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A new Kontorovich-Lebedev-like transformation

Semyon YAKUBOVICH

Abstract

A different application of the familiar integral representation for the modified Bessel function drives

to a new Kontorovich-Lebedev-like integral transformation of a general complex index. Mapping

and operational properties, a convolution operator and inversion formula are established. Solvability

conditions and explicit solutions of the corresponding class of convolution integral equations are

exhibited.
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1 Introduction

As it is known [2], Vol. II, the modified Bessel function Kz(2
√
x) can be represented by the following

integral

Kz(2
√
x) =

x−z/2

2

∫ ∞

0

e−t−x
t tz−1dt, x > 0, (1.1)

where z = ν + iτ is a complex number. As it is easily seen, integral (1.1) converges absolutely for any
x ∈ R+, z ∈ C and represents an entire function by z. Formula (1.1) can be written with the use of the
Parceval relation for the Mellin transform [6], which leads to the integral representation

2xz/2Kz(2
√
x) =

1

2πi

∫ γ+i∞

γ−i∞
Γ(s+ z)Γ(s)x−sds, x > 0, (1.2)

where Γ(w) is Euler’s gamma function [2], Vol. 1 and γ > max(0,−Rez). Reciprocally, we have the
direct Mellin transform of the modified Bessel function, namely

Γ(s+ z)Γ(s) = 2

∫ ∞

0

Kz(2
√
x)xs+z/2−1dx. (1.3)

The left-hand side of (1.2) has the following asymptotic behavior near the origin x → 0+

xz/2Kz(2
√
x) =











O(1), if Rez > 0,

O(xRez), if Rez < 0,

O
(

log
(

1
x

))

, if z = 0

and xz/2Kz(2
√
x) = O(e−2

√
xx(Rez−1/2)/2), x → +∞.

Let us consider the following integral transformation with respect to an index z ∈ C of the modified
Bessel function

(Ff)(z) = 2

∫ ∞

0

xz/2Kz(2
√
x)f(x)dx. (1.4)

http://arxiv.org/abs/1206.1168v1
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This transformation looks like the Kontorovich-Lebedev transform [5], [8], [9]. However, it is a completely
different operator and cannot be reduced to the Kontorovich-Lebedev integral by any change of variables
and functions. As far as the author is aware, the transform (1.4) was not studied yet, taking into account
his mapping properties and inversion formula in an appropriate class of functions.

Our goal is to do this involving a special class of functions related to the Mellin transform and its
inversion, which was introduced in [7]. Indeed, we have

Definition 1. Denote by M−1(Lc) the space of functions f(x), x ∈ R+, representable by inverse
Mellin transform of integrable functions f∗(s) ∈ L1(c) on the vertical line c = {s ∈ C : Res = c0}:

f(x) =
1

2πi

∫

c

f∗(s)x−sds. (1.5)

The space M−1(Lc) with the usual operations of addition and multiplication by scalar is a linear
vector space. If the norm in M−1(Lc) is introduced by the formula

∣

∣

∣

∣f
∣

∣

∣

∣

M−1(Lc)
=

1

2π

∫ +∞

−∞
|f∗ (c0 + it) |dt, (1.6)

then it becomes a Banach space.
Definition 2 ([7], [8]). Let c1, c2 ∈ R be such that 2sign c1 +sign c2 ≥ 0. By M−1

c1,c2(Lc) we denote

the space of functions f(x), x ∈ R+, representable in the form (1.5), where sc2eπc1|s|f∗(s) ∈ L1(c).
It is a Banach space with the norm

∣

∣

∣

∣f
∣

∣

∣

∣

M−1
c1,c2

(Lc)
=

1

2π

∫

c

eπc1|s||sc2f∗(s)ds|.

In particular, letting c1 = c2 = 0 we get the space M−1(Lc). Moreover, it is easily seen the inclusion

M−1
d1,d2

(Lc) ⊆ M−1
c1,c2(Lc)

when 2sign(d1 − c1) + sign(d2 − c2) ≥ 0.

