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Abstract: We show that the automorphism group of Drinfeld’s half-space over a finite field is the projective
linear group of the underlying vector space. The proof of this result uses analytic geometry in the sense of
Berkovich over the finite field equipped with the trivial valuation. We also take into account extensions of the
base field.
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Introduction

In this note we determine the automorphism group of Drinfeld’s half-spaces over a finite field.
Given a finite-dimensional vector space V over a finite field k , the Drinfeld half-space Ω(V) is defined
as the complement of all k-rational hyperplanes in the projective space P(V); it is an affine algebraic
variety over k . We show that every k-automorphism of Ω(V) is induced by a k-automorphism of P(V).
Hence the automorphism group of Ω(V) is equal to PGL(V). More generally, for an arbitrary field
extension K of k , we prove that the natural injection of PGL(V) into AutK(Ω(V)⊗k K) is an isomorphism.
Our result answers a question of Dat, Orlik and Rapoport [5, p. 338] which was motivated by the
analogous statement for Drinfeld half-spaces over a non-Archimedean local field (with non-trivial
absolute value).

Drinfeld defined his p-adic upper half-spaces in [6]. They are the founding examples of the the-
ory of period domains [12]. Analogs of period domains over finite fields have been considered by
Rapoport in [11]. They are open subvarieties of flag varieties characterized by a semi-stability con-
dition. Recently, they have been studied by Rapoport, Orlik and others, see e.g. [9], [10]. A good
introduction is given in the book [5].

Over local non-Archimedean fields with non-trivial absolue value, Drinfeld half-spaces are no
longer algebraic varieties and must be defined in the context of analytic geometry. In this setting,
it was shown by Berkovich that every automorphism is induced by a projective linear transformation
[3]. This was generalized to products of Drinfeld half-spaces by Alon [1], who also pointed out and
corrected a discrepancy in Berkovich’s proof. Berkovich’s strategy is based on the fact that in the case
of a local non-Archimedean ground field with non-trivial absolute value, the Bruhat-Tits building of
the group PGL(V) is contained in Ω(V) as the subset of points satisfying a natural maximality con-
dition. This implies that every automorphism of Ω(V) induces an automorphism of the Bruhat-Tits
building, and with some further work (see [1]) one can prove the claim.

One could in fact use a similar strategy in order to determine the automorphism group of Ω(V) over
a finite field. Indeed, if we endow the finite ground field with the trivial absolute value and look at the
corresponding Berkovich analytic space Ω(V)an, by [2] the vectorial building associated to the group
PGL(V) is contained in Ω(V)an. We believe that one can follow Berkovich’s and Alon’s arguments to
deduce that every automorphism comes from an element of PGL(V).

However, in this note we adopt a slightly different and maybe more natural viewpoint. Thereby, we
want to highlight that the true content of this theorem is about extension of automorphisms, and that
it has in fact very little to do with buildings, see Remark 2.3. Our approach is the following. We con-
sider the space X obtained by blowing up all linear subspaces of the projective space P(V). Irreducible
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components of the boundary divisor correspond bijectively to linear subspaces of P(V). Moreover, a
family of components has non-empty intersection if and only if the corresponding linear subspaces
form a flag. We use Berkovich analytic geometry to prove in Proposition 2.1 that every automorphism
of Ω(V) preserves the set of discrete valuations on the function field induced by boundary compo-
nents of X. Hence by Proposition 1.4 it extends to an automorphism of X. By taking a closer look at
the Chow ring of X in section 3, we deduce that this automorphism preserves the set of discrete valu-
ations corresponding to hyperplanes, which allows us to conclude that it induces an automorphism
of the projective space.

This paper illustrates the usefulness of Berkovich analytic geometry over trivially valued ground
fields as a method to solve algebraic problems. We believe that similar analytic tools can be applied
to other questions in algebraic geometry.

Acknowledgements. We thank Vladimir Berkovich for aquainting us with the results in [1]. We also
thank Stéphane Lamy for an interesting discussion on birational geometry.

1. Automorphisms of Drinfeld’s half-spaces

Let k be a finite field and let V be a k-vector space of dimension n + 1 > 2. We denote by P(V)
the projective scheme Proj

(
Sym•V

)
and define the k-scheme Ω(V) as the complement of all (rational)

hyperplanes in P(V):

Ω(V) = P(V) −
⋃

W ⊂ V
dim W= 1

P(V/W).

