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The minimum aberration criterion has been frequently used in
the selection of fractional factorial designs with nominal factors. For
designs with quantitative factors, however, level permutation of fac-
tors could alter their geometrical structures and statistical properties.
In this paper uniformity is used to further distinguish fractional fac-
torial designs, besides the minimum aberration criterion. We show
that minimum aberration designs have low discrepancies on average.
An efficient method for constructing uniform minimum aberration
designs is proposed and optimal designs with 27 and 81 runs are ob-
tained for practical use. These designs have good uniformity and are
effective for studying quantitative factors.

1. Introduction. The minimum aberration criterion [Fries and Hunter
(1980)] has been frequently used in the selection of regular fractional factorial
(FF) designs with nominal factors, as it provides nice design properties. This
is especially important when the experimenter has little knowledge about
the potential significance of factorial effects. The readers are referred to
Mukerjee and Wu (2006) and Wu and Hamada (2009) for existing theory and
results on minimum aberration designs. Deng and Tang (1999), Tang and
Deng (1999) and Xu and Wu (2001) further proposed generalized minimum
aberration criteria for comparing nonregular fractional factorial designs.

Cheng and Wu (2001) and Fang and Ma (2001) found that designs may
have different geometrical structures and statistical properties, even though
they share the identical word-length pattern. In view of this, Cheng and Ye
(2004) pointed out that the distinction in the analysis objective and strat-
egy for experiments with nominal or quantitative factors requires different
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Table 1

Two combinatorially isomorphic designs with different geometrical structures

Design A Design B

F1 F2 F3 F1 F2 F ′

3

0 0 0 0 0 2
0 1 1 0 1 0
0 2 2 0 2 1
1 0 1 1 0 0
1 1 2 1 1 1
1 2 0 1 2 2
2 0 2 2 0 1
2 1 0 2 1 2
2 2 1 2 2 0

selection criteria and classification methods. For designs with quantitative
factors, they proposed to describe design properties using the geometrical
structures. Two designs are said to be geometrically isomorphic if one can
be obtained from the other by a permutation of factors and/or reversing the
level order of one or more factors. For example, consider the two designs in
Table 1. Design A is a regular 33−1 FF design with F3 = F1 + F2 (mod3),
and Design B is formed by F ′

3 = F1 + F2 + 2 (mod3). It is obvious that
these two designs are combinatorially isomorphic to each other, because one
can be obtained from the other by permuting the levels in the third column
[i.e., map (0, 1, 2) to (2, 0, 1)]. However, they have different geometrical
structures and thus are geometrically nonisomorphic. Design B contains the
center run with all ones, while Design A does not. If we reverse the level
order [i.e., map (0, 1, 2) to (2, 1, 0)] for all three columns, Design B is
invariant while Design A is not. These two designs have different statistical
properties due to their different geometrical structures.

To further classify geometrically nonisomorphic designs, Cheng and Ye
(2004) generalized the concept of minimum aberration and used indicator
function to define the β-word-length pattern based on a polynomial model.
Despite its theoretical beauty, the complexity of indicator function prohibits
its use for design construction. On the other hand, Fang and Ma (2001)
suggested using uniformity to compare the performance of geometrically
nonisomorphic designs. Various discrepancies have been used as measures
of uniformity; see Fang et al. (2000) and Fang, Li and Sudjianto (2006).
These discrepancies all have their geometrical meanings and can be inter-
preted as the difference between the empirical distribution and the uniform
distribution. Among them, the centered L2-discrepancy (CD), proposed by
Hickernell (1998), is the most frequently used.
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Both the β-word-length pattern and the centered L2-discrepancy reflect
the geometrical structure of the design. Here we use the discrepancy to
choose FF designs mainly for two reasons. First, the centered L2-discrepancy
has a simple analytic formula; it is much faster to calculate the discrep-
ancy than the β-word-length pattern. The difference between the compu-
tational times is substantial. The second and more important reason is
that the β-word-length pattern is model-dependent while the centered L2-
discrepancy is model free. Cheng and Ye (2004) defined the β-word-length
pattern based on a polynomial model but they further pointed out that the
β-word-length pattern needs to be modified in other situations. Optimal
designs constructed based on the β-word-length pattern would rely on the
specific model used. In contrast, designs with low discrepancy tend to have
good space filling properties and are model robust in the sense that they
can guard against inaccurate estimates caused by model misspecification
[Hickernell and Liu (2002)].

Here we propose to construct uniform FF designs from existing minimum
aberration designs via level permutations. Obviously, for two-level designs,
there is no difference when levels are permuted, but for high-level designs,
there are many unknowns to be studied. For convenience, we will focus on
three-level designs in this paper, but the basic ideas can be extended to
higher-level designs.

The paper is organized as follows. In Section 2, we obtain a key theorem
and show that minimum aberration designs tend to have low discrepancy
on average. Then we introduce the concept of uniform minimum aberration
design. In Section 3, we present an efficient way for constructing three-level
regular uniform FF designs and construct uniform minimum aberration de-
signs with 27 runs and 81 runs for practical use. These newly-constructed
designs often outperform existing uniform designs, especially when the num-
ber of factors is large. In Section 4, we examine the relationship between the
discrepancy and the β-word-length pattern. Uniform minimum aberration
designs appear to perform well with respect to the β-word-length pattern.
The last section gives a brief conclusion. For clarity, we defer all proofs to
the Appendix.

