Conditional Kolmogorov Complexity and Universal Probability

Paul M.B. Vitányi

Abstract

The conditional in conditional Kolmogorov complexity commonly is taken to be a finite binary string. The Coding Theorem of L.A. Levin connects unconditional prefix Kolmogorov complexity with the discrete universal distribution. The least upper semicomputable code-length is up to a constant equal to the negative logarithm of the greatest lower semicomputable probability mass function. We investigate conditional versions of the Coding Theorem for singleton and joint probability distributions under alternative definitions. No conditional Coding Theorem holds in the singleton case, in the joint case under the customary definition of conditional probability, but it does hold in the joint case under an alternative definition.

I. Introduction

Informally, the Kolmogorov complexity, or algorithmic entropy, of a string x is the length (number of bits) of a shortest binary program (string) to compute x on a fixed reference universal computer (such as a particular universal Turing machine). Intuitively, this quantity represents the minimal amount of information required to generate x by any effective process. The conditional Kolmogorov complexity of x relative to y is defined similarly as the length of a shortest binary program to compute x, if y is furnished as an auxiliary input to the computation [6].

The Coding Theorem (3) of L.A. Levin [7] connects a variant of Kolmogorov complexity, the unconditional prefix Kolmogorov complexity, with the discrete universal distribution (lower semicomputable semiprobability mass function). The negative logarithm of the latter is up to a constant equal to the former. The conditional in conditional Kolmogorov complexity commonly is

[^0]taken to be a finite binary string. (We do not treat other usages such as infinite binary sequences, oracles, and so on.)

We investigate several possibilities of a conditional Coding Theorem: for singleton probability mass functions and for joint probability mass functions. Our aim is to write the proofs out in detail rather than rely on "clearly" or "obviously." One wants to be certain that applications of the conditional version of the Coding Theorem as in [11] and [8] Section 5.4.4 are well founded.
"'In all cases of possible doubt, clarification is needed for the \mid sign, whether it is understood as in conditional probability or as in conditional complexity. And all cases where the two possible definitions are related to each other are worth pointing out" [4].

Since the discrete universal distribution \mathbf{m} is a probability mass function, it is most natural to consider a universal distribution $\mathbf{m}(x, y)$ of a family (specified later) of joint probability distributions $p(x, y)$ and the conditional version thereoff. Following custom, for example [10], this is defined as

$$
\begin{equation*}
\mathbf{m}(x \mid y)=\frac{\mathbf{m}(x, y)}{\sum_{z} \mathbf{m}(z, y)} \tag{1}
\end{equation*}
$$

But in [8], Definition 4.3.4, the conditional probability $\mathbf{m}(x \mid y)$ is defined differently, namely as in Definition 5. In Theorem 2 it is shown that if one uses (1) then $\mathbf{m}(x \mid y)$ does not satisfy a Coding Theorem in contrast to $\mathbf{m}(x \mid y)$ defined according to Definition 5 (Theorem 4). Similarly for the randomness test (Theorem 5).

The necessary notions and concepts are given in Appendices: Appendix A tells about our use of strings, Appendix B introduces prefix codes, Appendix C introduces Kolmogorov complexity, Appendix D introduces complexity notions, and Appendix E tells about our use of $O(1)$.

A. related work

We can enumerate all lower semicomputable probability mass functions with one argument. For convenience these arguments are elements of $\{0,1\}^{*}$. The enumeration list is denoted

$$
\mathcal{P}=P_{1}, P_{2}, \ldots
$$

There is another interpretation possible. Let prefix Turing machine T_{i} be the i th element in the standard enumeration of prefix Turing machines T_{1}, T_{2}, \ldots. Then $R_{i}(x)=\sum 2^{-|p|}$ where p is a program for T_{i} such that $T_{i}(p)=x$. This $R_{i}(x)$ is the probability that prefix Turing machine
T_{i} outputs x when the program on its input tape is supplied by flips of a fair coin. We can thus form the list

$$
\mathcal{R}=R_{1}, R_{2}, \ldots
$$

Both lists \mathcal{P} and \mathcal{R} enumerate the same functions and there are computable isomorphisms between the two [8] Lemma 4.3.4.

DEFINITION 1. If U is the reference universal prefix Turing machine, then the corresponding distribution in the R-list is R_{U}.

With K denoting the prefix Kolmogorov complexity, L.A. Levin [7] proved that

$$
\begin{equation*}
\mathbf{m}(x)=\sum_{j} 2^{-K\left(P_{j}\right)} P_{j}(x), \tag{2}
\end{equation*}
$$

is a universal lower semicomputable semiprobability mass function. (For semiprobabilities see Appendix D.) That is, obviously it is lower semicomputable and $\sum_{x} \mathbf{m}(x) \leq 1$. It is called a universal lower semicomputable semiprobability mass function since (i) it is itself a lower semicomputable semiprobability mass function and (ii) it multiplicatively (with factor $2^{-K\left(P_{j}\right)}$) dominates every lower semicomputable semiprobability mass function P_{j}. For the coefficients $2^{-K\left(P_{j}\right)}$ one can use any converging lower semicomputable series with positive terms. (One can just take $2^{-j} P_{j}$.)

Moreover, he proved the Coding Theorem

$$
\begin{equation*}
-\log \mathbf{m}(x)=-\log R_{U}(x)=K(x) \tag{3}
\end{equation*}
$$

where equality holds up to a constant term.

