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Brown’s criterion in Bredon homology

Martin Fluch Stefan Witzel

June 6, 2012

We translate Brown’s criterion for homological finiteness properties to the
setting of Bredon homology.

Bredon cohomology has become an important algebraic tool for studying classifying
spaces EFΓ of discrete groups Γ with stabilisers in a given family F of subgroups of Γ. It
has been defined for finite groups by Bredon [Bre67] and the definition has been extended to
arbitrary groups and families of subgroups by Lück [Lüc89]. The basic idea in passing from
classical cohomology to Bredon cohomology is to replace Γ, regarded as a small category,
by the orbit category OFΓ.
More precisely, let Γ be a discrete group. By a family of subgroups of Γ we mean a non-

empty set F of subgroups of Γ which is closed under conjugation. The transitive Γ-sets
Γ/Λ with Λ ∈ F and Γ-maps between them form the orbit category OFΓ. A right (left)
Bredon module over OFΓ is a contravariant (covariant) functor from OFΓ to the category
Ab of abelian groups. A morphism of Bredon modules of the same variance is a natural
transformation. Right (left) Bredon modules and the morphisms between them form a
category which is denoted by Mod-OFΓ (OFΓ-Mod).
Mod-OFΓ and OFΓ-Mod are functor categories and thefore they inherit many properties

from the category Ab. Among others they are abelian categories in which all small limits
and colimits exist, they have enough projectives and there exists a notion of being finitely
generated. Details are given in Section 1 below.
Let n ∈ N ∪ {∞}. An OFΓ-module M is said to be of type F-FPn if there exists a

resolution
. . .→ P2 → P1 → P0 →M → 0

of M by projective OFΓ-modules such that Pk is finitely generated for every k ≤ n. The
trivial OFΓ-module Z maps every object of OFΓ to Z and every morphism of OFΓ to the
identity. A group Γ is said to be of type F-FPn if Z is of type FPn as a right OFΓ-module.
In the special case that F = {1} consists only of the trivial group Bredon cohomology

reduces to classical cohomology of groups. The finiteness properties FPn in this case have
been extensively studied. The classical proofs sometimes also carry over to the case where
F = FIN is the family of finite subgroups. This is true for example of hyperbolic groups,
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arithmetic groups, mapping class groups, and outer automorphism groups of finitely gen-
erated free groups, see [Lüc05, Sections 4.7,4.8] (and trivially for torsion free groups). On
the other hand Leary and Nucinkis [LN03] showed how much finiteness properties with
respect to FIN can differ from the classical ones.
The next family of interest is the family VC of virtually cyclic subgroups. One result

here is that for an elementary amenable group being of type VC-FP∞ is equivalent being
virtually cyclic [KMPN11].
In the classical setting Brown’s Criterion [Bro87, Theorem 2.2] has been fruitful in the

study of the properties FPn. Our main result is a translation of this criterion to the Bredon
setting. In order to state it, some more definitions are needed.

A Γ-CW-complex X is a CW-complex on which Γ acts by cell-permuting homeomor-
phisms such that the stabilizer of a cell fixes that cell pointwise. We let C

∗
(X) denote

the Bredon cellular chain complex of X , cf. [MV03, p. 11]. The Bredon homology modules
H

∗
(X) of X are defined to be the homology modules of the Bredon chain complex C

∗
(X).

Evaluated at Γ/Λ ∈ OFΓ these Bredon modules give

H
∗
(X)(Γ/Λ) = H∗(X

Λ)

where the right hand side is the ordinary homology of the fixed point complex XΛ. This
definition is functorial. Analogously to the classical case we define the reduced Bredon
homology modules H̃

∗
(X) to be the kernel of the morphism H

∗
(X) → H

∗
(pt.) which is

induced by the map from X to the singleton space. We say that X is F-acyclic up to
dimension n if H̃k(X) = 0 for every k ≤ n. Note that being F-acyclic up to dimension −1
is equivalent to the condition that XΛ 6= ∅ for every Λ ∈ F.
The following is completely analogous to Brown’s original article [Bro87]: Let n ∈ N. A

Γ-CW-complex X is said to be F-n-good if the following two conditions hold:

(i) X is F-acyclic up to dimension n− 1, and

(ii) for every p-cell σ of X , p ≤ n, F ∩ Γσ ⊂ F and the stabiliser Γσ of σ is of type
(F ∩ Γσ)-FPn−p.