2. Uniform minimum aberration designs. A design with N runs, n fac-
tors and s levels, denoted by (N,sn), is an N × n matrix. Throughout the
paper, the s levels are denoted as 0,1, . . . , s− 1. For an (N,sn)-design D,
consider an ANOVA model

Y =X0α0 +X1α1 + · · ·+Xnαn + ε,

where Y is the vector of N observations, α0 is the intercept and X0 is an
N × 1 vector of 1’s, αj is the vector of all j-factor interactions and Xj is
the matrix of orthonormal contrast coefficients for αj , and ε is the random

error. Denote nj = (s− 1)j
(n
j

)

and Xj = (x
(j)
ik )N×nj

, then the (generalized)
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word-length pattern of design D can be defined by

Aj(D) =N−2

nj
∑

k=1

∣

∣

∣

∣

∣

N
∑

i=1

x
(j)
ik

∣

∣

∣

∣

∣

2

for j = 0, . . . , n.(2.1)

For two designsD(1) andD(2),D(1) is said to have less aberration thanD(2)

if there exists an r ∈ {1,2, . . . , n}, such that Ar(D
(1)) < Ar(D

(2)) and
Ai(D

(1)) = Ai(D
(2)) for i = 1, . . . , r − 1. D(1) is said to have (generalized)

minimum aberration if there is no other design with less aberration thanD(1).
For a regular design, the traditional definition of Aj(D) is the number

of words of length j. Following Xu and Wu (2001), Aj(D) defined in (2.1)
is the number of degrees of freedom associated with all words of length j.
Therefore, two definitions are equivalent and generalized minimum aberra-
tion reduces to minimum aberration for regular designs. For simplicity, in the
following we use the notion of word-length pattern and minimum aberration
for both regular and nonregular designs.

For an (N,sn)-design D = (xik)N×n, its centered L2-discrepancy (CD) is
defined as

φ(D) =
1

N2

N
∑

i=1

N
∑

j=1

n
∏

k=1

(

1 +
1

2

∣

∣

∣
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1

2
|uik − ujk|

)

(2.2)

−
2

N

N
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i=1

n
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k=1

(
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1
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−
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∣
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2
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2)

+

(

13

12

)n

,

where uik = (2xik + 1)/(2s). Note that 0< uik < 1.
It is well known that word-length pattern remains the same for combina-

torially isomorphic designs. However, the centered L2-discrepancy will not
be the same when levels of factors are permuted.

Example 2.1. Consider the two designs given in Table 1. Both de-
signs have one word of length three and share the same word-length pattern
(A1,A2,A3) = (0,0,2). Their CD values are 0.033186 and 0.033034, respec-
tively. So Design B is better than Design A in terms of CD.

There is a close relationship between minimum aberration and uniformity
for two-level designs. Fang and Mukerjee (2000) showed that for a two-level
regular design D, the centered L2-discrepancy of D can be linearly expressed
by its word-length pattern (A1(D),A2(D), . . . ,An(D)). Later on, Ma and
Fang (2001) generalized it to the nonregular case. Obviously, their results
cannot be generalized to high-level designs.

For an s-level factor, there are s! possible level permutations. Given an
(N,sn)-design D, we apply all s! level permutations to each column and
obtain (s!)n combinatorially isomorphic designs. Denote the set of these
designs as P(D). Some of them may be geometrically nonisomorphic and
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have different CD values. We compute the CD value for each design and
define φ̄(D) as the average CD value of all designs in P(D), that is,

φ̄(D) =
1

(s!)n

∑

D′∈P(D)

φ(D′).

Note that all designs in P(D) share the same word-length pattern. The
following result shows that the average CD value, φ̄(D), is closely related to
the word-length pattern of D.

Theorem 2.2. For an (N,3n)-design D,

φ̄(D) =

(

13

12

)n

−

(

29

27

)n

+

(

29

27

)n n
∑

i=1

(

2

29

)i

Ai(D).

Theorem 2.2 implies that the average centered L2-discrepancy and the
minimum aberration criterion are approximately equivalent, as (2/29)i de-
creases geometrically when i increases. Thus designs permuted from a mini-
mum aberration design tend to be more likely to have low discrepancies. As
will be seen, Theorem 2.2 is very useful in finding uniform FF designs.

Example 2.3. Consider designs from the commonly used orthogonal
array OA(18,37); see, for example, Table 2(a) of Xu, Cheng and Wu (2004).
There are 3, 4, 4 and 3 combinatorially nonisomorphic designs when pro-
jected onto 3, 4, 5 and 6 factors, respectively. We rank these designs based
upon the minimum aberration criterion, and denote them as 18-3.1, 18-3.2,
18-3.3 and etc. For each design, we conduct all possible level permutations
and compute their CD values. Table 2 shows the average, minimum, max-
imum and standard deviation of the CD values of all permuted designs, as
well as one representative of the columns, and A3 and A4 of the word-length
pattern. Note that A1 =A2 = 0 for all designs here. It can be seen from Ta-
ble 2 that the rankings of average, minimum and maximum CD values are
all consistent with the minimum aberration ranking; that is, less aberration
leads to lower CD values. It is interesting to note that designs 18-4.3 and
18-4.4 have the same word-length pattern but different standard deviations;
so do designs 18-6.2 and 18-6.3. This implies that the word-length pattern
does not uniquely determine the variance of the CD values of permuted
designs.