For every field extension K/k we denote by VK = V⊗k K the induced vector space over K. Then the
base change Ω(V)K =Ω(V)⊗k K is the complement of all k-rational hyperplanes in P(VK) =P(V)⊗k K.

The main result of this note is the following.

Theorem 1.1. — Let V be a vector space of dimension > 2 over a finite field k.

(i) The restriction map

PGL(V) = Autk

(
P(V)

)
→ Autk

(
Ω(V)

)
, ϕ 7→ϕ|Ω(V)

is an isomorphism. Equivalently, every k-automorphism of Ω(V) extends to a k-automorphism

of P(V).

(ii) For every field extension K/k the natural map

PGL(V) −→ AutK
(
Ω(V)K

)

is an isomorphism. Equivalently, every K-automorphism of Ω(V)K comes by base change from a

K-automorphism of P(V).

The proof combines analytic geometry in the sense of Berkovich with algebraic arguments. As a
first step we show that every k-automorphism of Ω(V) can be extended to an automorphism of the
k-scheme X we get by blowing-up all linear subspaces of P(V). For this step we use Berkovich analytic
geometry over the field k endowed with the trivial absolute value. The second step is of an algebraic
nature and consists in checking that this automorphism of X is induced by a k-automorphism of P(V).
Here we analyze the geometry of the boundary divisor more closely and use an induction argument.

Given a proper subvector space W of V, applying Proj to the natural map Sym•(V) ։ Sym•(V/W)
leads to a closed immersion P(V/W) ,→ P(V) whose image L is called a linear subspace of P(V). Such
a subscheme is said to be trivial if L =∅ or L = P(V); it is called a hyperplane if it is of codimension 1.
We denote by L

i (V) the set of linear subspaces of dimension i in P(V), and by L (V) =
⋃

06i6n−1
L

i (V)

the set of non-trivial linear subspaces.
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Definition 1.2. — We denote by π : X → P(V) the blow-up of P(V) along the full hyperplane arrange-

ment. To be precise, X is defined as

X = Xn−1
πn−1

// Xn−2
// . . . // X1

π1
// X0

π0
// X−1 =P(V)

with

π=π0 ◦π1 ◦ . . .◦πn−1,

where πi denotes the blow-up of Xi−1 along the strict transforms of linear subspaces of P(V) of dimen-

sion i .

The scheme X is projective and smooth over k . It contains Ω(V) as an open dense subscheme since
each πi induces an isomorphism over Ω(V). We write D =X−Ω(V) for the complement.

Note that πn−1 is an isomorphism and that the strict transforms of two distinct linear subspaces
L,L′ ⊂ P(V) of dimension i in Xi−1 are disjoint since (the strict transform of) L∩L′ has been previously
blown-up.

Each non-trivial linear subspace L ⊂ P(V) defines a smooth and irreducible hypersurface EL in X
as follows. If L has dimension i , its strict transform by π0 ◦π1 ◦ . . . ◦πi−1 in Xi−1 (by convention L
itself if it is a point) is blown-up under the map πi : Xi → Xi−1 to give rise to a hypersurface L̃ in
Xi . The (codimension 1) subscheme EL of X is then the strict transform of L̃ by πi+1 ◦ . . .◦πn−1. The
induced map EL → L̃ coincides with the blow-up of L̃ along the hypersurface arrangement induced
by hyperplanes of P(V) containing L. We have an alternative description of EL as the closure

π−1
(
L−

⋃

L′ ∈L (V)
L′ ( L

L′

)

taken in X.
It follows from the construction of X that the boundary divisor D is the union of all hypersurfaces

EL, i.e. we have

D =π−1
( ⋃

W⊂ V
dim W= 1

P(V/W)
)
=

⋃

L
EL.

Two components EL,EL′ have non-empty intersection if and only if L ⊂ L′ or L′ ⊂ L. Indeed, if none
of the inclusions holds, then L and L′ intersect along a smaller linear subspace, say of dimension i ,
and the strict transforms of L and L′ in Xi are disjoint. It follows that a family of components has
non-empty intersection if and only if the indexing linear spaces lie in a flag.

Lemma 1.3. — The divisor D has simple normal crossings and the strata occurring in its stratification

by iterated regular loci are in one-to-one correspondence with flags of non-trivial linear subspaces of

P(V). Moreover, if Z is the stratum corresponding to the flag F , then

UZ =X−
⋃

L∉F

EL

is an affine open subset of X containing Z as a closed subset.

