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DENSITY OF CRYSTALLINE POINTS ON UNITARY SHIMURA VARIETIES

PRZEMYSŁAW CHOJECKI

Abstract. We prove that crystalline points are dense in the spectrum of the completed Hecke
algebra on unitary Shimura varieties.
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1. Introduction

Recently, Matthew Emerton has proved local-global compatibility conjecture for GL2/Q in [Em1].
The proof (of the weak version of compatibility) crucially relies on the density of crystalline points
in the completed cohomology of modular curves. We take on this result and generalise it to unitary
Shimura varieties considered by Harris-Taylor in [HT]. This is done in corollary 4.12. The result
might be seen as the automorphic analogue of the fact, proved recently by Kentaro Nakamura in [Na],
that for a p-adic field K, n-dimensional crystalline representations of Gal(K̄/K) are Zariski dense
in the rigid analytic space associated to the universal deformation ring of a n-dimensional mod p
representation of Gal(K̄/K). Actually the proof of this result does not use in any essential way the
fact that we are dealing with unitary Shimura varieties and we could generalize it further to many
other Shimura varieties of PEL-type. We refreined from doing so, mostly because of the direct link to
known results about Galois representations (which are discussed in section 5).

The techniques which we use in the proof are those of Emerton and we are fairly close to his ex-
position, though the details differ due to some technical difficulties. For example, we are no longer
dealing with curves and we have to be careful about the higher cohomology groups. We circumvent it
by introducing a notion of a cohomologically Eisenstein ideal and localising all the cohomology groups
at a fixed cohomologically non-Eisenstein ideal. In the last section, we will give some criteria due to
Emerton-Gee and Helm for an ideal of a Hecke algebra to be cohomologically non-Eisenstein to show
that it is a very natural definition.

Acknowledgements. I would like to thank heartfully Jean-Francois Dat, who provided me with
several very useful insights and answered many of my questions.

2. Notation and definitions

Let L denote an imaginary quadratic field in which p splits. We will let c denote the complex
conjugation. Choose a prime u above p. Let F+ denote a totally real field of degree d. Set F = LF+.
We will assume that p is totally decomposed in F . Let D/F be a division algebra of dimension n2

such that F is the centre of D, the opposite algebra Dop is isomorphic to D ⊗L,c L and D is split at
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2 PRZEMYSŁAW CHOJECKI

all primes above u. We choose an involution of the second kind ∗ on D and assume that there exists
a homomorphism h : C→ DR for which b 7→ h(i)−1b∗h(i) is a positive involution on DR.

We define the reductive group

G(R) = {(λ, g) ∈ R× ×Dop ⊗Q R|gg∗ = λ}

We will assume that G is a unitary group of signature (n − 1, 1) for one (fixed) infinite place and
a unitary group of signature (0, n) at all the other infinite places, so that we are in the situation
considered by Harris and Taylor in [HT].

Let us also choose a p-adic field E with the ring of integers O and the residue field k.

We will consider the Shimura varieties SK for G which arises from the moduli problem MK de-
scribed as follows: MK is the functor from the category of pairs (S, s), where S is a connected locally
Noetherian F -scheme and s is a geometric point of S, to the category of sets, defined by sending a
pair (S, s) to the set of isogeny classes of quadruples (A, λ, i, ᾱ), where

(1) A is an abelian scheme over S.
(2) λ : A→ A∨ is a polarization.
(3) i : D →֒ EndS(A)⊗Z Q such that λ ◦ i(f) = i(f∗)∨ ◦ λ for all f ∈ D
(4) ᾱ is a π1(S, s)-invariant K-orbit of isomorphisms of F ⊗Q Af -modules α : V ⊗Q Af ≃ V As, which

take the pairing 〈·, ·〉 on V = Fn to a A×
f -multiple of the λ-Weil pairing on V As = H1(As,Af ). For

more details, see section 5 of [Ko2].
(5) Kottwitz’ determinant condition holds, i.e. for each f ∈ F , there is an equality of polynomials
detOS

(f |LieA) = detE(f |V
1) (here V 1 is a certain subspace of V ⊗Q E). For details, see section 5 of

[Ko2] or section 5 of [Sh].
(6) Two such quadruples (A, λ, i, ᾱ) and (A′, λ′, i′, ᾱ′) are isogenous if there exists an isogeny A→ A′

taking λ, i, ᾱ to γλ, i′, ᾱ′ for some γ ∈ Q×.

The moduli problem MK is a smooth separated algebraic stack which is representable by a quasi-
projective scheme if the objects it parameterizes have no nontrivial automorphism, so in particular
when K is sufficiently small, for example when K is neat (for the definition, see below).

Denote by X the set of G(R)-conjugates of h. Let SK be the canonical model over F of the Shimura
variety whose C points are defined by:

SH(C) = G(Q)\(G(Af )×X)/H

we have a bijection SH(C) ≃MH(C) of underlying sets.
Recall that to an algebraic finite-dimensional representation W over E of G, we can associate a

local system V(W ) on SK by the construction described in chapter 4 of [HT] (see also chapter 3 of
[Mi]). Here we use the fact that the Galois group of SK′ over SK for K ′ ⊂ K is equal to K/K ′ (see
the beginning of chapter 4 of [HT]).