2 Mapping properties and an inversion formula

We begin with the following result.
Theorem 1. Let f ∈ M−1(Lc) and c0 < 1. Then transformation (1.4) is well-defined and (Ff)(z)

is analytic in the half-plane Rez > c0 − 1. Further,

(Ff)(z) =
1

2πi

∫ c0+i∞

c0−i∞
Γ(1− s+ z)Γ(1− s)f∗(s)ds, (2.1)

and the operator F : M−1(Lc) → L1(Rez − i∞,Rez + i∞), Rez > c0 − 1 is bounded with the norm
satisfying the estimate

||F || ≤ Γ(1− c0)

∫ ∞

−∞
|Γ(1− c0 +Rez + iτ)|dτ.

Proof. In fact, substituting (1.5) into (1.4) and changing the order of integration by Fubini’s theorem,
we call (1.3) to prove (2.1). The inversion of the order of integration is guaranteed by the estimate (see
(1.3))

2

∫ ∞

0

∣

∣

∣xz/2Kz(2
√
x)
∣

∣

∣

∫

c

|f∗(s)x−sds|dx
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≤ 2

∫ ∞

0

x(Rez−2c0)/2KRez(2
√
x)dx

∫

c

|f∗(s)ds|

= Γ (1− c0 +Rez) Γ(1− c0)

∫

c

|f∗(s)ds| < +∞, Rez > c0 − 1, c0 < 1

and the asymptotic behavior of the modified Bessel function at infinity and near the origin (see above).
Furthermore, integral (1.4) converges absolutely in the half-plane Rez > c0 − 1 and uniformly in Rez ≥
a0 > c01. Since for each x > 0 the function xz/2Kz(2

√
x) is analytic by z, we have that F (z) is well-

defined and represents an analytic function in the half-plane Rez > c0 − 1. Finally, the straightforward
estimate takes place

||Ff ||1 =

∫ ∞

−∞
|(Ff)(Rez + iτ)|dτ

≤ 1

2π

∫ ∞

−∞

∫ ∞

−∞
|Γ(1− c0 +Rez + i(τ − t))Γ(1 − c0 − it)f∗(c0 + it)|dtdτ

≤ Γ(1− c0) ||f ||M−1(Lc)

∫ ∞

−∞
|Γ(1− c0 +Rez + iτ)|dτ,

which completes the proof of the theorem.

For the subspace M−1
0,n(Lc) ⊆ M−1(Lc), n ∈ N0 we have

Theorem 2. Let n ∈ N0, f ∈ M−1
0,n(Lc) and c0 < 1−n. Then f(x), x ∈ R+ is n times continuously

differentiable,
(

Ff (n)
)

(z) is analytic in the half-plane Rez > c0 + n− 1 and
(

Ff (n)
)

(z) = (Ff)(z − n).
Finally, for any arbitrary y ∈ R+ the following representation holds

(Ff)y(z) = 2

∫ ∞

y

xz/2Kz(2
√
x)f(x)dx

= 2

n−1
∑

m=0

(−1)my(z+m+1)/2Kz+m+1(2
√
y)f (m)(y) + (−1)n

(

Ff (n)
)

y
(z + n), y > 0, (2.2)

where the empty sum (n = 0) is equal to zero.

Proof. Clearly, from representation (1.1) after differentiation and integration n times with respect to x
under the integral sign we come out, accordingly, with the identities

2
dn

dxn

[

xz/2Kz(2
√
x)
]

= (−1)n
∫ ∞

0

e−t−x
t tz−n−1dt = 2(−1)nx(z−n)/2Kz−n(2

√
x), (2.3)

2

(n− 1)!