Proof — Let F = (L0 ⊂ . . . ⊂ Ln−1) be a complete flag of non-trivial linear subspaces of P(V). We
consider the blow-up of P(V) along F , i.e.

p : Y= Yn−1
pn−1

// Yn−2
// . . . // Y1

p1
// Y0

p0
// Y−1 = P(V)

where pi denotes the blow-up of Yi−1 along the strict transform of Li . By the universal property of
blow-up, there exists a (unique) morphism of towers f• : X• → Y•.

For every i ∈ {−1, . . . ,n −2}, we define two open subsets Ui ⊂ Xi and Wi ⊂ Yi as follows:

- U−1 =W−1 is the complement in P(V) of all 0-dimensional linear subspaces distinct from L0;
- if 0 6 i 6 n −2, then Ui (resp. Wi ) is the complement in π−1

i
(Ui−1) (resp. in p−1

i
(Wi−1)) of the

strict transforms of all (i +1)-dimensional linear subspaces L ⊂ P(V) not in F ;
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- Un−1 =π−1
n−1(Un−2) and Wn−1 = p−1

n−1(Wn−2).

Arguing by induction on i , we see that Ui = f −1
i

(Wi ), and that fi induces an isomorphism between
Ui and Wi respecting the restrictions of exceptional divisors. It is clear that

Un−1 = X−
⋃

L∉F

EL.

On the other side, we claim that Wn−1 coincides with the complement W′
n−1 in Y of the strict trans-

forms of all hyperplanes of P(V) which do not belong to F (i.e., distinct from Ln−1). The inclusion
Wn−1 ⊂ W′

n−1 is obvious. For every point y ∈ Y−Wn−1 there exists an index i ∈ {−1, . . . ,n −2} such that
the image yi of y in Yi lies in the strict transform of a (i + 1)-dimensional linear subspace L ⊂ P(V)
distinct from Li+1. Let us consider a hyperplane H which contains L but not Li+1, and let H̃ denote its
strict transform in Yi ; by construction, yi ∈ H̃. Since L j 6⊂ H for j ∈ {i +1, . . . ,n−1}, the strict transform
of H̃ in Y j is transverse to the center of p j and thus coincides with the inverse image of H̃ in Y j . It
follows that y belongs to the strict transform of H̃ in Y, hence to the strict transform of H in Y, and
thus y ∈ Y−W′

n−1. This proves the converse inclusion W′
n−1 ⊂ Wn−1.

Given a basis (e0,e1, . . . ,en) of V such that Li = Z(ei+1, . . . ,en) for every i ∈ {0, . . . ,n −1}, we have a
commutative diagram

Spec(k[t1, . . . , tn]) �
� j

//

q

��

Y

p

��

Spec(k[x1, . . . , xn]) �
�

// P(V)

where the horizontal arrows are open immersions identifying t1, . . . , tn (resp. x1, . . . , xn) with the ra-
tional functions e1/e0, . . . ,en/en−1 (resp. e1/e0, . . . ,en/e0) and where q is the morphism defined by
q∗(xi ) =

∏
j6i t j . Via j , the open subscheme Wn−1 of Y is isomorphic to the principal open subset

D( f ) of Spec (k[t1, . . . , tn]), where

f =

n∏

i=1

∏

(ai ,...,an )∈kn−i+1

(1+ai ti +ai+1ti ti+1+ . . .+an ti . . . tn).

In particular, Wn−1 is affine. Moreover, the intersection of the divisor D with the open affine set Un−1

has simple normal crossings. Since the sets Un−1 for all choices of complete flags form an open affine
covering of X, the divisor D has simple normal crossings on X.

We now claim that the intersection Σ of any family of d irreducible components of D is either
empty or irreducible. Indeed, assume that Σ is non-empty and reducible. Non-emptiness amounts
to saying that these components are indexed by linear spaces in some flag F . Pick a complete flag F

′

containing F . As Un−1 ∩Σ is irreductible there must be a component Σ0 of Σ which lies in X−Un−1.
Since X−Un−1 is by construction the union of some irreducible components of D, we see that Σ0 must
be contained in a (d + 1)-th irreducible component of D. But this contradicts the normal crossing
property of D. In view of the discussion before Lemma 1.3, this shows that the strata of D are in
one-to-one correspondence with flags of linear subspaces.

