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Abstract. We review the properties of eigenvalues and eigenfunctions of the Laplace operator
in bounded Euclidean domains with Dirichlet, Neumann or Robin boundary condition. We keep the
presentation at a level accessible to scientists from various disciplines ranging from mathematics to
physics and computer sciences. The main focus is put onto multiple intricate relations between the
shape of a domain and the geometrical structure of eigenfunctions.
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Foreword. Since the theory of the Laplace operator is a vast and actively de-
veloping field, any review would be necessarily incomplete. Although we have tried to
collect and overview the major achievements on geometrical properties of Laplacian
eigenvalues and eigenfunctions in Euclidean bounded domains, some significant works
might be overlooked. We would greatly appreciate any comments, critics, corrections
and bibliography updates (please send them to the corresponding author). These im-
provements will be included into the revised version and properly acknowledged.

1. Introduction. This review focuses on the classical eigenvalue problem for the
Laplace operator ∆ = ∂2/∂x2

1 + ... + ∂2/∂x2
d in an open bounded connected domain

Ω ⊂ Rd (d = 2, 3, ... being the space dimension),

−∆um(x) = λmum(x) (x ∈ Ω), (1.1)

with Dirichlet, Neumann or Robin boundary condition on a piecewise smooth bound-
ary ∂Ω:

um(x) = 0 (x ∈ ∂Ω) (Dirichlet),

∂

∂n
um(x) = 0 (x ∈ ∂Ω) (Neumann),

∂

∂n
um(x) + hum(x) = 0 (x ∈ ∂Ω) (Robin),

(1.2)

where ∂/∂n is the normal derivative pointed outwards the domain, and h is a positive
constant. The spectrum of the Laplace operator is known to be discrete, the eigen-
values λm are positive and ordered in an ascending order by the index m = 1, 2, 3, ...,

0 ≤ λ1 < λ2 ≤ λ3 ≤ ... (1.3)

(with possible multiplicities), while the eigenfunctions {um(x)} form a complete basis
in the functional space L2(Ω) of measurable and square-integrable functions on Ω
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[107, 333]. By definition, the function 0 satisfying Eqs. (1.1, 1.2) is excluded from
the set of eigenfunctions. Since the eigenfunctions are defined up to a multiplicative
factor, it is sometimes convenient to normalize them to get the unit L2-norm:

‖um‖2 ≡ ‖um‖L2(Ω) ≡

∫
Ω

dx |um(x)|2
1/2

= 1 (1.4)

(note that there is still ambiguity up to the multiplication by eiα, with α ∈ R).
Laplacian eigenfunctions appear as vibration modes in acoustics, as electron waves

functions in quantum waveguides, as natural basis for constructing heat kernels in dif-
fusion, etc. For instance, vibration modes of a thin membrane (a drum) with a fixed
boundary are given by Dirichlet Laplacian eigenfunctions um, with the drum frequen-
cies

√
λm. In an experiment, a particular eigenmode can be excited at the corre-

sponding frequency [348–350]. In diffusion theory, an interpretation of eigenfunctions
is less explicit. The first eigenfunction represents the long-time asymptotic spatial
distribution of particles diffusing in a bounded domain (see below). A conjectural
probabilistic representation of higher-order eigenfunctions through a Fleming-Viot
type model was developed by Burdzy et al. [78, 80].

The eigenvalue problem (1.1, 1.2) is archetypical in the theory of elliptic oper-
ators, while the properties of the underlying eigenfunctions have been thoroughly
investigated in various mathematical and physical disciplines, including spectral the-
ory, probability and stochastic processes, dynamical systems and quantum billiards,
condensed matter physics and quantum mechanics, theory of acoustical, optical and
quantum waveguides, computer sciences, etc. Many books and reviews were dedicated
to different aspects of Laplacian eigenvalues, eigenfunction and their applications (see,
e.g., [7, 20, 21, 27, 47, 96, 190, 199, 233, 304, 315]). The diversity of notions and meth-
ods developed by mathematicians, physicists and computer scientists often makes the
progress in one discipline almost unknown or hardly accessible to scientists from the
other disciplines. One of the goals of the review is to bring together various facts
about Laplacian eigenvalues and eigenfunctions and to present them at a level acces-
sible to scientists from various disciplines. For this purpose, many technical details
and generalities are omitted in favor to simple illustrations. While the presentation is
focused on the Laplace operator in bounded Euclidean domains with piecewise smooth
boundaries, a number of extensions are relatively straightforward. For instance, the
Laplace operator can be extended to a second order elliptic operator with appropriate
coefficients, the piecewise smoothness of a boundary can often be relaxed [170, 259],
while Euclidean domains can be replaced by Riemannian manifolds [199]. The main
emphasis is put onto the geometrical structure of Laplacian eigenfunctions and on
their relation to the shape of a domain. Although the bibliography counts four hun-
dred citations, it is far from being complete, and readers are invited to refer to other
reviews and books for further details and references.

The review is organized as follows. We start by recalling in Sec. 2 general prop-
erties of the Laplace operator. Explicit representations of eigenvalues and eigenfunc-
tions in simple domains are summarized in Sec. 3. In Sec. 4 we review the properties
of eigenvalues and their relation to the shape of a domain: Weyl’s asymptotic law,
isoperimetric inequalities and the related shape optimization problems, and Kac’s
inverse spectral problem. Although eigenfunctions are not involved at this step, valu-
able information can be learned about the domain from the eigenvalues alone. The
next step consists in the analysis of nodal lines/surfaces or nodal domains in Sec. 5.
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The nodal lines tell us how the zeros of eigenfunctions are spatially distributed, while
their amplitudes are still ignored. In Sec. 6, several estimates for the amplitudes of
eigenfunctions are summarized. Most of these results were obtained during the last
twenty years.

Section 7 is devoted to the property of eigenfunctions known as localization.
We start by recalling the notion of localization in quantum mechanics: the strong
localization by a potential (Sec. 7.1), Anderson localization (Sec. 7.2) and trapped
modes in infinite waveguides (Sec. 7.3). In all three cases, the eigenvalue problem
is different from Eqs. (1.1, 1.2), due to either the presence of a potential, or the
unboundness of a domain. Nevertheless, these cases are instructive, as similar effects
may be observed for the eigenvalue problem (1.1, 1.2). In particular, we discuss
in Sec. 7.4 an exponentially decaying estimate for the norm of eigenfunctions in
domains with branches of variable cross-sectional profiles. Section 7.5 reviews the
properties of low-frequency eigenfunctions in “dumbbell” domains, in which two (or
many) subdomains are connected by narrow channels. This situation is convenient for
a rigorous analysis as the width of channels plays the role of a small parameter [346].
A number of asymptotic results for eigenvalues and eigenfunctions were derived, for
Dirichlet, Neumann and Robin boundary conditions. A harder case of irregular or
fractal domains is discussed in Sec. 7.6. Here, it is difficult to identify a relevant
small parameter to get rigorous estimates. In spite of numerous numerical examples
of localized eigenfunctions (both for Dirichlet and Neumann boundary conditions),
a comprehensive theory of localization is still missing. Section 7.7 is devoted to
high-frequency localization and the related scarring problems in quantum billiards.
We start by illustrating the classical whispering gallery, bouncing ball and focusing
modes in circular and elliptical domains. We also provide examples for the case
without localization. A brief overview of quantum billiards is presented. In the last
Sec. 8, we mention some issues which could not be included into the review, e.g.,
numerical methods for computation of eigenfunctions or their numerous applications.

2. Basic properties. We start by recalling several basic properties of the Lapla-
cian eigenvalues and eigenfunctions (see [57, 107, 333] or other standard textbooks).

(i) The eigenfunctions are infinitely differentiable inside the domain Ω. For any
open subset V ⊂ Ω, the restriction of um on V cannot be strictly 0 [233].

(ii) Multiplying Eq. (1.1) by um, integrating over Ω and using the Green’s formula
yield

λm =

∫
Ω

dx |∇um|2 −
∫
∂Ω

dx um
∂um
∂n∫

Ω

dx u2
m

=
‖∇um‖2L2(Ω) + h‖um‖2L2(∂Ω)

‖um‖2L2(Ω)

, (2.1)

where ∇ stands for the gradient operator, and we used Robin boundary condition
(1.2) in the last equality; for Dirichlet or Neumann boundary conditions, the boundary
integral (second term) vanishes. This formula ensures that all eigenvalues are positive.

(iii) Similar expression appears in the variational formulation of the eigenvalue
problem, known as the minimax principle [107]

λm = min max
‖∇v‖2L2(Ω) + h‖v‖2L2(∂Ω)

‖v‖2L2(Ω)

, (2.2)

where the maximum is over all linear combinations of the form

v = a1φ1 + ...+ amφm,
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Fig. 2.1. A counter-example for the property of domain monotonicity for Neumann boundary
condition. Although a smaller rectangle Ω1 is inscribed into a larger rectangle Ω2 (i.e., Ω1 ⊂ Ω2),
the second eigenvalue λ2(Ω1) = π2/c2 is smaller than the second eigenvalue λ2(Ω2) = π2/a2 (if

a > b) when c =
√

(a− α)2 + (b− β)2 > a (courtesy by N. Saito).

and the minimum is over all choices ofm linearly independent continuous and piecewise-
differentiable functions φ1, ..., φm (said to be in the functional space H1(Ω)) [107].
Note that the minimum is reached exactly on the eigenfunction um. For Dirichlet
eigenvalue problem, there is a supplementary condition v = 0 on the boundary ∂Ω
so that the second term in Eq. (2.2) is canceled. For Neumann eigenvalue problem,
h = 0 and the second term vanishes again.

(iv) The minimax principle implies the monotonous increase of the eigenvalues
λm with h, namely if h < h′, then λm(h) ≤ λm(h′). In particular, any eigenvalue
λm(h) of the Robin problem lies between the corresponding Neumann and Dirichlet
eigenvalues.

(v) For Dirichlet boundary condition, the minimax principle implies the property
of domain monotonicity: eigenvalues monotonously decrease when the domain en-
larges, i.e., λm(Ω1) ≥ λm(Ω2) if Ω1 ⊂ Ω2. This property does not hold for Neumann
or Robin boundary conditions, as illustrated by a simple counter-example on Fig. 2.1.

(vi) The eigenvalues are invariant under translations and rotations of the domain.
This is a key property for an efficient image recognition and analysis [335, 343, 344].
When a domain is expanded by factor α, all the eigenvalues are rescaled by 1/α2.

(vii) The first eigenfunction u1 does not change the sign and can be chosen posi-
tive. Because of the orthogonality of eigenfunctions, u1 is in fact the only eigenfunction
not changing its sign.

(viii) The first eigenvalue λ1 is simple and strictly positive for Dirichlet and Robin
boundary conditions; for Neumann boundary condition, λ1 = 0 and u1 is a constant.

(ix) The completeness of eigenfunctions in L2(Ω) can be expressed as∑
m

u∗m(x)um(y) = δ(x− y) (x, y ∈ Ω), (2.3)

where asterisk denotes the complex conjugate, and δ(x) being the Dirac distribution.
Multiplying this relation by a function f ∈ L2(Ω) and integrating over Ω yields the
decomposition of f(x) over um(x):

f(x) =
∑
m

u∗m(x)

∫
Ω

dy f(y) um(y).

(x) The Green function G(x, y) for the Laplace operator which satisfies

−∆G(x, y) = δ(x− y) (x, y ∈ Ω) (2.4)
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(with an appropriate boundary condition), admits the spectral decomposition over
the eigenfunctions

G(x, y) =
∑
m

λ−1
m u∗m(x)um(y). (2.5)

(for Neumann boundary condition, λ1 = 0 has to be excluded; in that case, the Green
function is defined up to an additive constant).

Similarly, the heat kernel (or diffusion propagator) Gt(x, y) satisfying

∂

∂t
Gt(x, y)−∆Gt(x, y) = 0 (x, y ∈ Ω),

Gt=0(x, y) = δ(x− y)
(2.6)

(with an appropriate boundary condition), admits the spectral decomposition

Gt(x, y) =
∑
m

e−λmtu∗m(x)um(y). (2.7)

The Green function and heat kernel allow one to solve the standard boundary value
and Cauchy problems for the Laplace and heat equations, respectively [90, 108]. The
decompositions (2.5, 2.7) are the major tool for getting explicit solutions in sim-
ple domains for which the eigenfunctions are known explicitly (see Sec. 3). This
representation is also important for the theory of diffusion due to the probabilistic in-
terpretation of Gt(x, y)dx as the conditional probability for Brownian motion started
at y to arrive in the dx vicinity of x after a time t [41, 42, 140, 196, 320, 332, 395].
Setting Dirichlet, Neumann or Robin boundary conditions, one can respectively de-
scribe perfect absorptions, perfect reflections and partial absorption/reflection on the
boundary [163].

