of A(X,D) inside

Aut◦(X) is equal to Aut◦(X,D). As an A = A(X,D)-variety, X is G-regular with boundary D.

The vector space NA(X) is naturally identified with ΛG(X, E)
⊥ ⊆ NG(X). The fan FA(X) of

X as an A-variety is given by intersecting all cones of FG(X) with ΛG(X, E)
⊥.

The proof occupies the rest of the section: the theorem follows from Lemma 7.13, Theo-

rem 7.18, and Corollary 7.20.
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Example 7.9. It is necessary to define A′ as the universal cover of Aut◦(X,D). Consider for

example G = SL(n+1) (with n ≥ 1) acting linearly and diagonally on Pn+1×(Pn)∗, where on the

first factor it acts only on the first n+1 homogeneous coordinates. Then X = Blp(Pn+1)×(Pn)∗,

with p = [0, . . . , 0, 1], is a G-regular variety with three G-stable prime divisors, of which only

one lies in (∂GX)nℓ. We have X = Pn × (Pn)∗, and if D = (∂X)ℓ then D = ∅. The action of

Aut◦(X,D) = Aut◦(X) = PGL(n+ 1)× PGL(n+ 1) doesn’t lift to X , whereas the action of its

universal cover does.

In view of proving Theorem 7.8, we start finding a candidate for a generic stabilizer of the

A-action on X . Let ĤA ⊆ A be2 the stabilizer of the point eĤ ∈ G/Ĥ ⊆ X. The colors of

X as a G-variety and as an A-variety coincide, thanks to [Br07, Theorem 2.4.2], and we have

ϑ(Ĥ) = ĤA ∩ ϑ(G).

We also notice that thanks to our general assumptions any G-linearization of an invertible

sheaf X can be uniquely extended to an A-linearization, inducing an identification of the two

groups PicG(X) and PicA(X).

Lemma 7.10. (1) The pull-back of characters of BA along ϑ|B induces an injective map

r : ΛA(X) → ΛG(X). It maps ΣA(X) to the set of spherical roots {σD |D ∈ D}.

(2) The dual map r∗ : NG(X) → NA(X) satisfies

r∗(VG(X)) = VA(X).

(3) We have that ∂AX = D, and

A/ĤA = X \
⋃

D∈D

D.

(4) The pull-back of characters of ĤA along ϑ|Ĥ is a surjective homomorphism r′ : X (ĤA) →

X (Ĥ) with free kernel of rank |E|.

Proof. The injectivity of r is obvious, since it corresponds to taking a BA-semiinvariant f ∈

C(X) and considering it as a B-semiinvariant. The rest of part (1) follows from the results of

[Pe09], and it can also be shown directly using the following fact: the spherical roots of X are

the T -weights appearing in the quotient of tangent spaces

TzX
Tz(Gz)

,

where z ∈ X is the unique fixed point of B−. Let us choose a maximal torus TA of A containing

ϑ(T ): if B−
A ⊆ A is the Borel subgroup satisfying BA ∩ B−

A = TA then B−
A contains ϑ(B−).

2Our notation is consistent thanks to Corollary 7.14.
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Hence z is also the unique B−
A -fixed point, therefore the spherical roots of X as an A-variety

are the TA-weights appearing in the quotient of tangent spaces

TzX
Tz(Az)

,

form the set ΣA(X). This implies part (1), and part (2) is an immediate consequence.

The first statement of part (3) stems from the fact that each E ∈ E is not stable under the

action of A, and the second follows from the first because X is wonderful under the action of

A.

For part (4), we notice that r′ can be identified with the natural map

X (C)× Z∆

ρA,X(ΛA(X))
→

X (C)× Z∆

ρG,X(ΛG(X))

(see diagram (3.1)). The kernel of r′ is then ΛG(X)/r(ΛA(X)) which is free, generated by the

spherical roots σE for all E ∈ E by part (1). �

Let us put together two copies of the diagram (3.1), one for the G- and one for the A-action,

also adding the extensions of ρG and ρA resp. to ΛG(G/H) and ΛA(A/ĤA), as in §3. We obtain

a commutative diagram

ΛA(A/KA)
� � // ΛA(A/ĤA)

� �
ρA

//

� _

r

��

X (C)× Z∆
τA

// //

σA ((❘
❘❘

❘❘
❘

X (KA) // // X (ĤA)

r′

����

X (BA)
(ϑ|B)∗��

X (B)

ΛG(G/K) �
�

// ΛG(G/Ĥ) �
�

// ΛG(G/H) �
� ρG

// X (C)× Z∆
τG

// //

σG 66❧❧❧❧❧❧

X (K) // // X (Ĥ)

where KA is the spherical closure of ĤA, and K is the spherical closure of Ĥ (and of H). The

last arrow of the first row is the restriction map, which can be seen as the quotient

X (KA) → X (KA)/X (KA)
ĤA ∼= X (ĤA).

The same remark holds for the last map of the second row and the groups K, Ĥ.

In order to determine a generic stabilizer in A forX , we start defining a lattice Λ ⊆ ΛG(G/H).

A posteriori, it will be the lattice of B-eigenvalues χf of BA-eigenvectors f ∈ C(X)(BA). Such

a function f cannot have zeros nor poles on the divisors in E , since these are not A-stable, nor

are A-colors of X . This suggests the definition of Λ given in the following.

Definition 7.11. Let Λ be the lattice

Λ = ρG,X(E)
⊥ ⊆ ΛG(G/H).
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Proposition 7.12. The following inclusion holds:

ρG(Λ) ⊇ ρA(ΛA(A/KA)).

The subgroup HA of KA corresponding to the lattice ρG(Λ) is a spherical subgroup of A, and

we have ϑ(H) = HA ∩ ϑ(G). This induces a G-equivariant identification of G/H with an open

subset of A/HA.

Proof. Let χ ∈ ΛA(A/KA) ⊆ ΛA(A/ĤA). If f ∈ C(A/ĤA)
(BA)
χ , then consider its pull-back on

X , denoted by f̃ . It is also a B-eigenvector with B-eigenvalue χ̃ = r(χ).

We know that the divisor div(f̃) on X is BA-stable, so in general it is a linear combination of

colors and A-stable prime divisors. In any case, its components do not belong to E , because the

latter consists of prime divisors moved by A. It follows that all discrete valuations in VG(G/H)

coming from these elements of E must take the value 0 on χ̃.

Therefore χ̃ ∈ Λ, and the first assertion is proved. In order to verify that HA is spherical we

have to show that σA restricted to ρG(Λ) = τ−1
A

(
X (KA)

HA
)
is injective. But we already know

that the restriction of σG on ρG(ΛG(G/H)) is injective, and that Λ ⊆ ΛG(G/H): this proves

the second assertion.