We further compare the minimum aberration designs with the uniform de-
signs listed on the Uniform Design (UD) homepage (http://www.math.hkbu.
edu.hk/UniformDesign/). These uniform designs, labeled as UD18-3, UD18-
4, etc., appear to be orthogonal arrays of strength 2 so that A1 =A2 = 0. The
minimum aberration design 18-3.1 has the same minimum CD value as the
uniform design UD18-3; however, the former has less aberration (A3 = 0.5
vs. A3 = 0.67) than the latter. Design 18-4.1 and UD18-4 have the same

http://www.math.hkbu.edu.hk/UniformDesign/
http://www.math.hkbu.edu.hk/UniformDesign/
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Table 2

Comparison of 18-run designs

Design Columns Ave φ Min φ Max φ Sd φ A3 A4

18-3.1 1 2 3 0.032526 0.032500 0.032538 0.000018 0.5
18-3.2 1 2 5 0.032729 0.032500 0.032958 0.000163 1
18-3.3 1 3 4 0.033135 0.033034 0.033186 0.000072 2
UD18-3 0.032500 0.67

18-4.1 2 3 4 5 0.047407 0.047357 0.047446 0.000023 2 1.5
18-4.2 1 2 3 5 0.047611 0.047391 0.047866 0.000166 2.5 1
18-4.3 1 2 3 4 0.048017 0.047849 0.048077 0.000087 3.5 0
18-4.4 1 2 5 6 0.048017 0.047849 0.048306 0.000139 3.5 0
UD18-4 0.047357 2 1.5

18-5.1 2–6 0.065273 0.065265 0.065337 0.000019 5 7.5
18-5.2 1–3 5 6 0.065883 0.065706 0.066193 0.000150 6.5 4.5
18-5.3 1–5 0.066086 0.065722 0.066423 0.000197 7 3.5
18-5.4 1 2 5–7 0.066492 0.066197 0.067107 0.000211 8 1.5
UD18-5 0.065248 6.17 5.17

18-6.1 2–7 0.086964 0.086914 0.087145 0.000057 10 22.5
18-6.2 1–6 0.088184 0.087769 0.088591 0.000215 13 13.5
18-6.3 1–3 5–7 0.088184 0.087769 0.088974 0.000240 13 13.5
UD18-6 0.086896 12.33 15.5

18-7 1–7 0.115386 0.114505 0.116556 0.000347 22 34.5
UD18-7 0.113591 22 34.5

properties, and they are indeed combinatorially isomorphic. Design 18-5.1
has a slightly larger minimum CD value (0.065265 vs. 0.065248) and less
aberration (A3 = 5 vs. A3 = 6.17) than UD18-5. The same phenomenon also
appears for design 18-6.1 and UD18-6. UD18-7 has a smaller CD value than
design 18-7 although they have the same word-length pattern. The exist-
ing uniform designs have minimum discrepancy for all cases because the
run size is small here; nevertheless, the level-permuted minimum aberration
designs are competitive. In summary, by permuting minimum aberration
designs from the commonly used OA(18,37), we can obtain good uniform
FF designs.

As suggested by Example 2.3, an efficient way for constructing uniform
FF designs is to start with a minimum aberration design, permute its levels
and choose the level permutation with the minimum CD value. These de-
signs have minimum aberration, and good uniformity, and are suitable for
investigation of both nominal and quantitative factors.

Definition 2.4. Let D be a minimum aberration design. If D∗ ∈ P(D)
has the minimum centered L2-discrepancy over P(D), then D∗ is said to be
a uniform minimum aberration design.
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Table 3

Comparison of 27-run designs

Minimum aberration designs Designs on UD homepage

n Ave φ Min φ Max φ A2 A3 φ A2 A3

4 0.046549 0.046547⋄ 0.046553 0 0 0.046547 0 0
5 0.063818 0.063689 0.063878 0 2 0.063525 0 2.67
6 0.083786 0.083475⋄ 0.083923 0 4 0.083475 0 5.33
7 0.108701 0.108061∗ 0.109118 0 10 0.108698 0.10 12.17
8 0.137749∗ 0.136644∗ 0.138483∗ 0 16 0.138657 0.35 18.44
9 0.172783∗ 0.170996∗ 0.174090∗ 0 24 0.175343 0.69 30.05

10 0.218927∗ 0.213994∗ 0.221241 0 42 0.219131 1.36 40.99
11 0.273255 0.264549∗ 0.276195 0 60 0.272383 2 56
12 0.338698 0.325027∗ 0.343084 0 80 0.336401 2.32 75.46
13 0.418900 0.397890∗ 0.425576 0 104 0.414783 3.53 96.20

⋄The same CD value as the best existing design;
∗Smaller CD value than the best existing design.

Example 2.5. Consider 27-run designs. For n = 4 to 13 columns, we
evaluate average CD values for the existing regular minimum aberration
designs [see Xu (2005)] and compare with the CD values of the best designs
listed on the UD homepage. For n= 8 to 10, the average CD values of the
minimum aberration designs are even smaller than the CD values of the best
existing designs; see Table 3 above.