Finally, if we start with a stratum Z corresponding to a partial flag F , the set UZ = X−
⋃

L∉F EL is
the intersection of all UZ′ for strata Z′ corresponding to complete flags containing F . Hence it is open
affine as a finite intersection of open affines in a separated k-scheme. ✷

In order to extend an automorphism of Ω(V) to first X and then to P(V), we look at its action on the
discrete valuations associated to the components of D. For each L ∈L (V), the local ring at the generic
point of the hypersurface EL is a discrete valuation ring in the function field κ(V) of X. We denote by
ordL the corresponding discrete valuation on κ(V), and we write

Γ(V) = {ordL : L ∈L (V)}

for the set of all these valuations. Note that κ(V) is the function field of both P(V) and Ω(V). If L is
a hyperplane in P(V), then the valuation ordL is the one given by the local ring of P(V) at the generic
point of L.
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The sets L (V) and Γ(V) come with a natural simplicial structure, for which the q-simplices corre-
spond to flags of linear subspaces of length q −1.

Proposition 1.4. — Let ϕ be a k-automorphism of Ω(V) and let ϕ∗ be the induced automorphism of

the set of valuations on the function field κ(V).

(i) The birational map ϕ extends to a k-automorphism of X if and only if ϕ∗ preserves the set Γ(V)
and its simplicial structure.

(ii) The birational map extends to a k-automorphism of P(V) if and only if ϕ∗ preserves the subset of

Γ(V) defined by hyperplanes.

Proof — (i) The condition is necessary because the simplicial set Γ(V) describes the incidence
relations between irreducible components of D (Lemma 1.3). To see that it is sufficient, we use the
covering of X by the open affine subsets

UZ =X−
⋃

L∉F

EL

where Z denotes a stratum of D and F is the corresponding flag of linear subspaces of P(V). If ϕ
preserves Γ(V) with its simplicial structure, then there exists for every stratum Z another stratum Z′

such that the rational map
UZ′ 99K UZ

induced by ϕ is defined at each point of height 1. Since UZ is affine and UZ′ is noetherian and normal,
this rational map is everywhere defined on UZ′ [7, 20.4.12] and therefore ϕ extends to an automor-
phism from X to X (apply this argument to ϕ−1).

(ii) If the morphism ϕ : Ω(V) →Ω(V) preserves all valuations ordL coming from hyperplanes, then
for every hyperplane L in P(V) there exists a hyperplane L′ such that the rational map

P(V)−L′
99K P(V)−L

induced by ϕ is defined at every point of height 1, and the conclusion follows as for (i). ✷

2. Step 1 – Valuations and analytic geometry

This section is devoted to the first step toward the theorem, namely the fact that every k-
automorphism of Ω(V) extends to a k-automorphism of X.

Proposition 2.1. — Let Autk (X,D) denote the group of k-automorphisms of X which preserve D. The

canonical map

Autk (X,D) → Autk

(
Ω(V)

)
, ϕ 7→ϕ|Ω(V)

is an isomorphism. Equivalently, every k-automorphism of Ω(V) extends to a k-automorphism of X.

We can study this problem from a nice geometric viewpoint in the framework of Berkovich spaces.
Endowed with the trivial absolute value, k becomes a complete non-Archimedean field and there is
a well-defined category of k-analytic spaces, together with an analytification functor Z ❀ Zan from
the category of k-schemes locally of finite type. If Z is affine, then the topological space underlying
Zan is the set of multiplicative k-seminorms on O (Z) with the topology generated by evaluation maps
x 7→ | f (x)| := x( f ), where f ∈ O (Z). We refer to [2, Section 3.5] and [13, Section 1] for a detailed
account.

Working in the analytic category over k allows us to realize Γ(V) as a set of rays in Ω(V)an: for each
L ∈L (V), the map

εL : (0,1] →Ω(V)an, r 7→ r ordL(·)

is an embedding and εL(1) is the canonical point of Ω(V)an, namely the point corresponding to the
trivial absolute value on κ(V). Now, the proposition will follow from the fact that this collection of rays
is the 1-skeleton of a conical complex S(V) in Ω(V)an which is preserved by every k-automorphism of
Ω(V).
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This conical complex S(V) is the fan S0(X,D) of the toroidal embedding Ω(V) ,→ X described in
[13, Section 3.1 and Proposition 4.7], following [4]. The lemma below shows how to see this conical
complex inside the analytic space Ω(V)an. Note that “sp” below denotes the specialization map Xan →

X (denoted by r in [13]).

Lemma 2.2. — The following properties hold for any normal crossing divisor D on a proper smooth

(connected) scheme X, with Ω= X−D.

(i) The subset S0(X,D) is closed in Ω
an = Xan −Dan and there is a retraction τ : Ωan →S0(X,D) such

that τ−1(x) is a k-affinoid domain with Shilov boundary {x} for every x ∈S0(X,D).