B. Results

Here we investigate the conditional version of (3). In Sections II and III we show that the conditional universal distribution of singleton probability distributions (Theorem 1), as well as the conditional universal distribution defined as in (1) of joint distributions (Theorem 2), do not allow a conditional version of (3). However, in Section IV we consider joint probability mass functions and use Definition 5 (properly different from (1)) as in [8] to define the conditional universal distribution. This gives the looked-for conditional version (Theorem 4) of (3). We next give in Section V a universal randomness test (Theorem 5) for computable conditional probability
mass functions. We write all proofs out in complete detail. In [8] Theorem 5 is mentioned but its proof is incorrect apart from for the major part referring to the proof of the unconditional version. One wants to have a record not otherwise available. This serves also the applications of $\mathbf{m}(x \mid y)$ in [8], [11] using Theorems 4, 5.

II. Lower Semicomputable Probability

We show that there is no equivalent of the Coding Theorem for the conditional version of \mathbf{m} based on singleton probability mass functions. The notion m is a semiprobability on the sample space $S=\{0,1\}^{*}$. Suppose event B has occurred. This means that a new probability $\mathbf{m}(x \mid B)$ has arisen satisfying:

1) $x \notin B: \mathbf{m}(x \mid B)=0$;
2) $x \in B: \mathbf{m}(x \mid B)=\mathbf{m}(x) / \mathbf{m}(B)$;
3) $\sum_{x \in S} \mathbf{m}(x \mid B)=\sum_{x \in S} \mathbf{m}(x)$.

Theorem 1. Let $x \in\{0,1\}^{*}$ and $B \subseteq\{0,1\}^{*}$, then $\log 1 / \mathbf{m}(x \mid B) \neq K(x \mid B)+O(1)$.
Proof: $(x \notin B)$ This implies $\mathbf{m}(x \mid B)=0$. Let us take the viewpoint that the program p of U is generated by fair coin flips. Then $\mathbf{m}(x)$ is the probability that $U(p)=x$. Now $\mathbf{m}(x \mid B)$ is the probability that $U(p)=x$ when event B is the case. That is, under event B no p is generated so that $U(p)=x$. Thus, $K(x \mid x \notin B$ while event B is the case $)=\infty$ since there is no p such that $U(p)=x$. This was noticed in [2]. (In this case $K(x \mid B)$ has a different meaning from $K(x \mid y)$ where y is the string on the auxiliary tape and $K(x \mid y) \leq K(x)+O(1)=|x|+2 \log |x|+O(1)$.)
$(x \in B)$ Let x be a string of length n and B be a set of strings of length n. (Note that we do not use $B \subseteq\{0,1\}^{*}$. In that case B can be a nonconstructive object. Instead we restrict B to be a set of strings of length $|x|$.) We can replace B by its characteristic string: $\left|\chi_{B}\right|=2^{n}$ and χ_{B} is defined by $\chi_{B}(i)=1$ if $i \in B$ and $\chi_{B}(i)=0$ otherwise. Rewriting the conditional

$$
\mathbf{m}(x \mid B)=\frac{\mathbf{m}(x)}{\mathbf{m}\left(\chi_{B}\right)} .
$$

Then, applying the Coding Theorem,

$$
-\log \mathbf{m}(x \mid B)=K(x)-K\left(\chi_{B}\right)
$$

But this is false, since the left-hand side is monotone over B. The smaller B (containing x) is, the greater is $\mathbf{m}(x \mid B)$, and the right-hand side has no reasons to be monotone in this sense. To
illustrate this point: Depending on x, B the value of $-\log \mathbf{m}(x \mid B)$ may be positive or negative. Let $K\left(\chi_{B}\right) \geq 2^{n}$ (B is a random set). For every $x \in B$ we have $K(x) \leq n+O(\log n)$. Then, $-\log \mathbf{m}(x \mid B)<0$. On the other hand let $\chi_{B}=11 \ldots 1$ with $K\left(\chi_{B}\right)=O(\log n)$. Let $x \in B$ with $K(x) \geq n(x$ is a random string). Then, $-\log \mathbf{m}(x \mid B)>0$.

III. Lower Semicomputable Joint Probability

We show that there is no equivalent of the Coding Theorem for the conditional version of \mathbf{m} according to (1) based on lower semicomputable joint probability mass functions. We use the standard pairing function $\langle\cdot, \cdot\rangle$ to obtain two-argument (joint) lower semicomputable probability mass functions from the single argument ones.

DEFINITION 2. Let x, y be finite binary strings and $f(\langle x, y\rangle)$ be a lower semicomputable function on a single argument such that we have $\sum_{\langle x, y\rangle} f(\langle x, y\rangle) \leq 1$. We use these functions f to define the lower semicomputable joint probability mass functions $Q_{j}(x, y)=f(\langle x, y\rangle)\left(=P_{j}(\langle x, y\rangle)\right)$.

Let us define the list

$$
\mathcal{Q}=Q_{1}, Q_{2}, \ldots
$$

We can effectively enumerate the family of lower semicomputable joint probability mass functions as before by \mathcal{Q}. We can now define the lower semicomputable joint universal probability by

$$
\begin{equation*}
\mathbf{m}(x, y)=\mathbf{m}(\langle x, y\rangle)=\sum_{j \geq 1} 2^{-K\left(Q_{j}\right)} Q_{j}(x, y) \tag{4}
\end{equation*}
$$

where $K\left(Q_{j}\right)=K\left(P_{j}\right)+O(1)$.
For a joint probability mass function $P(x, y)$ with $x, y \in\{0,1\}^{*}$ it is customary [10] to define the conditional version by

$$
P(x \mid y)=\frac{P(x, y)}{\sum_{z} P(z, y)}
$$

We call $p_{1}(x)=\sum_{z} p(x, z)$ and $p_{2}(y)=\sum_{z} p(z, y)$ the marginal probability of x and y, respectively. Applied to m as in (1) the above yields

DEFINITION 3. The conditional version of $\mathbf{m}(x, y)$ is defined by

$$
\begin{aligned}
\mathbf{m}(x \mid y) & =\frac{\mathbf{m}(x, y)}{\sum_{z} \mathbf{m}(z, y)} \\
& =\frac{\sum_{j \geq 1} 2^{-K\left(Q_{j}\right)} Q_{j}(x, y)}{\sum_{z} \sum_{j \geq 1} 2^{-K\left(Q_{j}\right)} Q_{j}(z, y)} \\
& =\frac{\sum_{j \geq 1} 2^{-K\left(Q_{j}\right)} Q_{j}(x, y)}{\sum_{j \geq 1} 2^{-K\left(Q_{j}\right)} \sum_{z} Q_{j}(z, y)}
\end{aligned}
$$

This conditional version $\mathbf{m}(x \mid y)$ is the quotient of two lower semicomputable functions. It may not be semicomputable (not proved here). We show that there is no conditional coding theorem for $\mathbf{m}(x \mid y)$.