To find uniform minimum aberration designs, we further conduct all pos-
sible level permutations for these minimum aberration designs and calcu-
late the minimum and maximum CD values. Table 3 shows the comparison
between permuted minimum aberration (PMA) designs and the best de-
signs listed on UD homepage in terms of discrepancy and aberration. For
all designs, A1 = 0 is not listed in the table. For n= 4, the PMA design is
geometrically isomorphic to the one listed on UD homepage. For n= 5, the
PMA design has a larger CD value than the one listed on UD homepage,
but the PMA design has less aberration. For n = 6, the PMA design has
the same CD value as the one listed on UD homepage and has less aberra-
tion. For n > 6, PMA designs always outperform the best ones listed on UD
homepage. Note that those designs listed on UD homepage have resolution 2
(A2 > 0) whereas our designs have resolution 3 (A2 = 0), when n > 6. This
shows the advantage of our approach and the disadvantage of the purely al-
gorithmic approach. Further notice for n= 8 and 9, even the maximum CD
values of all permuted designs, are less than those of the best existing ones.

3. Construction of regular three-level uniform minimum aberration de-

signs. This section is devoted to providing an efficient method for con-
structing uniform minimum aberration designs. For an (N,3n)-design D,
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the total number of designs in P(D) is 6n. However, when D is a regular
FF design, many designs in P(D) are geometrically isomorphic and have
the same CD values. So it will be much easier to find the uniform FF design
when a regular minimum aberration design is permuted.

For a three-level factor, exchange of levels 0 and 2 does not change the
geometrical structure and such a “mirror image” operation keeps its cen-
tered L2-discrepancy unchanged according to formula (2.2). Denote πi0i1i2
as a permutation of (0,1,2), that is, πi0i1i2 maps (0,1,2) to (i0, i1, i2). In view
of the “mirror image” operation, we only need to consider three permutations
π012, π120 and π201 for a three-level design. Notice that π012 is the identity
map, π120 maps x to x+ 1 (mod3) and π201 maps x to x+ 2 (mod3). So
each permutation is equivalent to a linear permutation, which transforms x
to x+ b (mod3), where b= 0, 1, or 2.

A regular 3n−k FF design D has n− k independent columns, denoted as
x1, . . . ,xn−k, and k dependent columns, denoted as y1, . . . ,yk. It is specified
by k linear equations:











y1 = c11x1 + c12x2 + · · ·+ c1,n−kxn−k + b1,
y2 = c21x1 + c22x2 + · · ·+ c2,n−kxn−k + b2,
· · ·
yk = ck1x1 + ck2x2 + · · ·+ ck,n−kxn−k + bk,

where cij and bi are constants in GF(3), the finite field of size 3. Note that
here and after, all algebra operations are performed in GF(3). The standard
design corresponds to b1 = · · ·= bk = 0 and is an (n−k)-dim linear space over
GF(3). Now any linear permutation of factor levels only alters the coefficient
vector (b1, . . . , bk)

T . Obviously, designs corresponding to the same vector
(b1, . . . , bk)

T are actually the same. Thus among all the 3n linearly permuted
designs, there are at most 3k intrinsic differences. Moreover, each design
corresponding to a specific (b1, . . . , bk)

T can be obtained by only conducting
linear permutations to the k dependent columns (mapping yj to yj + bj for
j = 1, . . . , k), while keeping the n− k independent columns unchanged. So
we have the following lemma.

Lemma 3.1. For a regular 3n−k FF design, when all possible linear level

permutations are considered, the set of all 3n permuted designs consists of

3n−k copies of the 3k designs obtained by permuting the k dependent columns.

For a design corresponding to vector (b1, . . . , bk)
T , consider the “mirror

image” permutation for all factors, that is, substituting xi by (2− xi) for
i = 1, . . . , n − k and yj by (2 − yj) for j = 1, . . . , k. The resulting “mirror

image” design actually corresponds to the coefficient vector (2−2
∑n−k

i=1 c1i−

b1, . . . ,2− 2
∑n−k

i=1 cki − bk)
T . Because the “mirror image” permutation does

not change the geometrical structures, these two designs are geometrically



UNIFORM FRACTIONAL FACTORIAL DESIGNS 9

isomorphic and have the same CD value. When two coefficient vectors are
the same, these two designs are identical. Thus we have the following lemma.

Lemma 3.2. For a regular 3n−k FF design, there are at most (3k +1)/2
geometrically nonisomorphic designs when all possible level permutations are

considered.

Applying the above results, we conduct level permutations of three-level
minimum aberration designs with 27 runs and 81 runs given by Xu (2005) to
find designs with minimum discrepancy. The results are concisely presented
as follows. For 27-run designs, when n = 4 to 6, the first n columns of x1,
x2, x3, x1 +x2 + x3 +2, x1 +2x2 +1 and x1 + x2 +2x3 +1 form a regular
uniform minimum aberration design; when n= 7 to 13, the first n columns
of x1, x2, x3, x1 + x2 + x3 + 1, x1 + 2x2 + 1, x1 + x2 + 2x3, x1 + x3 + 2,
x2 + 2x3 + 1, x1 + 2x2 + 2x3 + 2, x1 + x2 + 2, x2 + x3 + 2, x1 + 2x2 + x3

and x1+2x3 +1 form a regular uniform minimum aberration design, where
x1,x2, x3 are independent columns. Their CD values are listed as “Min φ”
in Table 3.