(ii) For every stratum Z of D with generic point ηZ, the closed subset

CZ =S0(X,D)∩sp−1(ηZ) =S0(X,D)∩
⋂

ηZ∈U open
sp−1(U)

is a cone with an integral affine structure: if we let ΛZ denote the group of germs of invertible

functions at ηZ on X−D, then the natural map

CZ → HomAb(ΛZ,R>0), x 7→ ( f 7→ | f (x)|)

is an embedding whose image is a rational polyhedral cone.

In our particular situation, we have the following additional property:

(iii) the map

ι :S(V) → HomAb

(
O

(
Ω(V)

)×,R>0

)
, x 7→ ( f 7→ | f (x)|)

is a closed embedding inducing the integral affine structure on each cone. Moreover, (the image

of) distinct cones span distinct linear spaces.

Proof. — First of all, note that Xan coincides with the space Xi considered in [13] because X is
proper [loc.cit., Proposition 1.10]. Part (i) and (ii) of the statement are proved in [13, Section 3.1]. The
assertion on the Shilov boundary of τ−1(x) follows from the corresponding statement in the toric case
[loc.cit., Proposition 2.8]. Note also that the integral affine structure on the cone CZ, corresponding to
a stratum Z of D with generic point ηZ, is spanned by the r = codim Z functions |ti | : CZ → R>0, where
(t1, . . . , tr ) is a regular system of parameters on X at ηZ which defines D; compare [loc.cit, Definition
3.9 and Proposition 3.11].

Roughly speaking, point (iii) means that there are enough invertible functions on Ω(V). Consider
a stratum Z of D corresponding to a flag F of non-trivial linear subspaces of P(V) and pick a basis
(e0, . . . ,en) of V such that F is a subflag of

Z(e1, . . . ,en) ⊂Z(e2, . . . ,en)⊂ . . . ⊂ Z(en).

The explicit description of X given at the end of the proof of Lemma 1.3 shows that (e1/e0,e2/e1, . . . ,en/en−1)
is a tuple of elements of OX,ηZ which contains a regular system of parameters defining D at ηZ. There-
fore, the map ι induces an integral affine embedding of the cone CZ.

Furthermore, we claim that the following fact is true: given two distinct cones C,C′, there exists

f ∈O
(
Ω(V)

)×
such that | f | = 1 on one of them and | f | < 1 on the interior of the other. Injectivity of the

map ι and the last statement of (iii) follow immediately.

We finish the proof by establishing the claim. Given two non-zero vectors v, v ′ ∈ V and a non-
trivial linear subspace L ⊂ P(V), the function v/v ′ is either a unit, a uniformizer or the inverse of a
uniformizer at the generic point of EL. It follows that

(a) |v/v ′| < 1 on εL(0,1), if L ⊂ Z(v) and L 6⊂ Z(v ′)
(b) |v/v ′| > 1 on εL(0,1), if L ⊂ Z(v ′) and L 6⊂Z(v)
(c) |v/v ′| = 1 on εL(0,1], if the hyperplanes Z(v) and Z(v ′) are in the same position with respect to L.

Consider two distinct strata Z, Z′ of D, corresponding to distinct flags F ,F ′ of non-trivial linear sub-
spaces. Pick a linear space L occurring in only one of them, say F , and set i = dim L. We embed F

′
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into a complete flag (L0 ⊂ L1 ⊂ . . . ⊂ Ln−1) such that Li 6= L. This assumption guarantees the existence
of two hyperplanes H,H′ such that

- L ⊂H and Li 6⊂ H
- Li ∩H = Li ∩H′ and L 6⊂ H′.

In particular, H and H′ are in the same position with respect to L0, . . . ,Ln−1. Given any equations
v, v ′ ∈ V of H and H′ respectively, we thus obtain |v/v ′| = 1 on CZ′ . On the other hand, we have
|v/v ′| < 1 on the interior of εL(0,1), hence also on the interior of CZ since εL(0,1] ⊂CZ. ✷

Proof of proposition 2.1. — First, we observe that S(V) coincides with the set Ω(V)an
max of maximal

points of Ω(V)an for the following ordering:

x 4 y ⇐⇒ ∀ f ∈O (Ω(V)an), | f (x)|6 | f (y)|.

The inclusion Ω(V)an
max ⊂ S(V) follows from (i) since we have x 4 τ(x) for every point x ∈ Ω(V)an.

