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THE NORMALITY OF DIGITS IN ALMOST CONSTANT ADDITIVE

FUNCTIONS

J. VANDEHEY

Abstract. We consider numbers formed by concatenating some of the base b digits from
additive functions f(n) that closely resemble the prime counting function Ω(n). If we
concatenate the last

⌈

y
log log log n

log b

⌉

digits of each f(n) in succession, then the number so created will be normal if and only
if 0 < y ≤ 1/2. This provides insight into the randomness of digit patterns of additive
function after the Erdős-Kac theorem becomes ineffective.

1. Introduction

We say a real number z with fractional part {z} = 0.z1z2z3 . . . written in base b is normal
if every digit string a1a2 . . . ak consisting of k base b digits occurs with relative frequency
b−k—in other words,

lim
x→∞

# {1 ≤ n ≤ x− k | zn−1+i = ai, 1 ≤ i ≤ k}
x

= b−k.

(We shall, for the remainder of the paper, assume that the base b is always the same unless
otherwise specified, so we may save the reader from constant repetitions of the phrase “in
base b.”)

As a simple consequence of Birkhoff’s pointwise ergodic theorem, almost all real numbers
are normal [5, Ch. 3]; however, despite their omnipresence among the reals, all numbers
currently known to be normal have been explicitly constructed to be normal. We do not
know if any of the common mathematical constants such as π, e, or even

√
2 is normal.

The first and simplest construction of a normal number is that of Champernowne [3]: in
base 10, the number

0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11) . . .

composed by concatenating all natural numbers sequentially is normal. Here we use the
notation (n) to refer to the string of digits that compose n, and the notation (n)(m) to
denote the concatenation of the two digit strings.

Not long thereafter, Copeland and Erdős [4] proved that, in base 10, the number

0.(2)(3)(5)(7)(11)(13)(17) . . .
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2 J. VANDEHEY

composed by concatenating all primes is normal. The proof of this fact is one of the few
places in mathematics where the phrase, “Because the primes are sufficiently dense in N,”
is used in earnest.

From here, the study of normal numbers has flourished in a number of different settings.
Many mathematicians have sought to generalize the notion of normality to other settings
and these have provided interesting results for continued fraction expansions [1], expansions
with respect to the bases −n± i [14], matrix number systems [13], Q-Cantor set expansions
[16, 17, 18], Markov shifts and intrinsically ergodic subshifts [21], and higher-dimensional
sequences (see [12] and the papers cited therein).

Studies into constructions for real normal numbers have tended towards one of two
primary paths. In one direction, several papers have investigated the base b normality of
numbers of the form

∞
∑

i=1

1

bmicni

for special sequences {mi} and {ni}. The most powerful results of this type known to
the author are those of Bailey and Crandall [2]; in their paper, they include a general
conjecture that, if true, would prove the normality of a wide swath of common constants
at once, including π.

We are more interested in the second direction, which follows in the footsteps of Cham-
pernowne, Copeland, and Erdős. These results are concerned with the normality of the
numbers

θf = 0.(f(1))(f(2))(f(3))(f(4))(f(5)) . . .

τf = 0.(f(2))(f(3))(f(5))(f(7))(f(11)) . . .

for some function f(n). Davenport and Erdős [6] showed that θf is normal when f(n) is
a positive, integer-valued polynomial. Nakai and Shiokawa [19] showed that both θf and
τf are normal when f(n) is the floor of a polynomial with real coefficients. Madritsch,
Thuswaldner, and Tichy [15] likewise showed that both θf and τf are normal when f(n)
is the floor of an entire function with small logarithmic order. De Konick and Kátai [7, 8]
have investigated more number-theoretic functions f(n) and have proved the normality of
θf and τf for f(n) = P (n+ 1), where P (n) is the largest prime divisor of n.

In this paper, we want to extend these results to better understand the normality of
θf when we let f(n) be an additive function. A function f(n) is said to be additive if
f(mn) = f(m) + f(n) for relatively prime m and n; such a function is defined entirely by
its values on prime powers. We will focus on additive functions closely related to the prime
counting function Ω(n) and distinct prime counting function ω(n), which are defined by
Ω(pk) = k and ω(pk) = 1.