For 81-run designs, according to Xu (2005), when n= 5 to 11, the first n
columns of x1, x2, x3, x4, x1 + x2 + x3 + x4, x1 + 2x2 + x3, x1 +2x3 + x4,
x1 + 2x2 + 2x4, x2 + x3 + 2x4, x1 + x2 + 2x3 + 2x4 and x1 + x2 form the
minimum aberration design; when n= 12 to 20, the first n columns of x1, x2,
x3, x4, x1+x2+x3+x4, x1+2x2+x3, x1+2x3+x4, x1+2x2+2x4, x1+x2,
x2+2x3+x4, x1+2x2+2x3, x1+2x3+2x4, x1+x3, x1+2x2+x4, x2+x3,
x1 +x2+x3+2x4, x1+x2+2x3, x2 +2x3+2x4, x1+x4 and x2+x4 form
the minimum aberration design, where x1,x2,x3 and x4 are independent
columns. Table 4 summarizes the results when the minimum aberration
designs are permuted. For example, when n= 7, the best linear permutation
conducted to three dependent columns is (0,2,1), which means that the best
design with minimum CD value 0.102515 is formed by seven columns x1,
x2, x3, x4, x1 + x2 + x3 + x4, x1 + 2x2 + x3 + 2 and x1 + 2x3 + x4 + 1. As
three-level designs with 81 runs are not listed on UD homepage, the best
designs found in Table 4 are apparently new.

As stated in Lemma 3.2, for a regular 3n−k FF design, there are at most
(3k +1)/2 geometrically nonisomorphic designs when all possible level per-
mutations are considered. Now consider the simplest case with k = 1. A
regular 3n−1 minimum aberration design can be specified by y= 2x1+ · · ·+
2xn−1 + b, where x1, . . . ,xn−1 are the independent columns, y is the de-
pendent column and b ∈GF(3). This is equivalent to x1 + · · ·+ xn−1 + y=
b (mod3). When levels of y are permuted, they will generate two geometri-
cally nonisomorphic designs. To be specific, denote Di as the design corre-
sponds to b= n+ i (mod3) for i= 0,1,2. Then D0 contains a row of ones,
and D1 and D2 are geometrically isomorphic. The next theorem provides
explicit formulas for the CD values of D0 and D1.
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Table 4

Results of 81-run minimum aberration designs

n Ave φ Min φ Best level permutations

5 0.062691 0.062690 0
6 0.081294 0.081290 0 1
7 0.102528 0.102515 0 2 1
8 0.126795 0.126764 0 2 1 0
9 0.154565 0.154497 0 2 1 0 1

10 0.186393 0.186255 0 2 1 0 1 0
11 0.226648 0.225969 1 1 0 0 0 0 2
12 0.270884 0.269750 1 1 0 0 2 0 0 2
13 0.324370 0.322305 1 0 2 0 2 0 2 1 2
14 0.385994 0.382976 0 0 1 1 2 2 2 0 2 2
15 0.457704 0.453338 0 0 1 1 2 2 2 0 2 2 2
16 0.540883 0.534813 0 0 1 1 2 2 2 0 2 2 2 2
17 0.640085 0.631437 0 0 1 1 2 2 2 0 2 2 2 2 0
18 0.755854 0.743782 0 0 1 1 2 2 2 0 2 2 2 2 0 1
19 0.898270 0.883749 0 0 1 1 2 2 2 0 2 2 2 2 0 1 2
20 1.066298 1.048120 0 0 1 1 2 2 2 0 2 2 2 2 0 1 2 1

Theorem 3.3. Let D0 and D1 be the two geometrically nonisomorphic
regular 3n−1 minimum aberration designs, where D0 represents the design

with the all-one row. Then the centered L2-discrepancies of D0 and D1 are

φ(D0) =

(

13

12

)n

−

(

29

27

)n

+2

(

2

27

)n

+
2(−1)n

33n

and

φ(D1) =

(

13

12

)n

−

(

29

27

)n

+2

(

2

27

)n

+
(−1)n+1

33n
.

As an immediate implication of Theorem 3.3, when n is odd, φ(D1) >
φ(D0), so D0 is the uniform minimum aberration design; when n is even,
φ(D0)>φ(D1), so D1 is the uniform minimum aberration design.

4. Connection to the β-word-length pattern. Under the hierarchical prin-
ciple, Cheng and Ye (2004) defined the β-word-length pattern. Specifically,
for an (N,sn)-design, let θj be the vector of all j-degree interactions and Zj

be the matrix of orthogonal polynomial contrast coefficients for θj . Then
the response Y can be fitted by a polynomial model Y =Z0θ0+Z1θ1+ · · ·+

ZKθK + ε. Denote Zj = (z
(j)
ik )N×n′

j
, where n′

j is the number of effects with

degree j. The β-word-length pattern is defined by

βj(D) =N−2

n′
j

∑

k=1

∣

∣

∣

∣

∣

N
∑

i=1

z
(j)
ik

∣

∣

∣

∣

∣

2

for j = 0, . . . ,K,
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where K = n(s − 1) represents the highest polynomial degree. Cheng and
Ye (2004) argued that a good design should minimize β1, β2, . . . , βK in a se-
quential order.