We apply (iii) to get the converse inclusion: for any two distinct points x, y in S(V), there exists f ∈

O (Ω(V)an)× such that | f (x)| 6= | f (y)|, hence such that | f (x)| < | f (y)| and |( 1
f )(x)| > |( 1

f )(y)| or vice
versa, and therefore x and y are incomparable.

The above characterization of S(V) as a closed subset of Ω(V)an implies that it is preserved by any
k-automorphism ϕ of Ω(V). It remains to check that the homeomorphism of S(V) induced by ϕ

also preserves the conical structure. Let Φ denote the linear automorphism of HomAb(O (Ω(V))×,R>0)
deduced from ϕ. Given an n-dimensional cone C ⊂S(V), the image of its interior is disjoint from the
(n−1)-skeleton of S(V); otherwise it would meet the interiors of two distinct n-dimensional cones C′,
C′′ (note that x lies in the interior of S(V), hence 〈ι C′〉 =Φ(〈ι C〉) = 〈ι C′′〉 contradicting (iii). It follows
that if ϕ(C) is contained in some n-dimensional cone C′, and thus ϕ(C) = C′ by considering ϕ−1. The
assertion for lower dimension cones follows at once by considering faces.

In particular, we see that ϕ preserves the 1-skeleton of S(V), hence the set Γ(V) of discrete valu-
ations on κ(V) associated with irreducible components of D = X−Ω(V), together with the simplicial
structure reflecting the incidence relations between these components. By Proposition 1.4 (i), this
implies that ϕ extends to a k-automorphism of X. ✷

Remark 2.3. —

1. Let D be a simple normal crossing divisor on a smooth and proper (connected) scheme X over k .
Even if Ω(V)= X−D is affine, condition (iii) and its consequences may fail. For example, consider
the case X = Pn

k
. If D is a hyperplane, then S0(X,D) is a 1-dimensional cone whereas Ω(V)an

max is
empty. If D is the union of the coordinate hyperplanes, then Ω(V) = Gn

m and S0(X,D) =Ω(V)an
max

is the toric fan, but the map ι is bijective, hence all maximal cones span the same linear space. In
fact, the inversion (t1, . . . , tn) 7→ (t−1

1 , . . . , t−1
n ) on Gn

m transforms the fanS0(X,D) into its opposite,
hence does not preserve the conical structure. This reflects the fact that this automorphism of
Gn

m does not extend to Pn .
2. The conical complexS(V) is also the vectorial building of PGL(V), but this is somehow fortuitous

and irrelevent from the viewpoint of automorphisms. In general, there exists for any connected
and split semi-simple k-group G a canonical embedding of the vectorial building V (G,k) of
G(k) into the analytification of an open affine subscheme Ω in any flag variety Y of G [2, Section
5.5]. However, this observation does not lead to a generalization of Theorem 1.1, at least along
the lines of the present proof. Indeed, while we made crucial use of the fact that S(V) is the
fan of a normal crossing divisor, we doubt that V (G,k) can be realized as the fan of a toroidal
compactification of Ω(V) if (G′,Y) 6=

(
PGL(V),P(V)

)
,
(
PGL(V),P(V∨)

)
.

3. It may be interesting to try to extend our method, based on the study of toroidal compactifica-
tions, to determine the automorphism groups of other period domains.

4. Whether the above proposition can be proved without analytic geometry is not clear.
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3. Step 2 – Geometry of the blow-up

The second step in the proof of the theorem relies on elementary intersection theory on X, which
we review in this section. The standard reference is [8].

The Chow ring CH∗ is a contravariant functor from the category of smooth k-schemes to the cate-
gory of graded commutative rings. For any smooth k-scheme X, the abelian group underlying CH∗(X)
is the free abelian group on integral subschemes of X modulo rational equivalence, and it is graded
by codimension. Multiplication comes from the intersection product. We write [Z] for the class of a
closed subscheme Z of X.

We are going to use the following two basic facts.

(a) Let Y be a regularly embedded closed subscheme of X and let π : X̃ → X be the blow-up of X along
Y, with exceptional divisor Ỹ. The canonical map

CH1(X)⊕Z[Ỹ] → CH1(X̃), (z,n[Ỹ]) 7→π∗(z)+n[Ỹ]

is an isomorphism [8, Proposition 6.7].
(b) In the situation of (a), let V be an integral subscheme of X with strict transform Ṽ. If

codim(Y,X)6 codim(V∩Y,V), then
π∗[V] = [Ṽ]

in CH∗(X̃) [8, Corollary 6.7.2].