However, it should come as no surprise that the constants θΩ and θω are not normal. The
famous Erdős-Kac theorem states that the values of ω(n) for n ≤ x are normally distributed
with mean and variance log log x (and various generalizations state the same for Ω(n)); thus,
for almost all n ≤ x, given large x, the first digits of ω(n) should closely resemble the first
half of the digits of log log x. So if, say, (log log x) contains an overabundance of zeros in
the first half, we should expect the same to be true of (ω(n)) for most n ≤ x.
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The Erdős-Kac theorem does not say anything about what happens in the last

≈ log log log x

2 log b

digits of ω(n) (for n ≤ x). To consider this further, we need a few extra definitions. Let the
truncation function Tb(z,m) denote the string of the last m base b digits of ⌊z⌋; we assume
z is always at least 0. If ⌊z⌋ has fewer than m digits, the truncation function Tb(z,m) will
include additional zeros at the head of the string to make sure the string returned is m
digits long. Therefore,

T10(151, 2) = (51) T10(1, 2) = (01) T10(.5, 2) = (00).

Also, for y > 0, let

Ky(x) =







⌈

y
log log log x

log b

⌉

, x > ee,

1, otherwise.

and let K(x) = K1/2(x). Alternately, the number K(x) may be roughly interpreted as half
the digits of log log x in base b, rounded up.

Now, given an additive function f(n) and a fixed base b, let fy(n) = Tb(f(n),Ky) and
let

θf,y = 0.(fy(1))(fy(2))(fy(3))(fy(4))(fy(5)) . . . .
1

By the same argument we made above, Erdős-Kac suggests that θω,y should not be normal
for any y > 1/2, but says nothing about any smaller y. For that, we present the following
new result.

Theorem 1.1. For any y satisfying 0 < y ≤ 1/2, the numbers θΩ,y and θω,y are normal.
For any y satisfying 1/2 < y, the numbers θΩ,y and θω,y are not normal.

So while the Erdős-Kac theorem states roughly that the first half of the digits of ω(n) for
n ≤ x follow a very clear pattern, Theorem 1.1 states that the second half are statistically
random.

We wish to extend these results to a slightly larger class of functions. We say a non-
negative additive function f is almost constant on primes if the following holds: there exist
c > 0, 1/2 > δ > 0, such that for all small ǫ > 0, we have

exp





∑

p≤x

Bǫ(x, p)

p1−δ



 = o (log x) , x → ∞,

where

Bǫ(x, p) = min

{

2,
1

(log log x)ǫ/4
|f(p)− c|

}

For example, any additive function that satisfies |f(p)− c| < p−δ for some c, δ > 0 is almost
constant on primes.

1Even though fy(n) is already considered to be just a string of digits, we include the extra parenthesis
to prevent confusion.
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Likewise, we say that a non-negative additive function is weakly additive to mean the
following. For all small ǫ > 0, we have

∏

p≤x



1−
∑

pk≤x, k≥2

Cǫ(x, p, k)

pk



 = 1 + o(1), x → ∞,

where

Cǫ(x, p, k) = min

{

2,
1

(log log x)1+ǫ/4
|f(pk)− f(pk−1)− f(p)|

}

.

All completely additive functions, such as Ω(n), are weakly additive, as are all additive
functions where |f(pk)− f(pk−1)− f(p)| always belongs to a bounded set, such as ω(n).

With these definitions we can state a general theorem that contains Theorem 1.1 as a
specific case.

Theorem 1.2. Let f(n) be a non-negative additive function that is almost constant on
primes. If 0 < y ≤ 1/2, then θf,y is normal. If 1/2 < y and f(n) is also weakly additive,
then θf,y is not normal.

Somewhat surprisingly, in the case 0 < y ≤ 1/2, when θf,y is normal, we have no
restrictions whatsoever on the values of f at prime powers (outside of being non-negative).

The reason why θf,y fails to be normal is again due to the digits of f(n) for n ≤ x too
closely resembling the digits of log log x, so one may wonder whether an Erdős-Kac type
distribution is the culprit. Given an additive function, let

An =
∑

p<n

f(p)

p
and Bn =

∑

p<n

f(p)2

p
.