A filtration (Xα)α∈I of a Γ-CW-complex X by Γ-invariant subcomplexes is said to be of

finite n-type if the n-skeleta X
(n)
α are cocompact for all α ∈ I.

A directed system of Bredon modules (Mα)α∈I is said to be essentially trivial if for every
α ∈ I there exists β ≥ α such that the homomorphism Mα →Mβ is trivial.

Main Theorem. Let Γ be a group and F a family of subgroups of Γ. Let X be an F-n-good
Γ-CW-complex and let (Xα)α∈I be a filtration by Γ-invariant subcomplexes of finite n-type.
Then Γ is of type F-FPn if and only if the directed system (H̃k(Xα))α∈I of reduced Bredon

homology modules is essentially trivial for all k < n.

The importance of a directed system being essentially trivial stems from the following
fact, which is the analogue of [Bro87, Lemma 2.1].
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Observation 1. A directed system (Mα)α∈I of OFΓ-modules is essentially trivial if and
only if

lim−→
α

∏

Λ∈F

∏

JΛ

Mα(Γ/Λ) = 0

for every family of cardinals (JΛ)Λ∈F.

We would like to thank Kai-Uwe Bux for suggesting to work on this result and discussing
intermediate versions with us. We also gratefully acknowledge support through the SFB
701 in Bielefeld (both authors) and the SFB 878 in Münster (second author).

1 Basic definitions and results on Bredon modules

This section is to collect basic definitions and facts related to Bredon modules for fur-
ther reference. Unless stated otherwise the results can be found in [Lüc89, pp. 162–169]
or [MV03, p. 7–27]. By a Bredon module we mean either a left or a right Bredon module
unless the variance is explicitly mentioned.
Since the category of Bredon modules is a functor category it follows that limits and

colimits of Bredon modules are calculated component wise. In particular a sequence of
Bredon modules 0 → M ′ → M → M ′′ → 0 is exact if and only if the corresponding
sequence

0 → M ′(Γ/Λ) →M(Γ/Λ) →M ′′(Γ/Λ) → 0

of abelian groups is exact for every Γ/Λ ∈ OFΓ.
For subgroups Ξ and Λ of Γ we denote by [Γ/Ξ,Γ/Λ]Γ the set of all Γ-maps Γ/Ξ → Γ/Λ.

For a fixed subgroup Λ of Γ we denote by Z[−,Γ/Λ]Γ the right OFΓ-module which sends
Γ/Ξ ∈ OFΓ to the free abelian group Z[Γ/Ξ,Γ/Λ]Γ on the basis [Γ/Ξ,Γ/Λ]Γ. The left OFΓ-
module Z[Γ/Λ]Γ is defined analogously. The free objects in Mod-OFΓ are now precisely the
direct sums of Z[−,Γ/Λ]Γ with Λ ∈ F. Likewise the free objects in OFΓ-Mod are the direct
sums of the Bredon modules Z[Γ/Λ,−]Γ with Λ ∈ F. In either case a free Bredon module is
finitely generated if the direct sum can be taken to be finite. An arbitrary Bredon module
is finitely generated if it is the surjective image of a finitely generated free module.
For any two Bredon modules M and N of the same variance the set of morphisms

between them is denoted by morF(M,N). A Bredon module P is projective if the functor
morF(P,−) is exact. This is the case if and only if P is a direct sumand of a free Bredon
module.
The categorical tensor product [Sch70, p. 45] gives rise to a tensor product over F. It