It is interesting to see how uniform minimum aberration designs perform
under the β-word-length pattern. In principle, given a design, one can al-
ways find the best design related to the β-word-length pattern by permuting
levels for all factors. However, the computational burden makes it infeasi-
ble to evaluate all βj(D) values even for three-level designs with moderate
number of factors. Here we only consider permuting levels of regular mini-
mum aberration designs with 27 runs and n= 4 to 10 columns and compute
their β-word-length patterns. To our surprise, for all cases, the permuted
designs with best β-word-length patterns always have the least centered
L2-discrepancies and vice verse; that is, the uniform minimum aberration
designs are the best designs under the β-word-length pattern. Of course,
there are cases where different designs have the same CD value but differ-
ent β-word-length pattern, and vice verse. Moreover, for n = 4 to 8, the
β-word-length pattern and centered L2-discrepancy give the exactly same
ordering of the permuted designs. For n= 9 or 10, the orderings under the
two criteria are quite consistent, though not identical.

We end this section with a theoretical result. Notice that a regular 3n−1

minimum aberration design has resolution n so that A1 = · · · = An−1 = 0,
which implies β1 = · · ·= βn−1 = 0. The following theorem gives an interesting
relationship between the CD value and βn.

Theorem 4.1. For a regular 3n−1 minimum aberration design D,

φ(D) =

(

13

12

)n

−

(

29

27

)n

+2

(

2

27

)n

− 2

(

1

27

)n

+

(

2

27

)n

βn(D).

Theorem 4.1 shows that the two criteria, centered L2-discrepancy and
β-word-length pattern, are exactly equivalent for regular 3n−1 minimum
aberration designs.

5. Conclusion. Uniform FF designs are useful for studying quantitative
factors with multiple levels; however, the construction of such designs is
challenging. We establish a connection between uniformity and aberration
by showing that the average centered L2-discrepancy is a function of the
word-length pattern. We propose to construct uniform FF designs by per-
muting levels of existing minimum aberration designs. Using this strategy,
we construct regular uniform minimum aberration designs with 27 runs and
81 runs for practical use. We further evaluate the performance of the uni-
form minimum aberration designs for polynomial models. They perform well
under the β-word-length pattern.
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APPENDIX: PROOFS OF ALL THEOREMS

For an (N,sn)-design D = (xik), let dH(i, j) be the Hamming distance of
rows i and j of D, that is, dH(i, j) = ♯{k :xik 6= xjk, k = 1, . . . , n}, where ♯(S)
is the cardinality of S. The distance distribution of D is (B0(D),B1(D), . . . ,
Bn(D)), where

Bj(D) =N−1♯{(a, b) :dH (a, b) = j and a, b= 1, . . . ,N} for j = 0, . . . , n.

Xu and Wu (2001) showed that the (generalized) word-length pattern can
be calculated by the MacWilliams transform of the distance distribution,
that is,

Aj(D) =N−1
n
∑

i=0

Bi(D)Pj(i;n, s) for j = 0, . . . , n,

where Pj(x;n, s) =
∑j

i=0(−1)i(s− 1)j−i
(x
i

)(n−x
j−i

)

are the Krawtchouk poly-
nomials.

By the orthogonality of the Krawtchouk polynomials, we also have

Bj(D) =N · s−n
n
∑

i=0

Pj(i;n, s)Ai(D).

The following existing property related to Krawtchouk polynomials was
stated in MacWilliams and Sloane (1977).

Lemma A.1. For nonnegative integers n,x and s with n≥ x, s≥ 2 and

0< y < 1,

n
∑

j=0

Pj(x;n, s)y
j = [1+ (s− 1)y]n−x(1− y)x.

To prove Theorem 2.2, we need the following lemma.

Lemma A.2. For an (N,sn)-design D, denote δij as the number of po-

sitions where rows i and j take the same value, that is, δij = n− dH(i, j).
Then for any positive number z greater than 1,

N
∑

i,j=1

zδij =N2

(

z + s− 1

s

)n n
∑

i=0

(

z − 1

z + s− 1

)i

Ai(D).

Proof. According to the definition of distance distribution, Lemma A.1
and the relationship between distance distribution and word-length pattern,
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we have
N
∑

i,j=1

zδij =N

n
∑

j=0

Bj(D)zn−j = zns−nN2
n
∑

j=0

n
∑

i=0

Pj(i;n, s)Ai(D)z−j

= zns−nN2
n
∑

i=0

(

1 +
s− 1

z

)n−i(

1−
1

z

)i

Ai(D)

=N2

(

z + s− 1

s

)n n
∑

i=0

(

z− 1

z + s− 1

)i

Ai(D).
�

Proof of Theorem 2.2. Notice that for an (N,3n)-design D = (xik)
with xik = 0,1, or 2, uik and ujk in formula (2.2) can only take values
1/6, 1/2 and 5/6. If uik = 1/2, 1 + 1