There are various different conditions on f(n) that guarantee it will be normally distributed
about An with variance Bn. The simplest such conditions merely require that Bn goes to
infinity as n goes to infinity and that f(p) is uniformly bounded [10]. Alternately, one may
require that Bn goes to infinity as n goes to infinity and that

lim
n→∞

B−1
n

∑

p<n

|f(p)|>ǫB
1/2
n

f(p)2

p
= 0

for every ǫ > 0 [20].
However, there is nothing in the definition of f(n) being almost constant on primes

which implies either of these sets of conditions: on a very sparse set of primes, f(p) could
be enormous, and these few primes might be the primary contributers to Bn. It is certainly
possible that by ignoring such large values, we could show that being constant on primes
would imply some type of Erdős-Kac distribution on average.

For more on these types of results, see [9].



NORMALITY IN ADDITIVE FUNCTIONS 5

2. Bounds on exponential sums

In the proof of normality results dealing with θf and τf , a key technique is to reduce the
problem to one concerning exponential sums, often of the form

∑

n

e
( ν

bm
f(n)

)

for some integer ν and positive integer m, where the function e(z) denotes e2πiz. When
Davenport and Erdős examined the case f(n) is a polynomial, they used estimates on Weyl
sums. In our case, we want to examine the case when f(n) is a non-negative additive
function and will in turn use the Selberg-Delange method to estimate these sums.

We use results and terminology from Tenenbaum’s book [22, §II.5.3], mildly simplified
to remove an unneeded parameter. (In particular, we take δ = 1 in Tenenbaum’s notation
and replace his c0 with our δ.)

Let z ∈ C, δ > 0, M > 0. Then the Dirichlet series

F (s) =
∞
∑

n=1

ann
−s

is said to possess the property P(z; δ,M) if the Dirichlet series

G(s; z) := F (s)ζ(s)−z

can be extended to a holomorphic function on

σ ≥ 1− δ/(1 + log+ |τ |), (s = σ + iτ)

which is bounded on this domain in the following way

|G(s; z)| ≤ M.

Suppose F (s) has the property P(z; δ,M) and there exist real positive numbers {bn}∞n=1

such that |an| ≤ bn for all n and the series

∞
∑

n=1

bnn
−s

satisfies the property P(w; δ,M) for a complex number w, then F (s) is said to be of the
type T (z, w; δ,M).

Theorem 2.1. ([22, §II.5.3, Theorem 3] with N = 0) Suppose the Dirichlet series F (s) :=
∑∞

n=1 ann
−s is of the type T (z, w; δ,M). Then for x ≥ 3, A > 0, |z| ≤ A, and |w| ≤ A, we

have that
∑

n≤x

an = x(log x)z−1

(

G(1; z)

Γ(z)
+O

(

M

(

e−c1
√
log x +

c2
log x

)))

where the positive constants c1, c2 and the implicit constant in the big-O term depend on at
most δ and A.

We now apply this result to the case we will need in our proof.
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Proposition 2.2. Let f(n) be a non-negative additive function that is almost constant on
primes, with constant c. Let η and ǫ be fixed positive real numbers strictly less than 1, and
let a be a non-zero integer satisfying |a| < η−2.

(1) For ǫK(x) ≤ m ≤ (1− ǫ)K(x), we have

∑

n≤x

e
( a

bm
f(n)

)

= o(x), x → ∞,

where the rate of decay in the little-o term is uniform for fixed η and ǫ.
(2) If f(n) is also weakly additive, then for (1 + ǫ)K(x) ≤ m, we have

∑

n≤x

e
( a

bm
f(n)

)

= xe
( a

bm
c log log x

)

(1 + o(1)), x → ∞

where the rate of decay in the little-o term is uniform for fixed η and ǫ.

Recall, by the definition of Ky(x) that

K(x) :=







⌈

log log log x

2 log b

⌉

, x > ee,

1, otherwise.

Proof. For a fixed x, we shall consider the function F (s) with coefficients an, which are
assumed to be multiplicative and defined on prime powers by

apk :=



















e
( a

bm
f(pk)

)

pk ≤ x

e
( a

bm
(f(pk−1) + f(p))

)

p ≤ x < pk

e
( a

bm
kc
)

p > x

.

Let c′ = e(ac/bm). Then to the right of the line σ = 1, we have

G(s; c′) = F (s)ζ(s)−c′

=
∏

p

(

1 +
ap
ps

+
ap2

(p2)s
+ . . .