Now we focus on the particular case where π : X → P(V) is the blow-up along the full hyperplane
arrangement, with exceptional divisor D.

Lemma 3.1. — We have

CH1(X) = Zh ⊕
⊕

L
Z[EL],

where h = π∗[H] denotes the pull-back of the hyperplane class [H] on P(V) and L runs over the set of

non-trivial linear subspaces of P(V) of codimension at least 2.

Proof. — For any non-trivial linear subspace L of P(V) of dimension i ∈ {0, . . . ,n − 1}, let L̃ ⊂ Xi

denote the blow-up of its strict transform in Xi−1; this is a smooth irreducible hypersurface. Recall
that we have π = π0 ◦π1 ◦ . . . ◦πn−1, where πn−1 is an isomorphism. Applying (a) iteratively to each
blow-up π0, . . . ,πn−2, we obtain that CH1(X) is the free abelian group on π∗h and the classes (πi+1 ◦

. . .◦πn−1)∗[L̃], where i ∈ {0, . . . ,n−2} and L runs over the set of i -dimensional linear subspaces of P(V).

The conclusion follows from the additional fact that we have an equality

(πi+1 ◦ . . .◦πn−1)∗[L̃] = [EL]

in CH1(X) for any linear subspace L of dimension i ∈ {0, . . . ,n −2}. This is an immediate consequence
of (b), since the center of each blow-up π j , with j ∈ {i+1, . . . ,n−1}, is transverse to the strict transform
of L̃ in X j−1. ✷

For each integer d > 1, we define

λ(d ) = #

{
non− trivial linear subspaces
of codimension > 2 in Pd

k

}
.

Lemma 3.2. — Let L ⊂ P(V) be a non-trivial linear subspace of dimension d; note that d ∈ {0, . . . ,n−1}.

(i) We have

rk CH1(EL)=λ(d )+λ(n −1−d )+ε(d ),

where ε(d ) = 1 if d ∈ {0,n −1} and ε(d )= 2 otherwise.

(ii) For every linear subspace L′ ⊂ P(V) of dimension d ′ satisfying d < d ′ < n − 1−d, the following

inequality holds

rk CH1(EL) > rk CH1(EL′).
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Proof. — (i) Let Ld−1 (resp. L̃) denote the strict transform of L in Xd−1 (resp. in Xd ). The scheme EL

is the blow-up of L̃ along the hypersurface arrangement induced by hyperplanes of P(V) containing
L. Applying (a), we obtain

rk CH1(EL) = rk CH1(L̃)+#

{
linear spaces of codim > 2

strictly containing L

}

= rk CH1(L̃)+λ(n −d −1).

Since L̃ = P(N ), where N is the conormal sheaf to Ld−1 in Xd−1, of rank n −d , it follows from [8,
Theorem 3.3, (b)] that

rk CH1(L̃)= rk CH0(Ld−1)+ rk CH1(Ld−1) = 1+ rk CH1(Ld−1)

if 06 d < n −1, and

rk CH1(L̃) = rk CH1(Ld−1)

if d = n −1.

Finally, since Ld−1 is the blow-up of L along the full hyperplane arrangement,

rk CH1(Ld−1)= rk CH1(L)+#

{
non− trivial linear subspaces

of codimension > 2 in L

}
,

hence

rk CH1(Ld−1)=

{
1+λ(d ) if 0 < d 6n −1
0 if d = 0.

(ii) In view of (i), it is enough to prove the inequality

λ(n −1−d )−λ(n −1−d ′) >λ(d ′)−λ(d )+1

for any d ,d ′ ∈ {0, . . . ,n−1} such that d < d ′ < n−1−d . Since λ is increasing and 0 < d ′ <n−1−d , this
would follow from the coarser inequality

λ(t )−λ(t −1) >λ(t −1)+1

for every integer t > 2. If we fix a hyperplane H and count non-trivial linear subspaces of codimension
> 2 in Pt

k
taking into account their position with respect to H (transverse to H, or of codimension > 2

or = 1 in H), we obtain for t > 2

λ(t )= ν(t )+λ(t −1)+# Pt−1(k)>ν(t )+λ(t −1)+1,

where ν(t ) denotes the number of non-trivial linear subspaces of codimension at least 2 in Pt
k

which
are not contained in H. Hence, it is enough to prove the inequality

ν(t )>λ(t −1)

for every integer t > 2. But this is obvious: given a hyperplane Pt−1
k

⊂ Pt
k

and a rational point p in the
complement of Pt−1(k), the map L 7→ 〈L, p〉 embeds the set of codimension d linear subspaces of Pt−1

k

into the set of codimension d linear subspaces of Pt
k

which are not contained in Pt−1
k

. ✷

4. Conclusion

We can now prove Theorem 1.1.