Next, we claim that r′ induces an isomorphism between X (ĤA)
HA and X (Ĥ)H . This shows

that ĤA/HA
∼= Ĥ/H , and the rest of the lemma follows. To prove the claim, it is enough to

notice that

X (ĤA)
HA ∼=

ρG(Λ)

ker τA

=
ρG(Λ)

ρG(r(ΛA(A/ĤA)))

∼=
ρG(Λ)⊕ ρG(ΛG(X, E))

ρG(ΛG(G/Ĥ))

=
ρG(Λ⊕ ΛG(X, E))

ρG(ΛG(G/Ĥ))

=
ρG(ΛG(G/H))

ρG(ΛG(G/Ĥ))

∼= X (Ĥ)H ,

and that the resulting isomorphism X (ĤA)
HA ∼= X (Ĥ)H is indeed induced by r′. �

We build ex novo an embedding XA of A/HA, and then prove that we actually obtain X .

Lemma 7.13. The pull-back of characters of BA to B along ϑ|B induces an injective map

s : ΛA(A/HA) → ΛG(G/H) whose image is Λ. The dual map s∗ : NG(G/H) → NA(A/HA)

satisfies

s∗(VG(G/H)) = VA(A/HA),
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and induces an isomorphism

s∗|Vℓ
G
(G/H) : V

ℓ
G(G/H) → Vℓ

A(A/HA).

Proof. Let γ ∈ ΛA(A/HA): it is the BA-eigenvalue of a BA-eigenvector f ∈ C(A/HA)
(BA). But

f is a B-eigenvector too and the character χ = s(γ) is its B-eigenvalue. Both the B- and the

BA-eigenvalue determine f up to a multiplicative constant, hence s is injective.

Consider the commutative diagram

ΛA(A/HA)
� �
ρA

//

� _

s

��

PicA(X)

ΛG(G/H) �
� ρG

// PicG(X)

From the definition ofHA we have ρA(ΛA(A/HA)) = ρG(Λ), therefore we obtain s(ΛA(A/HA)) =

Λ.

Let v ∈ VA(A/HA). It corresponds to anA-invariant valuation, which is a fortioriG-invariant

too: in other words we can compute v also on ΛG(G/H) obtaining an element of VG(G/H).

This shows that s∗(VG(G/H)) ⊇ VA(A/HA).

Then we notice that s extends the map r of Lemma 7.10. This gives the commutative diagram

NG(G/H)
πH,Ĥ
∗

// //

s∗

����

NG(G/Ĥ)

r∗
����

NA(A/HA)
π
HA,ĤA
∗

// // NA(A/ĤA)

where VA(A/HA) (resp. VG(G/H)) is the inverse image of VA(A/ĤA) (resp. VG(G/Ĥ)) thanks

to Lemma 3.2.

This, together with Lemma 7.10, part (2), proves s∗(VG(G/H)) = VA(A/HA). The image of

Vℓ
G(G/H) is contained in Vℓ

A(A/HA), and we conclude the proof observing that the dimensions

of Vℓ
G(G/H) and Vℓ

G(A/HA) are both equal to the dimension of Ĥ/H ∼= ĤA/HA. �

Corollary 7.14. The wonderful closure of HA is ĤA.

Proof. By construction HA ⊆ ĤA ⊆ KA = HA. From Lemma 7.13 we deduce that A/HA and

A/ĤA have the same spherical roots: the corollary follows then from Proposition 3.10. �

We shall now define the fan of convex cones of XA, using that of X . First, we collect some

consequences on F(X) of the analysis we have developed so far.

Definition 7.15. Let F be a fan of convex cones, consider a subset F ′ ⊂ F and let c ∈ F \F ′

be 1-dimensional. Then F is the join of F ′ and c if each element of F \ F ′ is the convex cone

generated by c and an element of F ′.
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Corollary 7.16. (1) Let E ∈ E , and let F
σπ(E)

G (X) be the fan of convex cones obtained

intersecting each element of FG(X) with σ⊥
π(E). Then FG(X) is the join of F

σπ(E)

G (X)

and cX,E.

(2) Let FΛ
G(X) be the fan of convex cones obtained intersecting each element of FG(X) with

ΛG(X, E)
⊥. Then the restriction of s∗ to suppFΛ

G(X) is injective, and s∗(suppFΛ
G(X)) =

VA(A/HA).

(3) The set
{
s∗(c)

∣∣ c ∈ FΛ
G(X)

}

is a fan of polyhedral convex cones in NA(A/HA). The associated embedding of A/HA

is smooth and complete.

Proof. Part (1) follows from Lemma 7.2, part (2). Part (2) follows from part (1) applied to all

E ∈ E , together with Corollary 7.4 and Lemma 7.13. We turn to part (3). Completeness of

this embedding is an immediate consequence of part (2). For smoothness, we observe that a

maximal cone c of FG(X) can be written as

c = ({−σE |E ∈ E} ∪Ψ)∨

where Ψ is a basis of Λ = ρG,X(E)
⊥, thanks to the smoothness of X together with part (1)

applied to all E ∈ E and Corollary 7.4. Therefore

s∗
(
c ∩

(
ΛG(X, E)

⊥
))

=
(
s−1 (Ψ)

)∨
.

The smoothness characterization recalled in §2 is verified, since s−1 (Ψ) is a basis of ΛA(A/HA),

and the proof is complete. �

Definition 7.17. We define

FA =
{
s∗(c)

∣∣ c ∈ FΛ
G(X)

}
,

and we denote by XA the corresponding embedding of A/HA.

Theorem 7.18. The inclusion G/H ⊆ A/HA extends to an A-equivariant isomorphism between

X and XA.

Proof. The group G acts on XA via the map θ, and it is enough to show XA is a toroidal

embedding of G/H with fan FG(X). Let us first prove the theorem with the assumption that

|E| = 1, say E = {E}.

In addition to the G-equivariant map π : X → X we also have by construction an A-

equivariant map πA : XA → X extending the projection πHA,ĤA : A/HA → A/ĤA. The A-colors

and the G-colors of X coincide, and this implies the same for XA: indeed any A-color (resp.

G-color) of XA is of the form π−1
A (D) for an A-color (resp. G-color) D of X.
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If D ⊂ X is a color such that π−1
A (D) contains a G-orbit Y ⊂ XA, then D contains the

G-orbit πA(Y ): this is absurd because X is a toroidal G-variety. In other words XA is a toroidal

G-variety.

Next, we claim that A/HA is a G-embedding of G/H whose fan contains cX,E as its unique

non-trivial cone. Part (3) of Lemma 7.10 implies that A/ĤA is an elementary embedding of

G/Ĥ, with orbits G/Ĥ , π(E)∩A/ĤA, and fan containing cX,π(E) as its unique non-trivial cone.

The open subset G/H ⊂ A/HA(⊆ XA) is equal to π
−1
A (G/Ĥ), and the G-stable closed subset

E ′ = (A/HA) \ (G/H) is equal to π−1
A (π(E)) ∩ A/HA.

Consider the G-invariant prime divisors contained in E ′: they are neither colors nor A-stable

prime divisors. We claim that there is only one of them, with associated convex cone cX,E.