If Kp is some fixed compact open subgroup of G(Ap
f ), then we write:

Hi(Kp)A = lim
−→
Kp

Hi
ét((SKpKp)/F̄ , A)

where the inductive limit is taken over all the compact open subgroups Kp of G(Qp) and where A
denotes one of E,O,O/̟sO. Write also

Ĥi(Kp)O = lim
←−
s

Hi(Kp)O/̟
sHi(Kp)O

To a finite-dimensional representation W of G over E associate an automorphic vector bundle VW
on SK and define a cohomology group by

Hi(VW )E = lim
−→
K

Hi
ét((SK)/F̄ , (VW )E)
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where (VW )E denotes the sheaf VW with coefficients extended to E.

Consider for the moment the general situation when Gw is some unramified group over Fw where
w is some place of F . Choose Kw a hyperspecial subgroup of Gw, define the Hecke algebra Hw(Gw)
as the set of compactly supported Kw-biinvariant O-valued functions on Gw. The structure of algebra
comes from the convolution. Normalise the Haar measure on Gw so that Kw has volume 1. For an
unramified representation π of Gw , define χπ : Hw(Gw)→ O by f 7→ trπ(f). It is known that π 7→ χπ

gives a bijection between unramified representations and the characters of Hecke algebra (see 1.1 of
[Sh], also for the references to the proof).

For an algebraic group G over a number field F , let Σ be a finite set containing all the primes of
F at which G is ramified. We put

HΣ(G) = ⊗w 6∈ΣHw(G(Fw))

Enlarge Σ to contain all the places where Kp is not hyperspecial. For a compact open subgroup
Kp of G(Ap

f ) and a compact open sugroup Kp of G(Qp) which is normal in G(Zp), let T(KpK
p)O

denote the image of HΣ(G) in EndO[G(Zp)/Kp](RΓ(KpK
p,O)) where RΓ(KpK

p,O) is the cohomology
complex of SKpKp with coefficients in O and endomorphisms are considered in the derived category
of O[G(Zp)/Kp]-modules. Observe that this algebra acts by functoriality on all the cohomology
groups. We will omit often subscript O from the notation. If K ′

p ⊂ Kp is an inclusion then there is
a natural surjection T(K ′

pK
p)→ T(KpK

p) which comes from the Hochschild-Serre spectral sequence
RΓ(Kp/K

′
p, RΓ(K ′

pK
p,O)) ≃ RΓ(KpK

p,O), where we have written RΓ(Kp/K
′
p,−) for the derived

complex of the functor I 7→ IKp/K
′

p . Define T(Kp) = lim
←−Kp

T(KpK
p) and equip it with its projective

limit topology, each of the O-algebras T(KpK
p) being equipped with its ̟-adic topology.

We also define the localisation of the completed cohomology groups at the maximal ideals of the
Hecke algebra. For a maximal ideal m of HΣ(G) and A = O or E, write:

Ĥi(Kp)A,m = T(Kp)m ⊗T(Kp) Ĥ
i(Kp)A

where by m above, we mean the image of m in T(Kp) (that is, the inverse limit over Kp of images of
m in each T(KpK

p)) and

Ĥi
A,m = lim

−→
Kp

Ĥi(Kp)A,m

Let us now recall some definitions from [Em4].

Definition 2.1. Let V be a representation of G over E. Here G is the group of Qp-points in some
connected linear algebraic group G over Qp. For a finite dimensional, algebraic representation W of
G over E, we will write VW−la for the locally W -algebraic vectors of V for the action G. We say that
a vector v in V is locally W -algebraic if there exists an open subgroup H of G, a natural number n,
and an H-equivariant homomorphism Wn → V whose image contains the vector v. It is proved in
proposition 4.2.2 of [Em4], that VW−la is a G-invariant subspace of V .

We say that a vector v in V is locally algebraic, if it is locally W -algebraic for some finite dimen-
sional algebraic representation W of G. The set of all locally algebraic vectors of V is a G-invariant
subspace of V , which we denote by Vla (see proposition 4.2.6 of [Em4]).

At the beginning of section 3, we will also use the notion of the locally analytic vectors to state
lemma 3.2. For the definition, the reader should consult definition 3.5.3 of [Em4]. We will denote by
Vlan the set of locally analytic vectors.

Let A be a ring, and let Γ be a profinite group. Then we define the completed group ring

A[[Γ]] = lim
←−
H

A[Γ/H ]

where H runs over the open subgroups of Γ.
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3. Cohomology

We start with the following definition

Definition 3.1. A maximal ideal m of T(K) is cohomologically Eisenstein if Hi((SK)F̄ ,Fp)m is non-
zero for some i 6= n− 1. For a compact open subgroup Kp of G(Ap

f ), A maximal ideal m of T(Kp) is

cohomologically Eisenstein if Hi((SKpKp)F̄ ,Fp)m is non-zero for some i 6= n − 1 and some compact
open subgroup Kp of G(Qp).