2 |uik −
1
2 | −

1
2 |uik −

1
2 |

2 takes value 1;
otherwise, it takes value 10/9. Furthermore, if uik = ujk = 1/6 or uik = ujk =
5/6, 1 + 1

2 |uik −
1
2 | +

1
2 |ujk −

1
2 | −

1
2 |uik − ujk| takes value 4/3; otherwise,

it takes value 1. Thus for any two rows of an (N,3n)-design D, denoted
by (xi1, xi2, . . . , xin) and (xj1, xj2, . . . , xjn), if we define γi(D) = ♯{k :xik 6=
1, k = 1, . . . , n} and γij(D) = ♯{k :xik = xjk 6= 1, k = 1, . . . , n}, the CD value
of D can be determined by the distributions of its γi and γij values. That
is, formula (2.2) can be simplified to

φ(D) =

(

13

12

)n

−
2

N

N
∑

i=1

(

10

9

)γi(D)

(A.1)

+
1

N2

N
∑

i=1

(

4

3

)γi(D)

+
1

N2

∑

i 6=j

(

4

3

)γij(D)

.

Moreover, for any fixed row i of D, when all level permutations of D are
considered, each n-tuple in GF(3)n occurs 2n times. For any element xik in
the kth column, there are three possible choices, that is, 0,1,2, corresponding
to 10

9 ,1,
10
9 for 1 + 1

2 |uik −
1
2 | −

1
2 |uik −

1
2 |

2. So

∑

D′∈P(D)

(

10

9

)γi(D
′)

= 2n ·

(

10

9
+

10

9
+ 1

)n

= 2n ·

(

29

9

)n

.

Similarly,

∑

D′∈P(D)

(

4

3

)γi(D′)

= 2n ·

(

4

3
+

4

3
+ 1

)n

= 2n ·

(

11

3

)n

= 6n ·

(

11

9

)n

.

For any two rows i and j of D with Hamming distance dH(i, j) = n− δij ,
when level permutations of corresponding columns are considered, each iden-
tical pair, that is, (l, l), l ∈GF(3), occurs twice in δij positions where rows i
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and j coincide, and each distinct pair occurs once in corresponding dH(i, j)
positions where rows i and j differ. So

∑

D′∈P(D)

(

4

3

)γij(D′)

= 2δij ·

(

4

3
+

4

3
+ 1

)δij

· (6× 1)n−δij = 6n
(

11

9

)δij

.

Then

∑

D′∈P(D)

φ(D′) = 6n
(

13

12

)n

−
2

N
·N · 2n

(

29

9

)n

+
1

N2
6n

N
∑

i,j=1

(

11

9

)δij

= 6n
(

13

12

)n

− 2 · 6n
(

29

27

)n

+
6n

N2

N
∑

i,j=1

(

11

9

)δij

and

φ̄(D) =

(

13

12

)n

− 2

(

29

27

)n

+
1

N2

N
∑

i,j=1

(

11

9

)δij

.

Finally, the result follows from Lemma A.2 and the fact A0 = 1. �

Proof of Theorem 3.3. We will use formula (A.1) to calculate the
CD values. First, we prove that the distributions of γij values for the two de-
signs D0 and D1 are the same. Because D1 is obtained by adding 1 (mod3)
to the last column of D0, γij(D0) 6= γij(D1) if and only if both last po-
sitions of rows i and j of D0 have the same value 0 or 1. For any two
distinct rows of D0 with the last positions both taking value 0, denoted
by (xi1, xi2, . . . , xi,n−1,0) and (xj1, xj2, . . . , xj,n−1,0), respectively, there ex-
ists a unique pair of rows of D1, (xi1, . . . , xi,l−1, xil − 1, xi,l+1, . . . , xi,n−1,2)
and (xj1, . . . , xj,l−1, xjl − 1, xj,l+1, . . . , xj,n−1,2), where l is the first position
such that xil 6= xjl. These two pairs have the same γij value. Similarly, for
any two distinct rows of D0 with the last positions both taking value 1,
(xi1, xi2, . . . , xi,n−1,1) and (xj1, xj2, . . . , xj,n−1,1), there exists a unique pair
of rows of D1, (xi1, . . . , xi,l−1, xil+1, xi,l+1, . . . , xi,n−1,1) and (xj1, . . . , xj,l−1,
xjl +1, xj,l+1, . . . , xj,n−1,1), with the same γij value, where l is the first po-
sition such that xil 6= xjl. It is easy to see that the above correspondence
between two pairs of rows in D0 and D1 is actually one-to-one (bijective).
This completes our claim on the distributions of γij values.

