
ar
X

iv
:1

20
6.

09
56

v1
 [

cs
.IT

]
5

Ju
n

20
12

Making WOM Codes Decodable Using Short
Synchronous WOM Codes

Nicolas Bitouzé†, Alexandre Graell i Amat‡, and Eirik Rosnes§
†Department of Electronics, Telecom Bretagne, Brest, France

‡Department of Signals and Systems, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
§Department of Informatics, University of Bergen, N-5020 Bergen, Norway

nicolas.bitouze@telecom-bretagne.eu, alexandre.graell@chalmers.se, eirik@ii.uib.no

Abstract—While some write once memory (WOM) codes are
inherently decodable, others require the added knowledge of the
current generation in order to successfully decode the state of
the memory. If there is no limit on the code length,n, a binary
non-decodablet-write WOM code can be made decodable at an
insignificant cost in terms of code rate by addingt − 1 cells to
store the current generation after replicating the code enough
times for the t− 1 cells to be of negligible weight. This justifies
the research on non-decodable WOM codes. However, ifn is
bounded, the t − 1 additional cells may introduce a significant
loss in terms of code rate. In this paper, we propose a new method
to make non-decodable WOM codes decodable at a lower price
when n is bounded. The main idea is to add cells that do not
only store the current generation, but also additional data, by
using a synchronous (t − 1)-write WOM code of length t − 1
or slightly above which does not contain the all-zero codeword.
A bound on the rate of a simple family of synchronous WOM
codes withn = t is given, as well as very short codes from this
family. Better codes are then obtained by local manipulations of
these codes. Finally, a construction of synchronous WOM codes
with good properties is proposed to reach higher values oft.

I. I NTRODUCTION AND DEFINITIONS

A write once memory (WOM) [1] is a storage device
consisting of memory cells that take onq ≥ 2 possible states in
{0, . . . , q−1}, and such that the state of a given cell cannot be
decreased. The main problem in the WOM model is to know
how much information can be stored inton q-ary memory
cells usingt writes (also calledgenerations), starting from
the all-zero state. Formally, we are looking fort-write WOM
codes, which are codes designed to store and update data in
the WOMs usingt writes. WOM codes are defined by their
t encoding and decoding maps. The following definition is
taken from [2]:

Definition 1: An [n, t : M1, . . . ,Mt] t-write q-ary WOM
codeC is a coding scheme forn q-ary WOM cells, which
consists oft pairs of encoding and decoding mapsEi andDi

(1 ≤ i ≤ t) such that:
1) E1 : {1, . . . ,M1} → {0, . . . , q − 1}n.
2) For 2 ≤ i ≤ t:

• Ei : {1, . . . ,Mi} × Im(Ei−1) → {0, . . . , q − 1}n,
• ∀(m, c) ∈ {1, . . . ,Mi} × Im(Ei−1),

∀j ∈ {1, . . . , n}, (Ei(m, c))j ≥ (c)j .

Research supported by the Swedish Agency for Innovation Systems (VIN-
NOVA) under the P36604-1 MAGIC project.

3) For 1 ≤ i ≤ t, Di : {0, . . . , q − 1}n → {1, . . . ,Mi},
and

• ∀m ∈ {1, . . . ,M1}, D1(E1(m)) = m,
• for 2 ≤ i ≤ t, ∀(m, c) ∈ {1, . . . ,Mi} × Im(Ei−1),

Di(Ei(m, c)) = m.
For simplicity, in the remainder of the paper, we will refer

to WOM codes simply as codes. The rate of the above code,
referred to as the WOM-rate, is defined as follows [2]:

Definition 2: The rate of generationi ∈ {1, . . . , t} of an
[n, t : M1, . . . ,Mt] q-ary codeC is

Ri(C)
∆
=

logq Mi

n
(1)

and the WOM-rate ofC is defined as

R(C)
∆
=

t
∑

i=1

Ri(C) =

∑t

i=1 logq Mi

n
. (2)

Given t, q and sometimesn, one would like to maximize the
WOM-rate. In this paper, we only consider binary codes, i.e.,
q = 2.