Let us remark, that by the long exact sequence associated to 0→ Zp → Zp → Fp → 0, the maximal
ideal m of T(K) is cohomologically Eisenstein if Hi((SK)F̄ ,Zp)m is non-zero for some i 6= n − 1 or
Hn−1((SK)F̄ ,Zp)m is not torsion-free.

Let m be a cohomologically non-Eisenstein maximal ideal of some T(K).

Lemma 3.2. There is a natural isomorphism

Hn−1(VW )E,m ≃ Homg(W
∨, (Ĥn−1

E,m )lan)

Here (Ĥn−1
E,m )lan denotes the set of locally analytic vectors and g is the Lie algebra of G(Qp)

Proof. This results from the Emerton spectral sequence (2.2.18 of [Em3]; see also (2.4) of [Em3] where
it is explained how the result carries over for general Shimura varieties):

Extig(W
∨, (Ĥj

E)lan)⇒ Hi+j(VW )

after we localise it at the cohomologically non-Eisenstein ideal m, because Ĥj
E,m = 0 for j 6= n−1. �

Let Wi, (i ∈ I) be a complete set of isomorphism class representatives of the irreducible algebraic
representations of G over E. Let Bi = EndG(Wi). We obtain

Proposition 3.3. The evaluation map gives a GF ×G(Af )-equivariant isomorphism:

⊕

i∈I,n∈Z

Hn−1(VWi
)E,m ⊗Bi

W∨
i ≃ (Ĥn−1

E,m )la

Here GF ×G(Af ) acts on W∨
i through its quotient G(Qp).

Proof. Let us put V = Ĥn−1
E,m . By the corollary 4.2.7 in [Em4], we have:

⊕

W

VW−la ≃ Vla

where the sum runs over the complete set of isomorphism class representatives of the irreducible
algebraic representations W of G. By Proposition 4.2.10 of [Em4] we have a topological isomorphism

Homg(W,Vlan)⊗B W ≃ VW−la

where B = EndG(W ). We use these facts and the lemma 3.2 to conclude.
�

We say that a cuspidal automorphic representation π = π∞ ⊗ πf of G(A) occurs in Hi(SK ,VW ) if
the πf -isotypical component W i

π = HomG(Af )(πf , H
i(VW )) is non-zero and π∞ is cohomological for

the representation W . We have a decomposition:

(A) Hi(SK ,VW ) =
⊕

π π
K
f ⊗W i

π

where π runs over automorphic representations of weight W .
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4. Density result

Fix a finite set Σ0 of rational primes in Q, not containing p and containing all the rational primes
which divide the primes in F at which D is ramified. We will also denote by Σ0 the set of primes in
F (or in F+) which lie over those in Σ0. It should not cause any confusion. Let Σ = Σ0 ∪ {p}.

Let KΣ
0 =

∏
l/∈Σ G(Zl) and let G = G(Qp). Define also GΣ0

=
∏

l∈Σ0
G(Ql) and GΣ = G(Zp)GΣ0

.

We fix a maximal compact subgroup KΣ,0 =
∏

l∈Σ G(Zl) and in the rest of this article we will
consider only those compact open subgroups KΣ ⊂ GΣ which are normal in KΣ,0. For such a compact
open sugroup KΣ ⊂ GΣ, we write T(KΣ) for the image of HΣ(G) in EndO[KΣ,0/KΣ](RΓ(KΣK

Σ
0 ))

(endomorphisms are considered in the derived category of O[KΣ,0/KΣ]-modules). This gives us
a compatible action of Hecke algebra on our tour of Shimura varieties. For any such K ′

Σ ⊂ KΣ

we have a surjection T(K ′
Σ) ։ T(KΣ). We define T(KΣ0

) = lim
←−Kp

T(KΣ0
Kp). Finally we put

TΣ = lim
←−KΣ

T(KΣ).

We fix a cohomologically non-Eisenstein ideal m of TΣ = lim
←−KΣ0

T(KΣ0
), where cohomologically

non-Eisenstein means the vanishing of the cohomology groups of Hi(SKΣ0
KpKΣ

0
,Fp)m for i 6= p and

for all KΣ0
and Kp.

Definition 4.1. We call a compact open subgroup KΣ0
an allowable level for m, if the image of m in

T(KΣ0
) is a proper maximal ideal.

For A = E,O,O/̟sO, we will write

Hi(KΣ0
)A = Hi(KΣ0

KΣ
0 )A

and similarly for Ĥi(KΣ0
)A. We also put

Ĥi(KΣ0
)O,m = T(KΣ0

)m ⊗T(KΣ0
) Ĥ

i(KΣ0
)O

and
Ĥi

O,m,Σ = lim
−→
KΣ0

Ĥi(KΣ0
)O,m

where the limit runs over all the allowable levels KΣ0
for m. By Ĥi(KΣ0

)E,m we will mean

Ĥi(KΣ0
)O,m ⊗O E and similarly for Ĥi(KΣ0

)E,m

Remark 4.2. We will use the notion of neatness for compact open subgroups Kf of G(Af ). For that,
see section 0.6 in [Pi] for a precise definition. We will only need this condition to ensure that Kf acts
on G(Q)\(X × G(Af )) without fixed points, so that we can use Hochschild-Serre spectral sequence.
Actually, any sufficiently small open compact subgroup is neat (see also 0.6 in [Pi])

Let us first consider an auxilary lemma:

Lemma 4.3. Let Γ be a finite group and let V be a finitely generated representation of Γ over O/̟sO.
Then if V is of finite injective dimension as a representation of Γ, then V is injective.