∫ ∞

y

(x− y)n−1xz/2Kz(2
√
x)dx =

∫ ∞

0

e−t− y
t tz+n−1dt

= 2y(z+n)/2Kz+n(2
√
y), y > 0. (2.4)

Further, from Definition 2 it follows that f is n times continuously differentiable and via (1.5) it has

f (n)(x) =
(−1)n

2π

∫

c

(s)nf
∗(s)x−s−nds, (2.5)
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where (a)n is Pochhammer’s symbol. Hence, considering (Ffn)(z), we integrate by parts in the corre-
sponding integral (1.4), taking into account that the integrated terms are vanished owing to the asymp-
totic behavior of the modified Bessel function, the estimate f (n) = O(x−c0−n), x > 0 (see (2.5)) and
limit relations

lim
x→0+

x1−c0−j(Rez−i)/2KRez−i(2
√
x) = 0, i, j ∈ N0, i+ j = n,

which take place by virtue of the conditions c0 < 1−n, Rez > c0+n−1. Thus calling (2.3) we prove the
equality

(

Ff (n)
)

(z) = (Ff)(z−n) and similar to the proof of Theorem 1 we easily justify the analyticity

of G(z) =
(

Ff (n)
)

(z) in the half-plane Rez > c0 + n− 1. Finally, the proof of (2.2) follows immediately,
appealing to (2.4) and integrating n times by parts in its left-hand side.

In order to establish an inversion formula for the transformation (1.4) we employ an operational
technique, which was used formally by Sneddon [5], Ch. 6 to deduce the inversion formula for the
Kontorovich-Lebedev transform. We start multiplying both sides of the equality (2.1) by xz , x > 0 and
integrating with respect to z over the line (γ− i∞, γ+ i∞), γ > c0−1. Changing the order of integration
in the right-hand side of the obtained equality, which is possible via Theorem 1 and calculating the
corresponding inverse Mellin transform of the gamma-function, we derive

∫ γ+i∞

γ−i∞
(Ff)(z)xzdz =

1

2πi

∫ c0+i∞

c0−i∞

∫ γ+i∞

γ−i∞
Γ(1− s+ z)Γ(1− s)f∗(s)xzdzds

= e−1/x

∫ c0+i∞

c0−i∞
Γ(1− s)f∗(s)xs−1ds.

Hence, taking into account that f ∈ M−1(Lc), we apply the Mellin -Parseval identity to the right-hand
side of the latter equality. Thus

1

2πi

∫ γ+i∞

γ−i∞
(Ff)(z)e1/xxzdz = (Lf)(x) =

∫ ∞

0

e−xtf(t)dt, x > 0 (2.6)

and the right-hand side of the latter equality represents the Laplace transform denoted by (Lf)(x). In the
meantime, relation (2.15.5.4) in [4], Vol. 2 gives the key integral involving the modified Bessel function
of the third kind Iν(w) [2], Vol. II

e1/xxz =

∫ ∞

0

e−xtI−(1+z)

(

2
√
t
)

t−(1+z)/2dt, x > 0, Rez < 0.

Substituting this integral into the left-hand side of (2.6) and assuming an additional condition

(Ff)(γ + iτ) ∈ L1

(

|τ | > 1; |τ |γ+1/2 eπ|τ |/2dτ
)

, γ ∈ (c0 − 1, 0), (2.7)

we change of integration by Fubini’s theorem and arrive at the equality

∫ ∞

0

e−xt 1

2πi

∫ γ+i∞

γ−i∞
I−(1+z)

(

2
√
t
)

t−(1+z)/2 (Ff)(z)dzdt =

∫ ∞

0

e−xtf(t)dt, x > 0. (2.8)

Indeed, the motivation of the inversion of the order of integration in (2.8) is given due to the representation
of the modified Bessel function I−(1+z)

(

2
√
t
)

in terms of the series

I−(1+z)

(

2
√
t
)

=

∞
∑

n=0

tn−(1+z)/2

n! Γ(n− z)
(2.9)
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and an absolute integrability by τ ∈ R of the product (Ff)(γ + iτ)I−(1+γ+iτ)