Depending on the structure of the code, the state of the cells
may or may not suffice to determine the current generation
(i.e., how many times the block has been written, and which
mapDi should be used to decode). In other words, the code
is not always decodable. We calldecodablecodes the codes
such that for any state of the cellsc and anyi1 and i2 with
c ∈ Im(Ei1) ∩ Im(Ei2), Di1(c) = Di2(c). A code is called
synchronous[1] if a given state of the cells can only be reached
at a given generation, i.e., the setsIm(Ei) are disjoint for
1 ≤ i ≤ t. A simple way to guarantee that a code is syn-
chronous is to force the Hamming weightw of the cells to be
an injective function of the generation, i.e., forc1 ∈ Im(Ei1)
and c2 ∈ Im(Ei2), w(c1) = w(c2) ⇒ i1 = i2. These codes
are calledlaminar in [1]. By construction, synchronous codes
are decodable. A construction of synchronous (and laminar)
codes was given in [1] forn = t being a power of two, and
WOM-rate log2(t)/2. However, synchronous codes have not
been extensively studied. Non-synchronous codes can stillbe
directly decoded if, when the decoder cannot determine the
current generation, the choice ofDi has no impact on the
decoded symbol. Notice that synchronous codes are decodable,
but the reverse does not always hold. For later use, if an[n, t :

http://arxiv.org/abs/1206.0956v1

M1, . . . ,Mt] code is synchronous (respectively decodable),
we will use the superscript “sync”, [n, t : M1, . . . ,Mt]

sync

(respectively “dec”, [n, t : M1, . . . ,Mt]
dec). Also, the binary

cells that can be written from0 to 1 but not from1 to 0 are
calledwits [1].

A non-decodable codeC with parameters [n, t :
M1, . . . ,Mt] can be turned into a decodable (and even syn-
chronous) code by simply concatenatingk instances ofC with
a block of t − 1 cells that stores the current generation (by
being filled one by one at each write, starting at the second
generation). The resulting code is a synchronous code with
parameters[kn+ t− 1, t : Mk

1 , . . . ,M
k
t]. Note that ifk goes

to infinity, the WOM-rate of this code goes to the WOM-rate
of the original codeC, R(C). A common approach in the
literature is to design codes that approach the boundaries of
the capacity region (see, e.g., [2], [3]), and then make them
decodable using this method. Therefore, most of the state-of-
the-art high-rate codes are notdirectly decodable. However,
if the target application specifiest and n, making a non-
decodable code decodable using the above-mentioned method
can significantly degrade its WOM-rate. For instance, consider
n = 6 andt = 4, and assume that we do not know a decodable
code of length6. In this case, we could select a non-decodable
4-write code of length3, and append3 cells to store the current
generation. The resulting WOM-rate is half the original one,
as the additional cells only carry information about the current
generation.

Notice that if the system must be able to know, when the
state of the memory is the all-zero vector, whether this is
because the block is empty or because it contains the all-
zero codeword, then addingt − 1 cells is not enough to
make the code decodable, butt cells are required in this case,
instead. Here we consider the case wheret−1 additional cells
are enough. The analysis for the other scenario is extremely
similar.

In this paper, we propose a different approach to make
a non-decodablet-write code C decodable. The key idea
is to appendt − 1 additional cells which store not only
the current generation but also new data, by using at-write
synchronous code with lengtht − 1, and writing generations
of C and of the synchronous code simultaneously. In the
scenario where the system must know the difference between
the all-zero codeword and an empty block of memory, at-
write synchronous code of lengtht which does not contain
the all-zero codeword would be required. To unify the search
for codes for both scenarios, we search for codes withn = t
which do not contain the all-zero codeword, and we turn
them into a code suited for the scenario where the distinction
between the all-zero codeword and an empty block is not
required, by adding a generation that only contains the all-
zero codeword. Then, synchronousness guarantees that by
observing thet−1 new cells, the decoder can always determine
the current generation, and use this knowledge to decode the
obtained code. We also consider usingt-write synchronous
codes with length slightly abovet−1 (the length should remain
small, because we do not expect to find synchronous codes of

WOM-rate higher than non-decodable ones, thus the highest
number of cells should be reserved to the non-decodable code).
In particular, our focus is on binary laminar codes, but the
proposed approach can be extended to non-laminar codes and
non-binary codes.