Proof. Dualizing the situation, by assumption we know that V ′ is a finitely generated module over
(O/̟sO)[Γ] which is of finite projective dimension. Take a finite, projective resolution of V ′

0→ Pn → ...→ P1 → V ′ → 0

so that Pi are finitely generated projective (O/̟sO)[Γ]-modules (because (O/̟sO)[Γ] is self-dual,
i.e. (O/̟sO)[Γ]′ = (O/̟sO)[Γ]), and hence each Pi is a direct factor of (O/̟sO)[Γ]ri for some
ri > 0. Dualizing again, we obtain an injective resolution of V of the form

0→ V → P ′
1 → ...→ P ′

n−1 → P ′
n → 0

But each P ′
i is again a direct factor of (O/̟sO)[Γ]ri , as (O/̟sO)[Γ]′ = (O/̟sO)[Γ], and hence each

P ′
i is again projective. This means that the last surjection P ′

n−1 → P ′
n splits and hence we can shorten

choosen injective resolution. Continuing this process, we arrive at the isomorphism V ≃ P ′, where P ′

is some injective module.
�
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Consider a compact open subgroup Kp of G and fix Kp ⊂ G(Ap
F ) as in the lemma below. Recall

that the Galois group of lim
←−K′

p⊂Kp
SK′

pK
p over SKpKp is equal to Kp in the case of Shimura varieties

of Harris-Taylor, but for more general Shimura varieties it might be a proper quotient of Kp and hence
we will note it Lp for the sequel in order to show that nothing changes in general for the following
lemma. We will define in the same manner L′

p for other choice of K ′
p ⊂ G.

Lemma 4.4. If Kp is a compact open subgroup of G = G(Qp), and if KΣ0
⊂ GΣ0

is an allowable

level, chosen so that KpKΣ0
KΣ0

0 is neat, then
a) for each s > 0, Hn−1(KΣ0

)O/̟sO,m is injective as a smooth representation of Lp over O/̟sO.

b) Hi(M(KpKΣ0
KΣ

0 ),W
∨)m = 0 for all i 6= n− 1, where W is a local system induced by a finitely

generated smooth representation W of Lp over O/̟sO.

Proof. a) Take a finitely generated smooth representation W of Lp over O/̟sO, consider its smooth
Pontrjagin dual and the constant local system W∨ it induces on our Shimura variety S

KpKΣ0
K

Σ0
0

by the well-known correspondence between local systems and representations of the Galois group.
For K ′

p sufficiently small (i.e. for which L′
p acts trivially on W and hence W is a constant sheaf on

M(K ′
pKΣ0

KΣ
0 )) we have

Hr(M(K ′
pKΣ0

KΣ
0 ),W

∨) ≃ Hr(M(K ′
pKΣ0

KΣ
0 ),O/̟

sO)⊗W∨ ≃ Hom(W,Hr(M(K ′
pKΣ0

KΣ
0 ),O/̟

sO))

Consider Hochschild-Serre spectral sequence:

Hi(Lp/L
′
p, H

j(M(K ′
pKΣ0

KΣ
0 ),W

∨))⇒ Hi+j(M(KpKΣ0
KΣ

0 ),W
∨)

Taking for the moment W to be a trivial representation and localising the spectral sequence at m

which is cohomologically non-Eisenstein, we get by looking at the i+ j = n− 1 an isomorphism

Hn−1(M(K ′
pKΣ0

KΣ
0 ),O/̟

sO)
Lp

m ≃ Hn−1(M(KpKΣ0
KΣ

0 ),O/̟
sO)m

Take direct limit over K ′
p to obtain

Hn−1(KΣ0
)
Lp

O/̟sO,m ≃ Hn−1(M(KpKΣ0
KΣ

0 ),O/̟
sO)m

Using this isomorphism for K ′
p and the isomorphism mentioned before we have

Hi(Lp/L
′
p, H

j(M(K ′
pKΣ0

KΣ
0 ),W

∨)) ≃ Hi(Lp/L
′
p, Hom(W,Hj(KΣ0

)
L′

p

O/̟sO,m)) ≃ ExtiLp/L′
p
(W,Hj(KΣ0

)
L′

p

O/̟sO,m)