Then E ′ itself is a G-stable prime divisor, because we already proved that A/HA is a toroidal

embedding of G/H .

For this, consider f ∈ C(G/H)
(B)
λ with λ ∈ Λ. By Lemma 7.13 we have that f is also a

BA-eigenvector, therefore its divisor div(f) on A/HA has components which are either colors or

A-stable prime divisors. It follows that ρG,A/HA
(F ) ∈ λ⊥ for all λ ∈ Λ and all G-stable prime

divisor F ⊆ E ′. Since cX,E = Λ⊥ ∩ VG(G/H), we deduce that there is only one such F and it

satisfies ρG,A/HA
(F ) ∈ cX,E: the claim above follows.

Now Lemma 7.2, Lemma 7.13 and Corollary 7.16 part (1) hold also if we replace X with XA

and D with the set (∂GXA) \ {E
′}. From Corollary 7.16 part (1) we deduce that FG(XA) is the

join of F
σπ(E)

G (XA) and cX,E. From Lemma 7.13 we deduce that every G-stable prime divisor

D of XA such that ρG,XA
(D) ∈ σ⊥

π(E) is also A-stable, hence each G-orbit Y ⊆ XA such that

cXA,Y ⊂ σ⊥
π(E) is also an A-orbit.

In other words F
σπ(E)

G (XA) and F
σπ(E)

G (X) have the same image under s∗, which implies that

they are equal. The theorem in the case |E| = 1 follows.

If |E| > 1, we consider the chain of groups

θG,X(G) ⊆ Aut◦(X, ∂GX \ {E1}) ⊆ Aut◦(X, ∂GX \ {E1, E2}) ⊆ . . . ⊆ Aut◦(X,D),

where E = {E1, E2, . . .}, and proceed by induction on |E|. Let Ai ⊆ Ai+1 be two consecutive

groups of this chain: we may apply the first part of the proof, together with Corollary 7.19

below (whose proof in the case |E| = 1 only depends on the case |E| = 1 of this theorem) to the

Ai-variety X . We obtain the construction of an Ai+1-variety XAi+1
, which is Ai-equivariantly

isomorphic to X . �

Corollary 7.19. We have ∂AX = D and (∂AX)ℓ = (∂GX)ℓ.

Proof. This is obvious from the definition of FA. �

Corollary 7.20. The image of A in Aut◦(X) is equal to Aut◦(X,D).
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Proof. By construction A moves each element of E on X and stabilizes all elements of D, hence

D = ∂AX.

Moreover ĤA is the wonderful closure ofHA, hence we can apply the exact sequence (4.2) toX

as an A-variety, mapping onto the wonderful A-variety X. Since the image of A contains by con-

struction both the universal cover of Aut◦(X,D) = Aut◦(X, ∂AX) and (ĤA/HA)
◦ ∼= (Ĥ/H)◦ ⊆ C,

it follows that the image of A contains Aut◦(X, ∂AX) = Aut◦(X,D). �

8. Abelian case

In this section we will assume that G = C is an algebraic torus, X as usual a complete

G-regular variety, and D ⊆ ∂GX any subset. Hence X is a toric variety under the acton of a

quotient of G. Since G is equal to its own Borel subgroups, X has no G-color.

We recall now the desctiption of Aut◦(X) given in [Oda88]. In this setting the study of

Aut◦(X) is simplified by the fact that, for all D ∈ ∂GX , the G-module H0(X,OX(D)) splits

into the sum of 1-dimensional G-submodules.

Definition 8.1. Suppose that for some non-zero α ∈ ΛG(X) the divisor X(α) exists, i.e.

that there exist X(α) ∈ ∂GX and an element fα ∈ H0(X,OX(X(α)))
(B)
α . Then we denote

by uα : C → Aut◦(X) the unipotent 1-PSG corresponding to α defined in [Oda88, Proposition

3.14], and such that X(α) is the unique G-stable prime divisor not stable under Uα = uα(C).

We recall that [Oda88, Proposition 3.14] gives explicit formulae for uα, and that this 1-PSG

can also be defined in the following way. The element α ∈ ΛG(X) naturally corresponds to a

semisimple 1-PSG of Aut◦(X) through the action of G on X . Denote by δα its derivative, which

is a tangent vector field on X . Then the tangent vector field duα is equal to fαδα.

Remark 8.2. If X(α) exists for some α, then 〈ρG,X(X(α)), α〉 = −1 and 〈ρG,X(D), α〉 ≥ 0 for

all D ∈ ∂GX different from X(α). However, the difference in signs from our discussion and

[Oda88, §3.4] is only apparent: a character λ ∈ X (θG,X(G)) is indeed a rational function on X

and a G-eigenvector, but of G-eigenvalue −λ.

Notice that the assignment α 7→ X(α) might be not injective. Also, if both X(α) and X(−α)

exist, then ρG,X(X(α)) is not necessarily −ρG,X(X(−α)). However, X(α) and X(−α) are the

only G-stable prime divisors whose images through ρG,X are non-zero on α.

Definition 8.3. Let D ⊆ ∂GX any subset, and define Φ = Φ(X,D) to be the maximal set of

roots of X such that:

(1) if α ∈ Φ(X,D) then also −α ∈ Φ(X,D);

(2) if α ∈ Φ(X,D) then X(α) ∈ E = ∂X \ D.
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The following result is an immediate consequence of [Oda88, Demazure’s Structure Theorem,

§3.4].

Theorem 8.4. The subgroup of Aut◦(X) generated by θG,X(G) and Uα for all α ∈ Φ(X,D) has

Φ(X,D) as root system with respect to its maximal torus θG,X(G), and is a Levi subgroup of

Aut◦(X,D).

Definition 8.5. Define A = A(X,D) the subgroup of Aut◦(X) generated by θG,X(G) and Uα for

all α ∈ Φ(X,D). Let us also choose a Borel subgroup BA ⊆ A containing G and, consequently,

a subdivision of Φ into positive and negative roots, resp. denoted by Φ+ = Φ+(X,D) and

Φ− = Φ−(X,D), and denote by Ψ = Ψ(X,D) the basis of positive roots.

Since BA is generated by θG,X(G) together with the subgroups Uα for all α ∈ Ψ, we have

that any G-stable prime divisor which doesn’t appear as X(α) for some α ∈ Ψ is BA-stable. In

other words

(8.1) {X(α) | α ∈ Φ+} = {X(α) | α ∈ Ψ} ,

and for the same reason (replacing Ψ with −Ψ)

(8.2) {X(α) | α ∈ Φ−} = {X(α) | α ∈ (−Ψ)} .

Lemma 8.6. Let α, β ∈ Φ, and suppose that X(α) = X(β). Then γ = α− β and −γ are also

in Φ, with X(γ) = X(−β) and X(−γ) = X(−α).

Proof. Suppose thatX(−α) = X(−β). Then α−β is zero on ρG,X(X(±α)) and on ρG,X(X(±β)).