II. L AMINAR WOM CODES WITHn = t

In this section, we focus on building laminar codes with
n = t, that write exactly1 wit at each generation. Also,
in order to simplify the problem, we try to maximize the
values ofMi generation by generation, rather than globally
maximizing the WOM-rate. Consider a codeC with n = t that
writes exactly1 wit per generation, and a generationi > 1.
Assuming that the previous generations are already fixed, the
condition we have onMi is that for everyx ∈ Im(Ei−1),
and for everym ∈ {1, . . . ,Mi}, there existsy ∈ Im(Ei) such
that x ≤ y andDi(y) = m (wherex ≤ y if xk ≤ yk for
all k, 1 ≤ k ≤ n). Denote byEn

i the set of binary vectors
of length n and Hamming weighti. It follows that at each
generationi, Im(Ei) ⊆ En

i . We use this set inclusion to make
our maximization at each generation completely independent
from the other generations, at the cost of optimality.

Let us define the equivalence relation≡n
i on Im(Ei) by

y ≡n
i y

′ if and only if Di(y) = Di(y
′). Let us refer to the

equivalence classes of this relation as thecodeword classesof
C at generationi. Codeword classes are subsetsY ⊆ En

i for
which, if we do not take the previous generations into account,
the following must hold:

∀x ∈ En
i−1, ∃y ∈ Y : x ≤ y. (3)

We are also interested in the partitions ofEn
i as a set of

valid codeword classes. IfY denotes such a partition, we want
that

∀Y ∈ Y, ∀x ∈ En
i−1, ∃y ∈ Y : x ≤ y. (4)

Each valid partitionY corresponds to a valid decoding map
(modulo reordering), and thus each cardinality|Y| to a valid
Mi. We are therefore interested in finding the maximum
cardinality, denoted byAi(n), of such a partition. We give
an upper bound onAi(n):

Proposition 1: Let Bi(n) be defined by

Bi(n)
∆
=

(

n

i

)

min
Y s.t. (3) holds

|Y |

 . (5)

Then, the maximum cardinalityAi(n) of a partitionY that
satisfies (4) is upper bounded byAi(n) ≤ Bi(n).

Proof: Let Y be any partition ofEn
i . Then,

|Y| ·

(

min
Y s.t. (3) holds

|Y |

)

≤
∑

Y ∈Y

|Y | = |En
i | =

(

n

i

)

. (6)

This holds in particular whenY is of maximum cardinality.

This bound can be computed using a computer search for
the smallestY that satisfies (3). The search is relatively slow,
but notice that by lower-bounding|Y | by

|En

i−1
|

i
(each element

TABLE I
UPPER BOUNDBi(n) ON Ai(n). VALUES IN BOLD ARE CONSTRUCTIVE, AND ARE SUCH THATAi(n) = Bi(n).

i
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 2 1
3 3 1 1
4 4 3 1 1
5 5 3 2 1 1
6 6 5 3 2 1 1
7 7 5 5 2 2 1 1
8 8 7 5 5 2 2 1 1
9 9 7 6 5 3 2 2 1 1

10 10 9 6 5 4 3 2 2 1 1
11 11 9 7 6 5 4 3 2 2 1 1
12 12 11 8 6 6 5 3 3 2 1 1 1
13 13 11 10 7 6 5 4 3 3 2 2 1 1
14 14 13 10 9 7 6 5 5 3 3 2 2 1 1
15 15 13 13 9 9 6 5 5 4 3 3 2 2 1 1
16 16 15 13 13 9 9 7 6 5 4 3 3 2 2 1 1

y ∈ En
i covers exactlyi elementsx ∈ En

i−1), we obtain a
closed-form bound:

Ai(n) ≤ Bi(n) ≤

(

n

i

)

⌈

|En

i−1
|

i

⌉

 =

(

n

i

)

⌈

(n

i−1
)

i

⌉

. (7)

While the closed-form bound can be computed efficiently
and is reached for some values of(n, i) (for instance, for
n ≤ 3, or for i ≤ 2, or i = n), even for relatively low
values of n and i, it can be strictly higher thanAi(n).
For instance,A3(4) = 1, while the closed-form bound
is 2. Indeed,E4

3 = {1110, 1101, 1011, 0111} and E4
2 =

{1100, 1010, 1001, 0110, 0101, 0011}, and while each element
of E4

3 covers3 elements ofE4
2 , it is not possible to pick two

elements ofE4
3 that cover distinct elements ofE4

2 . Therefore,
the codeword classes inE4

3 have cardinality at least3, and not
|En

i−1
|

i
= 2.