and so our spectral sequence transforms to

ExtiLp/L′
p
(W,Hj(KΣ0

)
L′

p

O/̟sO,m)⇒ Hi+j(M(KpKΣ0
KΣ

0 ),W
∨)m

and hence

ExtiLp/L′
p
(W,Hn−1(KΣ0

)
L′

p

O/̟sO,m) ≃ Hn−1+i(M(KpKΣ0
KΣ

0 ),W
∨)m

Observe that, because Hi+j(M(KpKΣ0
KΣ

0 ),W
∨)m = 0 for i+ j > 2n− 2, we have

ExtiLp/L′
p
(W,Hj(KΣ0

)
L′

p

O/̟sO,m) = 0

for i > n − 1 and hence Hn−1(KΣ0
)
L′

p

O/̟sO,m is of finite injective dimension as a representation of

Lp/L
′
p. The group Lp/L

′
p is finite and hence we can use the lemma proved above. Applying it to

Γ = Lp/L
′
p and V = Hn−1(KΣ0

)
L′

p

O/̟sO,m shows that in fact Hn−1(KΣ0
)
L′

p

O/̟sO,m is injective as a

representation of Lp/L
′
p and so ExtiLp/L′

p
(W,Hn−1(KΣ0

)
L′

p

O/̟sO,m) = 0 for i 6= 0

Consider Hochschild-Serre spectral sequence for a pro-scheme lim
←−Kp

M(KpKΣ0
KΣ

0 ) over a scheme

M(K ′
pKΣ0

KΣ
0 ) after localisation at m

Hi(L′
p, H

j(KΣ0
)O/̟sO,m)⇒ Hi+j(M(K ′

pKΣ0
KΣ

0 ),O/̟
sO)m

By assumption that m is cohomologically non-Eisenstein, we know that Hi+j(M(K ′
pKΣ0

KΣ
0 ),O/̟

sO)m =

0 for i+ j 6= n− 1 and so we conclude that Hi(L′
p, H

n−1(KΣ0
)O/̟sO,m) = 0 for i 6= 0.
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Because the functor which takes I to IL
′

p , where I is Lp-representation, maps injective objects to

injective objects, we can derive the functor (HomLp
(W,−)L

′

p)Lp/L
′

p to obtain a spectral sequence

ExtiLp/L′
p
(W,Hj(L′

p, H
n−1(KΣ0

)O/̟sO,m))⇒ Exti+j
Lp

(W,Hn−1(KΣ0
)O/̟sO,m)

As Hj(L′
p, H

n−1(KΣ0
)O/̟sO,m) = 0 for j 6= 0, the spectral sequence degenerates to:

ExtiLp/L′
p
(W,Hn−1(KΣ0

)
L′

p

O/̟sO,m) ≃ ExtiLp
(W,Hn−1(KΣ0

)O/̟sO,m)

We have proved above that Hn−1(KΣ0
)
L′

p

O/̟sO,m is injective as a representation of Lp/L
′
p and so

ExtiLp/L′
p
(W,Hn−1(KΣ0

)
L′

p

O/̟sO,m) = 0 for i 6= 0, which implies by the above isomorphism that

ExtiLp
(W,Hn−1(KΣ0

)O/̟sO,m) = 0 for i 6= 0, i.e. Hn−1(KΣ0
)O/̟sO,m is an injective representation

of Lp over O/̟sO as W is an arbitrary finitely generated smooth representation.
b) After a) Hn−1(KΣ0

)O/̟sO,m is an injective representation of Lp over O/̟sO. Let us look again
at the spectral sequence

ExtiLp
(W,Hj(KΣ0

)O/̟sO,m)⇒ Hi+j(M(KpKΣ0
KΣ

0 ),W
∨)m

to see that, as ExtiLp
(W,Hn−1(KΣ0

)O/̟sO,m) = 0 for i > 0, we have Hi+j(M(KpKΣ0
KΣ

0 ),W
∨)m = 0

for all i+ j 6= n− 1.
�

Remark 4.5. Observe that point b) tells that assuming that our ideal m is cohomologically non-
Eisenstein, we obtain a vanishing result for H•(M(KpKΣ0

KΣ
0 ),W

∨)m for all local systems coming
from finitely generated smooth representations W of Lp over O/̟sO. For similar results in the
literature, see [MT] and [Di] where the authors obtain vanishing results for different Shimura varieties
also after localising at a Hecke ideal. In a slightly different vein, a general vanishing result for
automorphic sheaves on Shimura varieties of PEL-type is formulated and proved in [LS]. The vanishing
result is proved without localising at a Hecke ideal, but with additional conditions on considered sheaves.

Proposition 4.6. Let Kp be a compact open subgroup of G(Qp). Then
(
Ĥn−1

E,m,Σ

)Kp

is an E[GΣ0
]-

module of finite length.