)(

1− 1

ps

)c′

= exp

(

∑

p

log

(

1 +
ap
ps

+
ap2

(p2)s
+ . . .

)

+ c′ log

(

1− 1

ps

)

)

= exp





∑

p≤x

ap − c′

ps
+
∑

p

O(p−2s)



 .

This shows that G(s, c′) can be extended to a holomorphic function on σ > 1/2.
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The difference ap − c′ can be bounded in one of two ways: first, by

|ap − c′| =
∣

∣

∣

∣

e
( ac

bm

)

(

e

(

a(f(p)− c)

bm

)

− 1

)∣

∣

∣

∣

≤ 2πa|f(p)− c|
bm

≤ 2πη−2|f(p)− c|
(log log x)ǫ/2

,

using |eix − 1| ≤ |x|, and, second, by 2 since |ap| = |c′| = 1.

Provided x is sufficiently large so that (log log x)ǫ/4 ≥ 2πη−2, we have that

exp





∑

p≤x

ap − c′

ps



 = o(log x)

for σ ≥ 1 − δ by the definition of f being almost constant on primes. Thus, for some
M = M(x) that is o(log x), we have that G(s; c′) ≤ M for σ ≥ 1 − δ, and so F (x) has
property P(c′; δ,M).

Since each |an| = 1, we can let bn = 1 and note that the zeta function itself has property
P(1; δ,M) rather trivially, so that F (s) has property T (c′, 1; δ,M). We can therefore apply
Theorem 2.1.

Thus, we have that
∑

n≤x

e(af(n)/bm) = x(log x)c
′−1

(

G(1; c′)
Γ(c′)

+ o(1)

)

by the bound on M . The function bounded by o(1) here decays to zero as x tends to infinity
and depends only on ǫ and η.

Suppose we are in the case where ǫK(x) ≤ m ≤ (1− ǫ)K(x). Then the real part of c′ − 1
is bounded by

Re(e(ac/bm)− 1) ≤ − 1

2!

(

2πac

bm

)2

+
1

4!

(

2πac

bm

)4

≤ −1

2

(

2πac

b(1−ǫ)K

)2

(1 +O((log log x)−ǫ))

≤ −eO(1)(log log x)−(1−ǫ)(1 +O((log log x)−ǫ)).

Therefore, we have

x(log x)c
′−1 ≤ x exp

(

−eO(1)(log log x)ǫ(1 +O((log log x)−ǫ))
)

= o(x).

The function 1/Γ(z) is uniformly bounded in any sufficently small compact neighborhood
of 1, and c′ is in a small neighborhood of 1 for suffficiently large x.

To finish the proof of the first half of the proposition, it suffices to show that G(1; c′) =
O(1), which itself would be implied by

∑

p≤x

Bǫ(x, p)

p
= O(1)
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for all sufficiently small ǫ. By the definition of f(n) being almost constant on primes, we
know that

∑

p≤x

Bǫ(x, p))

p1−δ
= O(log log x),

and we also have that Bǫ(x, p) are positive, decreasing functions in x. Therefore, by partial
summation, we have

∑

p≤x

Bǫ(x, p)

p
= x−δ

∑

p≤x

Bǫ(x, p)

p1−δ
+ δ

∫ x

1
t−δ−1

∑

p≤t

Bǫ(x, p)

p1−δ
dt

≤ O(x−δ log log x) + δ

∫ x

1
t−δ−1

∑

p≤t

Bǫ(t, p)

p1−δ
dt

= O(x−δ log log x) +O

(∫ x

1
t−δ−1 log log t dt

)

= O(1),

which completes the proof of statement (1).
Now suppose we are in the case where (1 + ǫ)K(x) ≤ m and f(n) is weakly additive.

Then, in this case, we have

c′ − 1 = 2πi
a

bm
c+O

(

1

b2m

)

,

so that

(log x)c
′−1 = e

( a

bm
c log log x

)

· exp
(

O

(

log log x

b2m

))

= e
( a

bm
c log log x

)

(1 +O((log log x)−ǫ)).

Also, since c′ − 1 = O((log log x)−1), we have

1

Γ(c′)
= 1 +O((c′ − 1)) = 1 +O((log log x)−1).

Therefore, to finish the proof in this case, it suffices to show that G(1; c′) = 1 + o(1)
uniformly in x. Let G(z) denote the function

∏

p

(

1− z

p

)−1(

1− 1

p

)z

.