assigns to a right OFΓ-module N and left OFΓ-module M an abelian group N ⊗FM . The
OFΓ-module N is said to be flat if the functor N ⊗F − is exact. Every projective Bredon
module is flat.
There exists also the tensor product over Z. For two Bredon modules M and N of

the same variance it is defined to be the Bredon module M ⊗ N , which evaluated at any
Γ/Λ ∈ OFΓ is given by (M ⊗N)(Γ/Λ) =M(Γ/Λ)⊗N(Γ/Λ).
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Lemma 1.1. Let N be a right OFΓ-module and Λ ∈ F. Then there exists an isomorphism

N ⊗F Z[Γ/Λ,−]Γ ∼= N(Γ/Λ)

which is natural in N .

This statement follows from a Yoneda type argument, see for example [MV03, p. 9].

If Λ is a subgroup of Γ such that F ∩ Λ := {Ξ ∩ Λ | Ξ ∈ F} ⊂ F, then there exists a
functor

IΛ : OF∩ΛΛ → OFΓ

which sends Λ/Ξ to Γ/Ξ for every Ξ ∈ F ∩ Λ. The induction functor

IndΓ
Λ : OF∩ΛΛ → OFΓ

and the restriction functor
ResΓΛ : OFΓ → OF∩ΛΛ

with respect to IΛ are defined in [Lüc89, p. 166].

Lemma 1.2. The functor IndΓ
Λ preserves the properties of being finitely generated and

being projective. Furthermore, it is an exact functor and IndΓ
Λ Z = Z[−,Γ/Λ]Γ.

The first statement is from [Lüc89, p. 169]. The second statement is Lemma 2.9 and
Lemma 2.7 in [Sym05, p. 268].

Lemma 1.3. The functor ResΓΛ is exact and preserves being projective.

For the first part of the this statement see [Lüc89, p. 169], the remaining part is [MP02,
Lemma 3.7]. We also need the following special case of Proposition 3.5 in [MP02]:

Lemma 1.4. There exists a natural isomorphism

(N ⊗ Z[−,Γ/Λ]Γ)⊗F M ∼= ResΓΛN ⊗F∩Λ ResΓΛM

for any right OFΓ-module N and any left OFΓ-module M .

If ∆ is a Γ-set, then we denote by F(∆) the set of stabilisers of ∆. We denote by
Z[−,∆]Γ the right OFΓ-module which sends Γ/Λ ∈ OFΓ to the free abelian group on the
basis [Γ/Λ,∆]Γ which is by definition the set of all Γ-maps from Γ/Λ → ∆.

Lemma 1.5. Let ∆ be a Γ-set such that F ∩ Λ ⊂ F for every Λ ∈ F(∆). For every
projective right OFΓ-module Q the OFΓ-module Q⊗ Z[−,∆]Γ is flat.

Proof. Since tensoring over Z is an additive functor, it is enough to verify the claim in the
case that ∆ = Γ/Λ for some Λ. Since Q is projective, it follows that the OF∩ΛΛ-module
ResΓΛQ is projective and hence flat. Furthermore ResΓΛ is an exact functor. Thus the
functor, which sends any left OFΓ-module M to ResΓΛQ ⊗F∩Λ ResΓΛM is exact. Hence, in
the light of the natural isomorphism of Lemma 1.4 it follows that tensoring Q⊗Z[−,Γ/Λ]Γ
over F is an exact functor, that is Q⊗ Z[−,Γ/Λ]Γ is flat.
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For left OFΓ-module M the left derived functors of −⊗FM are denoted by TorF
∗
(−,M).

The following is a key ingredient to our proof and can be found as Theorem 5.4 in [MPN11]:

Proposition 1.6 (Bieri–Eckmann Criterion for Bredon homology). Let N be a right OFΓ-
module and let n ∈ N. The following are equivalent:

(i) N is of type F-FPn.