On the other hand, if aG-stable prime divisorD ⊂ X is not of the formX(±α) norX(±β), then

both α and β are zero on ρG,X(D). It follows that suppFG(X) is contained in the hyperplane

(α− β)⊥ of NG(X), which contradicts the completeness of X . Therefore X(−α) 6= X(−β), i.e.

X(α), X(−α) and X(−β) are three different prime divisors. The statement of the lemma is

now obvious. �

Lemma 8.7. The matrix

(8.3) (〈ρG,X(X(α)), α〉)α∈Ψ

is non-degenerate. In particular, the elements ρG,X(X(α)), for α varying in Ψ, are linearly

independent.

Proof. Thanks to Lemma 8.6, the elements ρG,X(X(α)) for α ∈ Ψ are pairwise distinct. If the

matrix (8.3) is degenerate, there exists a linear combination

(8.4)
∑

α∈Ψ′

aαρG,X(X(α)) ∈ Ψ⊥
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where ∅ 6= Ψ′ ⊆ Ψ and aα 6= 0 for all α ∈ Ψ′. Applying 〈−, α〉 for a fixed α ∈ Ψ′ to the linear

combination (8.4), we see that both ρG,X(X(α)) and ρG,X(X(−α)) must appear in the sum.

Indeed, the former appears, and the latter is the only other possible summand that is nonzero

on α. The elements ρG,X(X(−α)) for α ∈ Ψ are distinct, thanks to the first part of the proof

applied to the set of simple roots −Ψ.

Hence each summand in (8.4) can also be rewritten as aαρG,X(X(−τ(α))) where τ : Ψ′ → Ψ′

is a bijection. We also know that ρG,X(X(α)) 6= ρG,X(X(−α)), therefore τ has no fixed points.

Now consider

γ =
∑

α∈Ψ′

α.

Its value on ρG,X(D) is zero, if D ⊂ X is a G-stable prime divisor not of the form X(±α) for

some α ∈ Ψ′. On the other hand, for a fixed α ∈ Ψ′ we have that X(α) = X(−τ(α)), but

X(α) 6= X(β) for all β ∈ Ψ different from α, and X(α) 6= X(−β) for any β ∈ Ψ different from

τ(α). Therefore

〈ρG,X(X(α)), γ〉 = 〈ρG,X(X(α)), α〉+ 〈ρG,X(X(α)), τ(α)〉+

〈
ρG,X(X(α)),

∑

β∈Ψ′,β 6=α,τ(α)

β

〉

= −1 + 1 + 0 = 0.

We obtain that suppFG(X) is contained in the hyperplane γ⊥, which is absurd because X is

complete. �

Proposition 8.8. As an A-variety, X is spherical (not necessarily toroidal). The set of its

A-stable prime divisors is

∂AX = ∂GX \ {X(α) | α ∈ Φ},

and these are exactly the G-stable prime divisors D such that ρG,X(D) ∈ Ψ⊥. Given the

identification X (θG,X(G)) = X (BA), we have an inclusion

ι : ΛA(X) → ΛG(X)

whose image is the sublattice

(8.5) {ρG,X(X(α)) | α ∈ Ψ}⊥ ⊆ Λ(X).

The restriction map ι∗ : NG(X) → NA(X) induces an isomorphism

ι∗|Ψ⊥ : Ψ⊥ ∼=
→ NA(X).

For any BA-stable prime divisor D ⊂ X we have ρA,X(D) = ι∗ρG,X(D), and the set of A-colors

of X is the following:

∆A(X) = {X(α) | α ∈ (−Ψ)} \ {X(α) | α ∈ Ψ} .
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Finally, let α ∈ Ψ with X(−α) ∈ ∆A(X). For all β ∈ Φ+ different from α, we have X(−α) 6=

X(β) and X(α) 6= X(β). In particular, if in addition β ∈ Ψ, we also have ρG,X(X(−α)) ∈ β⊥.

Proof. Since θG,X(G) ⊆ BA has already an open orbit on X , the first statement is obvious. The

statement about the A-stable prime divisors is also immediate.

Let us prove that the A-colors are the set ∆A(X) as above defined. A color must be X(α)

for some α ∈ Φ otherwise it is A-stable, and at this point not being of the form X(α) for any

α ∈ Φ+ is equivalent to be stable under BA. Then, we conclude using (8.1) and (8.2).

The inclusion ι is given by the simple observation that a BA-eigenvector in C(X) is a fortiori

a G-eigenvector, with same eigenvalue; the identity ρA,X(D) = ι∗ρG,X(D) for any BA-stable

prime divisor is also obvious.

Let us prove that the image of ι is the lattice (8.5). If γ ∈ ΛA(X), then a corresponding

BA-eigenvector fγ ∈ C(X) cannot have zeros nor poles on prime divisors X(α) for α ∈ Ψ,

since the latter divisors are not BA-stable. Hence ι(ΛA(X)) ⊆ {ρG,X(X(α)) | α ∈ Ψ}⊥. On

the other hand, if χ ∈ {ρG,X(X(α)) | α ∈ Ψ}⊥, then a corresponding G-eigenvector fχ ∈ C(X)

has zeros and poles only on A-stable prime divisors or on colors. It follows that fχ is also a

BA-eigenvector, and the other inclusion is proved.

We prove now that ι∗|Ψ⊥ is an isomorphism between Ψ⊥ and NA(X). From the first part of

the proof, this follows if we prove that

Λ⊗Z Q = (Ψ⊗Z Q)⊕
(
{ρG,X(X(α)) | α ∈ Ψ}⊥ ⊗Z Q

)
,

and this equality is an easy consequence of Lemma 8.7.

Let us check the last statement, so let α ∈ Ψ be such that X(−α) ∈ ∆A(X), and consider

β ∈ Φ+, β 6= α. We know that X(−α) 6= X(β) because of the definition of ∆A(X) together

with (8.1). This also implies that X(α) 6= X(β), because otherwise we would have β −α ∈ Φ+

with X(−α) = X(β − α), thanks to Lemma 8.6. �

Remark 8.9. The two above results imply in particular that the A-colors ofX , seen as elements

of NA(X), are linearly independent.

Example 8.10. An example where X is not toroidal as an A-variety can be given as follows.

Let X = Pn with n ≥ 2, under the linear action of the group G of (n + 1)× (n + 1) invertible

diagonal matrices. Then ∂GX has n+1 elements, each given by the vanishing of an homogeneous

coordinate. If D is the set of all of them except for one, then Aut◦(X,D) is a maximal parabolic

subgroup of PGL(n+1). Its Levi subgroup A containing the image of G acts with a fixed point,

contained in all elements of D therefore contained in any L-color of X .

We can now state the main theorem of this section.
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Theorem 8.11. If we identify NA(X) and Ψ⊥ via the map ι∗|Ψ⊥ of Proposition 8.8, the fan of

colored convex cones FA(X) of X as a spherical A-variety is obtained from the fan FG(X) as

follows:

FA(X) =
{
(c ∩Ψ⊥, d(c))

∣∣ c ∈ FG(X)
}
.