For Dirichlet boundary condition, if Ω ⊂ Ω′, then 0 ≤ G
(Ω)
t (x, y) ≤ G

(Ω′)
t (x, y)

[386]. In particular, taking Ω′ = Rd, one gets

0 ≤ Gt(x, y) ≤ (4πt)−d/2 exp

(
−|x− y|

2

4t

)
, (2.8)

where the Gaussian heat kernel for free space is written on the right-hand side. The
above domain monotonicity for heat kernels may not hold for Neumann boundary
condition [43].

3. Eigenbasis for simple domains. We list the examples of “simple” domains,
in which symmetries allow for variable separations and thus explicit representations
of eigenfunctions in terms of elementary or special functions.

3.1. Intervals, rectangles, parallelepipeds. For rectangle-like domains Ω =
[0, `1]× ...× [0, `d] ⊂ Rd (with the sizes `i > 0), the natural variable separation yields

un1,...,nd(x1, ..., xd) = u(1)
n1

(x1) . . . u(d)
nd

(xd), λn1,...,nd = λ(1)
n1

+ ...+ λ(d)
nd
, (3.1)

where the multiple index n1...nd is used instead of m, and u
(i)
ni (xi) and λ

(i)
ni (i = 1, ..., d)

correspond to the one-dimensional problem on the interval [0, `i]. Depending on

the boundary condition, u
(i)
n (x) are sines (Dirichlet), cosines (Neumann) or their
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combinations (Robin):

u(i)
n (x) = sin(π(n+ 1)x/`i), λ(i)

n = π2(n+ 1)2/`2i , (Dirichlet),

u(i)
n (x) = cos(πnx/`i), λ(i)

n = π2n2/`2i , (Neumann),

u(i)
n (x) = sin(αnx/`i) +

αn
h`i

cos(αnx/`i), λ(i)
n = α2

n/`
2
i , (Robin),

(3.2)

where n = 0, 1, 2, ... and the coefficients αn depend on the parameter h and satisfy the
equation obtained by imposing the Robin boundary condition in Eq. (1.2) at x = `i:

2αn
h`i

cosαn +

(
1− α2

n

h2`2i

)
sinαn = 0. (3.3)

According to the property (iv) of Sec. 2, this equation has the unique solution αn
on each interval [nπ, (n+ 1)π] (n = 0, 1, 2, ...), that makes its numerical computation

by bisection (or other) method easy and fast. All the eigenvalues λ
(i)
n are simple (not

degenerate). The L2-norm of this function is

‖u(i)
n (x)‖L2((0,`i)) =

(
α2
n + 2h`i + h2`2i

2h2

)1/2

. (3.4)

In turn, the eigenvalues λn1,...,nd can be degenerate if there exists a rational ratio
(`i/`j)

2 (with i 6= j). For instance, the Dirichlet eigenvalues of the unit square are 2π2,
5π2, 5π2, 8π2, .... , with the twice degenerate second eigenvalue. An eigenfunction as-
sociated to a degenerate eigenvalue is a linear combination of the corresponding func-
tions. For the above example u(x1, x2) = c1 sin(πx1) sin(2πx2)+c2 sin(2πx1) sin(πx2)
with any c1 and c2 such that c21 + c22 6= 0.

3.2. Disk, sector and circular annulus. The rotation symmetry of a circular
annulus, Ω = {x ∈ R2 : R0 < |x| < R}, allows one to write the Laplace operator in
polar coordinates,{

x1 = r cosϕ,

x2 = r sinϕ,
∆ =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
, (3.5)

that leads to variable separation and an explicit representation of eigenfunctions

unkl(r, ϕ) =
[
Jn(αnkr/R) + cnkYn(αnkr/R)

]
×

{
cos(nϕ), l = 1,

sin(nϕ), l = 2 (n 6= 0),
(3.6)

where Jn(z) and Yn(z) are the Bessel functions of the first and second kind [1, 66, 393],
and the coefficients αnk and cnk are set by the boundary conditions at r = R and
r = R0:

0 =
αnk
R

[
J ′n(αnk) + cnkY

′
n(αnk)

]
+ h

[
Jn(αnk) + cnkYn(αnk)

]
,

0 = −αnk
R

[
J ′n
(
αnk

R0

R

)
+ cnkY

′
n

(
αnk

R0

R

)]
+ h

[
Jn
(
αnk

R0

R

)
+ cnkYn

(
αnk

R0

R

)]
.

(3.7)

For each n = 0, 1, 2, ..., the system of these equations has infinitely many solutions
αnk which are enumerated by the index k = 1, 2, 3, ... [393]. The eigenfunctions are
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enumerated by the triple index nkl, with n = 0, 1, 2, ... counting the order of Bessel
functions, k = 1, 2, 3, ... counting solutions of Eqs. (3.7), and l = 1, 2. Since u0k2(r, ϕ)
are trivially zero (as sin(nϕ) = 0 for n = 0), they are excluded. The eigenvalues
λnk = α2

nk/R
2, which are independent of the last index l, are simple for n = 0 and

twice degenerate for n > 0. In the latter case, an eigenfunction is any nontrivial linear
combination of unk1 and unk2. The squared L2-norm of the eigenfunction is

‖unkl(r, ϕ)‖22 =
π(2− δn,0)R2

2α2
nk

[(
α2
nk + h2R2 − n2

)
v2
nk(R)

−
(

(α2
nk + h2R2)

R2
c

R2
− n2

)
v2
nk(Rc)

]
,

(3.8)

where vnk(r) = Jn(αnkr/R) + cnkYn(αnkr/R).
For the special case of a disk (R0 = 0), all the coefficients cnk in front of the

Bessel functions Yn(z) (divergent at 0) are set to 0:

unkl(r, ϕ) = Jn(αnkr/R)×

{
cos(nϕ), l = 1,

sin(nϕ), l = 2 (n 6= 0),
(3.9)

where αnk are either the positive roots jnk of the Bessel function Jn(z) (Dirichlet), or
the positive roots j̃nk of its derivative J ′n(z) (Neumann), or the positive roots of their
linear combination J ′n(z)+hJn(z) (Robin). The asymptotic behavior of zeros of Bessel
functions was thoroughly investigated. For fixed k and large n, the Olver’s expansion
holds jnk ' n+δkn

1/3+O(n−1/3) (with known coefficients δk) [130, 293, 294], while for
fixed n and large k, the McMahon’s expansion holds: jnk ' π(k+n/2−1/4)+O(k−1)
[393]. Similar asymptotic relations are applicable for Neumann and Robin boundary
conditions.

For a circular sector of radius R and of angle πβ, the eigenfunctions are

unk(r, ϕ) = Jn/β(αnkr/R)×

{
sin(nϕ/β) (Dirichlet)

cos(nϕ/β) (Neumann)
(r < R, 0 < ϕ < πβ)

(3.10)
i.e., they are expressed in terms of Bessel functions of fractional order, and αnk are
the positive roots of Jn/β(z) (Dirichlet) or J ′n/β(z) (Neumann). The Robin boundary
condition and a sector of a circular annulus can be treated similarly.

3.3. Sphere and spherical shell. The rotation symmetry of a spherical shell,
Ω = {x ∈ R3 : R0 < |x| < R}, allows one to write the Laplace operator in spherical
coordinates,

x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ,

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂ϕ2

)
, (3.11)

that leads to the variable separation and an explicit representation of eigenfunctions

unkl(r, θ, ϕ) =
[
jn(αnkr/R) + cnkyn(αnkr/R)

]
Pn(cos θ)eilϕ, (3.12)

where jn(z) and yn(z) are the spherical Bessel functions of the first and second kind,

jn(z) =

√
π

2z
Jn+1/2(z), yn(z) =

√
π

2z
Yn+1/2(z), (3.13)
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Fig. 3.1. Two ellipses of radii R = 0.5 (dashed line) and R = 1 (solid line), with the focal
distance a = 1. The major and minor semi-axes, A = a coshR and B = a sinhR, are shown by
black dotted lines. The horizontal thick segment connects the foci.

Pn(z) are Legendre polynomials, and the coefficients αnk and cnk are set by the
boundary conditions at r = R and r = R0 similar to Eq. (3.7). The eigenfunctions
are enumerated by the triple index nkl, with n = 0, 1, 2, ... counting the order of
spherical Bessel functions, k = 1, 2, 3, ... counting zeros, and l = −n,−n + 1, ..., n.
The eigenvalues λnk = α2

nk/R
2, which are independent of the last index l, have the

degeneracy 2n+ 1. The squared L2-norm of the eigenfunction is

‖unkl(r, θ, ϕ)‖22 =
2πR3

(2n+ 1)α2
nk

[(
α2
nk + h2R2 − hR− n(n+ 1)

)
v2
nk(R)

−
(
α2
nk(Rc/R)3 + h2R2

c − hRc − n(n+ 1)Rc/R

)
v2
nk(Rc)

]
,

(3.14)

where vnk(r) = jn(αnkr/R) + cnkyn(αnkr/R).
In the special case of a sphere (R0 = 0), one has cnk = 0 and the equations are

simplified.

3.4. Ellipse and elliptical annulus. In elliptic coordinates, the Laplace oper-
ator reads as{

x1 = a cosh r cos θ,

x2 = a sinh r sin θ,
∆ =

1

a2(sinh2 r + sin2 θ)

(
∂2

∂r2
+

∂2

∂θ2

)
, (3.15)

where a > 0 is the prescribed distance between the origin and the foci, r ≥ 0 is
the radial coordinate that fixes the major and minor semi-axes: A = a cosh r and
B = a sinh r, and 0 ≤ θ < 2π is the angular coordinate (Fig. 3.1). An ellipse is
a curve of constant r so that its points (x1, x2) satisfy x2

1/A
2 + x2

2/B
2 = 1. Note

that the eccentricity e = a/A = 1/ cosh r is strictly positive. A filled ellipse (i.e., the
interior of an given ellipse) can be characterized in elliptic coordinates as 0 ≤ r < R
and 0 ≤ θ < 2π. Similarly, an elliptical annulus (i.e., the interior between two ellipses
with the same foci) is characterized by R1 < r < R2 and 0 ≤ θ < 2π.

In the elliptic coordinates, the variables can be separated, u(r, θ) = f(r)g(θ),
from which Eq. (1.1) reads as(

1

f(r)

d2f

dr2
+
λa2

2
cosh(2r)

)
= −

(
1

g(θ)

d2g

dθ2
− λa2

2
cos(2θ)

)
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so that both sides are equal to a constant (denoted c). As a consequence, the angular
and radial parts, g(θ) and f(r), are solutions of the Mathieu equation and the modified
Mathieu equation, respectively [97, 271, 405]

g′′(θ) + (c− 2q cos 2θ) g(θ) = 0, f ′′(r)− (c− 2q cosh 2r) f(r) = 0,

where q = λa2/4 and the parameter c is called the characteristic value of Mathieu
functions. Periodic solutions of the Mathieu equation are possible for specific values
of c. They are denoted as cen(θ, q) and sen+1(θ, q) (with n = 0, 1, 2, ...) and called the
angular Mathieu functions of the first and second kind. Each function cen(θ, q) and
sen+1(θ, q) corresponds to its own characteristic value c (the relation being implicit,
see [271]).

For the radial part, there are two linearly independent solutions for each char-
acteristic value c: two modified Mathieu functions Mc(1)

n (r, q) and Mc(2)
n (r, q) corre-

spond to the same c as cen(θ, q), and two modified Mathieu functions Ms
(1)
n+1(r, q)

and Ms
(2)
n+1(r, q) correspond to the same c as sen+1(θ, q). As a consequence, there are

four families of eigenfunctions (distinguished by the index l = 1, 2, 3, 4) in an elliptical
domain

unk1(r, θ) = cen(θ, qnk1)Mc(1)
n (r, qnk1),

unk2(r, θ) = cen(θ, qnk2)Mc(2)
n (r, qnk2),

unk3(r, θ) = sen+1(θ, qnk3)Ms
(1)
n+1(r, qnk3),

unk4(r, θ) = sen+1(θ, qnk4)Ms
(2)
n+1(r, qnk4),

where the parameters qnkl are determined by the boundary condition. For instance, for
a filled ellipse of radius R with Dirichlet boundary condition, there are four individual
equations for the parameter q for each n = 0, 1, 2, ...