We have G(1) = 1 and G(z) is analytic at 1, so that G(c′) = 1+O((log log x)−1). Moreover,
we can factor such a term out of G(1; c′) to leave

G(1; c′) = G(c′)
∏

p≤x

(

1 +

∞
∑

k=1

apk

pk

)

(

1− ap
p

)

.

(We do not need that the product is absolutely convergent since we are at most changing
finitely many factors.) Now we examine this latter product in greater detail. We have,
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first, that

∏

p≤x

(

1 +

∞
∑

k=1

apk

pk

)

(

1− ap
p

)

=
∏

p≤x



1 +
∑

k≥2

1

pk
(apk − apk−1ap)





=
∏

p≤x



1 +
∑

pk≤x, k≥2

1

pk
(apk − apk−1ap)



 ,

and provided x is sufficiently large, we have also, by a similar argument to earlier in the
proof, that this is bounded above and below by

∏

p≤x



1 +
∑

pk≤x, k≥2

Cǫ(x, p, k)

pk



 and
∏

p≤x



1−
∑

pk≤x, k≥2

Cǫ(x, p, k)

pk





respectively. The latter equals 1 + o(1), since f(n) is weakly additive, and this in turn
implies that the former is 1 + o(1) as well, since the logarithm of each factor in the latter
product is larger in norm than the logarithm of the corresponding factor in the former
product. Thus we have G(1; c′) = 1 + o(1) and this completes the proof. �

If we only care about the case ǫK(x) ≤ m ≤ (1− ǫ)K(x), then the above proof still works
under weaker conditions on f(n). For example, we could replace o(log x) in the definition

of f(n) being almost constant on primes with any function that would satisfy o((log x)2−c′),
such as O(log x log log x).

Similarly, if we consider an alternate definition of the truncation function T ∗
ǫ (z, x) which

returns the string of the last (1 − ǫ)K(x) through ǫK(x) digits of ⌊z⌋, and let f∗
ǫ (n) =

T ∗
ǫ (f(n), n), then we would expect the number

θ∗f,ǫ = 0.(f∗
ǫ (1))(f

∗
ǫ (2))(f

∗
ǫ (3))(f

∗
ǫ (4)) . . .

to be normal while only requiring the definition of being almost constant on primes to hold
for this specific ǫ. This suggests that the “easiest” place for randomness to occur in the
digits of an additive function is around the

1

4

log log log x

log b
th

place.

3. Proof of Theorem 1.2

Consider a string of k base b digits a1a2 · · · ak. Let N∗(x) denote the number of times
the string occurs in the first x digits of θf,y after the decimal point. To prove Theorem 1.2,
it suffices to prove

lim
x→∞

1

x
N∗(x)

{

= b−k, if 0 < y ≤ 1/2,

6= b−k, if 1/2 < y.

The xth digit of θf,y may occur in the middle of some string (fy(x
′)). If we let N(x)

denote the number of times we see the string occur within the digits of

(fy(1))(fy(2))(fy(3)) . . . (fy(x
′)),



10 J. VANDEHEY

then it is clear that N∗(x) = N(x′) + O(Ky(x
′)), since the latter function adds at most

Ky(x
′) new places for the string to occur. Moreover, the string (fy(n)) is exactly Ky(n)

digits long, so, by a simple application of partial summation, the entire string

(fy(1))(fy(2))(fy(3)) . . . (fy(x
′)),

is x′Ky(x
′)(1 + o(1)) digits long. Therefore, we have

1

x
N∗(x) =

1

x′Ky(x′)
N(x′)(1 + o(1))

and so it suffices now to prove

lim
x→∞

1

xKy(x)
N(x) = b−k, if 0 < y ≤ 1/2,

lim sup
x→∞

1

xKy(x)
N(x) > b−k, if 1/2 < y.

We can rewrite N(x) in the following way:

(1) N(x) =
x
∑

n=1

Ky(n)
∑

m=k

θ(b−mf(n)) +O(x)

where

θ(z) :=

{

1, 0.a1a2 · · · ak ≤ {z} < 0.a1a2 · · · ak + b−k,

0, otherwise.