A. Comparison with a Computer Search for Smalln

For very small values ofn, the exact value ofAi(n) can be
computed by conducting a simple exhaustive search on the set
of codeword classes. Values ofBi(n) are also obtained with
an exhaustive search, but on the minimum size of codeword
classes, which is significantly faster. The results of the two
searches are reported forn ≤ 16 in Table I. The values in
bold font areAi(n), the others areBi(n). The few values
of Ai(n) that were computed exactly matchBi(n), so it is
unknown whether there are pairs(n, i) such thatAi(n) <
Bi(n). Note that these values are constructive. For instance, a
[4, 4 : 4, 3, 1, 1]sync and a[5, 5 : 5, 3, 2, 1, 1]sync code can be
obtained from the search.

III. L AMINAR WOM CODES WITHn > t

The constraints that we applied on the codes of Section II,
especially the constraint thatn = t, keep the code WOM-
rates relatively low. Lifting the constraint onn = t allows
for higher WOM-rates, and laminar codes withn slightly
larger thant can easily be derived from codes obtained as

in Section II by merging several generations together: taking,
as the new set of codeword classes, the union of the sets
of codeword classes of two or more consecutive generations.
For instance, the[4, 4 : 4, 3, 1, 1]sync code can be turned
into a [4, 3 : 4, 3, 2]sync code by merging its third and
fourth generations together. Instead of having one codeword
class at generation3 ({1110, 1101, 1011, 0111}) and one at
generation4 ({1111}), now the third generation has two
codeword classes:{1110, 1101, 1011, 0111} and{1111}, and
there is no fourth generation anymore. Likewise, a[5, 3 :
5, 3, 4]sync code (of WOM-rate1.181) can be derived from
the [5, 5 : 5, 3, 2, 1, 1]sync code by merging the last three
generations together. However, consider the codeword classes
of vectors of weight4. These were constructed in order to
cover every word of weight3, while they now only have to
cover every word of weight2. The optimization also did not
allow codeword classes of mixed weights. We can reorganize
the set of vectors of weight3 or more into a better balanced
set of codeword classes. In (8), we give the codeword classes
of the third generation of a[5, 3 : 5, 3, 6]sync code (of WOM-
rate 1.298) obtained by reorganizing the third generation of
the [5, 3 : 5, 3, 4]sync code:

{01111, 11001, 10110}, {10111, 11100, 01011},

{11011, 01110, 10101}, {11101, 00111, 11010},

{11110, 10011, 01101}, {11111}. (8)

For comparison, the4 codeword classes of the third gener-
ation of the[5, 3 : 5, 3, 4]sync code are:

{11100, 11010, 10101, 01011, 00111} (weight 3 only),

{11001, 10110, 10011, 01110, 01101} (weight 3 only),

{11110, 11101, 11011, 10111, 01111} (weight 4 only),

{11111} (weight 5). (9)

Other choices can be made regarding which generations to
merge to obtain a3-write code from the[5, 5 : 5, 3, 2, 1, 1]sync

code, but lower WOM-rates are obtained.

IV. A C ONSTRUCTION FORSYNCHRONOUSWOM CODES

OF HIGHER t

We propose a construction to obtain synchronous codes
for higher values oft by concatenatingn′ instances of a
synchronous code of lengthn, and using a second synchronous
code of lengthn′ to decide, at each generation, which of the
n′ instances of the first code are going to be modified.

Theorem 1:Let C be an[n, t : M1, . . . ,Mt] synchronous
code of WOM-rateR, and C′ an [n′, t′ : M ′

1, . . . ,M
′
t′]

synchronous code of WOM-rateR′. Then there exists an
[nn′, tt′ : M1M

′
1, . . . ,M1M

′
t′ , . . . ,MtM

′
1, . . . ,MtM

′
t′] syn-

chronous codeC1 of WOM-rateR1 = t′

n′
R+ t

n
R′.