Mc(1)
n (R, qnk1) = 0, Mc(2)

n (R, qnk2) = 0, Ms
(1)
n+1(R, qnk3) = 0, Ms

(2)
n+1(R, qnk4) = 0,

each of them having infinitely many positive solutions qnkl enumerated by k = 1, 2, . . .
[1, 271]. Finally, the associated eigenvalues are λnkl = 4qnkl/a

2.

3.5. Equilateral triangle. Lamé discovered the Dirichlet eigenvalues and eigen-
functions of the equilateral triangle Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 <
x1

√
3, x2 <

√
3(1− x1)} by using reflections and the related symmetries [234]:

λmn =
16π2

27

(
m2 + n2 −mn

)
(m,n ∈ Z), (3.16)

where 3 divides m+ n, m 6= 2n, and n 6= 2m, and the associate eigenfunction is

umn(x1, x2) =
∑

(m′,n′)

± exp

[
2πi

3

(
m′x1 + (2n′ −m′) x2√

3

)]
, (3.17)

where (m′, n′) runs over (−n,m−n), (−n,−m), (n−m,−m), (n−m,n), (m,n) and
(m,m−n) with the ± sign alternating. Pinsky showed that this set of eigenfunctions is
complete in L2(Ω) [309, 310]. Note that the conditions m 6= 2n and n 6= 2m should be
satisfied for all 6 pairs in the sum that yields one additional condition: m 6= −n. The
following relations hold: u−m,−n = u∗mn, un,m = −u∗mn and um,0 = umm. Moreover,
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all symmetric eigenfunctions are enumerated by the index (m, 0). The eigenvalue λmn
corresponds to a symmetric eigenfunction if and only if m is a multiple of 3 [309].

The eigenfunctions for Neumann boundary condition are

umn(x1, x2) =
∑

(m′,n′)

exp

[
2πi

3

(
m′x1 + (2n′ −m′) x2√

3

)]
, (3.18)

where the only condition is that m+ n are multiples of 3 (and no sign change).

4. Eigenvalues.

4.1. Weyl’s law. The Weyl’s law is one of the first connections between the
spectral properties of the Laplace operator and the geometrical structure of a bounded
domain Ω. In 1911, Hermann Weyl derived the asymptotic behavior of the Laplacian
eigenvalues [396, 397]:

λm ∝
4π2

(ωdµd(Ω))2/d
m2/d (m→∞), (4.1)

where µd(Ω) is the Lebesgue measure of Ω (its surface area in 2D and volume in 3D),
and

ωd =
πd/2

Γ(d/2 + 1)
(4.2)

is the volume of the unit ball in d dimensions (Γ(z) being the Gamma function). As
a consequence, plotting eigenvalues versus m2/d allows one to extract the area in 2D
or the volume in 3D. This result can equivalently be written for the counting function
N(λ) = #{m : λm < λ} (i.e., the number of eigenvalues smaller than λ):

N(λ) ∝ ωdµd(Ω)

(2π)d
λd/2 (λ→∞). (4.3)

Weyl also conjectured the second asymptotic term which in two and three dimen-
sions reads as

N(λ) ∝


µ2(Ω)

4π
λ∓ µ1(∂Ω)

4π

√
λ (d = 2)

µ3(Ω)

6π2
λ3/2 ∓ µ2(∂Ω)

16π
λ (d = 3)

(λ→∞), (4.4)

where µ2(Ω) and µ1(∂Ω) are the surface area and perimeter of Ω in 2D, µ3(Ω) and
µ2(∂Ω) are the volume and surface area of Ω in 3D, and sign “–” (resp. “+”) refers
to the Dirichlet (resp. Neumann) boundary condition. The correction terms which
yield information about the boundary of the domain, were justified, under certain
conditions on Ω (e.g., convexity) only in 1980 [208, 273] (see [7] for a historical review
and further details).

Alternatively, one can study the heat trace (or partition function)

Z(t) ≡
∫
Ω

dx Gt(x, x) =

∞∑
m=1

e−λmt =

∞∫
0

e−λtdN(λ) (4.5)



11

(here Gt(x, y) is the heat kernel, cf. Eq. (2.6)), for which the following asymptotic
expansion holds [67, 115, 155, 270, 275, 325]

Z(t) = (4πt)−d/2

(
K∑
k=0

ckt
k/2 + o(t(K+1)/2)

)
(t→ 0), (4.6)

where the coefficients ck are again related to the geometrical characteristics of the
domain

c0 = µd(Ω), c1 = −
√
π

2
µd−1(∂Ω), ... (4.7)

(see [335] for further discussion). Some estimates for the trace of Dirichlet Laplacian
were given by Davies [116].

A number of extensions have been proposed. Berry conjectured that, for irreg-
ular boundaries, for which the Lebesgue measure in the correction term is infinite,
the correction term should be λH/2 instead of λ(d−1)/2, where H is the Hausdorff
dimension of the boundary [51, 52]. However, Brossard and Carmona constructed a
counter-example to this conjecture and suggested a modified version, in which the
Hausdorff dimension was replaced by Minkowski dimension [68]. The modified Weyl-
Berry conjecture discussed at length by Lapidus in [235] who proved it for d = 1 [236]
(see these references for further discussion). For dimensions d higher than 1, this
conjecture was disproved by Lapidus and Pomerance [238]. The correction term to
the Weyl’s formula for domains with rough boundary (in particular, from Lipschitz
class) was studied by Netrusov and Safarov [285]. Levitin and Vassiliev also consid-
ered the asymptotic formulas for iterated sets with fractal boundary [250]. Extensions
to various manifolds and higher order Laplacians were discussed [122, 123].

The high-frequency Weyl’s law and the related short-time asymptotics of the
heat kernel have been thoroughly investigated [7]. The dependence of these asymp-
totic laws on the volume and surface of the domain has found applications in physics.
For instance, diffusion-weighted nuclear magnetic resonance experiments were pro-
posed and conducted to estimate the surface-to-volume ratio of mineral samples and
biological tissues [164, 184, 197, 240, 241, 277, 278, 358].

The multiplicity of eigenvalues is yet a more difficult problem [281]. From basic
properties (see Sec. 2), the first eigenvalue λ1 is simple. Cheng proved that the
multiplicity m(λ2) of the second Dirichlet eigenvalue λ2 is not greater than 3 [99].
This inequality is sharp since an example of domain with m(λ2) = 3 was constructed.
For k ≥ 3, Hoffmann-Ostenhof et al. proved the inequality m(λk) ≤ 2k−3 [193, 194].

4.2. Isoperimetric inequalities for eigenvalues. In the low-frequency limit,
the relation between the shape of a domain and the associated eigenvalues manifests
in the form of isoperimetric inequalities. Since there are many excellent reviews on
this topic, we only provide a list of most known inequalities, while further discussion
and references can be found in [20, 21, 27, 47, 176, 186, 190, 233, 304, 315, 335].

(i) The Rayleigh-Faber-Krahn inequality states that the disk minimizes the first
Dirichlet eigenvalue λ1 among all domains of the same area µ2(Ω), i.e.

λD1 ≥
π

µ2(Ω)
(j0,1)2, (4.8)

where jν,1 is the first positive zero of Jν(z) (e.g., j0,1 ≈ 2.4048...). This inequality
was conjectured by Lord Rayleigh and proven independently by Faber and Krahn
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[138, 225]. The corresponding isoperimetric inequality in d dimensions,

λD1 ≥
(

ωd
µd(Ω)

)2/d

(j d
2−1,1)2, (4.9)

was proven by Krahn [226].
Another lower bound for the first Dirichlet eigenvalue for a simply connected

planar domain was obtained by Makai [263] and later rediscovered by Hayman [179]

λD1 ≥
α

ρ2
(4.10)

where α is a constant, and

ρ = max
x∈Ω

min
y∈∂Ω

{|x− y|} (4.11)

is the inradius of Ω (i.e., the radius of the largest ball inscribed in Ω). The above
inequality means that the lowest frequency (bass note) can be made arbitrarily small
only if the domain includes an arbitrarily large circular drum (i.e., ρ goes to infin-
ity). The constant α, which was equal to 1/900 in the Hayman’s original proof, was
gradually improved, ranging from the value α = 1/4 obtained by Osserman [296] to
the best value (up to date) α = 0.6197... by Banuelos and Carroll [30]. For convex
domains, the lower bound (4.10) with α = π2/4 ≈ 2.4674 was derived much earlier
by Hersch [188], with the equality if and only if Ω is an infinite strip.

An obvious upper bound for the first Dirichlet eigenvalue can be obtained from
the domain monotonicity (property (v) in Sec. 2):

λD1 ≤ λD1 (Bρ) = ρ−2 j2
d
2−1,1

, (4.12)

with the first Dirichlet eigenvalue λD1 (Bρ) for the largest ball Bρ inscribed in Ω (here,
ρ is the inradius). However, this upper bound is not accurate in general. Pólya
and Szegö gave another upper bound for planar star-shaped domains [315]. Freitas
and Krejčǐŕık extended their result to higher dimensions [147]: for a bounded strictly
star-shaped domain Ω ⊂ Rd with locally Lipschitz boundary, they proved

λD1 ≤ λD1 (B1)
F (Ω)

d µd(Ω)
, (4.13)

where the function F (Ω) is defined in [147]. From this inequality, they also deduced
a weaker but more explicit upper bound which is applicable to any bounded convex
domain in Rd:

λD1 ≤ λD1 (B1)
µd−1(∂Ω)

d ρ µd(Ω)
. (4.14)

The second Dirichlet eigenvalue λD2 is minimized by the union of two identical
balls (see [318]). Note that finding the minimizer among convex planar sets is still an
open problem [187]. Bucur and Henrot proved the existence of a minimizer for the
third eigenvalue in the family of domains in Rd of given volume, although its shape
remains unknown [71]. The range of the first two eigenvalues was also investigated
[399, 400].
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The first nontrivial Neumann eigenvalue λN2 (as λN1 = 0) also satisfies the isoperi-
metric inequality

λN2 ≤
(

ωd
µd(Ω)

)2/d

(j̃ d
2 ,1

)2, (4.15)

which states that λN2 is maximized by a d-dimensional ball (here j̃ν,1 is the first positive
zero of J ′ν(z)). This inequality was proven for simply-connected planar domains by
Szegö [376] and in higher dimensions by Weinberger [394]. Pólya conjectured the
following upper bound for all Neumann eigenvalues [317] in planar bounded regular
domains (see also [354])

λNn ≤
4(n− 1)π

µ2(Ω)
(n = 2, 3, 4, ...). (4.16)

This inequality is true for all domains that tile the plane, e.g., for any triangle and
any quadrilateral [319]. For n = 2, the inequality (4.16) follows from (4.15). For
n ≥ 3, Pólya’s conjecture is still open, although Kröger proved a weaker estimate
λNn ≤ 8π(n − 1) [228]. Recently, Girouard et al. obtained a sharp upper bound for
the second nontrivial Neumann eigenvalue λN3 for a regular simply-connected planar
domain [156]:

λN3 ≤
2π(j̃0,1)2

µ2(Ω)
, (4.17)

with the equality attained in the limit by a family of domains degenerating to a
disjoint union of two identical disks (the domain is called regular if its Neumann
eigenspectrum is discrete, see [156] for details).

Payne and Weinberger obtained the lower bound for the second Neumann eigen-
value in d dimensions [303]

λN2 ≥
π2

δ2
, (4.18)

where δ is the diameter of Ω:

δ = max
x,y∈∂Ω

{|x− y|}. (4.19)

This is the best bound that can be given in terms of the diameter alone in the sense
that λN2 δ

2 tends to π2 for a parallelepiped all but one of whose dimensions shrink to
zero.

Szegö and Weinberger noticed that Szegö’s proof of the inequality (4.15) for planar
simply connected domains extends to prove the bound

1

λN2
+

1

λN3
≥ 2µ2(Ω)

π(j̃1,1)2
, (4.20)

with equality if and only if Ω is a disk [376, 394]. Ashbaugh and Benguria derived
another bound for arbitrary bounded domains in Rd [18]

1

λN2
+ ...+

1

λNd+1

≥ d

d+ 2

(
µd(Ω)

ωd

)2/d

(4.21)
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In particular, one gets 1/λN2 + 1/λN3 ≥
µ2(Ω)

2π for d = 2 (see also extensions in [191,
401]).