Let us first show part (i). Every k-automorphism ϕ of Ω(V) extends to a k-automorphism ϕ̃ of the
blow-up X by Proposition 2.1. Hence it induces a permutation ϕ̂ of non-trivial linear subspaces of P(V)
defined by ϕ̃(EL) =Eϕ̂(L). By Proposition 1.4 (ii) it suffices to prove that this permutation preserves the
subset of all hyperplanes.
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We argue by induction on n = dim V−1 > 1. For n = 1, the result is obvious. For n = 2, it is enough
to compare self-intersections of components of D to conclude: for a point p and a line ℓ,

deg [Ep ]2
=−1 and deg [Eℓ]2

= deg

(
h −

∑

p∈ℓ(k)

[Eℓ]

)2

= 1−# ℓ(k)=−(# k),

thus ϕ̂ maps a line to a line.

In general, for any rational hyperplane H of P(V), it follows from Lemma 3.2 that ϕ̂(H) is either a
hyperplane or a rational point. Let us now assume that n is at least 3 and that the theorem has been
proved in lower dimension. If ϕ̂(H) is a rational point p , then ϕ̃ induces a k-isomorphism ϕ̄ between
EH and Ep which maps the divisor DH =

⋃
L6=H EH ∩EL onto the divisor Dp =

⋃
L6={p} Ep ∩EL.

Since EH (resp. Ep ) is the blow-up of H (resp. P(T∨
p ), where Tp denotes the tangent space of P(V)

at p) along the full hyperplane arrangement, with exceptional divisor DH (resp. Dp ), the theorem in
dimension n−1 implies that ϕ̄ is induced by a k-isomorphism between H and P(T∨

p ), hence maps the
components of DH defined by rational points of H to components of Dp defined by rational points of
P(T∨

p ), which is to say by (rational) lines in P(V) containing p .

Let q be a rational point of H and let ℓ denote the line in P(V) such that

ϕ̃(EH ∩Eq ) = Ep ∩Eℓ.

The two hypersurfaces Eℓ and ϕ̃(Eq ) have the same non-empty intersection with ϕ̃(EH) = Ep , so

ϕ̃(Eq ) = Eℓ

since D is a normal crossing divisor. By Lemma 3.2, this implies n = 2 while we assumed n > 3.
Therefore, ϕ̂ preserves the set of hyperplanes, and our claim follows from Proposition 1.4 (ii).

We now indicate how to prove the second part of Theorem 1.1. For every field extension K/k , the
base change Ω(V)K of Ω(V) coincides with the complement in P(V)K of all k-rational hyperplanes.
Since blow-ups commute with base change, the K-scheme XK = X⊗k K can be obtained by blowing up
P(V)K along the arrangement of all k-rational hyperplanes. Moreover, every irreducible components
EL of D is geometrically irreducible, and its base change (EL)K is the irreducible component of XK −

Ω(V)K corresponding to the k-rational linear subspace LK of P(V)K.

Let us consider a K-automorphism ϕ of Ω(V)K. One proves exactly as in Proposition 1.4 that ϕ
extends to a K-automorphism of XK (resp. of P(V)K) if and only if ϕpreserves the simplicial set Γ(VK) of
discrete valuations on κ(VK) coming from irreducible components of DK (resp. preserves the subset of
Γ(VK) corresponding to hyperplanes). Once again, this condition is established via analytic geometry
over the field K endowed with the trivial absolute value. The key point is Lemma 2.2, which holds for
the fan S(VK) of the normal crossing divisor DK on XK: this is clear for the first two assertions, and
the proof of the third one works verbatim (one could also argue that S(VK) coincides with the inverse
image of S(V) under the projection map p : Xan

K → Xan, so (iii) holds for S(VK) since it holds for S(V).)
We then prove as above that ϕ extends to a K-automorphim of XK.

Lemma 3.1 and 3.2 also hold for P(V)K, when we replace linear subspaces by k-rational subspaces.
The argument of part (i) shows that the permutation of k-rational linear subspaces induced by ϕ̃

perserves the hyperplanes, hence ϕ induces a K-automorphism of P(V)K. Since this automorphism
preserves the set of k-rational hyperplanes, it is induced by a k-automorphism of P(V).
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