Now we consider the distributions of γi values of D0 and D1. For a de-
sign D, denote ηj(D) = ♯{i :γi(D) = j, i = 1, . . . ,N}, j = 0,1, . . . , n, as the
distribution of γi values of D. Obviously, η0(D0) = 1 as D0 contains the all-
one row, and η0(D1) = 0. Moreover, for any j = 0,1, . . . , n, the total number
of rows in GF(3)n with γi = j is

(n
j

)

2j ; therefore, ηj(D0) + 2ηj(D1) =
(n
j

)

2j .
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For convenience, if a vector with length j only contains 0 or 2, it will be called
a (0,2)j -vector. Then ηj(D0)/

(

n
j

)

is the number of possible (0,2)j -vectors

with sum j (mod3) and ηj(D1)/
(

n
j

)

is the number of possible (0,2)j -vectors

with sum j +1 (mod3). Notice that a (0,2)j -vector with sum j − 1 (mod3)
can be obtained by conducting a “mirror image” operation to a (0,2)j -vector
with sum j+1 (mod3). Thus ηj(D1)/

(

n
j

)

also represents the number of pos-

sible (0,2)j -vectors with sum j − 1 (mod3). Each (0,2)j -vector with sum
j (mod3) can be formed by adding 2 or 0 to a (0,2)j−1-vector with sum
(j−1)−1 or (j−1)+1 (mod3). So we have ηj(D0)/

(

n
j

)

= 2ηj−1(D1)/
(

n
j−1

)

.

Combining this with ηj(D0) + 2ηj(D1) =
(

n
j

)

2j and η0(D1) = 0, we obtain

ηj(D1) =
(n
j

)2j−(−1)j

3 and ηj(D0) =
(n
j

)2j+2(−1)j

3 . Thus ηj(D0) − ηj(D1) =
(n
j

)

(−1)j . Using formula (A.1) and N = 3n−1, we have

φ(D0)− φ(D1) =
1

N2

n
∑

j=0

(

n
j

)

(−1)j
(

4

3

)j

−
2

N

n
∑

j=0

(

n
j

)

(−1)j
(

10

9

)j

=
1

N2

[(

−
1

3

)n

− 2N

(

−
1

9

)n]

=
3n − 2N

N2

(

−
1

9

)n

=
(−1)n

33n−1
.

From Theorem 2.2, we also have

φ(D0) + 2φ(D1) = 3

[(

13

12

)n

−

(

29

27

)n

+ 2

(

2

27

)n]

.

Then we have

φ(D0) =

(

13

12

)n

−

(

29

27

)n

+2

(

2

27

)n

+
2(−1)n

33n

and

φ(D1) =

(

13

12

)n

−

(

29

27

)n

+2

(

2

27

)n

+
(−1)n+1

33n
.

�

Proof of Theorem 4.1. For a regular 3n−1 minimum aberration de-
sign D = (xik) with resolution n, its βn(D) is determined by the product of
linear polynomials as follows:

βn(D) =N−2

∣

∣

∣

∣

∣

N
∑

i=1

p1(xi1)× · · · × p1(xin)

∣

∣

∣

∣

∣

2

,(A.2)

where N = 3n−1 and p1(x) =
√

3/2(x−1). Because p1(x) = 0 when x= 1, we
only need to consider rows with 0 or 2 only, that is, (0,2)n-vectors. Notice
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that D0 is an (n − 1)-dim linear space or a coset over GF(3) containing
the all-one vector, thus run (2− z1, . . . ,2− zn) occurs in D0 if and only if
(z1, . . . , zn) occurs in D0. So for any odd n, βn(D0) = 0 according to (A.2).
To calculate βn(D1) for odd n, we will establish a recursive formula. For
this purpose, we use Dn

i to denote a design Di with n columns; that is, the
sum of each row of the design is congruent to n+ i modulo 3 for i= 0,1,2.
Then, up to row permutations, we can express Dn

1 as follows:

Dn
1 =





Dn−1
2 0

Dn−1
1 1

Dn−1
0 2



 .(A.3)

Let δ(Dn−1
i ) be the difference between the number of (0,2)n−1-vectors in

Dn−1
i with even number of zeros and the number of those with odd number

of zeros for i= 0,1,2. Then, according to (A.2), we have

βn−1(D
n−1
i ) = 3−2(n−2)(3/2)n−1|δ(Dn−1

i )|2 for i= 0,1,2.(A.4)

Furthermore, when n − 1 is even, δ(Dn−1
0 ) + δ(Dn−1

1 ) + δ(Dn−1
2 ) = 0 and

δ(Dn−1
0 ) = −2δ(Dn−1

1 ) = −2δ(Dn−1
2 ). Then, according to (A.2) and (A.3),

for odd n, we have

βn(D
n
1 ) = 3−2(n−1)(3/2)n| − δ(Dn−1

2 ) + δ(Dn−1
0 )|2

(A.5)
= 3−2(n−1)(3/2)n| − 3δ(Dn−1

1 )|2.

Combining (A.4) and (A.5), we obtain βn(D
n
1 ) = (3/2)βn−1(D

n−1
1 ). In the

same vein, for even n, we can establish βn(D
n
1 ) = (1/6)βn−1(D

n−1
1 ) and

βn(D
n
0 ) = (2/3)βn−1(D

n−1
1 ). So for odd n, βn(D

n
1 ) = (3/2)βn−1(D

n−1
1 ) =

(1/4) × βn−2(D
n−2
1 ). It is easy to verify that β3(D

3
1) = 3/8; thus for odd

n, βn(D
n
1 ) = (3/8)(1/4)(n−3)/2 = 3/2n. For even n, we obtain βn(D

n
1 ) =

(1/6)(3/2n−1) = 1/2n and βn(D
n
0 ) = (2/3)(3/2n−1) = 1/2n−2. Then the re-

sult follows from Theorem 3.3. �
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