Here d(c) is the set of A-colors D of X such that if β ∈ Φ+ satisfies X(−β) = D, then both

ρG,X(X(β)) and ρG,X(X(−β)) lie on 1-dimensional faces of c.

Proof. First, we consider c ∈ FG(X) and we show that the colored cone (c ∩Ψ⊥, d(c)) belongs

to FA(X).

The cone c is equal to cX,Y for some G-orbit Y . We claim that the colored cone associated

to the A-orbit AY is given by (c∩Ψ⊥, d(c)), with d(c) defined as in the theorem. To show the

claim, it is enough to prove that:

(1) the A-stable prime divisors containing AY are the G-stable prime divisors D such that

D ⊇ Y and ρG,X(D) ∈ Ψ⊥;

(2) the set of the A-colors containing AY is d(c);

(3) the convex cone c′ generated by the image of elements of (1) and (2) under the map

ι∗ ◦ ρ is c ∩Ψ⊥.

Part (1) is obvious, thanks to the results on ∂AX contained in Proposition 8.8. For part (2),

let us first prove that a color D not belonging to d(c) doesn’t contain AY . If D doesn’t contain

Y there is nothing to prove, therefore we may assume that ρG,X(D) lies on a 1-dimensional

face of c. Suppose at first that X(−β) = D for some β ∈ Φ+, in such a way that X(β) doesn’t

contain Y .

Let Xc be the affine G-stable open subset of X associated to the cone c, i.e.:

Xc =
{
x ∈ X

∣∣ Gx ⊇ Y
}
.

It is isomorphic to an affine space, and in [Oda88, Proof of Proposition 3.14] it is shown that

Xc is stable under the action of U−β .

More precisely, there exist global coordinates (x1, . . . , xn) on Xc such that X(−β)∩Xc is the

hyperplane defined by the equation x1 = 0, and in these coordinates U−β acts as follows:

(8.6) u−β(ξ)(x1, x2, . . . , xn) = (x1 + ξ, x2, . . . , xn).

One may easily check this formula using [Oda88, Proposition 3.14] and the fact that X(−β)

is the only G-stable prime divisor that contains Y and where β is non-zero. The hyperplane

defined in Xc by x1 = 0 contains Y , but from (8.6) we deduce that it doesn’t contain UβY . As

a consequence, AY is not contained in X(−β).

Now we show that a color D in d(c) contains AY . At first, consider β ∈ Φ+ such that

X(−β) = D. Both X(−β) and X(β) contain Y , and we consider again the affine space Xc.
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Applying [Oda88, Proposition 3.14] once again, there exist coordinates (x1, x2, . . . , xn) such

that X(−β) ∩ Xc is defined by the equation x1 = 0, and X(β) ∩ Xc by the equation x2 = 0,

and such that

(8.7) u−β(ξ)(x1, x2, . . . , xn) = (x1 + ξx2, x2, . . . , xn)

and

(8.8) uβ(ξ)(x1, x2, . . . , xn) = (x1, x2 + ξx1, . . . , xn).

We obtain that Y is both U−β-stable and Uβ-stable, being contained in the subset of Xc defined

by x1 = x2 = 0. Therefore X(−β) = D contains Y = UβU−βY .

Now observe that the image of the multiplication map

θG,X(G)×
∏

γ∈Φ

Uγ → A

(where the product is taken in any fixed order) is dense in A. It follows that D contains AY ,

if we prove that D is Uγ-stable for all γ ∈ Φ such that γ 6= ±β for all β ∈ Φ+ satisfying

X(−β) = D. For γ ∈ Φ− there is nothing to prove. But also for γ ∈ Φ+ we know that

D 6= X(γ): this fact stems from the last statement of Proposition 8.8 together with (8.1). The

proof of (2) is complete.

Let us prove (3). Call S the set of A-stable prime divisors containing AY . Then we can

describe a minimal set of generators of c (as a convex cone) as the union of the following subsets:

(a) the set ρG,X(S);

(b) for each color D ∈ d(c), the set {ρG,X(D)} ∪ {ρG,X(X(β)) | β ∈ Φ+, X(−β) = D};

(c) other generators, different from any of the above.

We show that c ∩ Ψ⊥ is contained in c′, and recall that the latter is generated by ρG,X(S)

together with ι∗(ρG,X(d(c))). An element x ∈ c∩Ψ⊥ is a linear combination with non-negative

coefficients of the above generators, and we may assume that the elements of (a) do not con-

tribute. This indeed implies the general case, since ρG,X(S) ⊆ c′.

Also, we may suppose that any generator z involved in the linear combination giving x

satisfies ι∗(z) 6= 0. Indeed, otherwise we may suppress it using the fact that x = ι∗(x). Hence,

all generators in the linear combination of x are not of the form ρG,X(X(β)) for β ∈ Ψ.

It remains the generators ρG,X(D) where D ∈ d(c), and generators of (c) of the form

ρG,X(X(−α)) for some α ∈ Ψ. In the second case X(−α) is a color, because it cannot be

equal to X(β) for any β ∈ Ψ. Being not in d(c), each such X(−α) admits a positive root β

satisfying X(−β) = X(−α) and Dβ not a generator of c. This implies that β is non-positive

on c, and the only chance for x to be in β⊥ is that such a generator X(−β) = X(−α) doesn’t

occur.
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As a consequence, x is a linear combination of the elements ρG,X(D) with D ∈ d(c), and we

easily conclude that x ∈ c′ using again ι∗(x) = x.

Finally, let x ∈ c′, and let us show that x ∈ c ∩ Ψ⊥. As before, we ignore the generators of

c′ lying in Ψ⊥, and we assume that x is a linear combination with non-negative coefficients of

ι∗(d(c)). In other words:

x =
∑

α∈Ψ,X(−α)∈d(c)

aαι
∗ (ρG,X (X(−α)))

with aα ≥ 0. Consider a summand aαι
∗ (ρG,X (X(−α))). For each positive root β 6= α such

that X(−β) = X(−α), Lemma 8.6 implies that γ = β − α and −γ are also roots in Φ, and

that X(−α) = X(−β), X(α) = X(−γ), X(γ) = X(β) are three distinct prime divisors. Then,

we take the sum

(8.9) y =
∑

α∈Ψ,X(−α)∈d(c)

aαyα

where

yα = ρG,X (X(−α)) +
∑

β∈Φ+,
X(−β)=X(−α)

ρG,X (X(β)) .

We claim that all simple roots in Ψ are zero on this element, hence ι∗(y) = y and we immediately

conclude that y = x. On the other hand, y is in c thanks to the definition of the set d(c),

therefore x ∈ c ∩Ψ⊥.