(ii) The Payne-Pólya-Weinberger inequality concerns the ratio between first two
Dirichlet eigenvalues and states that

λD2
λD1
≤

(
j d

2 ,1

j d
2−1,1

)2

, (4.22)

with equality if and only if Ω is the d-dimensional ball. This inequality (in 2D form)
was conjectured by Payne, Pólya and Weinberger [302] and proved by Ashbaugh and
Benguria in 1990 [16–19]. A weaker estimate λD2 /λ

D
1 ≤ 1 + 4/d was proved for d = 2

in the original paper by Payne, Pólya and Weinberger [302].
(iii) Singer et al. derived the upper and lower estimates for the spectral gap

between the first two Dirichlet eigenvalues for a smooth convex bounded domain Ω in
Rd (in fact, they considered a more general problem in the presence of a potential):

dπ2

ρ2
≥ λD2 − λD1 ≥

π2

4δ2
, (4.23)

where δ is the diameter of Ω and ρ is the inradius [365]. For a convex planar domain,
Donnelly proved a sharper lower estimate [128]

λD2 − λD1 ≥
3π2

δ2
. (4.24)

(iv) The isoperimetric inequalities for Robin eigenvalues are less known. Daners
proved that among all bounded domains Ω ⊂ Rd of the same volume, the ball B
minimizes the first Robin eigenvalue [72, 113]

λR1 (Ω) ≥ λR1 (B). (4.25)

Kennedy showed that among all bounded domains in Rd, a domain B2 composed of
two disjoint balls minimizes the second Robin eigenvalue [218]

λR2 (Ω) ≥ λR2 (B2). (4.26)

(v) The minimax principle ensures that the Neumann eigenvalues are always
smaller than the corresponding Dirichlet eigenvalues: λNn ≤ λDn . Pólya proved λN2 <
λD1 [316] while Szegö got a sharper inequality λN2 ≤ cλD1 for a planar domain bounded
by an analytic curve, where c = (j̃1,1/j0,1)2 ≈ 0.5862... [376] (note that this result also
follows from inequalities (4.8, 4.15)). Payne derived a stronger inequality for a planar
domain with a C2 boundary: λNn+2 < λDn for all n [301]. Levine and Weinberger
generalized its result for higher dimensions d and proved that λNn+d < λDn for all n

when Ω is smooth and convex, and that λNn+d ≤ λDn if Ω is merely convex [249].

Friedlander proved the inequality λNn+1 ≤ λDn for a general bounded domain with a
C1 boundary [149]. Filonov found a simpler proof of this inequality in a more general
situation (see [144] for details).

Many other inequalities can be found in several reviews [20, 21, 47]. It is worth
noting that isoperimetric inequalities are related to shape optimization problems [5,
65, 84–86, 311, 367].
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Fig. 4.1. Two examples of nonisometric domains with the identical Laplace operator eigen-
spectra (with Dirichlet or Neumann boundary conditions): the original example (shapes ’a’ and ’b’)
constructed by Gordon et al. [159], and a simpler example with disconnected domains (shapes ’c’
and ’d’) by Chapman [95]. In the latter case, the eigenspectrum is simply obtained as the union of
the eigenspectra of two subdomains known explicitly. For instance, the Dirichlet eigenspectrum is
{π2(m2 + n2) : m,n ∈ N} ∪ {π2((i/2)2 + (j/2)2) : i, j ∈ N, i > j} .

4.3. Kac’s inverse spectral problem. The problem of finding relations be-
tween the Laplacian eigenspectrum and the shape of a domain was formulated in the
famous Kac’s question “Can one hear the shape of a drum?” [209]. In fact, the drum’s
frequencies are uniquely determined by the eigenvalues of the Laplace operator in the
domain of drum’s shape. By definition, the shape of the domain fully determines the
Laplacian eigenspectrum. Is the opposite true, i.e., does the set of eigenvalues which
appear as “fingerprints” of the shape, uniquely identify the domain? The negative an-
swer to this question for general planar domains was given by Gordon and co-authors
[159] who constructed two different (nonisometric) planar polygons (Fig. 4.1a,b) with
the identical Laplacian eigenspectra, both for Dirichlet and Neumann boundary con-
ditions (see also [48]). Their construction was based on Sunada’s paper on isospectral
manifolds [375]. An elementary proof, as well as many other examples of isospectral
domains, were provided by Buser and co-workers [83] and by Chapman [95] (see Fig.
4.1c,d). An experimental evidence for this not “hearing the shape” of drums was
brought by Sridhar and Kudrolli [370]. In all these examples, isospectral domains are
either non-convex, or disjoint. Gordon and Webb addressed the question of existence
of isospectral convex connected domains and answered this question positively for do-
mains in Euclidean spaces of dimension d ≥ 4 [160]. To our knowledge, this question
remains open for convex domains in two and three dimensions, as well as for domains
with smooth boundaries.

A somewhat similar problem was recently formulated for domains in which one
part of the boundary admits Dirichlet boundary condition and the other Neumann
boundary condition. Does the spectrum of the Laplace operator determine uniquely
which condition is imposed on which part? Jakobsen and co-workers gave the negative
answer to this question by assigning Dirichlet and Neumann conditions onto different
parts of the boundary of the half-disk (and some other domains), in a way to produce
the same eigenspectra [200].

The Kac’s inverse spectral problem can also be seen from a different point of view.
For a given sequence 0 ≤ λ1 < λ2 ≤ λ3 ≤ ..., whether does exist a domain Ω in Rd for
which the Laplace operator with Dirichlet or Neumann boundary condition has the
spectrum given by this sequence. A similar problem can be formulated for a compact
Riemannian manifold with arbitrary Riemannian metrics. Colin de Verdière studied
these problems for finite sequences {λn}Nn=1 and proved the existence of such domains
or manifolds under certain restrictions [106].
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Fig. 5.1. The nodal lines of a Dirichlet eigenfunction u(x1, x2) on the unit square, with the
associated eigenvalue λ = 5525π2 of multiplicity 12. The eigenfunction was obtained as a linear
combination of terms sin(πn1x1) sin(πn2x2), with n2

1 +n2
2 = 5525 and randomly chosen coefficients.

For comparison, another eigenfunction with the same eigenvalue, sin(50πx1) sin(55πx2), is shown.

5. Nodal lines. The first insight onto the geometrical structure of eigenfunc-
tions can be gained from their nodal lines. Kuttler and Sigillito gave a brief overview
of the basic properties of nodal lines for Dirichlet eigenfunctions in two dimensions
[233] that we partly reproduce here:

“The set of points in Ω where um = 0 is the nodal set of um. By the unique
continuation property, it consists of curves that are C∞ in the interior of Ω. Where
nodal lines cross, they form equal angles [107]. Also, when nodal lines intersect
a C∞ portion of the boundary, they form equal angles. Thus, a single nodal line
intersects the C∞ boundary at right angles, two intersect it at 60◦ angles, and so forth.
Courant’s nodal line theorem [107] states that the nodal lines of them-th eigenfunction
divide Ω into no more than m subregions (called nodal domains): νm ≤ m, νm being
the number of nodal domains. In particular, u1 has no interior nodes and so λ1 is a
simple eigenvalue (has multiplicity one).”

It is worth noting that any eigenvalue λm of the Dirichlet-Laplace operator in Ω is
the first eigenvalue for each of its nodal domains. This simple observation allows one
to construct specific domains with a prescribed eigenvalue (see [233] for examples).
Eigenfunctions with few nodal domains were constructed in [107, 251].

Even for such a simple domain as a square, the nodal lines and domains may
have complicated structure, especially for high-frequency eigenfunctions (Fig. 5.1).
This is particularly true for degenerate eigenfunctions for which one can “tune” the
coefficients of the corresponding linear combination to modify continuously the nodal
lines.

Pleijel sharpened the Courant’s theorem by showing that the upper bound m for
the number νm of nodal domains is attained only for a finite number of eigenfunctions
[313]. Moreover, he obtained the upper limit: lim

m→∞
νm/m = 4/j2

0,1 ≈ 0.691.... Note

that Lewy constructed spherical harmonics of any degree n whose nodal sets have one
component for odd n and two components for even n implying that no non-trivial
lower bound for νm is possible [251].

Blum et al. considered the distribution of the (properly normalized) number
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of nodal domains of the Dirichlet-Laplacian eigenfunctions in 2D quantum billiards
and showed the existence of the limiting distribution in the high-frequency limit (i.e.,
when λm → ∞) [61]. These distributions were argued to be universal for systems
with integrable or chaotic underlying classical dynamics that allows one to distinguish
them and thus provides a new criterion for quantum chaos (see Sec. 7.7.4). It was also
conjectured that the distribution for chaotic systems coincides with the distribution
of nodal domains for Gaussian random functions.

Bogomolny and Schmit proposed a percolation-like model to describe the nodal
domains which permitted to perform analytical calculations and agreed well with nu-
merical simulations [63]. This model allows one to apply ideas and methods developed
within the percolation theory [371] to the field of quantum chaos. Using the analogy
with Gaussian random functions, Bogomolny and Schmit obtained that the mean and
variance of the number νm of nodal domains grow as m, with explicit formulas for the
prefactors. From the percolation theory, the distribution of the area s of the connected
nodal domains was conjectured to follow a power law, n(s) ∝ s−187/91, as confirmed
by simulations [63]. In the particular case of random Gaussian spherical harmonics,
Nazarov and Sodin rigorously derived the asymptotic behavior for the number νn of
nodal domains of the harmonic of degree n [284]. They proved that as n grows to
infinity, the mean of νn/n

2 tends to a positive constant, and that νn/n
2 exponentially

concentrates around this constant (we recall that the associate eigenvalue is n(n+1)).

The geometrical structure of nodal lines and domains has been intensively stud-
ied (see [283, 314] for further discussion of the asymptotic nodal geometry). For
instance, the length of the nodal line of an eigenfunction of the Laplace operator in
two-dimensional Riemannian manifolds was separately investigated by Brüning, Yao
and Nadirashvili who obtained its lower and upper bounds [70, 280, 402]. In addi-
tion, a number of conjectures about the properties of particular eigenfunctions were
discussed in the literature. We mention three of them:

(i) In 1967, Payne conjectured that the second Dirichlet eigenfunction u2 cannot
have a closed nodal line in a bounded planar domain [304, 308]. This conjecture was
proved for convex domains [4, 272] and disproved by non-convex domains [192], see
also [167, 201].

(ii) The hot spots conjecture formulated by J. Rauch in 1974 says that the max-
imum of the second Neumann eigenfunction is attained at a boundary point. This
conjecture was proved by Banuelos and Burdzy for a class of planar domains [32] but in
general the statement is wrong, as shown by several counter-examples [44, 79, 81, 202].

(iii) Liboff formulated several conjectures; one of them states that the nodal
surface of the first-excited state of a 3D convex domain intersects its boundary in a
single simple closed curve [253].

The analysis of nodal lines that describe zeros of eigenfunctions, can be extended
to other level sets. For instance, a level set of the first Dirichlet eigenfunction u1

on a bounded convex domain Ω ∈ Rd is itself convex [214]. Grieser and Jerison
estimated the size of the first eigenfunction uniformly for all convex domains [168].
In particular, they located the place where u1 achieves its maximum to within a
distance comparable to the inradius, uniformly for arbitrarily large diameter. Other
geometrical characteristics (e.g., the volume of a set on which an eigenfunction is
positive) can also be analyzed [282].
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6. Estimates for Laplacian eigenfunctions. The “amplitudes” of eigenfunc-
tions can be characterized either globally by their Lp norms

‖u‖p ≡

∫
Ω

dx |u(x)|p
1/p

(p ≥ 1), (6.1)

or locally by pointwise estimates. Since eigenfunctions are defined up to a multiplica-
tive constant, one often uses L2(Ω) normalization: ‖u‖2 = 1. Note also the limiting
case of L∞-norm

‖u‖∞ = max
x∈Ω
|u(x)|. (6.2)

It is worth recalling the Hölder’s inequality for any two measurable functions u and
v and for any positive p, q such that 1/p+ 1/q = 1:

‖uv‖1 ≤ ‖u‖p‖v‖q. (6.3)

In addition, for a bounded domain Ω ⊂ Rd (with a finite Lebesgue measure µd(Ω)),
the Jensen’s inequality for convex functions yields

‖u‖p ≤ [µd(Ω)]
1
p−

1
p′ ‖u‖p′ (1 ≤ p ≤ p′). (6.4)

6.1. First (ground) Dirichlet eigenfunction. The Dirichlet eigenfunction u1

associated with the first eigenvalue λ1 > 0 does not change the sign in Ω and may be
taken to be positive. It satisfies the following inequalities.