(ii) Let (JΛ)Λ∈F be a family of cardinals. The natural map

TorFk(N,
∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) →
∏

Λ∈F

∏

JΛ

TorFk(N,Z[Γ/Λ,−]Γ)

is an isomorphism for k < n and an epimorphism for k = n.

Note that TorFk(N,Z[Γ/Λ,−]Γ) = 0 for every Λ ∈ F and k ≥ 1. Thus the requirement
in (ii) that the natural map is an epimorphism is automatically satisfied for k ≥ 1.

The Bredon homology HF
∗
(Γ;M) of Γ with coefficients in the left OFΓ-module M are

defined to be the groups TorF
∗
(Z,M). Analogous to the classical case [Bro82, p. 172], we

define the equivariant Bredon homology HF
∗
(X,M) of a Γ-CW-complex with coefficients in

the left OFΓ-module M as follows, cf. [DPT11]. Let Q∗ be a projective resolution of the
trivial OFΓ-module Z by right OFΓ-modules. Then we have the bigraded complex

(C
∗
(X)⊗Q∗∗)⊗F M

of abelian groups. We define HF
∗
(X,M) to be the homology of the total complex of this

bicomplex. Note that HF
∗
(Γ,M) = HF

∗
(pt.,M).

2 The case n = 0

In the classical case, being of type FP0 for a group is an empty condition. In the context
of Bredon homology this is not true any more. Kochloukova, Mart́ınez-Pérez and Nucinkis
[KMPN11, Lemma 2.3] have given a characterisation of when a group is of type F-FP0:

Proposition 2.1. A group Γ is of type F-FP0 if and only if there is a finite subset F0 of
F such that every Λ ∈ F is subconjugate to some element of F0, i.e. there is a g ∈ Γ and a
Ξ ∈ F0 such that Λg ≤ Ξ.

Using this result, the case n = 0 of the Main Theorem is readily verified:

Proof of the Main Theorem for n = 0. First assume that the directed system (H̃
−1(Xα))α∈I

is essentially trivial. Then there is a β ∈ I such that Xβ is F-acyclic up to dimension −1,

i.e. XΛ is non-empty for every Λ ∈ F. By assumption X
(0)
β is finite modulo Γ. The sta-

bilizer Γx of every x ∈ X
(0)
β is of type (F ∩ Γx)-FP0. Hence there is a finite subset Fx,0 of
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F ∩ Γx such that every Λ ∈ F ∩ Γx is subconjugate to some element of Fx,0. Let Σ0 be a

set of representatives for X
(0)
β modulo Γ an let

F0 =
⋃

x∈Σ0

Fx,0

which is a finite subset of F. If Λ ∈ F is arbitrary, then XΛ
β is non-empty. Hence Λ fixes

some point x of X
(0)
β and therefore is subconjugate to some element of Fx,0.

Conversely assume that Γ is of type F-FP0. Let F0 ⊆ F be finite such that every element
of F is subconjugate to some element of F0. For arbitrary α ∈ I let β ≥ α be such that
Xβ contains a fixed point of each element of F0. Let Λ ∈ F be arbitrary and Λg ≤ Ξ ∈ F0.
If x ∈ Xβ is a fixed point of Ξ, then g.x ∈ Xβ is a fixed point of Λ.

3 Proof of the Main Theorem

The following proposition is contained in [DPT11] for the case n = ∞ and the proof is
essentially the same. We reproduce it for convenience.

Proposition 3.1. Let X be a Γ-CW-complex which is F-acyclic up to dimension n − 1
and let M be a left OFΓ-module. Then the natural isomorphism

HF

k (X,M) → HF

k (Γ,M)

(induced by the projection of X to a point) is an isomorphism for k < n.