A formal proof is omitted here, and we only give the idea of
how the construction works. We first consider only the case
wheren′ = t′ (in which C′ writes exactly one wit at each
generation). The key idea is that thenn′ wits ofC1 are divided
into n′ blocks ofn wits, and thett′ generations are divided
into t stages oft′ generations. In the first stage, during each
of the firstt′ generations we use the encoding function of the
first generation ofC to write in exactly one empty block ofn
cells.C′ tells us which of then′ blocks is going to be written:
it writes exactly one wit amongn′ per generation, which we
map to one block among then′ blocks at each generation.
After this first stage, each block contains a codeword of the
first generation ofC. During the second stage, we use the
encoding function of the second generation ofC, andC′ once
again points to the block that will be written. This process is
repeated for allt stages. Thus, during thel-th generation of
the p-th stage (1 ≤ p ≤ t, 1 ≤ l ≤ t′), we pick messages in
{1, . . . ,Mp ×M ′

l}, and each messagem1 can be mapped to
a pair of messages(m,m′) ∈ {1, . . . ,Mp} × {1, . . . ,M ′

l}.
From the decoder perspective, at all times, either every

block has codewords of the same generationp of C, or there
are blocks at generationp and blocks at generationp − 1.
BecauseC is synchronous, the decoder has knowledge of the
value of p (the current stage). Letc′ = (c′1, . . . , c

′
n′) where

c′k = 0 if the k-th block is at generationp− 1 and c′k = 1 if
the k-th block is at generationp. The decoder knowsc′ and
thereforem′. However, it does not have knowledge of which
block of wits was written last. Therefore, we do not directly
encodem in the block that is written: instead, we encode a
messagem0 such that by decoding every block of wits at
generationp usingC, and then taking the moduloMp sum of
the decoded messages in{1, . . . ,Mp}, we recoverm. m0 is
(moduloMp) m minus the sum of the decoded messages of
all the blocks at generationp (the encoder must therefore be
able to decodeC).

Now, if n′ 6= t′, C′ may write several wits during some
generations. When this happens, the encoder ofC1 writes in
every block pointed at byC′, once again so that the modulo
Mp sum of the decoded messages ism. Here, there are more
degrees of freedom than in the casen′ = t′ (in whichm0 was
fully determined). A simple way to deterministically choose
the values that we encode in each of the blocks that will be
written is to encodeMp in each block but the last, and then

TABLE II
RATES OF DECODABLE CODES OBTAINED BY CONCATENATING

SYNCHRONOUS CODES, WITH TARGET CODE LENGTHn = 64.

t Rate of non-dec. Rate of dec. With data
code from [4] with no data Sync. code Rate

4 1.8564 1.7694 [3, 3 : 3, 1, 1] 1.7941
[5, 3 : 5, 3, 6] 1.8128

5 1.9664 1.8435 [4, 4 : 4, 3, 1, 1] 1.8995
6 2.1297 1.9633 [5, 5 : 5, 3, 2, 1, 1] 2.0400

7 2.1697 1.9663 [6, 6 : 6, 5, 3, 1, 1, 1] 2.0677
[8, 6 : 8, 4, 6, 3, 4, 2] 2.0886

TABLE III
RATES OF DECODABLE CODES OBTAINED BY CONCATENATING

SYNCHRONOUS CODES, WITH TARGET CODE LENGTHn = 256.

t Rate of non-dec. Rate of dec. With data
code from [4] with no data Sync. code Rate

4 1.8564 1.8346 [3, 3 : 3, 1, 1] 1.8408
[5, 3 : 5, 3, 6] 1.8455

5 1.9664 1.9358 [4, 4 : 4, 3, 1, 1] 1.9498
6 2.1297 2.0881 [5, 5 : 5, 3, 2, 1, 1] 2.1073

7 2.1697 2.1188 [6, 6 : 6, 5, 3, 1, 1, 1] 2.1442
[8, 6 : 8, 4, 6, 3, 4, 2] 2.1494

encode the samem0 as in the casen′ = t′ (since addingMp

has no effect moduloMp).
Let us now establish the WOM-rateR1 of C1.