Theorem 2. Let $x, y \in\{0,1\}^{*}$ and $n=|y|$. Then, $-\log \mathbf{m}(x \mid y) \geq K(x \mid y)+O(\log n)$. The $O(\log n)$ term in general cannot be improved.

Proof: By (4) and the Coding Theorem we have $-\log \mathbf{m}(x, y)=K(\langle x, y\rangle)+O(1)$. Clearly, $K(\langle x, y\rangle)=K(x, y)+O(1)$. The marginal universal probability $\mathbf{m}_{2}(y)$ is given by $\mathbf{m}_{2}(y)=$ $\sum_{z} \mathbf{m}(z, y) \geq \mathbf{m}(\epsilon, y)$. Thus, with the last equality due to the Coding Theorem: $-\log \mathbf{m}_{2}(y) \leq$ $-\log \mathbf{m}(\epsilon, y)=K(\langle\epsilon, y\rangle)+O(1)=K(y)+O(1)$. By the Symmetry of Information (8) we find $K(x, y)=K(y)+K(x \mid y, K(y))+O(1)$. Here $K(x \mid y, K(y))=K(x \mid y)+O(\log |y|)$. Since $\mathbf{m}(x \mid y)=\mathbf{m}(x, y) / \mathbf{m}_{2}(y)$ by Definition 5, we have $-\log \mathbf{m}(x \mid y)=-\log \mathbf{m}(x, y)+\log \mathbf{m}_{2}(y) \geq$ $-\log \mathbf{m}(x, y)+\log \mathbf{m}(\langle\epsilon, y\rangle)=K(x \mid y)+O(\log (|y|)$. Here the first inequality follows from the relation between $\mathbf{m}_{2}(y)$ and $\mathbf{m}(\langle\epsilon, y\rangle)$, while the last equality follows from (8). In [3] it is shown that for every n there are strings y of length n such that $K(x \mid y, K(y))=K(x \mid y)+\Theta(\log n)$.

IV. Lower Semicomputable Conditional Probablity

The previous sections showed that the lower semicomputable one-argument or two-argument semiprobabilities do not work out to have a proper conditional Coding Theorem. But we can consider lower semicomputable conditional semiprobabilities directly, ignoring the question of the properties of the joint semiprobabilities they come from. This approach works to obtain a Coding Theorem for a conditional semiprobability that (i) is lower semicomputable itself, and (ii) dominates multiplicatively every lower semicomputable conditional semiprobability.

DEFINITION 4. Let $f(x, y)$ be a lower semicomputable function such that for each fixed x we
have $\sum_{x} f(x, y) \leq 1$. We use these functions f to define lower semicomputable conditional semiprobability mass functions $P(x \mid y)=f(x, y)$.

REMARK 1. Similar to the construction of the unconditional semiprobability mass function m in [8] we can effectively enumerate the family of two-argument lower semicomputable semiprobability mass functions. We write out the proof in detail rather than referring to the unconditional proof to verify that the necessary changes are not problematic. In the construction below $\mathbf{m}(x \mid y)$ is a lower semicomputable conditional semiprobability mass function multiplicatively dominating all lower semicomputable conditional semiprobability mass functions. Hence it is universal.

THEOREM 3. There is a universal conditional lower semicomputable semiprobability mass function. We denote it by m .

Proof: We prove the theorem in two steps. In Stage 1 we show that the two-argument lower semicomputable functions which sum over the first argument to at most 1 can be effectively enumerated as

$$
P_{1}, P_{2}, \ldots
$$

This enumeration contains all and only lower semicomputable conditional semiprobability mass functions. In Stage 2 we show that P_{0} as defined below multiplicatively dominates all P_{j} :

$$
P_{0}(x \mid y)=\sum_{j \geq 1} \alpha(j) P_{j}(x \mid y)
$$

with $\sum \alpha(j) \leq 1$, and $\alpha(j)>0$ and lower semicomputable. Stage 1 consists of two parts. In the first part, we enumerate all lower semicomputable two argument functions; and in the second part we effectively change the lower semicomputable two argument functions to functions that sum to at most 1 over the first argument. Such functions leave the functions that were already conditional lower semicomputable semiprobability mass functions unchanged.