(

2
√
t
)

under condition

(2.7), since Γ(n − γ − iτ) = O(|τ |n−γ−1/2e−π|τ |/2), |τ | → ∞, n ∈ N0 via Stirling’s formula [2], Vol. I.
Finally, we observe that equality (2.8) is true for all x > 0, where functions under the convergent Laplace
integrals in its both sides are continuous on R+ owing to condition f ∈ M−1(Lc) and assumption (2.7).
Therefore one can cancel the Laplace transform in (2.8) by virtue of the uniqueness theorem (see in [3])
to get the inversion formula for the Kontorovich-Lebedev transformation (1.4). Thus we have proved

Theorem 3. Let f(t) ∈ M−1(Lc), c0 < 1 and condition (2.7) holds. Then for all t > 0 the following
inversion formula for the transformation (1.4) takes place

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
I−(1+z)

(

2
√
t
)

t−(1+z)/2 (Ff)(z)dz, γ ∈ (c0 − 1, 0), (2.10)

where the integral is absolutely convergent.

3 Expansion of an arbitrary function in terms of the Kontorovich-

Lebedev-like integral

In this section we will prove that any function from the space M−1
0,(|ε|+ε)/2(Lc), c0 < 1, 2c0 − 1 < ε < c0

can be expanded in terms of the following integral

f(x) =
1

πi

d

dx

∫ γ+i∞

γ−i∞
I−z

(

2
√
x
)

x−z/2

∫ ∞

0

tz/2Kz(2
√
t)f(t) dtdz, x > 0, (3.1)

where γ is taken from the interval (c0 − 1, (ε− 1)/2).
Precisely, we have
Theorem 4. Let c0 < 1, 2c0 − 1 < ε < c0 and f ∈ M−1

0,(|ε|+ε)/2(Lc). Then for any x > 0 formula

(3.1) is true, where the interior integral with respect to t converges absolutely and the exterior integral by
z is understood in the improper sense of Riemann.

Proof. In fact, since M−1
0,(|ε|+ε)/2(Lc) ⊆ M−1(Lc), the absolute convergence of the interior integral in

(3.1) follows from Theorem 1. Moreover, equality (2.1) holds. Hence writing the modified Bessel function
I−z (2

√
x) similar to (2.9) and substituting the right-hand side of (2.1) into (3.1), we come out with the

following iterated integral

I(x) = − 1

4π2

∫ γ+i∞

γ−i∞

∞
∑

n=0

xn−z

n! Γ(1 + n− z)

∫ c0+i∞

c0−i∞
Γ(1− s+ z)Γ(1− s)f∗(s)dsdz. (3.2)

Meanwhile, appealing to the Stirling formula for gamma-functions [2], Vol. I, we find for any n ∈ N

∣

∣

∣

∣

Γ(1− s+ z)

Γ(1 + n− z)

∣

∣

∣

∣

=

∣

∣

∣

∣

B(1− s+ z, s− ε)B(n, 1− z)
Γ(1− ε+ z)

Γ(s− ε)Γ(1 − z)(n− 1)!

∣

∣

∣

∣

≤ B(1− c0 + γ, c0 − ε)Γ(1− γ)

Γ(1 + n− γ)

∣

∣

∣

∣

Γ(1− ε+ z)

Γ(s− ε)Γ(1− z)

∣

∣

∣

∣

= O

( |z|2γ−ε

|Γ(s− ε)|

)

, |Imz| → ∞,

where B(a, b) is Euler’s beta-function, c0 − 1 < γ < (ε− 1)/2. Hence from (3.2) for each fixed x > 0 we
obtain the estimate

∫ γ+i∞

γ−i∞

∞
∑

n=0

∣

∣

∣

∣

xn−z

n! Γ(1 + n− z)

∣

∣

∣

∣

∫ c0+i∞

c0−i∞
|Γ(1− s+ z)Γ(1− s)f∗(s)dsdz|
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≤ B(1− c0 + γ, c0 − ε)Γ(1− γ)x−γ/2I−γ(2
√
x)

×
∫ γ+i∞

γ−i∞

∣

∣

∣

∣

Γ(1− ε+ z)

Γ(1− z)

∣

∣

∣

∣

∫ c0+i∞

c0−i∞

∣

∣

∣

∣

Γ(1− s)

Γ(s− ε)
f∗(s)dsdz

∣

∣

∣

∣

= O

(∫ γ+i∞

γ−i∞
|z|2γ−ε|dz|

∫ c0+i∞

c0−i∞
|s|ε|f∗(s)ds|

)

< +∞.