Proof. By Proposition 3.3 (and the discussion in the section 4 of [He]) we have
(
Ĥn−1

E,m,Σ

)Kp

=
⊕

π

πKp
p ⊗ πΣ0

where π runs over automorphic representations which are cohomological of trivial weight, are unram-
ified outside Σ, have nonzero Kp invariants and where we have denoted πΣ0

= ⊗l∈Σ0
πl. Moreover to

each representation π as above one can attach a p-adic Galois representation ρπ of Gal(F̄ /F ) such
that for all places v = wwc of F+ which are split in F , πv ◦ iw corresponds to ρπ,w by the Local
Langlands correspondence (iw is an isomorphism between G(F+

v ) and GLn(Fw)) and each ρπ is a lift
of a mod p Galois representation ρ̄m associated to m (see the section 5 for the precise definition of ρ̄m,
which we do not need here). There are only finitely many automorphic lifts of ρ̄m of given weight, the
set of possible ramification and which have non-zero Kp-invariants. Indeed, all such automorphic lifts
will be of bounded conductor: non-zero Kp-invariants force a bound on p-conductor and the outside-p
part of the conductor is bounded by the result of Livne (see proposition 1.1 in [Li] where is proved an
equality of Swan conductors of a lift and the reduction; this implies the result as the conductor is the
sum of tame part and Swan conductor and the tame part has the obvious bound). Thus, there are

only finitely many π in the sum above and hence we can conclude as each π
Kp
p is finite dimensional

and
(
Ĥn−1

E,m,Σ

)Kp

is admissible. �

Corollary 4.7. Let Kp be a compact open subgroup of G(Qp). Then
(
Hn−1

k,m,Σ

)Kp

is finitely generated

as an k[GΣ0
]-module.
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Proof. By the proposition above,
(
Ĥn−1

E,m,Σ

)Kp

is of finite length. We know that every O-stable lattice

in a smooth E-representation of GLn(Ql) of finite length is finitely generated (see proposition 3.3 in

[Vi]). Hence
(
Ĥn−1

O,m,Σ

)Kp

is finitely generated. Because m is cohomologically non-Eisenstein we have

(
Ĥn−1

O,m,Σ

)Kp

/̟
(
Ĥn−1

O,m,Σ

)Kp

≃
(
Hn−1

k,m,Σ

)Kp

and so we conclude. �

Corollary 4.8. If Kp is a pro-p open subgroup of G, and if KΣ0
⊂ GΣ0

is an allowable level, chosen so

that KpKΣ0
KΣ0

0 is neat, then, for some r > 0, there is an isomorphism Ĥn−1(KΣ0
)O,m ≃ C(Kp,O)

r

of ̟-adically admissible Kp-representations over O.

Proof. As Kp is a pro-p group, the completed group ring (O/̟sO)[[Kp]] is a (non-commutative)
local ring, thus any non-zero finitely generated projective (O/̟sO)[[Kp]]-module is isomorphic to
(O/̟sO)[[Kp]]

r (theorem of Kaplansky). We dualize it and using lemma 4.4, corollary 4.7 and the
isomorphism

Ĥn−1(KΣ0
)O,m/̟

sĤn−1(KΣ0
)O,m ≃ Hn−1(KΣ0

)O/̟sO,m

we conclude that
Ĥn−1(KΣ0

)O,m/̟
sĤn−1(KΣ0

)O,m ≃ C(Kp,O/̟
sO)rs

for each s > 0 and some rs > 0. Observe that if we would prove that rs is independent of s then we

could pass to the projective limit in s and arrive at the conclusion. Denote by M = Ĥn−1(KΣ0
)O,m

and let r = r1. Then the dual M ′ of M is a O[[Kp]]-module and moreover we have M ′/̟sM ′ ≃
((O/̟sO)[[Kp]])

rs . By applying topological Nakayama’s lemma (see section 3 in [BH]) to M ′/̟sM ′,
ideal ̟(O/̟sO)[[Kp]] and the local ring (O/̟sO)[[Kp]], we get rs = r as wanted.

�

Proposition 4.9. If KΣ0
⊂ GΣ0

is an allowable level, then the space of G(Zp)-algebraic vectors

(Ĥn−1(KΣ0
)E,m)G(Zp)−alg is dense in Ĥn−1(KΣ0

)E,m.

Proof. We choose Kp sufficiently small and such that it is normal in G(Zp). Recall that the Galois
group of M(KΣ0

) = lim
←−K′

p

M(K ′
pKΣ0

KΣ
0 ) (the limit is taken over compact open subgroups of G) over

M(G(Zp)KΣ0
KΣ

0 ) is equal to G(Zp).

By the above corollary, the topological dual Ĥn−1(KΣ0
)′E,m is free as a module over E ⊗O O[[Kp]]

and this implies that Ĥn−1(KΣ0
)′E,m is projective as a module over E⊗OO[[G(Zp)]]. Indeed, it follows

from the isomorphism of functors:

HomE⊗OO[[G(Zp)]](Ĥ
n−1(KΣ0

)′E,m,−) ≃ HomE⊗OO[[Kp]](Ĥ
n−1(KΣ0

)′E,m,−)
G(Zp)/Kp

as the target is exact, because of the freeness of Ĥn−1(KΣ0
)′E,m over E ⊗O O[[Kp]] and the fact that

passing to invariants under a finite group G(Zp)/Kp is exact as E is of characteristic 0.