Stage 1 Let $\psi_{1}, \psi_{2}, \ldots$ be an effective enumeration of all two-argument real-valued partial recursive functions. For example, let $\psi_{1}(x, y), \psi_{2}(x, y), \ldots$ be $\psi_{1}(\langle x, y\rangle), \psi_{2}(\langle x, y\rangle), \ldots$ with $\langle\cdot, \cdot\rangle$ the standard pairing function over the natural numbers. Consider a function ψ from this enumeration (where we drop the subscript for notational convenience). Without loss of generality, assume that each ψ is approximated by a rational-valued three-argument partial recursive function
$\phi^{\prime}(x, y, k)=p / q$ (use $\phi^{\prime}(\langle\langle x, y\rangle, k\rangle)=\langle p, q\rangle$). Without loss of generality, each such ϕ^{\prime} is modified to a partial recursive function satisfying the properties below. For all $x, y, k \in \mathcal{N}$,

- if $\phi(x, y, k)<\infty$, then also $\phi(x, y, 1), \phi(x, y, 2), \ldots, \phi(x, y, k-1)<\infty$ (this can be achieved by the trick of dovetailing the computation of $\phi^{\prime}(\langle\langle x, y\rangle, 1\rangle), \phi^{\prime}(\langle\langle x, y\rangle, 2\rangle), \ldots$ and assigning computed values in enumeration order of halting to $\phi(x, y, 1), \phi(x, y, 2), \ldots)$;
- $\phi(x, y, k+1) \geq \phi(x, y, k)$ (dovetail the computation of $\phi^{\prime}(x, y, 1), \phi^{\prime}(x, y, 2), \ldots$ and assign the enumerated values to $\phi(x, y, 1), \phi(x, y, 2), \ldots$ satisfying this requirement and ignoring the other computed values); and
- $\lim _{k \rightarrow \infty} \phi(x, y, k)=\psi(x, y)$ (as does ϕ^{\prime}).

The resulting ψ-list contains all lower semicomputable two-argument real-valued functions, and is actually represented by the approximators in the ϕ-list. Each lower semicomputable function ψ (rather, the approximating function ϕ) will be used to construct a function P that sums to at most 1 over the first argument. In the algorithm below, the local variable array P contains the current approximation to the values of P at each stage of the computation. This is doable because the nonzero part of the approximation is always finite.

Step 1: Initialize by setting $P(x \mid y):=0$ for all $x, y \in \mathcal{N}$; and set $k:=0$.
Step 2: Set $k:=k+1$, and compute $\phi(1,1, k), \ldots, \phi(k, k, k)$. $\{$ If any $\phi(i, j, k), 1 \leq i, j \leq k$, is undefined, then the values of P will not change any more. $\}$

Step 3: if for some $j(1 \leq j \leq k)$ we have $\phi(1, j, k)+\cdots+\phi(k, j, k)>1$ then the values of P will not change any more else for $i, j:=1, \ldots, k$ set $P(i \mid j):=\phi(i, j, k)\{$ Step 3 is a test of whether the new assignment of P-values can satisfy (future) the lower semicomputable conditional semiprobability mass function requirements\}

Step 4: Go to Step 2.

If $\psi(x, y)$ satisfies $\sum_{x} \psi(x, y) \leq 1$ for all $x, y \in \mathcal{N}$ then $P(x \mid y)=\psi(x, y)$ for all $x, y \in \mathcal{N}$. If for some x, y and k with $x, y \leq k$ the value $\phi(x, y, k)$ is undefined, then the last assigned values of P do not change any more even though the computation goes on forever. If the else condition in Step 3 is satisfied in the limit with equality by the values of P, it is a conditional semiprobability mass function. If if condition in Step 3 gets satisfied, then the computation terminates and P 's support is finite and it is computable.

Executing this procedure on all functions in the list $\phi_{1}, \phi_{2}, \ldots$ yields an effective enumeration
P_{1}, P_{2}, \ldots of lower semicomputable functions containing all and only lower semicomputable conditional semiprobability mass functions. The algorithm takes care that for all $j \geq 1$ we have

$$
\sum_{x \geq 0} P_{j}(x \mid y) \leq 1
$$

Stage 2 Define the function P_{0} as

$$
P_{0}(x \mid y)=\sum_{j \geq 1} \alpha(j) P_{j}(x \mid y)
$$

with $\alpha(j)$ chosen such that $\sum_{j} \alpha(j) \leq 1$, and $\alpha(j)>0$ and lower semicomputable for all j. Then P_{0} is a conditional semiprobability mass function since

$$
\sum_{x \geq 0} P_{0}(x \mid y)=\sum_{j \geq 1} \alpha(j) \sum_{x \geq 0} P_{j}(x \mid y) \leq \sum_{j \geq 1} \alpha(j) \leq 1
$$

The function $P_{0}(\cdot \mid \cdot)$ is also lower semicomputable, since $P_{j}(x \mid y)$ is lower semicomputable in j and x, y. (Use the universal partial recursive function ϕ_{0} and the construction above.) Finally, P_{0} multiplicatively dominates each P_{j} since for all $x, y \in \mathcal{N}$ we have $P_{0}(x \mid y) \geq \alpha(j) P_{j}(x \mid y)$ while $\alpha(j)>0$.

Obviously, there are countably infinitely many universal lower semicomputable conditional semiprobability mass functions. We now fix a reference universal lower semicomputable conditional probability mass function and denote it by \mathbf{m}.

We can choose the $\alpha(j)$'s in the proof above by setting

$$
\alpha(j)=2^{-K(j)-c_{j}},
$$

with $c_{j} \geq 0$ a constant. Then $\sum_{j} \alpha(j) \leq 1$ by the Kraft inequality (satisfied by the prefix complexity K), and $\alpha(j)>0$ and lower semicomputable for all j.

Definition 5. We can define

$$
\mathbf{m}(x \mid y)=\sum_{j \geq 1} 2^{-K(j)-c_{j}} P_{j}(x \mid y)
$$

Corollary 1. If $P(x \mid y)$ is a lower semicomputable conditional semiprobability mass function, then $2^{K(P)} \mathbf{m}(x \mid y) \geq P(x \mid y)$, for all x, y.

We have seen that $\mathbf{m}(x \mid y)$ is a conditional lower semicomputable probability mass function. By Corollary 1 we see that $\mathbf{m}(x \mid y)$ multiplicatively dominates every lower semicomputable
conditional semiprobability mass function $P(x \mid y)$. Hence $\mathbf{m}(x \mid y)$ is a universal conditional lower semicomputable semiprobability mass function.