Consequently, the change of the order of integration and summation is possible in (3.2). After calculation
of the integral with respect to z using relation (8.4.19.1) in [4], Vol. 3 it becomes

I(x) =
1

2πi

∫ c0+i∞

c0−i∞

∞
∑

n=0

xn

n!
Jn+1−s(2

√
x) Γ(1− s)f∗(s)x(1−s)/2ds, (3.3)

where Jµ(w) is the Bessel function of the first kind [2], Vol. II. But the series inside (3.3) is calculated in
[4], Vol. 2, relation (5.7.6.7), namely

∞
∑

n=0

xn

n!
Jn+1−s(2

√
x) =

x(1−s)/2

Γ(2− s)
.

Thus substituting this value into (3.3) and applying the reduction formula for gamma-function, we arrive
at the equality

I(x) =
1

2πi

∫ c0+i∞

c0−i∞
f∗(s)

x1−s

1− s
ds. (3.4)

Hence the differentiation with respect to x > 0 under integral sign in (3.4) is permitted via the absolute
and uniform convergence since f∗(s) ∈ L1(c) (see Definition 2). Thus we establish equality (3.1) and
complete the proof.

As we see, expansion (3.1) generates the following reciprocal inversion formula of the index transform
(1.4)

f(x) =
1

2πi

d

dx

∫ γ+i∞

γ−i∞
I−z

(

2
√
x
)

x−z/2(Ff)(z)dz, x > 0. (3.5)

Corollary 1. Let, in addition, condition (2.7) hold. Then formula (3.5) can be written in the form
(2.10).

Proof. Indeed, in this case the differentiation under integral sign in (3.5) is allowed via the absolute and
uniform convergence. Hence using the identity for derivatives of Bessel functions [2], Vol. II

d

dx

[

I−z

(

2
√
x
)

x−z/2
]

= I−(z+1)

(

2
√
x
)

x−(z+1)/2,

we arrive at the result.

Corollary 2. Let c0 < 1, 2c0 − 1 < ε < c0 and f ∈ M−1
0,(|ε|+ε)/2(Lc). Then the homogeneous integral

equation
∫ ∞

0

tz/2Kz(2
√
t)f(t)dt = 0

has only the trivial solution.
Expansion (3.1) gives a new source of index integrals involving the modified Bessel function Iν(w). It

can be obtained employing the corresponding integrals (1.4) for concrete functions f from [4], Vol. 2. In
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fact, making a simple substitution in (1.4) and then using relation (2.16.6.4) in [4], Vol. 2 we calculate
the value of the index integral

1

2πi

∫ ν+i∞

ν−i∞
I−z

(

2
√
x
) Γ(z)

2z + 1
x−z/2 dz = e−2

√
x, x > 0; ν < 1/2.

Meanwhile, relation (2.16.33.2) in [4], Vol. 2 leads us to the value of the reciprocal index integral

1

4πi

∫ ν+i∞

ν−i∞
I−z

(

2
√
x
) Γ
(

z + µ
2

)

Γ
(

z − µ
2

)

Γ(z + 1)
x−z/2 dz

= Kµ(2
√
x)
[

Γ
(

1 +
µ

2

)

Γ
(

1− µ

2

)]−1

, x > 0; |Reµ|/2 < ν < 1/2.

More curious example can be calculated, for instance, via relation (2.16.8.4) in [4], Vol. 2. Indeed, we
have

1

2πi

∫ ν+i∞

ν−i∞
I−z

(

2
√
x
)

W−z/2, (z−1)/2

(

1

4p

)

Γ (z) (4px)−z/2 dz

= e−4px− 1
8p , x, p > 0; 1/2 < ν < ε+ 1/2, ε ∈ (0, 1/4).

where Wµ,ν(w) is the Whittaker function [2], Vol. I.