Let us prove the claim. Let γ ∈ Ψ, and pick a yα. If γ = α, then it is easy to check using

the last assertion of Proposition 8.8 that yα is the sum of ρG,X(X(−α)) and ρG,X(X(α)), plus

other terms where α is zero. It follows 〈yα, γ〉 = 0.

If γ 6= α, then 〈ρG,X(X(−α)), γ〉 = 0 thanks to Proposition 8.8. Moreover, in this case γ

does not appear as a β in the sum expressing yα, because we know that X(−α) 6= X(−γ).

Also, if X(±γ) is different from ρG,X(X(β)) for all β ∈ Φ+ such that X(−β) = X(−α), then

again 〈yα, γ〉 = 0.

Therefore we may suppose that γ is different from all the β appearing in the expression of

yα, but some of them, say βi,γ for i = 1, . . . , k, satisfy X(βi,γ) = X(ǫi,γγ) where ǫi,γ = 1 or −1.

In this case Lemma 8.6 implies that βi,γ − ǫi,γγ also appears in the sum, with X(βi,γ − ǫi,γγ) =



32 GUIDO PEZZINI

X(−ǫi,γγ). We obtain:

yα = ρG,X (X(−α)) +

k∑

i=1

(ρG,X (X(βi,γ)) + ρG,X (X(βi,γ − ǫi,γγ)))

+
∑

β∈Φ+,X(β)6=X(±γ)
X(−β)=X(−α)

ρG,X (X(β))

= ρG,X (X(−α)) +
k∑

i=1

(ρG,X (X(γ)) + ρG,X (X(−γ))) +
∑

β∈Φ+,X(β)6=X(±γ)
X(−β)=X(−α)

ρG,X (X(β)).

From this expression it is evident that 〈yα, γ〉 = 0, and the proof of (3) is complete.

To finish the proof of the theorem, we must check that all colored cones of FA(X) appear

as (c ∩ Ψ⊥, d(c)) for some c ∈ FG(X). For this, it is enough to notice that for each A-orbit Z

there is a G-orbit Y such that AY = Z. �

Corollary 8.12. The A-variety is horospherical, i.e. ΣA(X) = ∅.

Proof. There exists a smooth complete toroidal A-variety Y equipped with a surjective bira-

tional A-equivariant morphism Y → X (it is enough to choose an A-equivariant resolution of

singularities of the variety given in [Kn91, Lemma 5.2], where X ′′ in the proof of loc.cit. is our

X).

Then ΣA(Y ) = ΣA(X), and Y is also a complete G-regular embedding. Applying Theo-

rem 8.11 to Y , it follows that suppFA(Y ) is a vector space, and it is equal to VA(Y ) because

Y is toroidal and complete. We conclude that ΣA(Y ) = ∅. �

Remark 8.13. With a slightly more involved proof, one can derive the above corollary directly

from Proposition 8.8 and avoid using Theorem 8.11.

Remark 8.14. It is easy to check that d(c) = ∅ if and only if c ∩Ψ⊥ is a face of c.

Example 8.15. Let us compute the colored fan of X = P2, as in Example 8.10 with n = 2.

Choose E = {E3} where Ei = {xi = 0} and x1, x2 and x3 are homogeneous coordinates on

P2. Then A = Aut◦(P2,D) is isomorphic to SL(2), and we choose the Borel subgroup of A

stabilizing the point [1, 0, 0]. The lattice ΛG(P2) is then the root lattice of PGL(3), and we

have X1 = X(α1) = X(α1 + α2), X2 = X(α2) = X(−α1) and X3 = X(−α1 − α2) = X(−α2),

where α1 and α2 are the simple roots of PGL(3). The lattice ΛA(P2) is ρG,P2(X1)
⊥ = Zα2,

which is the weight lattice of SL(2), and P2 has only one A-color, namely X2. The maximal

colored cones of FA(P2) are (Q≥0ρG,P2(X3),∅) and (−Q≥0ρG,P2(X3), {X2}).
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9. Semisimple case

In this section we assume that G is a semisimple group, i.e. C = {e}. In this setting

the functionals associated to the colors of X generate NG(X) as a vector space. Indeed, if

λ ∈ ΛG(X) is in ρG,X(∆G(X))⊥, then a rational function f ∈ C(G/H)
(B)
λ is regular on G/H

and nowhere zero. It can be then lifted to a nowhere-vanishing function F ∈ C[G], which is

then constant since G has no non-trivial character (see [KKV89, Proposition 1.2]). We conclude

that λ = 0, and the claim follows.

This essentially implies the following main result of this section.

Theorem 9.1. If G is semisimple and D is any subset of ∂GX, then Aut◦(X,D ∪ (∂GX)ℓ) is

a Levi subgroup of Aut◦(X,D).

The proof is at the end of this section. The theorem implies that if G is semisimple then §7 is

enough to describe a Levi subgroup of Aut◦(X,D) and its action on X , without any restriction

on D.

Recall from §5 the restriction map

κx′ : (kerψ∗)
◦ → Aut◦(Xx′)

where x′ lies on the open G-orbit of X ′, and Xx′ = ψ−1(x′).

Lemma 9.2. For all x′ in the open B-orbit of X ′, the image of κx′ in Aut◦(Xx′) is very solvable

(i.e. contained in a Borel subgroup).

Proof. To simplify notations we assume that x′ = x′0. Let E
′ ⊆ ∂SXx′0

be the following subset:

E ′ = {E ∩Xx′0
| E ∈ E},

and define D′ = ∂SXx′0
\ E ′. Let us also denote by Kx′0

the image of κx′0: it is obviously a

subgroup of Aut◦(Xx′0
,D′). On the other hand Kx′0

contains the maximal torus S of Aut◦(Xx′0
),

hence we only have to compute the root subgroup it contains. Thanks to Lemma 6.4 and

Corollary 5.3, they are the root spaces Uα ⊂ Aut◦(Xx′0
) for α varying in the set

R =
{
γ|S

∣∣ 0 6= γ ∈ ΛG(G/H), X(γ) exists and X(γ) ∈ E ℓ
}
.

From Lemma 6.5, we obtain that R doesn’t contain the opposite of any of its elements, therefore

Kx′0
is very solvable. �

Proof of Theorem 9.1. First, observe that (kerψ∗)
◦ is solvable. This stems from Lemma 9.2,

and the obvious observation that

(9.1)
⋂

x′ in the open B-orbit of X′

ker(κx′) = {idX} .
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Consider now the variety X under the action of A = Aut◦(X,D ∪ (∂GX)ℓ). Thanks to

Theorem 7.8, the group A is semisimple (because here G is semisimple) and under its actionX is

a G-regular embedding with boundary D∪(∂GX)ℓ. Corollary 7.19 implies (∂AX)nℓ = Dnℓ ⊆ D,

and we deduce that Aut◦(X,D) ⊆ Aut◦(X, (∂AX)nℓ).