A. A Priori Probability

Let P_{1}, P_{2}, \ldots be the effective enumeration of all lower semicomputable conditional semiprobability mass functions constructed in Theorem 3. There is another way to effectively enumerate all lower semicomputable conditional semiprobability mass functions. Think of the input to a prefix machine T with the string y on its auxiliary tape as being provided by an indefinitely long sequence of fair coin flips. The probability of generating an initial input segment p is $2^{-|p|}$. If $T(p, y)<\infty$, that is, T 's computation on p with y on its auxiliary tape terminates, then presented with any infinitely long sequence starting with p, the machine T with y on its auxiliary tape, being a prefix machine, will read exactly p and no further.

Let T_{1}, T_{2}, \ldots be the standard enumeration of prefix machines in [8]. For each prefix machine T, define

$$
\begin{equation*}
Q_{T}(x \mid y)=\sum_{T(p, y)=x} 2^{-|p|} \tag{5}
\end{equation*}
$$

In other words, $Q_{T}(x \mid y)$ is the probability that T with y on its auxiliary tape computes output x if its input is provided by successive tosses of a fair coin. This means that for every string y we have that Q_{T} satisfies

$$
\sum_{x \in \mathcal{N}} Q_{T}(x \mid y) \leq 1
$$

We can approximate $Q_{T}(\cdot \mid y)$ for every string y as follows. (The algorithm uses the local variable $Q(x)$ to store the current approximation to $Q_{T}(x \mid y)$.)

Step 1: Fix $y \in\{0,1\}^{*}$. Initialize $Q(x):=0$ for all x.
Step 2: Dovetail the running of all programs on T with auxiliary y so that in stage k, step $k-j$ of program j is executed. Every time the computation of some program p halts with output x, increment $Q(x):=Q(x)+2^{-|p|}$.

The algorithm approximates the displayed sum in Equation 5 for each x by the contents of $Q(x)$. This shows that Q_{T} is lower semicomputable. Starting from a standard enumeration of prefix machines T_{1}, T_{2}, \ldots, this construction gives for every $y \in\{0,1\}^{*}$ an enumeration of only lower semicomputable conditional probability mass functions

$$
Q_{1}(\cdot \mid y), Q_{2}(\cdot \mid y), \ldots
$$

To merge the enumerations for different y we use dovetailing over the index i of Q_{i} and y. The P-enumeration of Theorem 3 contains all elements enumerated by this Q-enumeration.

DEFINITION 6. The conditional universal a priori probability on the positive integers is defined as

$$
Q_{U}(x \mid y)=\sum_{U(p, y)=x} 2^{-|p|}
$$

where U is the reference prefix machine.

REMARK 2. The use of prefix machines in the present discussion rather than plain Turing machines is necessary. By Kraft's inequality the series $\sum_{p} 2^{-|p|}$ converges (to ≤ 1) if the summation is taken over all halting programs p of any fixed prefix machine. In contrast, if the summation is taken over all halting programs p of a universal plain Turing machine, then the series $\sum_{p} 2^{-|p|}$ diverges.

B. The Conditional Coding Theorem

THEOREM 4. There is a constant c such that for every x,

$$
\log \frac{1}{\mathbf{m}(x \mid y)}=\log \frac{1}{Q_{U}(x \mid y)}=K(x \mid y)
$$

with equality up to an additive constant c.
Proof: Since $2^{-K(x \mid y)}$ represents the contribution to $Q_{U}(x \mid y)$ by a shortest program for x given the auxiliary y, we have $2^{-K(x \mid y)} \leq Q_{U}(x \mid y)$, for all x, y.

Clearly, $Q_{U}(x \mid y)$ is lower semicomputable. Namely, enumerate all programs for x given y, by running reference machine U on all programs with y as auxiliary at once in dovetail fashion: in the first phase, execute step 1 of program 1 ; in the second phase, execute step 2 of program 1 and step 1 of program 2 ; in the i th phase ($i>2$), execute step j of program k for all positive j and k such that $j+k=i$. By the universality of $\mathbf{m}(x \mid y)$ in the class of lower semicomputable conditional semiprobability mass functions, $Q_{U}(x \mid y)=O(\mathbf{m}(x \mid y))$.

It remains to show that $\mathbf{m}(x \mid y)=O\left(2^{-K(x \mid y)}\right)$. This is equivalent to proving that $K(x \mid y) \leq$ $\log 1 / \mathbf{m}(x \mid y)+O(1)$, as follows. Exhibit a prefix-code E encoding each source word x given y as a code word $E(x \mid y)=p$, satisfying

$$
|p| \leq \log \frac{1}{\mathbf{m}(x \mid y)}+O(1)
$$

together with a decoding prefix machine T such that $T(p, y)=x$. Then,

$$
K_{T}(x \mid y) \leq|p|,
$$

and by the invariance theorem

$$
K(x \mid y) \leq K_{T}(x \mid y)+c_{T},
$$

with $c_{T}>0$ a constant that may depend on T but not on x, y. Note that T is fixed by the above construction. On the way to constructing E as required, we recall a construction for the Shannon-Fano code:

Lemma 1. If p is a probability mass function on the integers, and $\sum_{x} p(x) \leq 1$, then there is a binary prefix-code e such that the code words $e(1), e(2), \ldots$ can be length-increasing lexicographically ordered and $|e(x)| \leq \log 1 / p(x)+2$. This is the Shannon-Fano code.