R1 =

∑t

p=1

∑t′

l=1 log(MpM
′
l)

nn′

=
1

nn′

log

(

t
∏

p=1

M t′

p

)

+ log

t′
∏

l=1

(M ′
l)

t

=
1

nn′
(t′ · nR+ t · n′R′) =

t′

n′
R+

t

n
R′.

(10)

A. Example

Let C be the[4, 3 : 4, 3, 2]sync code defined by:

1 2 3 4

D−1
1 {0001} {0010} {0100} {1000}

D−1
2 {1100, 0011} {1010, 0101} {1001, 0110} −

D−1
3

{0111, 1011,
1101, 1110}

{1111} − −

Let C′ be the[2, 2 : 2, 1]sync code defined by:

1 2
(D′

1)
−1 {01} {10}

(D′
2)

−1 {11} −

The codeC1 obtained with the construction is a[8, 6 :
8, 4, 6, 3, 4, 2]sync code. Consider that the eight cells are in
state(c1, c2) = (1100, 0010). Let us first consider the decod-
ing of the message. The generation inC of the first blockc1 is
2, and that of the second blockc2 is 1, thusp = 2 (the highest
of the two) andc′ = (10). The fact thatC′ is synchronous
guarantees that only one encoding function ofC′ hasc′ in its
range: here, it is the encoding function forl = 1. Thus, we are
at the first generation (l = 1) of the second stage (p = 2), so
the overall generation isi = (p−1)t′+l = (2−1)×2+1 = 3.

We havem′ = D′
1(10) = 2. m is the moduloMp sum of

Dp(ck) for all indices k of a block at generationp of C.
Here, there is only one block at generationp = 2 for C:
block c1 = (1100), thereforem = D2(c1) (mod 3) = 1. The
original message pair was therefore(1, 2). This can be mapped
to m1 ∈ {1, . . . ,Mp ×M ′

l} by m1 = (m − 1)M ′
l + m′, for

instance, which givesm1 = 0× 2 + 2 = 2.
Let us now encode a new messagem1 = 2 ∈ {1, 2, 3} for

generation4. Our newm andm′ are 2 and 1, respectively,
so that(m − 1)M ′

l +m′ = (2 − 1) × 1 + 1 = 2. c′ = (10)
will becomec′ = (11) becauseE ′

2(1, 10) = (11). Therefore,
the second block is going to be written (because the second
wit of c

′ changes). We first decode all the blocks already at
generationp = 2: here, we only have one block at generation
p = 2, andD2(c1) = D2(1100) = 1. We therefore encode in
the second blockc2 a messagem0 such that1 + m0 = m
(mod Mp), whereMp = M2 = 3 andm = 2. Thus,m0 = 1.
c2 is then replaced byEp(1, 0010) = (0011). The state of the
cells is (1100, 0011) after this encoding phase.

B. Results

Let us denote byF (C,C′) the code obtained by applying
the construction of Theorem 1 toC andC′. We can iterate the
above construction by choosingC andC′, and then defining
C0 = C and for all m > 0, Cm = F (Cm−1, C

′). This
generates codes with even higher values oft, which have to
be compared with a construction of synchronous codes from
[1] (wheren = t is any power of two and the WOM-rate is
log2(t)/2). Notice that the two constructions happen to match
when we take asC = C′ the trivial [2, 2 : 2, 1]sync code.

First, we restrict ourselves to codes withn = t (which are
easier to compare) and we fixC′ = C. The WOM-rate of the
tm-write codeCm afterm iterations of the construction is

R(Cm) = mR(C) = logt(tm)R(C) =
R(C)

log2(t)
log2(tm).