Hence, dualising it again, we find that Ĥn−1(KΣ0
)E,m may be G(Zp)-equivariantly embedded as a

topological direct summand of C(G(Zp), E)s for some s > 0. To prove that (Ĥn−1(KΣ0
)E,m)G(Zp)−alg

is dense in Ĥn−1(KΣ0
)E,m it suffices to prove that C(G(Zp), E)G(Zp)−alg is dense in C(G(Zp), E).

Because G(Zp) ≃ Z×
p ×

∏
v|p GLn(Zp) is an open, closed subset of Zdn2+1

p , we can consider

continuous functions on G(Zp) as continuous functions on Zdn2+1
p . By the result of Mahler on

expansions of continuous p-adic functions, we know that each function on Zdn2+1
p can be written as

a power series, so the set of polynomials on Zdn2+1
p is dense. Restricting approximating polynomials

to G(Zp) shows that the polynomial functions on G(Zp) are dense in C(G(Zp), E). We conclude by
observing that this set of polynomials is contained in C(G(Zp), E)G(Zp)−alg. �

Let TΣ,m = lim
←−KΣ0

T(KΣ0
)m where the limit runs over all the allowable levels for m and make the

following definition:
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Definition 4.10. We say that a closed point p ∈ SpecTΣ,m[1/p] (resp. of SpecT(KΣ0
)m[1/p]) is an au-

tomorphic point if the system of Hecke eigenvalues SpecTΣ,m[1/p]→ κ(p) (resp. SpecT(KΣ0
)m[1/p]→

κ(p)) determined by p arises from an automorphic, cohomological (appearing in the decomposition of
Hn−1(VW ) for some representation W ) representation.

Remark that p is an automorphic point if and only if Ĥn−1
E,m,Σ[p]la is non-zero. This follows from

the proposition 3.3.

Definition 4.11. If KΣ0
⊂ GΣ0

is any allowable level for m, then we let C(KΣ0
) denote the

subset (of crystalline points) of closed points p ∈ SpecT(KΣ0
)m[1/p] that are automorphic and whose

associated Galois representations (that is Wn−1
π from the decomposition (A) in section 3 for all π

which corresponds to p) are crystalline at each v|p, v ∈ F . Let C denote the subset of closed points
p ∈ SpecTΣ,m[1/p] that are automorphic and whose associated Galois representations are crystalline
at each v|p.

Also here, we can remark that p is a crystalline point if and only if Ĥn−1
E,m,Σ[p]la is non-zero and the

Galois action on it is crystalline.

Corollary 4.12. The direct sum
⊕

p∈C Ĥn−1
E,m,Σ[p]la is dense in Ĥn−1

E,m,Σ.

Here Ĥn−1
E,m,Σ[p] means the subrepresentation of Ĥn−1

E,m,Σ on which p acts trivially.

Proof. First of all, observe that it suffices to prove that
⊕

p∈C(KΣ0
) Ĥ

n−1(KΣ0
)E,m[p]la is dense in

Ĥn−1(KΣ0
)E,m. for any allowable level KΣ0

⊂ GΣ0
. Proposition above shows that (Ĥn−1(KΣ0

)E,m)G(Zp)−alg

is dense in Ĥn−1(KΣ0
)E,m. Thus E[G](Ĥn−1(KΣ0

)E,m)G(Zp)−alg (the E[G]-representation generated

by (Ĥn−1(KΣ0
)E,m)G(Zp)−alg) is also dense in Ĥn−1(KΣ0

)E,m. From proposition 3.4 and the formula

Hn−1(SK ,VW ) =
⊕

π π
K
f ⊗Wn−1

π , we deduce:

E[G](Ĥn−1(KΣ0
)E,m)G(Zp)−alg ≃

(
⊕

i∈I

⊕

π is Wi−coh.

(πK
f ⊗Wn−1

π )m ⊗Bi
W∨

i

)

G(Zp)−alg

≃

≃
⊕

p

Ĥn−1(KΣ0
)E,m[p]la

where the sum is taken over all automorphic, cohomological representations which have non-zero

G(Zp)-algebraic vector, in particular π
GLn(Zp)
v 6= 0 for each v|p, v ∈ F . In order to see that the

sum on the right goes through C(KΣ0
) (actually, as we don’t assume any local-global compatibility,

over a possibly smaller subset of C(KΣ0
)), recall that Shimura varieties of PEL-type, when the level

at p is hyperspecial, have good reduction at all primes v dividing p; this appears in the section 5
of [Ko2] and follows from the results of Langlands, Rapoport and Zink. Applying the crystalline
conjecture of Fontaine (proved, for example, in [Ts]) to each term appearing in the isomorphism from
the proposition 3.3, just like in 4.5.4 of [CHL], we conclude that the representations appearing in the

cohomology Ĥn−1(KΣ0
)
G(Zp)
E,m are crystalline at each v|p. Here we are also using the fact that the local

systems VWi
are obtained by tensor operations from the cohomology of an abelian scheme over our

Shimura variety (precisely, the cohomology of a Shimura variety with coefficients in VWi
equals the

image by an idempotent associated to Wi of the cohomology with trivial coefficients of the universal
abelian scheme over our Shimura variety) and so we can indeed refer to the classic version of crystalline
conjecture which does not involve coefficients. For this, see also 4.5.4 in [CHL].