Proof: Let $[0,1)$ be the half-open real unit interval, corresponding to the sample space $S=$ $\{0,1\}^{\infty}$. Each element ω of S corresponds to a real number $0 . \omega$. Let $x \in\{0,1\}^{*}$. The half-open interval $\left[0 . x, 0 . x+2^{-|x|}\right.$) corresponding to the cylinder (set) of reals $\Gamma_{x}=\{0 . \omega: \omega=x \ldots \in S\}$ is called a binary interval. We cut off disjoint, consecutive, adjacent (not necessarily binary) intervals I_{x} of length $p(x)$ from the left end of $[0,1), x=1,2, \ldots$. Let i_{x} be the length of the longest binary interval contained in I_{x}. Set $E(x)$ equal to the binary word corresponding to the leftmost such interval. Then $|e(x)|=\log 1 / i_{x}$. It is easy to see that I_{x} is covered by at most four binary intervals of length i_{x}, from which the lemma follows.

We use this construction to find a prefix machine T such that $K_{T}(x \mid y) \leq \log 1 / \mathbf{m}(x \mid y)+c$. That $\mathbf{m}(x \mid y)$ is not computable but only lower semicomputable results in $c=3$.

Since $\mathbf{m}(x \mid y)$ is lower semicomputable, there is a partial recursive function $\phi(x, y, t)$ with $\phi(x, y, t) \leq \mathbf{m}(x \mid y)$ and $\phi(x, y, t+1) \geq \phi(x, y, t)$, for all t. Moreover, $\lim _{t \rightarrow \infty} \phi(x, y, t)=$ $\mathbf{m}(x \mid y)$. Let $\psi(x, y, t)$ be the greatest partial recursive lower bound of special form on $\phi(x, y, t)$ defined by

$$
\psi(x, y, t):=\left\{2^{-k}: 2^{-k} \leq \phi(x, y, t)<2 \cdot 2^{-k} \text { and } \phi(x, y, j)<2^{-k} \text { for all } j<t\right\}
$$

and $\psi(x, y, t):=0$ otherwise. Let ψ enumerate its range without repetition. Then,

$$
\sum_{x, y, t} \psi(x, y, t)=\sum_{x} \sum_{y} \sum_{t} \psi(x, y, t) \leq 2 \mathbf{m}(x \mid y) \leq 2
$$

The series $\sum_{x, y, t} \psi(x, y, t)$ can converge to precisely $2 \mathbf{m}(x \mid y)$ only in case there is a positive integer k such that $\mathbf{m}(x \mid y)=2^{-k}$.

In a manner similar to the above proof we chop off consecutive, adjacent, disjoint half-open intervals $I_{x, y, t}$ of length $\psi(x, y, t) / 2$, in enumeration order of a dovetailed computation of all $\psi(x, y, t)$, starting from the left-hand side of $[0,1)$. We have already shown that this is possible. It is easy to see that we can construct a prefix machine T as follows: If Γ_{p} is the leftmost largest binary interval of $I_{x, y, t}$, then $T(p, y)=x$. Otherwise, $T(p, y)=\infty$ (T does not halt).

By construction of ψ, for each pair x, y there is a t such that $\psi(x, y, t)>\mathbf{m}(x \mid y) / 2$. Each interval $I_{x, y, t}$ has length $\psi(x, y, t) / 2$. Each I-interval contains a binary interval Γ_{p} of length at least one-half of that of I (because the length of I is of the form 2^{-k}, it contains a binary interval of length 2^{-k-1}). Therefore, there is a p with $T(p, y)=x$ such that $2^{-|p|} \geq \mathbf{m}(x \mid y) / 8$. This implies $K_{T}(x \mid y) \leq \log 1 / \mathbf{m}(x \mid y)+3$, which was what we had to prove.

Corollary 2. The above result plus Corollary 1 give: If P is a lower semicomputable conditional semiprobability mass function. Then there is a constant $c_{P}=K(P)+O(1)$ such that $K(x \mid y) \leq \log 1 / P(x \mid y)+c_{P}$.

V. Conditional Randomness Test

We give an exact expression for a conditional version of the universal sum P-test (randomness test) in terms of complexity.

THEOREM 5. Let $P(x \mid y)$ be a conditional semiprobability mass function computable in x and y. The function $\kappa_{0}(x \mid P(\cdot \mid y))=\log (\mathbf{m}(x \mid y) / P(x \mid y))$ is a universal sum $P(\cdot \mid y)$-test.

Proof: Since $\mathbf{m}(x \mid y)$ is lower semicomputable and $P(x \mid y)$ is computable, $\kappa_{0}(x \mid P(\cdot \mid y))$ is lower semicomputable for every y. We first show that $\kappa_{0}(x \mid P(\cdot \mid y))$ is a sum $P(\cdot \mid y)$-test for every y :

$$
\sum_{x} P(x \mid y) 2^{\kappa_{0}(x \mid P(\cdot \mid y))}=\sum_{x} \mathbf{m}(x \mid y) \leq 1
$$

It remains only to show that $\kappa_{0}(x \mid P(\cdot \mid y))$ additively dominates all sum $P(\cdot \mid y)$-tests for every y. A sum $P(\cdot \mid y)$ test is a lower semicomputable function δ satisfying

$$
\sum_{x} P(x \mid y) 2^{\delta(x)} \leq 1
$$

For each sum $P(\cdot \mid y)$-test δ, the function $P(x \mid y) 2^{\delta(x)}$ is a conditional semiprobability mass function that is lower semicomputable. By Theorem 3, there is a positive constant c such that $c \cdot \mathbf{m}_{c}(x \mid y) \geq P(x \mid y) 2^{\delta(x)}$ for every x, y. Hence, $\log c+\kappa_{0}(x \mid P(\cdot \mid y)) \geq \delta(x)$, for all x.

In the sense of Martin-Löf [9] the theorem shows:

DEFINITION 7. A string x is random or typical for $P(\cdot \mid y)$ if $\log (\mathbf{m}(x \mid y) / P(x \mid y)) \leq 0$. Since randomness for finite binary strings is just a matter of degree, we may choose to substitute some small quantity like $K(x)$ or $O(\log |x|)$ for 0 .