Proof. Let C∗ be the chain complex of Bredon modules X and let Q∗ be a projective
resolution of Z. By definition there is a spectral sequence

E1
pq = Hq((C∗ ⊗Qp)⊗F M) ⇒ HF

k (X,M) .

We claim that

Cn ⊗Qp → Cn−1 ⊗Qp → . . .→ C0 ⊗Qp → Qp → 0 (3.1)

is a partial flat resolution of Bredon modules. By acyclicity of X up to dimension n − 1
the sequence

Cn → Cn−1 → . . .→ C0 → Z → 0

is exact. To see that (3.1) is exact we have to see that it is exact evaluated at every
orbit Γ/Λ. This is true because Qp(Γ/Λ) is free abelian. Flatness follows from Lemma 1.5
because every Cp is of the form Z[−,∆]Γ.
It follows from (3.1) that E1

pq = TorFq (Qp,M) for q < n. Since Qp is projective we get

TorFq (Qp,M) =

{

Qp ⊗F M q = 0
0 0 < q < n .
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But Q∗ ⊗F M can be used to compute HF
∗
(Γ,M), therefore

E2
pq =

{

HF
p (Γ,M) q = 0

0 0 < q < n .

Since the triangle p+ q < n remains stable, this closes the proof.

Proposition 3.2. Let X be a Γ-CW-complex with cocompact n-skeleton. Assume that
every p-cell σ of X, p ≤ n, the following two condition hold: F ∩ Γσ ⊂ F, and Γσ is of
type (F∩Γ)σ-FPn−p. Then for k ≤ n and every family of cardinals (JΛ)Λ∈F there exists an
isomorphism

HF

k (X,
∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) →
∏

Λ∈F

∏

JΛ

Hk(X)(Γ/Λ)

that is natural in X.

Proof. As in the previous proof let C∗ = C
∗
(X) and let Q∗ ։ Z be a projective resolution

of the trivial OFΓ-module.
There exists a spectral sequence converging to HF

∗
(X,M) whose E1-sheet is given by

E1
pq = Hq((Cp ⊗Q∗)⊗F M).

Since Cp(Γ/Λ) is a free abelian group for every Λ ∈ F it follows that Cp⊗Q∗ is a resolution
of Cp ⊗ Z = Cp. Moreover this resolution is flat by Lemma 1.5 and thus there exist
isomorphisms

Hq((Cp ⊗Q∗)⊗F M) ∼= TorFq (Cp,M)

which are natural in X and M .
Next we show that Cp is of type FPn−p for p ≤ n. Note that the last statement of

Lemma 1.2 implies

Cp ∼=
∐

σ∈Σp

IndΓ
Γσ

Z

where Σp is a set of representatives for the p-cells of X modulo Γ. Note also, that Σp is
finite. By assumption Z is of type FPn−p as an OF∩Γσ

Γσ-module for every p-cell σ ∈ Σp.
The claim now follows from Lemma 1.2.
Now takeM to be

∏

Λ∈F

∏

JΛ
Z[Γ/Λ,−]Γ and consider the spectral sequence above. Since

Cp is of type FPn−p the Bieri–Eckmann Criterion, Proposition 1.6, implies that

E1
pq =

∏

Λ∈F

∏

JΛ

TorFq (Cp,Z[Γ/Λ,−]Γ)

which is 0 for q > 0. The entry E1
p0 is natural isomorphic to

∏

Λ∈F

∏

JΛ
Cp ⊗F Z[Γ/Λ,−]Γ

and the differentials are induced by the differentials of the chain complex C∗. Therefore,
one can read off the second page of the spectral sequence that

HF
k (X,

∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) ∼=
∏

Λ∈F

∏

JΛ

Hk(C∗ ⊗F Z[Γ/Λ,−]Γ) ∼=
∏

Λ∈F

∏

JΛ

Hk(C∗(Γ/Λ))

for k < n where the last isomorphism is the isomorphism from Lemma 1.1. ButHk(C∗(Γ/Λ))
is just Hk(X)(Γ/Λ) and this concludes the proof.
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Lemma 3.3. Let X be a Γ-CW-complex and let (Xα)α∈I be a filtration of X by Γ-invariant
subcomplexes. Then the inclusions Xα →֒ X induce an isomorphism

lim−→
α

HF
∗
(Xα,M) → HF

∗
(X,M)

for all left OFΓ-modules M .