Then we may apply Proposition 5.2 with G replaced by the universal cover of A: the theorem

follows. �

Remark 9.3. Let X and G be as in Example 7.9. Then the full automorphism group of

X is non-reductive. Indeed, it must fix the point p ∈ Pn+1, and one concludes easily that

Aut◦(X) is the corresponding maximal proper parabolic subgroup of PGL(n+2)×PGL(n+1).

The unipotent radical Aut◦(X)u can be studied restricting its elements to the generic fiber

Xx′0
; however, the example shows that for any given fiber the restriction may be non-injective,

therefore a global analysis of these restrictions is needed. This goes beyond the scope of the

present work.

10. G-stable prime divisors on the linear part of the valuation cone

In this section G = G′ × C is neither abelian nor semisimple. For simplicity, and thanks to

§8, we may assume that G′ acts non-trivially on X . The variety X ′ is then not a single point.

Recall that S acts on X naturally by G-equivariant automorphisms preserving the fibers of ψ,

so we can consider S as a subgroup of Aut◦(X, ∂GX) ∩ (kerψ∗)
◦.

We study the automorphism group Aut◦(X,D), where D ⊆ ∂GX satisfies D ⊇ (∂GX)nℓ.

Denote as usual E = ∂GX \D ⊆ (∂GX)ℓ, and recall that all elements D ∈ (∂GX)ℓ intersect Xx′0

in an S-stable prime divisor.

Proposition 10.1. Let x′ in the open G-orbit of X ′, and L = L(X,D) be a Levi subgroup of

(Aut◦(X,D) ∩ ker(ψ∗))
◦ containing S. Then Lx′ = κx′(L) is isomorphic to L, and the group

(θG,X(G), θG,X(G))× L(X,D)

is locally isomorphic to a Levi subgroup of Aut◦(X,D).

Proof. Thanks to formula (9.1) and the fact that x′ is generic in X ′, we know that the map L→

Lx′ has unipotent kernel, therefore is an isomorphism. The rest follows from Proposition 5.2. �

Definition 10.2. We define the following group:

A = A(X,D) = (θG,X(G), θG,X(G))× L(X,D),

where L(X,D) is defined as in Proposition 10.1.

We describe now the reductive group Lx′0 in terms of the root subspaces it contains with

respect to its maximal torus S.
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Definition 10.3. We define

R = R(X,D) = {γ|S | 0 6= γ ∈ ΛG(G/H), X(γ) exists and X(γ) ∈ E} ,

and we denote by Φ = Φ(X,D) the maximal subset of R such that −α ∈ R for every α ∈ R.

Proposition 10.4. The set Φ(X,D) is a subset of Φ(Xx′0
,D′), where D′ = {D ∩ Xx′0

| D ∈

Dℓ}. Moreover, Lx′0 ⊆ Aut◦(Xx′0
) is generated by S together with all subgroups Uα such that

α ∈ Φ(X,D).

Proof. For the first assertion, it is enough for any α = γ|S ∈ Φ(X,D) to restrict the function

f ∈ H0(X,OX(X(γ)))
(B)
γ to Xx′0

. Since S is a maximal torus of Aut◦(Xx′0
), the second assertion

follows from Lemma 6.4 and Corollary 5.3. �

This provides a complete description of the group A. It remains now to describe the fan

associated to X as an A-variety.

Let 0 6= γ ∈ Λ(G/H) be such that γ|S = α ∈ Φ, and choose fγ ∈ H0(X,OX(X(γ)))
(B)
γ

such that fγ(x0) = 1. Then ρG,X(X(γ)) ∈ Vℓ
G(G/H) can be considered as an element of

HomZ(X (S),Z), and therefore it is canonically associated with a 1-PSG µγ : C∗ → S. The

torus S acts on X through the identification with a subtorus of TG,X , as we have seen in §5; in

this way µγ induces a tangent vector field δγ ∈ H0(X, TX) on X .

Lemma 10.5. The product ξγ = fγδγ is a well-defined tangent vector field of X, and it is sent to

H0(X,OX(X(γ))) via the surjective map of (4.1). Its restriction to Xx′0
is a tangent vector field

and is a generator of the Lie algebra of Uα ⊂ Aut◦(Xx′0
). Moreover, the 1-PSG of Aut◦(ZG,X)

induced by ξγ is expressed in local coordinates by the formulae of [Oda88, Proposition 3.14].

Proof. The rational function fγ has its only pole in X(γ), which means that we only have to

check the first assertion on points of X(γ). On ZG,X ∩X(γ) it can be checked easily using the

fact that ZG,X is a toric TG,X -variety, and expressing ξγ in local coordinates. This also implies

that ξγ is a well-defined vector field on E ∩X0, thanks to the P u
G,X-invariance of both fγ and

δγ. Then the locus where ξγ might not be a well-defined vector field has codimension at least

2, which implies the first statement.

Since S acts on X stabilizing both ZG,X and Xx′0
, we deduce that ξγ can be restricted to a

vector field on both these varieties. The rest follows easily by expressing ξγ on ZG,X explicitly

in local coordinates. �

Definition 10.6. We choose a Borel subgroup BA of A such that θA,X(BA)∩θG,X(G) = θG,X(B)

and such that BA ∩L is a Borel subgroup of L. Let us also denote by Ψ = Ψ(X,D) ⊂ Φ(X,D)

the set of simple roots and by Φ+ = Φ+(X,D) ⊂ Φ(X,D) the set of positive roots associated

to the Borel subgroup BLx′
0
= κx′0(BA ∩ L) of Lx′0 . Finally, let

r : ΛG(X) → X (S) = ΛS(Xx′0
)
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be the restriction of characters of ΛG(X) to S (see §5).

We may apply Proposition 8.8 and Theorem 8.11 to the toric S-variety Xx′0
and the sets of

roots Φ and Ψ. We obtain a description of Xx′0
as an Lx′0-variety, and in particular the lattice

ΛLx′0
(Xx′0

) ⊆ ΛS(Xx′0
),

together with the projection

NS(Xx′0
) → NLx′

0
(Xx′0

).

Proposition 10.7. The restriction of weights from θA,X(BA) to θG,X(B) induces an isomor-

phism

ΛA(X) ∼= r−1(ΛLx′
0
(Xx′0

)) ⊆ ΛG(X).

We denote the corresponding surjective map by

s : NG(X) → NA(X).

The set of colors of X as a spherical A-variety is the following disjoint union:

∆A(X) = ∆G(X) ∪
{
E ∈ E

∣∣ E ∩Xx′0
is a color of the spherical Lx′0-variety Xx′0

}
,

and for each E ∈ ∆A(X), we have

ρA,X(E) = s(ρG,X(E)).

Proof. A BA-eigenvector in C(X) is a fortiori a B-eigenvector, thanks to the choice of BA. This

induces an inclusion ΛA(X) ⊆ Λ(X).

Moreover, a B-eigenvector f ∈ C(X) is also a BA-eigenvector if and only if its restriction

f |Xx′
0
is a BLx′

0
-eigenvector, thanks to the structure of A as described in Proposition 10.1. This

proves the first assertion.