The term θ(b−mf(n)) is an indicator of whether the string a1a2 . . . ak occurs in f(n) starting
at the mth place (to the left of the decimal). The big-O term accounts for occurences of
the string that start in a given fy(n) and finish in another.

As noted above, the whole string

(fy(1))(fy(2))(fy(3)) . . . (fy(x
′)),

contains xKy(x)(1 + o(1)) digits, so in (1) we may replace Ky(n) with Ky(x) with an error
of o(xKy(x)) and switch the order of summation to obtain

(2) N(x) =

Ky(x)
∑

m=k

x
∑

n=1

θ(b−mf(n)) + o(xKy(x)).

Let Y = min{y, 1/2}. Then for any small, fixed ǫ > 0, let

U(x) = U(x, ǫ) =

(1−ǫ)KY (x)
∑

m=ǫK(x)

x
∑

n=1

θ(b−mf(n))

V (x) = V (x, ǫ) =

Ky(x)
∑

m=(1+ǫ)KY (x)

x
∑

n=1

θ(b−mf(n)).

Note that

K(x) =
1/2

y
Ky(x) +Oy(1),
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and that unless 1/2 < y, the sum V (x) will be identically zero.
Thus we may write N(x) as

N(x) = U(x) + V (x) +O(ǫxKy(x)) + o(xKy(x)).

We estimate U(x) first. Following Davenport and Erdős, we pick a small positive constant
η and consider two functions θ1(z) and θ2(z) both periodic in z with period 1, with θ1(z) ≤
θ(z) ≤ θ2(z) and having Fourier expansions

θ1(z) = (b−k − η) +
∑

ν 6=0

A(1)
ν e(vz)

θ2(z) = (b−k + η) +
∑

ν 6=0

A(2)
ν e(vz)

where the coefficients are bounded by

|A(∗)
ν | ≤ min

(

1

|ν| ,
1

ην2

)

.

Note that this makes the sums absolutely convergent and hence we can change the order of
summation without trouble. (For the existence of such functions, see [11, pp. 91–92,99].)

In particular, this gives, for Y = min{y, 1/2} as above,

U(x) ≥ (b−k − η)x((1 − ǫ)KY (x)− ǫK(x)) +

(1−ǫ)KY (x)
∑

m=ǫK(x)

x
∑

n=1

∑

ν 6=0

A(1)
ν e

( ν

bm
f(n)

)

= b−kxKY (x)(1 +O(ǫ) +O(η)) +
∑

ν 6=0

A(1)
ν

(1−ǫ)KY (x)
∑

m=ǫK(x)

x
∑

n=1

e
( ν

bm
f(n)

)

= b−kxKY (x)(1 +O(ǫ) +O(η)) +O(xKy(x)η)

+
∑

ν 6=0
|ν|≤η−2

A(1)
ν

(1−ǫ)KY (x)
∑

m=ǫK(x)

x
∑

n=1

e
( ν

bm
f(n)

)

.

Applying Proposition 2.2, we then obtain

U(x) ≥ b−kxKY (x)(1 +O(ǫ) +O(η)) +
∑

ν 6=0
|ν|≤η−2

A(1)
ν

(1−ǫ)KY (x)
∑

m=ǫK(x)

o(x)

= b−kxKY (x)(1 +O(ǫ) +O(η) + oη,ǫ(1)),

where the little-o term tends to zero uniformly for fixed η and ǫ. By applying the same
idea with θ2(z), we obtain

U(x) ≤ b−kxKY (x)(1 +O(ǫ) +O(η) + oη,ǫ(1))

as well.
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We can now complete the proof in the case 0 < y ≤ 1/2. In this case, we have

1

xKy(x)
N(x) = b−k(1 +O(ǫ) +O(η) + oη(1)).

We have chosen ǫ and η to be fixed as x varies, so this does not immediately give us that
the limit is b−k (because we have no guarantee that the limit exists). However, it does show
that the lim sup and lim inf of N(x)/xKy(x) are both equal to b−k(1 + O(ǫ) + O(η)); by

taking ǫ and η arbitrarily small, we see that the lim sup is at most b−k and the lim inf is
at least b−k, so the full limit itself must exist and equal b−k.