4 A convolution operator and integral equations of the convo-

lution type

In this section we will construct a convolution operator, which is related to the transformation (1.4) and
the Mellin transform [6]

(Mf) (z) =

∫ ∞

0

f(x)xz−1dx. (4.1)

Our construction will be based on the convolution properties of the Mellin transform in L1 (see [5], [6],
Th. 44) and representation (1.1). Indeed, considering (1.1) of the same parameter z and different positive
arguments x and y, we deduce the following representation of the product of these integrals, namely

4(xy)z/2Kz(2
√
x)Kz(2

√
y) =

∫ ∞

0

e−t− x
t tz−1dt

∫ ∞

0

e−u− y
uuz−1du

=

∫ ∞

0

vz−1

(
∫ ∞

0

e−
t(y+v)

v − x+v
t

dt

t

)

dv = 2

∫ ∞

0

K0

(

2

√

(x+ v)(y + v)

v

)

vz−1dv,

where the change of the order of integration is allowed by the Fubini theorem via the absolute convergence.
So we find the product integral formula for the kernel of transformation (1.4)

2(xy)z/2Kz(2
√
x)Kz(2

√
y) =

∫ ∞

0

K0

(

2

√

(x+ v)(y + v)

v

)

vz−1dv, (x, y) ∈ R
2
+, z ∈ C. (4.2)

Definition 3. We will call the following bilinear form (f ∗ g)(x), x ∈ R+

(f ∗ g)(x) = 2

∫

R
2
+

K0

(

2

√

(x+ u)(x+ v)

x

)

f(u)g(v)dudv (4.3)
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a convolution operator for the transformation (1.4) whenever it exists.
Let us consider the weighted L1-space L1(R+; 2x

α/2Kα(2
√
x)dx), α ∈ R with the norm

||f ||L1(R+;2xα/2Kα(2
√
x)dx) = 2

∫ ∞

0

|f(x)|xα/2Kα(2
√
x)dx.

Similar to (2.6), we prove first the composition representation of the transformation (1.4) in terms of
the Mellin and Laplace integrals.

Theorem 5. Let f ∈ L1(R+;x
(α−|α|)/2dx), α 6= 0. Then (Ff)(z) is analytic in the right half-plane

Re z ≥
{

0, if α > 0,

α, if α < 0

and can be represented there by the composition of the Mellin and Laplace transforms as follows

(Ff)(z) = M◦
(

e−t(Lf)(1/t)
)

(z). (4.4)

Proof. The proof is straightforward by Fubini’s theorem with the use of integral representation (1.1),
asymptotic behavior of the modified Bessel function and the estimates

|xz/2Kz(2
√
x)| ≤ xRez/2KRez(2

√
x) ≤ Cxβ/2Kβ(2

√
x), x > 0, (4.5)

where C > 0 is an absolute constant when

Re z ≥
{

0, if β ≥ 0,

β, if β < 0,

2xα/2Kα(2
√
x) ≤ x(α−|α|)/2Γ(|α|), α 6= 0, (4.6)

∫ ∞

0

|xz/2Kz(2
√
x)|f(x)|dx ≤ C

∫ ∞

0

|f(x)|
∫ ∞

0

e−t−x
t tα−1dtdx

≤ C Γ(|α|)
∫ ∞

0

x(α−|α|)/2|f(x)|dx < ∞.

Theorem 6. Let f, g ∈ L1(R+; 2x
α/2Kα(2

√
x)dx), α ∈ R. Then convolution (4.3) exists and belongs

to the space L1(R+;x
α−1dx), satisfying the Young type inequality

||f ∗ g||L1(R+;xα−1dx) ≤ ||f ||L1(R+;2xα/2Kα(2
√
x)dx)||g||L1(R+;2xα/2Kα(2

√
x)dx). (4.7)

Moreover, this form is commutative and the following factorization equality holds in terms of transfor-
mations (1.4), (4.1)