Appendix

A. Strings

Let $x, y, z \in \mathcal{N}$, where \mathcal{N} denotes the natural numbers and we identify \mathcal{N} and $\{0,1\}^{*}$ according to the correspondence

$$
(0, \epsilon),(1,0),(2,1),(3,00),(4,01), \ldots
$$

Here ϵ denotes the empty word. A string x is an element of $\{0,1\}^{*}$. The length $|x|$ of x is the number of bits in x, not to be confused with the absolute value of a number. Thus, $|010|=3$ and $|\epsilon|=0$, while $|-3|=|3|=3$.

The emphasis is on binary sequences only for convenience; observations in any alphabet can be so encoded in a way that is 'theory neutral'. Below we will use the natural numbers and the binary strings interchangeably.

B. Self-delimiting Code

A binary string y is a proper prefix of a binary string x if we can write $x=y z$ for $z \neq \epsilon$. A set $\{x, y, \ldots\} \subseteq\{0,1\}^{*}$ is prefix-free if for any pair of distinct elements in the set neither is a proper prefix of the other. A prefix-free set is also called a prefix code and its elements are called code words. An example of a prefix code, that is useful later, encodes the source word $x=x_{1} x_{2} \ldots x_{n}$ by the code word

$$
\bar{x}=1^{n} 0 x .
$$

This prefix-free code is called self-delimiting, because there is fixed computer program associated with this code that can determine where the code word \bar{x} ends by reading it from left to right
without backing up. This way a composite code message can be parsed in its constituent code words in one pass, by the computer program. (This desirable property holds for every prefix-free encoding of a finite set of source words, but not for every prefix-free encoding of an infinite set of source words. For a single finite computer program to be able to parse a code message the encoding needs to have a certain uniformity property like the \bar{x} code.) Since we use the natural numbers and the binary strings interchangeably, $|\bar{x}|$ where x is ostensibly an integer, means the length in bits of the self-delimiting code of the binary string with index x. On the other hand, $\overline{|x|}$ where x is ostensibly a binary string, means the self-delimiting code of the binary string with index the length $|x|$ of x. Using this code we define the standard self-delimiting code for x to be $x^{\prime}=\overline{|x|} x$. It is easy to check that $|\bar{x}|=2 n+1$ and $\left|x^{\prime}\right|=n+2 \log n+1$. Let $\langle\cdot\rangle$ denote a standard invertible effective one-one encoding from $\mathcal{N} \times \mathcal{N}$ to a subset of \mathcal{N}. For example, we can set $\langle x, y\rangle=x^{\prime} y$. We can iterate this process to define $\langle x,\langle y, z\rangle\rangle$, and so on. For Kolmogorov complexity it is essential that there exists a pairing function such that the length of $\langle u, v\rangle$ is equal to the sum of the lengths of u, v plus a small value depending only on $|u|$.)

C. Kolmogorov Complexity

For precise definitions, notation, and results see the text [8]. For technical reasons we use a variant of complexity, so-called prefix complexity, which is associated with Turing machines for which the set of programs resulting in a halting computation is prefix free. We realize prefix complexity by considering a special type of Turing machine with a one-way input tape, a separate work tape, and a one-way output tape. Such Turing machines are called prefix Turing machines. If a machine T halts with output x after having scanned all of p on the input tape, but not further, then $T(p)=x$ and we call p a program for T. It is easy to see that $\left\{p: T(p)=x, x \in\{0,1\}^{*}\right\}$ is a prefix code.

Let T_{1}, T_{2}, \ldots be a standard enumeration of all prefix Turing machines with a binary input tape, for example the lexicographical length-increasing ordered prefix Turing machine descriptions [8]. Let $\phi_{1}, \phi_{2}, \ldots$ be the enumeration of corresponding prefix functions that are computed by the respective prefix Turing machines (T_{i} computes ϕ_{i}). These functions are the partial recursive functions or computable functions (of effectively prefix-free encoded arguments). We denote the function computed by a Turing machine T_{i} with p as input and y as conditional information by $\phi_{i}(p, y)$. One of the main achievements of the theory of computation is that the enumeration
T_{1}, T_{2}, \ldots contains a machine, say T_{u}, that is computationally universal in that it can simulate the computation of every machine in the enumeration when provided with its index. It does so by computing a function ϕ_{u} such that $\phi_{u}(\langle i, p\rangle, y)=\phi_{i}(p, y)$ for all i, p, y. We fix one such machine and designate it as the reference universal Turing machine or reference Turing machine for short.

DEFINITION 8. The conditional prefix Kolmogorov complexity of x given y (as auxiliary information) with respect to prefix Turing machine T_{i} is

$$
\begin{equation*}
K_{i}(x \mid y)=\min _{p}\left\{|p|: \phi_{i}(p, y)=x\right\} \tag{6}
\end{equation*}
$$

The conditional prefix Kolmogorov complexity $K(x \mid y)$ is defined as the conditional Kolmogorov complexity $K_{u}(x \mid y)$ with respect to the reference prefix Turing machine T_{u} usually denoted by U. The unconditional version is set to $K(x)=K(x \mid \epsilon)$.

The prefix Kolmogorov complexity $K(x \mid y)$ has the following crucial property: $K(x \mid y) \leq$ $K_{i}(x \mid y)+c_{i}$ for all i, x, y, where c_{i} depends only on i (asymptotically, the reference machine is not worse than any other machine). Intuitively, $K(x \mid y)$ represents the minimal amount of information required to generate x by any effective process from input y (provided the set of programs is prefix-free). The functions $K(\cdot)$ and $K(\cdot \mid \cdot)$, though defined in terms of a particular machine model, are machine-independent up to an additive constant and acquire an asymptotically universal and absolute character through Church's thesis, see for example [8], and from the ability of universal machines to simulate one another and execute any effective process.