(i) Payne and Rayner showed in two dimensions that

‖u1‖2 ≤
√
λ1√
4π
‖u1‖1, (6.5)

with equality if and only if Ω is a disk [305, 306]. Kohler-Jobin gave an extension of
this inequality to higher dimensions [222] (see [103, 223, 306] for other extensions):

‖u1‖2 ≤
λ
d/4
1√

2dωd[j d
2−1,1]d−2

‖u1‖1. (6.6)

(ii) Payne and Stakgold derived two inequalities for a convex domain in 2D

π

2µ2(Ω)
‖u1‖1 ≤ ‖u1‖∞ (6.7)

and

u1(x) ≤ |x− ∂Ω|
√
λ1

µ2(Ω)
‖u1‖1 (x ∈ Ω), (6.8)

where |x− ∂Ω| is the distance from a point x in Ω to the boundary ∂Ω [307].
(iii) Van Den Berg proved the following inequality for L2-normalized eigenfunction

u1 when Ω is an open, bounded and connected set in Rd (d = 2, 3, . . . ):

‖u1‖∞ ≤
2

2−d
2

πd/4
√

Γ(d/2)

(
j d−2

2 ,1

) d−2
2

|J d
2

(
j d−2

2 ,1

)
|
ρ−d/2, (6.9)
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with equality if and only if Ω is a ball, where ρ is the inradius (Eq. (4.11)) [389].
Van Den Berg also conjectured the stronger inequality for an open bounded convex
domain Ω ⊂ Rd:

‖u1‖∞ ≤ Cdρ−d/2(ρ/δ)1/6, (6.10)

where δ is the diameter of Ω, and Cd is a universal constant independent of Ω.
(iv) Pang investigated how the first Dirichlet eigenvalue and eigenfunction would

change when the domain slightly shrinks [297, 298]. For a bounded simply connected
open set Ω ⊂ R2, let

Ωε ⊇ {x ∈ Ω : |x− ∂Ω| ≥ ε}

be its interior, i.e., Ω without an ε boundary layer. Then the Dirichlet eigenvalues λεm
and L2-normalized eigenfunctions uεm in Ωε (with λ0

m = λm and u0
m = um referring

to the original domain Ω) satisfy, for all ε ∈ (0, ρ/2),

|λε1 − λ1| ≤ C1ε
1/2,

‖u1 − Tεuε1‖L∞(Ω) ≤
[
C2 + C3(λ2 − λ1)−1/2 + C4(λ2 − λ1)−1

]
ε1/2,

(6.11)

where ρ is the inradius of Ω (Eq. (4.11)), Tε is the extension operator from Ωε to Ω,
and

C1 = ρ−3/2β9/4 29γ4
1

3π9/4
, C2 = ρ−3/2β13/4 212γ5

1

π15/4
,

C3 = ρ−5/2β4

(
215γ6

1γ2

3
√

2απ9/2

)[
1 +

9γ1

π3/4
β3/4

]
,

C4 = ρ−7/2β7

(
226γ10

1 γ2
2

81
√

2 α π15/2

)[
1 + 18γ1β

3/4 +
81γ2

1

π3/2
β3/2

]
,

where β = µ2(Ω)/ρ2, α is the constant from Eq. (4.10) (for which one can use the
best known estimate α = 0.6197... from [30]), and γ1 and γ2 are the first and second
Dirichlet eigenvalues for the unit disk: γ1 = j2

0,1 ≈ 5.7832 and γ2 = j2
1,1 ≈ 14.6820.

Moreover, when Ω is the cardioid in R2, the term ε1/2 cannot be improved.1

In addition, Davies proved that for a bounded simply connected open set Ω ∈ R2

and for any β ∈ (0, 1/2), there exists c = c(β) ≥ 1 such that [117]

|λε1 − λ1| ≤ cεβ (6.12)

for all sufficiently small ε > 0. Moreover, the estimate also holds for higher Dirichlet
eigenvalues.

6.2. Estimates applicable for all eigenfunctions.

6.2.1. Estimates through the Green function. Using the spectral decom-
position (2.5) of the Green function G(x, y), one can rewrite Eq. (1.1) as

um(x) = λm

∫
Ω

G(x, y)um(y)dy,

1 In the original paper [298], the coefficient C4 in Eq. (1.5) should be multiplied by the omitted
prefactor

√
2|Ω| that follows from the derivation.
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from which the Hölder inequality (6.3) yields a family of simple pointwise estimates

|um(x)| ≤ λm‖um‖ p
p−1

∫
Ω

|G(x, y)|pdy

1/p

, (6.13)

with any p ≥ 1. Here, a single function of x in the right-hand side bounds all the
eigenfunctions. In particular, for p = 1, one gets

|um(x)| ≤ λm‖um‖∞
∫
Ω

|G(x, y)|dy. (6.14)

For Dirichlet boundary condition, G(x, y) is positive everywhere in Ω so that

|um(x)| ≤ λm‖um‖∞ U(x), U(x) =

∫
Ω

G(x, y)dy, (6.15)

where U(x) solves the boundary value problem

−∆U(x) = 1 (x ∈ Ω), U(x) = 0 (x ∈ ∂Ω). (6.16)

The solution of this equation is known to be the mean first passage time to the
boundary ∂Ω from an interior point x [332]. The inequalities (6.14, 6.15) (or their
extensions) were reported by Moler and Payne [279] (Sect. 6.2.2) and were used by
Filoche and Mayboroda for determining the geometrical structure of eigenfunctions
[143] (Sect. 6.2.6).

6.2.2. Bounds for eigenvalues and eigenfunctions of symmetric oper-
ators. Moler and Payne derived simple bounds for eigenvalues and eigenfunctions
of symmetric operators by considering their extensions [279]. As a typical example,
one can think of the Dirichlet-Laplace operator in a bounded domain Ω (symmetric
operator A) and of the Laplace operator without boundary conditions (extension A∗).
Let λ∗ and u∗ be an approximate eigenvalue and eigenfunction of A that are obtained
by solving a simpler eigenvalue problem A∗u∗ = λ∗u∗ without boundary condition.
If there exists a function w such that A∗w = 0 and w = u∗ at the boundary of Ω and

if ε =
‖w‖L2(Ω)

‖u∗‖L2(Ω)
< 1, then there exists an eigenvalue λk of A satisfying

λ∗
1 + ε

≤ |λk| ≤
|λ∗|

1− ε
. (6.17)

Moreover, if ‖u∗‖L2(Ω) = 1 and uk is the L2-normalized projection of u∗ onto the
eigenspace of λk, then

‖u∗ − uk‖L2(Ω) ≤
ε

α

(
1 +

ε2

α2

)1/2

, (6.18)

where α = min
λn 6=λk

|λn−λ∗|
|λn| .

If u∗ is a good approximation to an eigenfunction of the Dirichlet-Laplace oper-
ator, then it must be close to zero on the boundary of Ω, yielding small ε and thus
accurate lower and upper bounds in (6.17). The accuracy of the bound (6.18) also
depends on the separation α between eigenvalues.

In the same work, Moler and Payne also provided pointwise bounds for eigenfunc-
tions that rely on Green’s functions (an extension of Sec. 6.2.1).
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6.2.3. Estimates for Lp-norms. Chiti extended the Payne-Rayner’s inequality
(6.5) to the eigenfunctions of linear elliptic second order operators in divergent form,
with Dirichlet boundary condition [103]. For the Laplace operator in a bounded
domain Ω ⊂ Rd, Chiti’s inequality for any real numbers q ≥ p > 0 states:

‖u‖q ≤ ‖u‖p (dωd)
1
q−

1
pλ

q−p
2pq d

(j d
2
−1,1∫
0

dr rd−1+q(1−d/2)[J d
2−1(r)]q

)1/q

(j d
2
−1,1∫
0

dr rd−1+p(1−d/2)[J d
2−1(r)]p

)1/p
. (6.19)

6.2.4. Pointwise bounds for Dirichlet eigenfunctions. Banuelos derived a
pointwise upper bound for L2-normalized Dirichlet eigenfunctions [31]

|um(x)| ≤ λd/4m (x ∈ Ω). (6.20)

Van Den Berg and Bolthausen proved the following estimates for L2-normalized
Dirichlet eigenfunctions [387]. Let Ω ⊂ Rd (d = 2, 3, . . . ) be an open bounded domain
with boundary ∂Ω which satisfies an α-uniform capacitary density condition with
some α ∈ (0, 1], i.e.

Cap{∂Ω ∩B(x; r)} ≥ αCap{B(x; r)}, x ∈ ∂Ω, 0 < r < δ, (6.21)

where B(x, r) is the ball of radius r centered at x, δ is the diameter of Ω (Eq. (4.19)),
and Cap is the logarithmic capacity for d = 2 and the Newtonian capacity for d > 2.
This condition guarantees that all points of ∂Ω are regular. The following estimates
hold

(i) in two dimensions (d = 2), for all m = 1, 2, . . . and all x ∈ Ω such that
|x− ∂Ω|

√
λm < 1, one has

|um(x)| ≤

{
6λm ln(α2π/2)

ln
(
|x− ∂Ω|

√
λm
)}1/2

. (6.22)

(ii) in higher dimensions (d > 2), for all m = 1, 2, . . . and all x ∈ Ω such that

|x− ∂Ω|
√
λm ≤

(
α6

213

)1+γ(d−1)/(d−2)

, (6.23)

with γ =
3−d−1α

ln(2(2/α)1/(d−2))
, one has

|um(x)| ≤ 2λd/4m

(
|x− ∂Ω|

√
λm

) 1
2 ((1/γ)+(d−1)/(d−2))−1

. (6.24)

(iii) for a planar simply connected domain and all m = 1, 2, . . . ,

|um(x)| ≤ m 29/2π1/4 (µ2(Ω))1/4

ρ2
|x− ∂Ω|1/2 (x ∈ Ω), (6.25)

where ρ is the inradius of Ω (see Eq. (4.11)), and the inequality is sharp.
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6.2.5. Upper and lower bounds for normal derivatives of Dirichlet eigen-
functions. Suppose that M is a compact Riemannian manifold with boundary and
u is an L2-normalized Dirichlet eigenfunction with eigenvalue λ. Let ψ be its normal
derivative at the boundary. A scaling argument suggests that the L2-norm of ψ will
grow as

√
λ as λ→∞. Hassell and Tao proved that

c
√
λ ≤ ‖ψ‖L2(∂M) ≤ C

√
λ, (6.26)

where the upper bound holds for any Riemannian manifold, while the lower bound is
valid provided that M has no trapped geodesics [177]. The positive constants c and
C depend on M , but not on λ.

6.2.6. Estimates for restriction onto a subdomain. For a bounded domain
Ω ⊂ Rd, Filoche and Mayboroda have obtained the upper bound for the L2-norm of a
Dirichlet-Laplacian eigenfunction u associated to λ, in any open subset D ⊂ Ω [143]:

‖u‖L2(D) ≤
(

1 +
λ

dD(λ)

)
‖v‖L2(D), (6.27)

where the function v solves the boundary value problem in D:

∆v = 0 (x ∈ D), v = u (x ∈ ∂D).

and dD(λ) is the distance from λ to the spectrum of the Dirichlet-Laplace operator in
D. Note also that the above bound was proved for general self-adjoint elliptic oper-
ators [143]. When combined with Eq. (6.15), this inequality helps to investigate the
spatial distribution of eigenfunctions because it is in general much easier to compute
or estimate the harmonic function v than the eigenfunction u.

The above estimate can be completed by a lower bound (see Appendix A):

‖u‖L2(D) ≥
λ1(D)

λ+ λ1(D)
‖v‖L2(D), (6.28)

where λ1(D) is the first Dirichlet eigenvalue of the subdomain D.

7. Localization of eigenfunctions. “Localization” is defined in the Webster’s
dictionary as “act of localizing, or state of being localized”. The notion of localization
appears in various fields of science and often has different meanings. Throughout this
review, a function u defined on a domain Ω ⊂ Rd, is called Lp-localized (for p ≥ 1) if
there exists a bounded subset Ω0 ⊂ Ω which supports almost all Lp-norm of u, i.e.