(M(f ∗ g)) (z) = (Ff)(z)(Fg)(z), (4.8)

where z belongs to the half-plane

Re z ≥
{

0, if α ≥ 0,

α, if α < 0.
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Proof. In fact, the existence of the convolution (4.3) for almost all x > 0 follows from Fubini’s theorem
and the estimate

∫ ∞

0

|(f ∗ g)(x)|xα−1dx ≤ 2

∫ ∞

0

xα−1

∫ ∞

0

∫ ∞

0

K0

(

2

√

(x+ u)(x+ v)

x

)

|f(u)g(v)|dudvdx

= 4

∫ ∞

0

uα/2Kα(2
√
u)|f(u)|du

∫ ∞

0

vα/2Kα(2
√
v)|g(v)|dv.

This also drives us to the Young type inequality (4.6). Hence the factorization equality (4.7) is an
immediate consequence of (4.2), (4.5) with β = α and straightforward calculations.

Letting α = 1 and using inequality (4.6) we obtain as a corollary the L1-property of the convolution
(4.3).

Corollary 3. Let f, g ∈ L1(R+; dx). Then convolution (4.3) exists and belongs to L1(R+; dx), yielding
the corresponding Young inequality

||f ∗ g||L1 ≤ ||f ||L1 ||g||L1. (4.9)

Moreover, the convolution is commutative and associative, satisfying the factorization equality (4.8) in
the half-plane Rez ≥ 0.

Further, appealing to Corollary 2 we prove an analog of Titchmarsh’s theorem about the absence of
divisors of zero for convolution (4.3).

Theorem 7. Let f, g ∈ L1(R+; dx). Then the equality (f ∗ g)(x) = 0 yields that at least one of the
functions f(x) and g(x) is equal to zero for all x > 0.

Proof. In fact, both functions (Ff)(z), (Fg)(z) are analytic in the half plane Rez > 0 and via equality
(4.8) at least on of them is identically equal to zero. Then the result follows from Theorem 5 due to the
uniqueness theorems in L1 for the Mellin and Laplace transforms.

The Parseval type equality for convolution (4.3) is an immediate consequence of the Plancherel L2-
theory of the Mellin transform [6]. We have

Theorem 8. Let f, g ∈ L1(R+; dx). Then (f ∗ g)(x) ∈ L2(R+;x
2α−1dx), α > 0 and the Parseval

type equality holds

∫ ∞

0

|(f ∗ g)(x)|2x2α−1dx =
1

2π

∫ ∞

−∞
|(Ff)(α + it)(Fg)(α+ it)|2 dt. (4.10)

Proof. Indeed by virtue of the generalized Minkowskii inequality and relation (8.4.23.27) in [4], Vol. 3
we derive

||f ∗ g||L2(R+;x2α−1dx) = 2





∫ ∞

0

∣

∣

∣

∣

∣

∫

R
2
+

K0

(

2

√

(x+ u)(x+ v)

x

)

f(u)g(v)dudv

∣

∣

∣

∣

∣

2

x2α−1dx





1/2

≤ 2

∫

R
2
+

|f(u)g(v)|
(

∫ ∞

0

K2
0

(

2

√

(x+ u)(x+ v)

x

)

x2α−1dx

)1/2

dudv

≤
(∫ ∞

0

K2
0

(

2
√
x
)

x2α−1dx

)1/2

||f ||L1 ||g||L1 = 2−2α−1/2π1/4 Γ3/2(2α)

Γ1/2(2α+ 1/2)
||f ||L1 ||g||L1 < ∞.