We conclude that representations appearing in Ĥn−1(KΣ0
)E,m[p]

G(Zp)
la are crystalline at each v|p

and those are the Galois representations Wn−1
π . So, the set of points over which we take the sum on

the righthand side in the above formula is the subset of C(KΣ0
). In particular, the result follows.

�

Corollary 4.13. The set C is Zariski dense in SpecTΣ,m, that is,
⋂

p∈C p = 0.



10 PRZEMYSŁAW CHOJECKI

Proof. Suppose that t ∈
⋂

p∈C p. Then t annihilates
⊕

p∈C Ĥn−1
E,m,Σ[p] and hence, by the above

corollary, t annihilates Ĥn−1
E,m,Σ. But TΣ,m acts faithfully on Ĥn−1

E,m,Σ and hence t = 0. �

5. Eisenstein ideals and Galois representations

In this section we will discuss the conjectural relation between cohomologically non-Eisenstein ideals
and Galois representations.

The following discussion is based on [He]. Let us denote by p a minimal prime ideal of T(K).
Then p determines, for each prime l that splits in L, is unramified in F and does not divide the level
of K, an unramified representation πp,l of G(Ql) over Q̄p (actually, over T(K)p). Take W to be an
irreducible representation of G over E. We have

Hn−1(SK ,VW )p =
⊕

π

Hn−1(VW )[π]K

where the sum is taken over irreducible admissible representations π of G(A) such that

(i) πK 6= 0
(ii) π∞ is cohomological for W
(iii) πl ≃ πp,l for all l that split in L, are unramified in F and do not divide the level of K. For l

which does not split in L, see lemma 2.2 in [TY], for the characterisation of πl using base change for
unitary groups.

To such a π one can associate a Galois representation ρπ : GF → GLn(Q̄p) such that for all primes
v = wwc of F+ which split in F , ρπ,w corresponds to πv ◦ iw via the Local Langlands correspondence,
where iw is an isomorphism between G(F+

v ) and GLn(Fw) (see proposition 3.3.4 of [CHT]). Moreover,
if ρπ is irreducible, then Hn−1(VW )[π] is isomorphic (up to semisimplification) to some number of
copies of π ⊗Q̄p

ρπ (see proposition 4.1 in [He]). We will denote ρπ also by ρp as it depends only on
p, because by Chebotarev density theorem a Galois representation is determined by a dense subset
and so, in our case, it is uniquely determined by primes which are unramified in F , split in L, and
do not divide the level K. Indeed, one should observe that the set {Frobw|w is a place of F not
in Σ, w 6= wc}, where Σ is some finite set, is dense in GF,Σ. Denote by S the set of primes of F+

below those of Σ. By Chebotarev density theorem, we know that {Frobv|v is a place of F+ not in
S, v = wwc in F} ⊂ GF+,S has density 1

2 . But we have GF,Σ ⊂ GF+,S ։ Gal(F/F+), thus GF,Σ is
of index 2 in GF+,S , so that {Frobw|w is a place of F not in Σ, w 6= wc} is dense in GF,Σ.

Let m be the unique maximal ideal containing p. We have a representation ρ̄m : GF →
GLn(T(K)/m) via reduction modulo m. That is, choose some automorphic representation π cor-
responding to p and let ρπ : GF → GLn(Q̄p) be the Galois representations associated to π as above.
Choose an invariant lattice in ρπ, reducing and semisimplyfying gives us the desired representation
ρ̄m. The reader may want to compare this with the proof of proposition 3.4.2 in [CHT]. By density
again, we see that ρ̄m is well-defined up to semisimplification and does not depend on the chosen
minimal ideal p.

We expect:

Conjecture 5.1. If the Galois representation ρ̄m is absolutely irreducible, then m is cohomologically
non-Eisenstein.

For a result in this direction, see appendix A in [He], where the conjecture is proved under many
additional hypotheses on ρ̄m. Recently, Matthew Emerton and Toby Gee proved a stronger theorem,
which is close to the above conjecture for U(2, 1) Shimura varieties. Let us cite their theorem B (see
also corollary 3.5.1) from [EG]. We refer to their paper for neccessary definitions.

Theorem 5.2. Let XK be a projective U(2, 1)-Shimura variety of some sufficiently small level K. Let
m be a maximal ideal of the Hecke algebra T(K) and let ρ̄m : GF → GL3(F̄p) be the associated Galois
representation. Suppose that we have SL3(k) ⊂ ρ̄m(GF ) ⊂ F̄×

p SL3(k) for some finite extension k/Fp

and that ρ̄m|GQp
is 1-regular and irreducible. Then m is cohomologically non-Eisenstein.
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Finally, let us remark, that the reader may want to compare our notion of a cohomologically
Eisentein ideal with an Eisenstein ideal of Clozel-Harris-Taylor in [CHT] which is defined to be
a maximal ideal m such that the associated representation ρ̄m is absolutely reducible. There is a
conjecture B in [CHT] related to this notion.
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