‖u‖Lp(Ω\Ω0)

‖u‖Lp(Ω)
� 1 and

µd(Ω0)

µd(Ω)
� 1. (7.1)

Qualitatively, a localized function essentially “lives” on a small subset of the domain
and takes small values on the remaining part. For instance, a Gaussian function
exp(−x2) on Ω = R is Lp-localized for any p ≥ 1 since one can choose Ω0 = [−a, a]
with large enough a so that the ratio of Lp-norms can be made arbitrarily small,
while the ratio of lengths µ1(Ω0)/µ1(Ω) is strictly 0. In turn, when Ω = [−A,A], the
localization character of exp(−x2) becomes conventional and dependent on A. This
example illustrates that the above inequalities do not provide a universal quantitative
criterion to distinguish between localized and non-localized (or extended) functions.
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In this Section, we will describe various kinds of localization for which some quanti-
tative criteria can be formulated. We will also illustrate that the choice of the norm
(i.e., p) may be important.

Another “definition” of localization was given by Felix et al. who combined L2

and L4 norms to define the “existence area” as [139]

S(u) =
‖u‖4L2(Ω)

‖u‖4L4(Ω)

. (7.2)

A function u was called localized when its existence area S(u) was much smaller than
the area µ2(Ω) [139] (this definition trivially extends to higher dimensions). In fact, if
a function is small in a subdomain, the fourth power diminishes it stronger than the
second power. For instance, if Ω = (0, 1) and u is 1 on the subinterval Ω0 = (1/4, 1/2)
and 0 otherwise, one has ‖u‖L2(Ω) = ‖u‖L4(Ω) = 1/2 so that S(u) = 1/4, i.e. the
length of the subinterval Ω0. Once again, the smallness of S(u)/µ2(Ω) is conventional.
Note that a family of “existence areas” can be constructed by comparing Lp and Lq
norms,

Sp,q(u) =

(‖u‖Lp(Ω)

‖u‖Lq(Ω)

) 1
1
p
− 1
q
. (7.3)

7.1. Bound quantum states in a potential. The notion of bound, trapped or
localized quantum states is known for a long time [59, 333]. The simplest “canonical”
example is the quantum harmonic oscillator, i.e. a particle of mass m in a harmonic
potential of frequency ω which is described by the Hamiltonian

H =
p̂2

2m
+
mω2

2
x̂2 = − ~2

2m
∂2
x +

mω2

2
x2, (7.4)

where p̂ = −i~∂x is the momentum operator, and x̂ = x is the position operator (~
being the Planck’s constant). The eigenfunctions of this operator are well known:

ψn(x) =

√
1

2n n!

(mω
π~

)1/4

exp

(
−mωx

2

2~

)
Hn

(√
mω/~x

)
, (7.5)

where Hn(x) are the Hermite polynomials. All these functions are localized in a
region around the minimum of the harmonic potential (here, x = 0), and rapidly decay
outside this region. For this example, the definition (7.1) of localization is rigorous. In
physical terms, the presence of a strong potential forbids the particle to travel far from
the origin, the size of the localization region being

√
~/(mω). This so-called strong

localization has been thoroughly investigated in physics and mathematical physics
[3, 264, 265, 295, 333, 353, 357, 361].

7.2. Anderson localization. The previous example of a single quantum har-
monic well is too idealized. A piece of matter contains an extremely large number of
interacting atoms. Even if one focuses onto a single atom in an effective potential,
the form of this potential may be so complicated that the study of the underlying
eigenfunctions would in general be intractable. In 1958, Anderson considered a lat-
tice model for a charge carrier in a random potential and proved the localization of
eigenfunctions under certain conditions [6]. The localization of charge carriers means
no electric current through the medium (insulating state), in contrast to metallic or
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(a) (b) (c)

Fig. 7.1. Illustration of the Anderson transition in a tight-binding model (or so-called SU(2)
model) in the two-dimensional symplectic class [13, 14, 288, 289]. Three shown eigenfunctions (with
the energy close to 1) were computed for three disorder strengths W that correspond to (a) metallic
state (W < W0), (b) critical state (W = W0), and (c) insulating state (W > W0), W0 = 5.952 being
the critical disorder strength. The latter eigenfunction is strongly localized that prohibits diffusion
of charge carriers (i.e., no electric current). The eigenfunctions were computed and provided by Dr.
Hideaki Obuse (unpublished earlier).

conducting state when the charge carriers are not localized. The Anderson transition
between insulating and conducting states is illustrated for the tight-binding model on
Fig. 7.1. The shown eigenfunctions were computed for three disorder strengths W
that correspond to metallic (W < W0), critical (W = W0), and insulating (W > W0)
states, W0 = 5.952 being the critical desorder strength. The latter eigenfunction
is strongly localized that prohibits diffusion of charge carriers (i.e., no electric cur-
rent). The Anderson localization which explains the metal-insulator transitions in
semiconductors, was thoroughly investigated during the last fifty years (see reviews
[46, 134, 227, 246, 276, 379] for details and references). Similar localization phenomena
were observed for microwaves with two-dimensional random scattering [111], for light
in a disordered medium [398] and in disordered photonic crystals [347, 356], for matter
waves in a controlled disorder [56] and in non-interacting Bose-Einstein condensate
[338], and for ultrasound [195]. The multifractal structure of the eigenfunctions at the
critical point (look at an example on Fig. 7.1b) has also been intensively investigated
(see [134, 171] and references therein).

7.3. Trapping in infinite waveguides. In both previous cases, localization
of eigenfunctions was related to an external potential. In particular, if the potential
was not strong enough, Anderson localization could disappear (Fig. 7.1a). Is the
presence of a potential necessary for localization? The formal answer is positive
because the eigenstates of the Laplace operator in the whole space Rd are simply
ei(k·x) (parameterized by the vector k) which are all extended in Rd. These waves are
called “resonances” (not eigenfunctions) of the Laplace operator, as their L2-norm is
infinite.

The situation is different for the Laplace operator in a bounded domain with
Dirichlet boundary condition. In quantum mechanics, such a boundary presents a
“hard wall” that separates the interior of the domain with zero potential from the ex-
terior of the domain with infinite potential. For instance, this “model” was employed
by Crommie et al. to describe the confinement of electrons to quantum corrals on
a metallic surface [109] (see also their figure 2 that shows the experimental spatial
structure of the electron’s wavefunction). Although the physical interpretation of a
boundary through an infinite potential is instructive, we will use the mathematical
terminology and speak about the eigenvalue problem for the Laplace operator in a
bounded domain without potential.
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For unbounded domains, the spectrum of the Laplace operator consists of two
parts: (i) the discrete (or point-like) spectrum, with eigenfunctions of finite L2 norm
that are necessarily “trapped” or “localized” in a bounded region of the waveguide,
and (ii) the continuous spectrum, with associated functions of infinite L2 norm that
are extended over the whole domain. The continuous spectrum may also contain
embedded eigenvalues whose eigenfunctions have finite L2 norm. A wave excited at
the frequency of the trapped eigenmode remains in the localization region and does
not propagate. In this case, the definition (7.1) of localization is again rigorous, as
for any bounded subset Ω0 of an unbounded domain Ω, one has µd(Ω0)/µd(Ω) = 0,
while the ratio of L2 norms can be made arbitrarily small by expanding Ω0.

This kind of localization in classical and quantum waveguides has been thoroughly
investigated (see reviews [129, 258] and also references in [292]). In the seminal paper,
Rellich proved the existence of a localized eigenfunction in a deformed infinite cylinder
[334]. His results were significantly extended by Jones [206]. Ursell reported on the
existence of trapped modes in surface water waves in channels [383–385], while Parker
observed experimentally the trapped modes in locally perturbed acoustic waveguides
[299, 300]. Exner and Seba considered an infinite bent strip of smooth curvature
and showed the existence of trapped modes by reducing the problem to Schrödinger
operator in the straight strip, with the potential depending on the curvature [135].
Goldstone and Jaffe gave the variational proof that the wave equation subject to
Dirichlet boundary condition always has a localized eigenmode in an infinite tube
of constant cross-section in any dimension, provided that the tube is not exactly
straight [158]. This result was further extended by Chenaud et al. to arbitrary
dimension [98]. The problem of localization in acoustic waveguides with Neumann
boundary condition has also been investigated [131, 132]. For instance, Evans et al.
considered a straight strip with an inclusion of arbitrary (but symmetric) shape [132]
(see [118] for further extensions). Such an inclusion obstructed the propagation of
waves and was shown to result in trapped modes. The effect of mixed Dirichlet,
Neumann and Robin boundary conditions on the localization was also investigated
(see [74, 125, 146, 292] and references therein). A mathematical analysis of guided
water waves was developed by Bonnet-Ben Dhia and Joly [64]. Lower bounds for
the eigenvalues below the cut-off frequency (for which the associated eigenfunctions
are localized) were obtained by Ashbaugh and Exner for infinite thin tubes in two
and three dimensions [15]. In addition, these authors derived an upper bound for the
number of the trapped modes. More recently, Exner et al. considered the Laplacian
in finite-length curved tubes of arbitrary cross-section, subject to Dirichlet boundary
conditions on the cylindrical surface and Neumann conditions at the ends of the tube.
They expressed a lower bound for the spectral threshold of the Laplacian through the
lowest eigenvalue of the Dirichlet Laplacian in a torus determined by the geometry
of the tube [137]. In a different work, Exner and co-worker investigated bound states
and scattering in quantum waveguides coupled laterally through a boundary window
[136].

Examples of waveguides with numerous localized states were reported in the lit-
erature. For instance, Avishai et al. demonstrated the existence of many localized
states for a sharp “broken strip”, i.e. a waveguide made of two channels of equal
width intersecting at a small angle θ [23]. Carini and co-workers reported an ex-
perimental confirmation of this prediction and its further extensions [88, 89, 261].
Bulgakov et al. considered two straight strips of the same width which cross at an
angle θ ∈ (0, π/2) and showed that, for small θ, the number of localized states is
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Fig. 7.2. Two examples of a bounded domain Ω with a branch of variable cross-sectional
profile. When the eigenvalue λ is smaller than the cut-off “frequency” µ, the associated eigenfunction
exponentially decays in the branch Ω2 and is thus mainly localized in Ω1. Note that the branch itself
may even be increasing.

Fig. 7.3. Examples of localized Dirichlet eigenfunctions with an exponential decay: square
with a branch (from [119]), L-shape and crossing of two stripes (from [120]).

greater than (1 − 2−2/3)3/2/θ [73]. Even for the simple case of two strips crossed at
the right angle θ = π/2, Schult et al. showed the existence of two localized states, one
lying below the cut-off frequency and the other being embedded into the continuous
spectrum [355].

7.4. Exponential estimate for eigenfunctions. Qualitatively, an eigenmode
is trapped when it cannot “squeeze” outside the localization region through narrow
channels or branches of the waveguide. This happens when typical spatial variations
of the eigenmode, which are in the order of πλ−1/2, are larger than the size a of the
narrow part, i.e. πλ−1/2 ≥ a or λ ≤ π2/a2 [198]. This simplistic argument suggests
that there exists a threshold value µ (which may eventually be 0), or so-called cut-off
frequency, such that the eigenmodes with λ ≤ µ are localized. Moreover, this qual-
itative geometrical interpretation is well adapted for both unbounded and bounded
domains. While the former case of infinite waveguides was thoroughly investigated,
the existence of trapped or localized eigenmodes in bounded domains has attracted
less attention. Even the definition of localization remains conventional because all
eigenfunctions in a bounded domain have finite L2 norm.