Secondly, a color of X as an A-variety maps either dominantly onto X ′, or not. In the first

case, its intersection with the (generic) fiber Xx′0
is BLx′

0
-stable but not Lx′0-stable (otherwise

it would have been A-stable).

In the second case, it maps onto a G-color of X ′, i.e. it is a color of X with respect to the G

action. The second assertion follows. �

Let c be a cone of the fan F(X). Then c is generated as a convex cone by a set of 1-dimensional

faces F (c). We denote by cℓ the intersection c ∩ Vℓ
G(X), by F ℓ(c) the 1-dimensional faces of

F (c) generating cℓ, and F nℓ(c) = F (c) \ F ℓ(c).

Since cℓ is a cone of the toric S-variety Xx′0
, it corresponds to an S-orbit Y on Xx′0

. As

in the proof of Theorem 8.11, the corresponding Lx′0-orbit Lx′0Y on Xx′0
has colored cone

(cℓ ∩ Ψ⊥, d(cℓ)), where the orthogonal Ψ⊥ is taken inside Vℓ
G(G/H), and d(cℓ) is a set of Lx′0-

colors of Xx′0
.
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Definition 10.8. For any c ∈ F(X), we define a colored cone (cA(c), dA(c)), where cA(c) ⊂

NA(X) and dA(c) ⊆ ∆A(X), as follows. The cone cA(c) is the convex cone in NA(X) generated

by s(F nℓ(c)) and s(cℓ∩Ψ⊥). The set dA(c) is the set of colors E ∈ ∆A(X) such that E /∈ ∆G(X),

and E ∩Xx′0
∈ d(cℓ).

Theorem 10.9. The colored fan FA(X) as an A-variety is

FA(X) = {(cA(c), dA(c)) | c ∈ FG(X)} .

Proof. Let Y be a G-orbit of X , with associated cone c = cX,Y . We claim that the colored cone

associated to the A-orbit AY is (cA(c), dA(c)): arguing as in the proof of Theorem 8.11, this is

enough to show the theorem.

To prove the claim, first we show that the set d′ of A-colors containing AY is equal to dA(c).

Since X is toroidal, no G-color contains Y , nor AY . Therefore any A-color E in d′ is indeed

a G-stable prime divisor whose functional lies in Vℓ
G(X). It intersects Xx′0

in an Lx′0-color of

Xx′0
, by Proposition 10.7, and we only have to show that E ∩Xx′0

is in d(cℓ).

We check this fact using the definition of d(cℓ). Take a positive root β ∈ Φ+ of Xx′0
, the prime

divisors Xx′0
(β), Xx′0

(−β) of Xx′0
as in Definition 8.1, and suppose that Xx′0

(−β) = E ∩ Xx′0
,

so ρS,Xx′0
(Xx′0

(−β)) lies on a 1-codimensional face of cℓ. We have to show that ρS,Xx′0
(Xx′0

(β))

also lies on a 1-codimensional face of cℓ, in other words that Xx′0
(β) contains the S-orbit of Xx′0

associated cℓ.

Now E = E1 and some other element E2 ∈ E satisfy E1∩Xx′0
= Xx′0

(−β), E2∩Xx′0
= Xx′0

(β),

and−β and β are the restrictions to S of resp. γ1, γ2 ∈ ΛG(X), such thatX(γi) = Ei for i = 1, 2.

Suppose that E2 doesn’t contain Y . Then we consider ZG,X : intersecting it with E1, E2 and

Y two TG,X-stable prime divisors and a TG,X-orbit, such that E1 ∩ ZG,X ⊇ Y ∩ ZG,X and

E2 ∩ ZG,X + Y ∩ ZG,X .

At this point we follow the same approach of the proof of Theorem 8.11, statement (2),

applied to the toric variety ZG,X and the automorphisms induced by the tangent vector field

ξγ1 (as defined in Lemma 10.5). This yields the formula (8.6) for ξγ1 , which shows that E1∩ZG,X

doesn’t contain AY ∩ZG,X : a contradiction. As a consequence E2 ⊇ Y , so Xx′0
(β) contains the

S-orbit of Xx′0
associated cℓ. This concludes the proof of the inclusion d′ ⊆ dA(c).

Let now D ∈ dA(c). Then, by Theorem 8.11, the intersection D ∩Xx′0
contains the Lx′0-orbit

of Xx′0
corresponding to (cℓ ∩Ψ⊥, d(cℓ)). Let y be a point on this orbit: then D contains Ay.

On the other hand, from the proof of Theorem 8.11, we see that Lx′0y contains the S-orbit of

Xx′0
corresponding to cℓ ⊂ NS(Xx′0

). It follows that Ay contains the G-orbit of X associated to

cℓ ⊂ NG(X), and thus also the G-orbit Y associated to c ⊂ NG(X). Being A-stable, Ay must

then contain AY too, and since D is closed, we obtain D ⊇ AY . I.e., D is in d′.

We now prove that the convex cone c′ associated to AY is cA(c). First observe that Y and

AY are contained in the same elements of (∂GX)nℓ, since L stabilizes all fibers of ψ. Therefore
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c′ is generated by s(F nℓ(c)) and its intersection with s(Vℓ
G(X)). It remains to prove that

c′ ∩ s(Vℓ
G(X)) = s(cℓ ∩Ψ⊥).

The cone c′ ∩ s(Vℓ
G(X)) is generated by ρA,X(E) where E ∈ (∂GX)ℓ is:

(1) an A-color of X containing AY , i.e. E ∈ dA(c), or

(2) an A-stable prime divisor containing AY .

On the other hand the generators of s(cℓ∩Ψ⊥) are the elements ρA,X(E) where E ∈ (∂GX)ℓ is:

(1’) an A-color such that E ∩Xx′0
is a color containing the Lx′0-orbit Z of Xx′0

associated to

(cℓ ∩Ψ⊥, d(cℓ)), or

(2’) an A-stable prime divisor such that E ∩Xx′0
is a Lx′0-stable prime divisor containing Z.

Thanks to the first part of the proof, the prime divisors E of type (1) and of type (1’) are the

same.

If E is of type (2’) then it contains AZ, whose closure in turn contains AY . Therefore E

is of type (2). Let now E be of type (2). Then E ∩ ZG,X is an L-stable (and TG,X-stable)

prime divisor of ZG,X containing Y ∩ ZG,X , which is the TG,X -orbit of ZG,X associated to c,

and ρTG,X ,ZG,X
(E ∩ ZG,X) lies on Vℓ

G(G/H). Hence E ∩ Xx′0
is an Lx′0-stable prime divisor of

Xx′0
containing the S-orbit of Xx′0

associated to cℓ. Thanks to the proof of Theorem 8.11, we

deduce that E ∩Xx′0
contains Z, i.e. E is of type (2’). �

Corollary 10.10. ΣA(X) = ΣG(X).

Proof. The proof is similar to the proof of Corollary 8.12. �
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