Quantitatively, $K(x) \leq|x|+2 \log |x|+O(1)$. A prominent property of the prefix-freeness of $K(x)$ is that we can interpret $2^{-K(x)}$ as a probability distribution since $K(x)$ is the length of a shortest prefix-free program for x. By the fundamental Kraft's inequality, see for example [1], [8], we know that if l_{1}, l_{2}, \ldots are the code-word lengths of a prefix code, then $\sum_{x} 2^{-l_{x}} \leq 1$. Hence,

$$
\begin{equation*}
\sum_{x} 2^{-K(x)} \leq 1 \tag{7}
\end{equation*}
$$

This leads to the notion of universal distribution $\mathbf{m}(x)=2^{-K(x)}$ which we may view as a rigorous form of Occam's razor. Namely, the probability $\mathbf{m}(x)$ is great if x is simple $(K(x)$ is small like $K(x)=O(\log |x|))$ and $\mathbf{m}(x)$ is small if x is complex $(K(x)$ is large like $K(x) \geq|x|)$.

The Kolmogorov complexity of an individual finite object was introduced by Kolmogorov [6] as an absolute and objective quantification of the amount of information in it. The information theory of Shannon [10], on the other hand, deals with average information to communicate objects produced by a random source. Since the former theory is much more precise, it is surprising that analogs of theorems in information theory hold for Kolmogorov complexity, be it in somewhat weaker form. An example is the remarkable symmetry of information property used later, see [12] for the plain complexity version, and [3] for the prefix complexity version below. Let x^{*} denote the shortest prefix-free program x^{*} for a finite string x, or, if there are more than one of these, then x^{*} is the first one halting in a fixed standard enumeration of all halting programs. Then, by definition, $K(x)=\left|x^{*}\right|$. Denote $K(x, y)=K(\langle x, y\rangle)$. Then,

$$
\begin{align*}
K(x, y) & =K(x)+K\left(y \mid x^{*}\right)+O(1) \tag{8}\\
& =K(y)+K\left(x \mid y^{*}\right)+O(1) .
\end{align*}
$$

REMARK 3. The information contained in x^{*} in the conditional above is the same as the information in the pair $(x, K(x))$, up to an additive constant, since there are recursive functions f and g such that for all x we have $f\left(x^{*}\right)=(x, K(x))$ and $g(x, K(x))=x^{*}$. On input x^{*}, the function f computes $x=U\left(x^{*}\right)$ and $K(x)=\left|x^{*}\right|$; and on input $x, K(x)$ the function g runs all programs of length $K(x)$ simultaneously, round-robin fashion, until the first program computing x halts-this is by definition x^{*}.

D. Computability Notions

If a function has as values pairs of nonnegative integers, such as (a, b), then we can interpret this value as the rational a / b. We assume the notion of a computable function with rational arguments and values. A function $f(x)$ with x rational is semicomputable from below if it is defined by a rational-valued total computable function $\phi(x, k)$ with x a rational number and k a nonnegative integer such that $\phi(x, k+1) \geq \phi(x, k)$ for every k and $\lim _{k \rightarrow \infty} \phi(x, k)=f(x)$. This means that f (with possibly real values) can be computably approximated arbitrary close from below (see [8], p. 35). A function f is semicomputable from above if $-f$ is semicomputable from below. If a function is both semicomputable from below and semicomputable from above then it is computable.

We now consider a subclass of the lower semicomputable functions. A function f is a semiprobability mass function if $\sum_{x} f(x) \leq 1$ and it is a probability mass function if $\sum_{x} f(x)=$ 1. It is customary to write $p(x)$ for $f(x)$ if the function involved is a semiprobability mass function.

E. Precision

It is customary in this area to use "additive constant c " or equivalently "additive $O(1)$ term" to mean a constant, accounting for the length of a fixed binary program, independent from every variable or parameter in the expression in which it occurs. In this paper we use the prefix complexity variant of Kolmogorov complexity for convenience. Prefix complexity of a string exceeds the plain complexity of that string by at most an additive term that is logarithmic in the length of that string.

Acknowledgements

We thank Alexander Shen and Péter Gács for commenting on the manuscript.

REFERENCES

[1] T.M. Cover and J.A. Thomas. Elements of Information Theory, Wiley \& Sons, 1991.
[2] C.S. Wallace and D. Dowe, Minimum Message Length and Kolmogorov complexity, Comp. J., 42:4(1999), 270-283.
[3] P. Gács, On the symmetry of algorithmic information, Soviet Math. Dokl., 15 (1974) 1477-1480. Correction: ibid., 15 (1974) 1480.
[4] P. Gács, Personan comunication, 2012.
[5] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin, 1933. (English translation (by N. Morrison): Foundations of the Theory of Probability, Chelsea, 1956.)
[6] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform. Transmission 1:1 (1965) 1-7.
[7] L.A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Problems Inform. Transmission, 10:206-210, 1974.
[8] M. Li and P.M.B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, 2008. 3nd Edition.
[9] P. Martin-Löf, The definition of random sequences, Inform. Contr., 9(1966), 602-619.
[10] C.E. Shannon. The mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, 1948.
[11] P.M.B. Vitányi and M. Li, Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity, IEEE Trans. Inform. Theory, 46:2(2000), 446-464.
[12] A.K. Zvonkin and L.A. Levin, The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms, Russian Math. Surveys 25:6 (1970) 83-124.

[^0]: CWI, Science Park, 1098 XG Amsterdam, The Netherlands. Email: Paul.Vitanyi@cwi.nl.