This problem was studied by Delitsyn and co-workers for domains with branches
of variable cross-sectional profiles [119]. More precisely, one considers a bounded
domain Ω ⊂ Rd (d = 2, 3, ...) with a piecewise smooth boundary ∂Ω and denote
Q(z) = Ω ∩ {x ∈ Rd : x1 = z} the cross-section of Ω at x1 = z ∈ R by a hyperplane
perpendicular to the coordinate axis x1 (Fig. 7.2). Let

z1 = inf{z ∈ R : Q(z) 6= ∅}, z2 = sup{z ∈ R : Q(z) 6= ∅},
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(a)

(b)

(c)

n = 1 n = 2 n = 3

Fig. 7.4. The first three Dirichlet eigenfunctions for three elongated domains: (a) rectangle
of size 25× 1, (b) right trapezoid with bases 1 and 0.9 and height 25 which is very close to the above
rectangle, and right triangle with edges 25 and 1 (half of the rectangle). There is no localization for
the first shape, while the first eigenfunctions for the second and third domains tend to be localized.

and we fix some z0 such that z1 < z0 < z2. Let µ(z) be the first eigenvalue of
the Laplace operator in Q(z) (with Dirichlet boundary condition on ∂Q(z)), and
µ = inf

z∈(z0,z2)
µ(z). Let u be a Dirichlet-Laplacian eigenfunction in Ω, and λ the

associate eigenvalue. If λ < µ, then

‖u‖L2(Q(z)) ≤ ‖u‖L2(Q(z0)) exp(−β
√
µ− λ (z − z0)) (z ≥ z0), (7.6)

with β =
√

2. Moreover, if (e1 ·n(x)) ≥ 0 for all x ∈ ∂Ω with x1 > z0, where e1 is the
unit vector (1, 0, ..., 0) in the direction x1, and n(x) is the normal vector at x ∈ ∂Ω
directed outwards the domain, then the above inequality holds with β = 2.

In this statement, a domain Ω is conventionally split into two subdomains, Ω1

(with x1 < z0) and Ω2 (with x1 > z0), by the hyperplane at x1 = z0 (the coordinate
axis x1 can be replaced by any straight line). Under the condition λ < µ, the eigen-
function u exponentially decays in Ω2 which is loosely called “branch”. Note that the
choice of the splitting hyperplane (i.e., z0) determines the threshold µ.

The theorem formalizes the notion of the cut-off frequency µ for branches of
variable cross-sectional profiles and provides a constructive way for its computation.
For instance, if Ω2 is a rectangular channel of width a, the first eigenvalue in all
cross-sections Q(z) is π2/a2 (independently of z) so that µ = π2/a2, as expected.
The exponential estimate quantifies the “difficulty” of penetration, or “squeezing”,
through the branch Ω2 and ensures the localization of the eigenfunction u in Ω1.
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Fig. 7.5. (a) A dumbbell domain Ωε is the union of two bounded domains Ω1, Ω2 and a
narrow “connector” Qε of width ε. (b) In the limit ε → 0, the connector degenerates to a curve
(here, an interval) so that the subdomains Ω1 and Ω2 become disconnected. (c) In Beale’s work,
Ωε is composed of two components, a bounded domain Ω1 and unbounded domain Ω2, which are
connected by a narrow channel Qε.

Since the cut-off frequency µ is independent of the subdomain Ω1, one can impose
any boundary condition on ∂Ω1 (that still ensures the self-adjointness of the Laplace
operator). In turn, the Dirichlet boundary condition on the boundary of the branch
Ω2 is relevant, although some extensions were discussed in [119]. It is worth noting
that the theorem also applies to infinite branches Ω2, under supplementary condition
µ(z)→∞ to ensure the existence of the discrete spectrum.

According to this theorem, the L2-norm of an eigenfunction with λ < µ in Ω(z) =
Ω∩{x ∈ Rd : x1 > z} can be made exponentially small provided that the branch Ω2

is long enough. Taking Ω0 = Ω\Ω(z), the ratio of L2-norms in Eq. (7.1) can be made
arbitrarily small. However, the second ratio may not be necessarily small. In fact, its
smallness depends on the shape of the domain Ω. This is once again a manifestation
of the conventional character of localization in bounded domains.

Figure 7.3 presents several examples of localized Dirichlet eigenfunctions showing
an exponential decay along the branches. Since an increase of branches diminishes
the eigenvalue and thus further enhances the localization, the area of the localized
region Ω1 can be made arbitrarily small with respect to the total area (one can even
consider infinite branches). Examples of an L-shape and a cross illustrate that the
linear sizes of the localized region do not need to be large in comparison with the
branch width (a sufficient condition for getting this kind of localization was proposed
in [120]). It is worth noting that the separation into the localized region and branches
is conventional. For instance, Fig. 7.4 shows several localized eigenfunctions for
elongated triangle and trapezoid, for which there is no explicit separation.

7.5. Dumbbell domains. Yet another type of localization emerges for domains
that can be split into two or several subdomains with narrow connections (of “width”
ε) [330], a standard example being a dumbbell: Ωε = Ω1 ∪ Qε ∪ Ω2 (Fig. 7.5a).
The asymptotic behavior of eigenvalues and eigenfunctions in the limit ε → 0 was
thoroughly investigated for both Dirichlet and Neumann boundary conditions. We
start by considering the Dirichlet boundary condition.

In the limiting case of zero width connections, the subdomains Ωi (i = 1, ..., N)
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n = 1 n = 7 n = 8 n = 11

Fig. 7.6. Several Dirichlet eigenfunctions for a dumbbell domain which is composed of two
rectangles and connected by the third rectangle (from [119]). The 1st and 7th eigenfunctions are
localized in the larger subdomain, the 8th eigenfunction is localized in the smaller subdomain, while
the 11th eigenfunction is not localized at all. Note that the width of connection is not small (1/4 of
the width of both subdomains).

become disconnected, and the eigenvalue problem can be independently formulated
for each subdomain. Let Λi be the set of eigenvalues for the subdomain Ωi. Each
Dirichlet eigenvalue λε of the domain Ωε approaches to an eigenvalue λ0 of one limiting
subdomain Ωi ⊂ Ω0: λ0 ∈ Λi for certain i. Moreover, if

Λi ∩ Λj = ∅ ∀ i 6= j, (7.7)

the space of eigenfunctions in the limiting (disconnected) domain Ω0 is the direct
product of spaces of eigenfunctions for each subdomain Ωi (see [112] for discussion
on convergence and related issues). This is a basis for what we will call “bottle-neck
localization”. In fact, each eigenfunction uεm on the domain Ωε approaches an eigen-
function u0

m of the limiting domain Ω0 which is fully localized in one subdomain Ωi and
zero in the others. For a small ε, the eigenfunction uεm is therefore mainly localized in
the corresponding i-th subdomain Ωi, and is almost zero in the other subdomains. In
other words, for any eigenfunction, one can take the width ε small enough to ensure
that the L2-norm of the eigenfunction in the subdomain Ωi is arbitrarily close to that
in the whole domain Ωε:

∀ m ≥ 1 ∃i ∈ {1, ..., N} ∀ δ ∈ (0, 1) ∃ ε > 0 : ‖uεm‖L2(Ωi) > (1− δ)‖uεm‖L2(Ωε).
(7.8)

This behavior is exemplified for a dumbbell domain which is composed of two rectan-
gles and connected by the third rectangle (Fig. 7.6). The 1st and 7th eigenfunctions
are localized in the larger rectangle, the 8th eigenfunction is localized in the smaller
rectangle, while the 11th eigenfunction is not localized at all. Note that the width of
connection is not too small (1/4 of the width of both subdomains).

It is worth noting that, for a small fixed width ε and a small fixed threshold δ,
there may be infinitely many high-frequency “non-localized” eigenfunctions, for which
the above inequality is not satisfied. In other words, for a given connected domain with
a narrow connection, one can only expect to observe a finite number of low-frequency
localized eigenfunctions. We note that the condition (7.7) is important to ensure that
limiting eigenfunctions are fully localized in their respective subdomains. Without
this condition, a limiting eigenfunction may be a linear combination of eigenfunctions
in different subdomains with the same eigenvalue that would destroy localization.
Note that the asymptotic behavior of eigenfunctions at the “junction” was studied by
Felli and Terracini [141].

For Neumann boundary condition, the situation is more complicated, as the eigen-
values and eigenfunctions may also approach the eigenvalues and eigenfunctions of the
limiting connector (in the simplest case, the interval). Arrieta considered a planar
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dumbell domain Ωε consisted of two disjoint domains Ω1 and Ω2 joint by a channel
Qε of variable profile g(x): Qε = {x ∈ R2 : 0 < x1 < 1, 0 < x2 < εg(x1)}, where
g ∈ C1(0, 1) and g(x1) ≥ 0 for all x1 ∈ [0, 1]. In the limit ε → 0, each eigenvalue
of the Laplace operator in Ωε with Neumann boundary condition was shown to con-
verge either to an eigenvalue µk of the Neumann-Laplace operator in Ω1 ∪ Ω2, or
to an eigenvalue νk of the Sturm-Liouville operator − 1

g (gux)x acting on a function

u on (0, 1), with Dirichlet boundary condition [10, 11]. The first-order term in the
small ε-asymptotic expansion was obtained. The special case of cylindrical channels
(of constant profile) in higher dimensions was studied by Jimbo [203] (see also re-
sults by Hempel et al. [185]). Jimbo and Morita studied an N -dumbell domain, i.e.
a family of N pairwise disjoint domains joint by thin channels [204]. They proved
that λεm = Cmε

d−1 + o(εd−1) as ε → 0 for m = 1, 2, . . . , N , while λεN+1 is uniformly
bounded away from zero, where d is the dimension of the embedding space, and Cm
are shape-dependent constants. Jimbo also analyzed the asymptotic behavior of the
eigenvalues λεm with m > N under the condition that the sets {µk} and {νk} do not
intersect [205]. In particular, for an eigenvalue λεm that converges to an element of
{µk}, the asymptotic behavior is λεm = µk + Cmε

d−1 + o(εd−1).
Brown and co-workers studied upper bounds for |λεm − λ0

m| and showed [69]:
(i) If λ0

m ∈ {µk} \ {νk},

|λεm − λ0
m| ≤ C| ln ε|−1/2 (d = 2),

|λεm − λ0
m| ≤ Cε(d−2)/d (d ≥ 3).

(ii) If λ0
m ∈ {νk} \ {µk},

|λεm − λ0
m| ≤ Cε1/2| ln ε| (d = 2),

|λεm − λ0
m| ≤ Cε1/2 (d ≥ 3).

For a dumbbell domain in Rd with a thin cylindrical channel of a smooth profile,
Gadyl’shin obtained the complete small ε asymptotics of the Neumann-Laplace eigen-
values and eigenfunctions and explicit formulas for the first term of these asymptotics,
including multiplicities [151–153].

More recently, Arrieta and Krejcirik considered the problem of spectral conver-
gence from another point of view [12]. They showed that if Ω0 ⊂ Ωε are bounded do-
mains and if the eigenvalues and eigenfunctions of the Laplace operator with Neumann
boundary condition in Ωε converge to the ones in Ω0, then necessarily µd(Ωε\Ω0)→ 0
as ε → 0, while it is not necessarily true that dist(Ωε,Ω0) → 0. As a matter of fact,
they constructed an example of a perturbation where the spectra behave continuously
but dist(Ωε,Ω0)→∞ as ε→ 0.

A somewhat related problem of scattering frequencies of the wave equation as-
sociated to an exterior domain in R3 with an appropriate boundary condition was
investigated by Beale [45] (for more general aspects of geometric scattering theory,
see [274]). We recall that a scattering frequency

√
λ of an unbounded domain Ω is

a (complex) number for which there exists a nontrivial solution of ∆u + λu = 0 in
Ω, subject to Dirichlet, Neumann, or Robin boundary condition and to an “outgo-
ing” condition at infinity. In Beale’s work, a bounded cavity Ω1 was connected by a
thin channel to the exterior (unbounded) space Ω2. More specifically, he considered a
bounded domain D such that its complement in R3 has a bounded component Ω1 and
an unbounded component Ω2. After that, a thin “hole” Qε in D was made to connect
both components (Fig. 7.5c). Beale showed that the joint domain Ωε = Ω1 ∪Qε ∪Ω2
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g = 0 g = 1 g = 2 g = 3

Fig. 7.7. The unit square and three prefractal domains obtained iteratively one from the
other (two sides of these domains are finite generations of the Von Koch curve of fractal dimension
3/2). These domains were intensively studied, both numerically and experimentally, by Sapoval and
co-workers [133, 175, 180, 340, 341, 348–350].

with Dirichlet boundary condition has a scattering frequency which is arbitrarily close
either to an eigenfrequency (i.e., the square root of the eigenvalue) of the Laplace op-
erator in Ω1, or to a scattering frequency in Ω2, provided the channel Qε is narrow
enough. The same result was extended to Robin boundary condition of the form
∂u/∂n + hu = 0 on ∂Ωε, where h is a function on ∂Ωε with a positive lower bound.
In both cases, the method in his proof relies on the fact that the lowest eigenvalue
of the channel tends to infinity as the channel narrows. However, it is no longer
true for Neumann boundary condition. In this case, with some restrictions on the
shape of the channel, Beale proved that the scattering frequencies converge not only
to the eigenfrequencies of Ω1 and scattering frequencies of Ω2 but also to the longitu-
dinal frequencies of the channel. Similar results can be obtained in domains of space
dimension other than 3.