Proof. This is due to the fact that lim−→α
is a filtered colimit and in particular exact.

Proof of the Main Theorem. Since we have already covered the case n = 0 we may and do
assume that n ≥ 1. By the Bieri–Eckmann Criterion Γ is of type F-FPn if and only if for
every family (JΛ)Λ∈F the natural map

ϕ : HF

k (Γ,
∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) →
∏

Λ∈F

∏

JΛ

HF

k (Γ,Z[Γ/Λ,−]Γ) (∗)

is an isomorphism for 0 ≤ k < n and an epimorphism for k = n. Since the right hand side
is 0 for k > 0 and since we are assuming that n ≥ 1, the statement about the epimorphism
is trivially satisfied.

Since the codomain of ϕ is trivial for k ≥ 1 we first show that also the domain of ϕ is
trivial for 0 < k < n (which is a special case of the proof for k = 0 below). We have the
isomorphisms

HF
k (Γ,

∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) ∼= HF
k (X,

∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ)

from Proposition 3.1

HF
k (X,

∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) ∼= lim−→
α

HF
k (Xα,

∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ)

from Lemma 3.3 and

lim−→
α

HF
k (Xα,

∏

Λ∈F

∏

JΛ

Z[Γ/Λ,−]Γ) ∼= lim−→
α

∏

Λ∈F

∏

JΛ

Hk(Xα)(Γ/Λ)

from Proposition 3.2. By Observation 1 this is trivial if and only if the system (Hk(Xα))α∈I
of OFΓ-modules is essentially trivial.
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For the remaining case k = 0 consider the following commuting diagram (where we
dropped the index sets for readability):

HF
0 (Γ,

∏

Z[Γ/Λ,−]Γ)
ϕ ✲

∏

HF
0 (Γ,Z[Γ/Λ,−]Γ)

HF
0 (X,

∏

Z[Γ/Λ,−]Γ)

✻

✲
∏

HF
0 (pt.,Z[Γ/Λ,−]Γ)

✻

lim−→
α

HF
0 (Xα,

∏

Z[Γ/Λ,−]Γ)

✻

✲ lim−→
α

∏

HF
0 (pt.,Z[Γ/Λ,−]Γ)

✻

lim−→
α

∏

H0(Xα)(Γ/Λ)

❄
ψ ✲ lim−→

α

∏

H0(pt.)(Γ/Λ)

❄

The vertical arrows of the top square are isomorphisms by Proposition 3.1. The vertical
arrows of the middle square are induced by the inclusions Xα →֒ X and the indentity on
the one point space respectively; it follows from Lemma 3.3 that they are isomorphisms.
Finally, the vertical arrows of the bottom square are the isomorphisms from Proposition 3.2.
Since all the vertical arrows in the diagram are isomorphisms it follows that ϕ is an

isomorphism if and only if ψ is an isomorphisms. But ψ fits into the short exact sequence

0 → lim−→
α

∏

Λ∈F

∏

JΛ

H̃0(Xα)(Γ/Λ) → lim−→
α

∏

Λ∈F

∏

JΛ

H0(Xα)(Γ/Λ)
ψ
→ lim−→

α

∏

Λ∈F

∏

JΛ

Z → 0

and it follows Observation 1 that ψ (and therefore ϕ) is an isomorphism if and only if the
system (H̃0(Xα))α∈I of OFΓ-modules is essentially trivial.
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[Sch70] Horst Schubert, Kategorien II, Heidelberger Taschenbücher, vol. 66, Springer,
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