Now we investigate the case 1/2 < y. Consider a function θ3(z) that satisfies the following
properties:

(1) 0 ≤ θ3(z) ≤ θ(z);
(2) θ3(z) = θ(z) except on the intervals

[0.a1a2 . . . ak − b−2Ky(x), 0.a1a2 . . . ak + b−2Ky(x)]

and

[0.a1a2 . . . ak + b−k − b−2Ky(x), 0.a1a2 . . . ak + b−k + b−2Ky(x)];

and,
(3) θ3(z) is continuous and piecewise smooth.

In particular, since θ3(z) is assumed to be continuous and piecewise smooth, its Fourier
series converges absolutely [23, p. 81], so the order of summation doesn’t matter. We shall

again refer to the Fourier coefficients by A
(3)
ν .

Therefore, given some small η, we have

V (x) ≥
Ky(x)
∑

m=(1+ǫ)K(x)

x
∑

n=1

∑

ν

A(3)
ν e

( ν

bm
f(n)

)

=
∑

ν

A(3)
ν

Ky(x)
∑

m=(1+ǫ)K(x)

x
∑

n=1

e
( ν

bm
f(n)

)

=
∑

|ν|<η−2

A(3)
ν

Ky(x)
∑

m=(1+ǫ)K(x)

x
∑

n=1

e
( ν

bm
f(n)

)

+O(ηx(Ky(x)− (1 + ǫ)K(x))).

Applying Proposition 2.2 again and noting that we can add the |ν| ≥ η−2 terms back in at
the cost of another copy of

O(ηx(Ky(x)− (1 + ǫ)K(x))),
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this becomes

V (x) ≥
∑

|ν|<η−2

A(3)
ν

Ky(x)
∑

m=(1+ǫ)K(x)

xe
( ν

bm
log log x

)

(1 + o(1))

+O(ηx(Ky(x)− (1 + ǫ)K(x)))

=
∑

ν

A(3)
ν

Ky(x)
∑

m=(1+ǫ)K(x)

xe
( ν

bm
log log x

)

+ x(Ky(x)− (1 + ǫ)K(x))(o(1) +O(η)).

The sum

∑

ν

A(3)
ν

Ky(x)
∑

m=(1+ǫ)K(x)

e
( ν

bm
log log x

)

=

Ky(x)
∑

m=(1+ǫ)K(x)

∑

ν

A(3)
ν e

( ν

bm
log log x

)

=

Ky(x)
∑

m=(1+ǫ)K(x)

θ3

(

1

bm
log log x

)

approximates the number of times the string occurs in the digits of log log x to the left of the
(1+ ǫ)Kth place. It will, in fact, equal and not just approximate the number of occurences
of the string if we make two assumptions: that x is sufficiently large and that log log x is
an integer ending in a non-zero digit base b. In order for θ3 evaluated at log log x/bm to

differ from θ at the same point, the fractional part of log log x/bm must be within b−2Ky(x)

of a number in [0, 1] that has all zeros after the kth place, but since we have assumed that
log log x is an integer ending in a non-zero digit and since m is at least K(x) but at most
Ky(x), the fractional part of log log x/b

m has a non-zero digit after the kth place, but none
after the Ky(x) + 1th place.

Thus, for x sufficiently large and log log x an integer ending on a non-zero digit, we have
that

V (x) ≥ x

Ky(x)
∑

m=(1+ǫ)K(x)

θ

(

1

bm
log log x

)

+ x(Ky(x)− (1 + ǫ)K(x))(o(1) +Oη(1)).

Now let M be a large integer and consider xM so that log log xM is an integer whose
digit string is composed of M copies of the string a1a2 . . . ak concatenated together followed
by exactly K(x) digits, the last of which is non-zero. In particular, this implies that M =
(Ky(xM )−K(xM ))/k. In this case, we have

N(xM ) ≥ b−kxMK(xM )(1 +O(ǫ) +O(η) + oη(1)) + xM
Ky(xM )−K(xM )

k
+ xMKy(xM )(O(ǫ) + o(1) +Oη(1))

= xMKy(xM )

(

1

k

(

1− 1

2y

)

+
1

bk
1

2y

)

(1 +O(ǫ) +O(η) + oη(1) +Oη(1)).

By choosing ǫ and η sufficiently small, we see that the lim sup of N(x)/xKy(x) must exceed

b−k.
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Thus, the limit of N(x)/xKy(x) cannot be b−k, so θf,y is not normal in this case.
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