Hence factorization equality (4.8) and Theorem 71 in [6] give the result.
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Finally, let us consider a class of convolution integral equations of the first kind generated by (4.3)

∫ ∞

0

kh(x, y)f(y)dy = g(x), x > 0, (4.11)

where

kh(x, y) = 2

∫ ∞

0

K0

(

2

√

(x+ y)(x+ u)

x

)

h(u)du, (4.12)

h, g are given functions and f is to be determined.
Theorem 9. Let f ∈ M−1(Lc), c0 < 1, h ∈ L1(R+; 2x

α/2Kα(2
√
x)dx), 0 > α > c0 − 1 and

g ∈ L1(R+;x
α−1dx). Let also transformation (1.4) of h (Fh)(z) has no zeros in the strip Rez ∈ (α, 0)

and the quotient (Mg) (z)/(Fh)(z), where (Mg) (z) is the Mellin transform (4.1) of g, satisfies condition
(2.7) in this strip. Then a solution of integral equation (4.12) has the form

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
I−(1+z)

(

2
√
x
)

x−(1+z)/2 (Mg) (z)

(Fh)(z)
dz, x > 0, γ ∈ (α, 0). (4.13)

Proof. Clearly, by straightforward estimate of the norm we verify that if f ∈ M−1(Lc), c0 < 1 and
α ∈ (c0 − 1, 0), then f ∈ L1(R+; 2x

α/2Kα(2
√
x)dx). Therefore Theorem 6 and formula (4.8) are valid

for convolution (f ∗ h)(x). Hence since (Fh)(z) 6= 0 in the strip Rez ∈ (α, 0) it has the equality

(Ff)(z) =
(Mg) (z)

(Fh)(z)
.

Consequently, appealing to Theorem 3 and formula (2.10), we complete the proof of the theorem.

An interesting example of the equation (4.12) and its solution can be found, taking, for instance,
h(x) = x−1/2. In this case one can calculate the kernel (4.12) via relation (2.16.3.10) in [4], Vol. 2 and
we obtain

kh(x, y) =
π
√
x√

x+ y
e−2

√
x+y.

Moreover, it has (Fh)(z) =
√
πΓ(z +1/2) by formula (1.3). Hence Theorem 9 says that a solution of the

integral equation

π
√
x

∫ ∞

0

e−2
√
x+y

√
x+ y

f(y)dy = g(x), x > 0,

is given by the integral

f(x) =
1

2π
√
πi

∫ γ+i∞

γ−i∞

I−(1+z) (2
√
x)

Γ(z + 1/2)
x−(1+z)/2 (Mg) (z)dz, x > 0,

where γ ∈ (α, 0), α is chosen from the interval α ∈ (max(c0 − 1,−1/2), 0) and

(Mg) (γ + iτ) ∈ L1

(

|τ | > 1; |τ |1/2 eπ|τ |dτ
)

.

This example can be generalized, considering h(x) = xβ−1, β > 0. Hence using relation (2.16.3.8) in
[4], Vol. 2, we find

kh(x, y) = 2Γ(β)

(

x√
x+ y

)β

Kβ

(

2
√
x+ y

)

.
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Moreover, (Fh)(z) = Γ(β)Γ(β + z) and a solution of the equation

2Γ(β)

∫ ∞

0

(

x√
x+ y

)β

Kβ

(

2
√
x+ y

)

f(y)dy = g(x), x > 0,

is

f(x) =
1

2πΓ(β)i

∫ γ+i∞

γ−i∞

I−(1+z) (2
√
x)

Γ(z + β)
x−(1+z)/2 (Mg) (z)dz, x > 0,

where γ ∈ (α, 0), α is chosen from the interval α ∈ (max(c0 − 1,−β), 0) and

(Mg) (γ + iτ) ∈ L1

(

|τ | > 1; |τ |1−β eπ|τ |dτ
)

.

Finally we write this solution in terms of the Neumann type series. In fact, substituting the value
of the modified Bessel function I−(1+z) (2

√
x) by series (2.9), we change the order of summation and

integration via the absolute convergence to obtain

f(x) =
1

Γ(β)

∞
∑

n=0

xn−1

n! Γ(n+ β)

{

xβ(1 + x)−β−n
}−1

g,

where by the symbol

{

xβ(1 + x)−β−n
}−1

g =
1

2πi

∫ γ+i∞

γ−i∞

(Mg) (z)

Γ(n− z)Γ(z + β)
x−zdz

the generalized inverse Stieltjes transform is denoted (see details in [1]).
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