(11)
Therefore, for codes withn = t, the higherR(C)

log
2
(t) is, the better

this iterated construction works. The code that maximizes this
ratio among those found by our computer search is the one
with n = t = 2 (with R(C)

log
2
(t) = 1

2), making the codes from
[1] the best in terms of asymptotic WOM-rate until codes
for higher values ofn = t are found. For instance, Table I
suggests that a[8, 8 : 8, 7, 5, 5, 2, 2, 1, 1]sync code could exist,
with a ratio of 0.519 (and even better synchronous codes
could exist even forn = t = 8, if we remove the added
constraints from Section II). However, when the code lengthis
not a power of two, our construction yields codes with lengths
of the form 2a3b5c by mixing different elementary codes of
lengths2, 3, and5 as theC′ codes, instead of always using the
length-2 code. This is a much denser coverage of the potential
values oft. Furthermore, if we consider codes withn slightly
greater thant, we can reach higher WOM-rates at equal values
of t. Consider, for instance, the codeF (C,C′) with C the
[4, 3 : 4, 3, 2]sync code andC′ the [2, 2 : 2, 1]sync code. The
construction then yields a[8, 6 : 8, 4, 6, 3, 4, 2]sync code of
WOM-rate 1.512 (larger thanlog2(t)/2 both for t = 6 and
t = 8). This is the example code of Section IV-A.

V. RESULTS

We compare our method of making WOM codes decodable
with the method that addst − 1 data-less cells. For this
comparison, we consider two different target code lengths:
n = 64 and n = 256. We then assume, for each value of
n and fort between4 and7, that there is a code with WOM-
rate equal to the best currently known WOM-rate fort-write
codes (from [4]), and with lengthn minus the length of the
synchronous code that we concatenate to it. We do not use the
actual code lengths at which these state-of-the-art WOM-rates
are reached because they are very large [5].

The results are reported in Tables II and III. The second
column of each table reports the state-of-the-art WOM-rateof
non-decodable codes, for each value oft. The third column
shows the WOM-rate that would be obtained by appending
t− 1 data-less cells to a code of lengthn− t+ 1 and WOM-
rate equal to the one reported in the second column. The
last two columns show, for various synchronous codes, the
WOM-rate that we obtain for the same target length. The
[3, 3 : 3, 1, 1]sync, [4, 4 : 4, 3, 1, 1]sync, [5, 5 : 5, 3, 2, 1, 1]sync,
and [6, 6 : 6, 5, 3, 1, 1, 1]sync codes are from Section II, the
[5, 3 : 5, 3, 6]sync code is from Section III, and the[8, 6 :
8, 4, 6, 3, 4, 2]sync code is from the construction of Section IV.
Note that our technique yields higher WOM-rates compared to
just appending a block oft− 1 cells with no information, for
both target lengths. These WOM-rates are (to the best of our
knowledge) also higher than the best WOM-rates for binary
multiple-write codes (and hence better than the rates of any
directly decodable code) known prior to [4], which justifies
our approach.

VI. CONCLUSION

In this paper, we proposed short synchronous WOM codes
as a basic tool to make non-decodable WOM codes decodable
while preserving the WOM-rate as much as possible. We
derived bounds for a simple family of short synchronous
WOM codes, and constructed some synchronous WOM codes
for small values oft. Furthermore, we proposed a construction
method to build synchronous WOM codes for higher values of
t obtained by concatenating shorter synchronous WOM codes.

ACKNOWLEDGMENTS

The authors wish to thank S. Kayser for the valuable
discussion.

REFERENCES

[1] R. L. Rivest and A. Shamir, “How to reuse a “write-once” memory,”
Information and Control, vol. 55, no. 1-3, pp. 1–19, Oct./Nov./Dec. 1982.

[2] R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy,and J. K.
Wolf, “Non-binary WOM-codes for multilevel flash memories,” in Proc.
IEEE Inform. Theory Workshop, Paraty, Brazil, Oct. 2011, pp. 40–44.

[3] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Efficient
two-write WOM-codes,” inProc. IEEE Inform. Theory Workshop, Dublin,
Ireland, Aug./Sep. 2010.

[4] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-
write WOM-codes,” in Proc. 48th Annual Allerton Conf. Commun.,
Control, and Computing, Monticello, IL, Oct. 2010, pp. 1062–1068.

[5] S. Kayser, private communication.

	I Introduction and Definitions
	II Laminar WOM Codes with n=t
	II-A Comparison with a Computer Search for Small n

	III Laminar WOM Codes with n>t
	IV A Construction for Synchronous WOM Codes of Higher t
	IV-A Example
	IV-B Results

	V Results
	VI Conclusion
	References