7.6. Localization in irregularly-shaped domains. As we have seen, a nar-
row connection between subdomains could lead to localization. How narrow should
it be? A rigorous answer to this question is only known for several “tractable” cases
such as dumbbell-like or cylindrical domains (Sec. 7.5). In general, even the notion
of “connection” is conventional. Sapoval and co-workers have formulated and studied
the problem of localization in irregularly-shaped or fractal domains through numeri-
cal simulations and experiments [133, 139, 175, 180, 340, 341, 348–350]. In the first
publication, they monitored the vibrations of a prefractal “drum” (i.e., a thin mem-
brane with a fixed boundary) which was excited at different frequencies [348]. Tuning
the frequency allowed them to directly visualize different Dirichlet eigenfunctions in
a (prefractal) quadratic von Koch snowflake (an example is shown on Fig. 7.7). For
this and similar domains, certain eigenfunctions were found to be localized in a small
region of the domain, for both Dirichlet and Neumann boundary conditions (Fig. 7.8).
This effect was first attributed to self-similar structure of the domain. However, simi-
lar effects were later observed through numerical simulations for non-fractal domains
[139], as illustrated by Fig. 7.9. In the study of sound attenuation by noise-protective
walls, Félix and co-workers have further extended the analysis to the union of two do-
mains with different refraction indices which are separated by an irregular boundary
[139]. Many eigenfunctions of the related second order elliptic operator were shown
to be localized on this boundary (so-called “astride localization”). A rigorous math-
ematical theory of these important phenomena is still missing. Takeda al. observed
experimentally the electromagnetic field at specific frequency to be confined in the
central part of the third stage of three-dimensional fractals called the Menger sponge
[377]. This localization was attributed to a singular photon density of states realized
in the fractal structure.
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n = 1 n = 2 n = 8 n = 38

n = 2 n = 4 n = 12 n = 16

Fig. 7.8. Several Dirichlet (top) and Neumann (bottom) eigenfunctions for the third domain
on Fig. 7.7 (g = 2). The 38th Dirichlet and the 12th Neumann eigenfunctions are localized in a
small subdomain (located in the upper right corner on Fig. 7.7), while the first/second Dirichlet and
the 4th Neumann eigenfunctions are almost zero on this subdomain. Finally, the 8th Dirichlet and
the second Neumann eigenfunctions are examples of eigenfunctions extended over the whole domain.

n = 8 n = 21

n = 8 n = 10 n = 12 n = 16

Fig. 7.9. Examples of localized Neumann eigenfunctions in two domains adapted from [139]:
square with many elongated holes (top) and random sawteeth (bottom). Colors represent the ampli-
tude of eigenfunctions, from the most negative value (dark blue), through zero (green), to the largest
positive value (dark red). One can notice that the eigenfunctions on the top are not negligible outside
the localization region. This is yet another illustration for the conventional character of localization
in bounded domains.

A number of mathematical studies were devoted to the theory of partial differen-
tial equations on fractals in general and to localization of Laplacian eigenfunctions in
particular (see [219, 374] and references therein). For instance, the spectral proper-
ties of the Laplace operator on Sierpinski gasket and its extensions were thoroughly
investigated [33–35, 37, 60, 150, 359]. Barlow and Kigami studied the localized eigen-
functions of the Laplacian on a more general class of self-similar sets (so-called post
critically finite self-similar sets, see [220, 221] for details). They related the asymptotic
behavior of the eigenvalue counting function to the existence of localized eigenfunc-
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tions and established a number of sufficient conditions for the existence of a localized
eigenfunction in terms of the symmetries of a set [36].

Berry and co-workers developed a new method to approximate the Neumann
spectrum of a Laplacian on a planar fractal set Ω as a renormalized limit of the Neu-
mann spectra of the standard Laplacian on a sequence of domains that approximate Ω
from the outside [54]. They applied this method to compute the Neumann-Laplacian
eigenfunctions in several domains, including a sawtooth domain, Sierpinski gasket and
carpet, as well as nonsymmetric and random carpets and the octagasket. In partic-
ular, they gave a numerical evidence for the localized eigenfunctions for a sawtooth
domain, in agreement with the earlier work by Félix et al. [139].

Heilman and Strichartz reported several numerical examples of localized Neumann-
Laplacian eigenfunctions in two domains [181], one of them is illustrated on Fig. 7.10a.
Each of these domains consists of two subdomains with a narrow but not too narrow
connection. This is a kind of dumbbell shape with a connector of zero length. Heil-
man and Strichartz argued that one subdomain must possess an axis of symmetry
for getting localized eigenfunctions. Since an anti-symmetric eigenfunction vanishes
on the axis of symmetry, it is necessarily small near the bottle-neck that somehow
“prevents” its extension to the other domain. Although the argument is plausible,
we have to stress that such a symmetry is neither sufficient, nor necessary for lo-
calization. It is obviously not sufficient because even for symmetric domain, there
exist plenty of extended eigenfunctions (including the trivial example of the ground
eigenmode which is a constant over the whole domain). In order to illustrate that the
reflection symmetry is not necessary, we plot on Fig. 7.10b,c examples of localized
eigenfunctions for modified domains for which the symmetry is broken. Although
rendering the upper domain less and less symmetric gradually reduces or even fully
destroys localization (Fig. 7.10d), its “mechanism” remains poorly understood. We
also note that methods of Sec. 7.4 are not applicable in this case because of Neumann
boundary condition.

Lapidus and Pang studied the boundary behavior of the Dirichlet Laplacian eigen-
functions and their gradients on a class of planar domains with fractal boundary,
including the triangular and square von Koch snowflakes and their polygonal approx-
imations [237]. A numerical evidence for the boundary behavior of eigenfunctions
was reported in [239], with numerous pictures of eigenfunctions. Later, Daubert and
Lapidus considered more specifically the localization character of eigenfunctions in
von Koch domains [114]. In particular, different “measures” of localization were dis-
cussed.

Note also that Filoche and Mayboroda studied the problem of localization for
bi-Laplacian in rigid thin plates and discovered that clamping just one point inside
such a plate not only perturbs its spectral properties, but essentially divides the plate
into two independently vibrating regions [142].

7.7. High-frequency localization. A hundred years ago, Lord Rayleigh doc-
umented an interesting acoustical phenomenon in the whispering gallery under the
dome of Saint Paul’s Cathedral in London [331] (see also [328, 329]). A whisper of one
person propagated along the curved wall to another person stood near the wall. Keller
and Rubinow discussed the related “whispering gallery modes” and also “bouncing
ball modes”, and showed that these modes exist for a two-dimensional domain with
arbitrary smooth convex curve as its boundary [217]. A semiclassical approximation
of Laplacian eigenfunctions in convex domains was developed by Lazutkin [24, 242–
245] (see also [9, 326, 327, 366]). Chen and co-workers analyzed Mathieu and modified
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(a) (b) (c) (d)

Fig. 7.10. Neumann-Laplace eigenfunction u4 in the original “cow” domain from [181] (a)
and in three modified domains (b,c,d), in which the reflection symmetry of the upper subdomain
is broken. The fourth eigenfunction is localized for the first three domains (a,b,c), while the last
domain with the stronger modification shows no localization (d). Colors represent the amplitude
of an eigenfunction, from the most negative value (dark blue), through zero (green), to the largest
positive value (dark red).

Mathieu functions and reported another type of localization named “focusing modes”
[97]. All these eigenmodes become more and more localized in a small subdomain
when the associated eigenvalue increases. This so-called high-frequency or high-energy
limit was intensively studied for various domains, named also as quantum billiards
[173, 183, 199, 352, 373]. In quantum mechanics, this limit is known as semi-classical
approximation [49]. In optics, it corresponds to ray approximation of wave propa-
gation, from which the properties of an optical, acoustical or quantum system can
often be reduced to the study of rays in classical billiards. Jakobson et al. gave an
overview of many results on geometric properties of the Laplacian eigenfunctions on
Riemannian manifolds, with a special emphasis on high-frequency limit (weak star
limits, the rate of growth of Lp norms, relationships between positive and negative
parts of eigenfunctions, etc.) [199]. Bearing in mind this comprehensive review, we
start by illustrating the high-frequency localization and the related problems in simple
domains such as disk, ellipse and rectangle for which explicit estimates can be done.
After that, some results for quantum billiards are summarized.

7.7.1. Whispering gallery and focusing modes. The disk is the simplest
shape for illustrating the whispering gallery and focusing modes. The explicit form
(3.9) of eigenfunctions allows one to get accurate estimates and bounds, as shown
below. When the index k is fixed and n increases, the Bessel functions Jn(αnkr/R)
become strongly attenuated near the origin (as Jn(z) ∼ (z/2)n/n! at small z) and
essentially localized near the boundary, yielding whispering gallery modes. In turn,
when n is fixed and k increases, the Bessel functions highly oscillate, the amplitude
of oscillations decreasing towards to the boundary. In that case, the eigenfunctions
are mainly localized at the origin, yielding focusing modes.

These qualitative arguments were rigorously formulated in [287]. For each eigen-
function unk on the unit disk Ω, one introduces the subdomain Ωnk = {x ∈ R2 : |x| <
dn/αnk} ⊂ Ω, where dn = n− n2/3, and αnk are, depending on boundary conditions,
the positive zeros of either Jn(z) (Dirichlet), or J ′n(z) (Neumann) or J ′n(z) + hJn(z)
for some h > 0 (Robin), with n = 0, 1, 2, ... denoting the order of Bessel function
Jn(z) and k = 1, 2, 3, ... counting zeros. Then for any p ≥ 1, there exists a universal
constant cp > 0 such that for any k = 1, 2, 3, ... and any large enough n, the Laplacian
eigenfunction unk for Dirichlet, Neumann or Robin boundary condition satisfies

‖unk‖Lp(Ωnk)

‖unk‖Lp(Ω)
< cpn

1
3 + 2

3p exp(−n1/3 ln(2)/3). (7.9)
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The definition of Ωnk and the above estimate imply

lim
n→∞

‖unk‖Lp(Ωnk)

‖unk‖Lp(Ω)
= 0, lim

n→∞

µ2(Ωnk)

µ2(Ω)
= 1. (7.10)

This theorem shows the existence of infinitely many Laplacian eigenmodes which are
Lp-localized in a thin layer near the boundary ∂Ω. In fact, for any prescribed thresh-
olds for both ratios in (7.1), there exists n0 such that for all n > n0, the eigenfunctions
unk are Lp-localized. These eigenfunctions are called “whispering gallery eigenmodes”
and illustrated on Fig. 7.11.

We outline a peculiar relation between high-frequency and low-frequency localiza-
tion. The explicit form (3.9) of Dirichlet Laplacian eigenfunctions unk leads to their
simple nodal structure which is formed by 2n radial nodal lines and k − 1 circular
nodal lines. The radial nodal lines split the disk into 2n circular sectors with Dirichlet
boundary conditions. As a consequence, whispering gallery eigenmodes in the disk
and the underlying exponential estimate (7.9) turn out to be related to the exponen-
tial decay of eigenfunctions in domains with branches (Sec. 7.4), as illustrated on Fig.
7.4 for elongated triangles.

A simple consequence of the above theorem is that for any p ≥ 1 and any open
subset V compactly included in the unit disk Ω (i.e., V̄ ∩ ∂Ω = ∅), one has

lim
n→∞

‖unk‖Lp(V )

‖unk‖Lp(Ω)
= 0, (7.11)

and

Cp(V ) ≡ inf
nk

{‖unk‖Lp(V )

‖unk‖Lp(Ω)

}
= 0. (7.12)

Qualitatively, for any subset V , there exists a sequence of eigenfunctions that pro-
gressively “escape” V .

The localization of focusing modes at the origin is revealed in the limit k → ∞.
For each R ∈ (0, 1), one defines an annulus ΩR = {x ∈ R2 : R < |x| < 1} ⊂ Ω of
the unit disk Ω. Then, for any n = 0, 1, 2, ..., the Laplacian eigenfunction unk with
Dirichlet, Neumann or Robin boundary condition satisfies

lim
k→∞

‖unk‖L∞(ΩR)

‖unk‖L∞(Ω)
= 0, lim

k→∞

‖unk‖L2(ΩR)

‖unk‖L2(Ω)
=
√

1−R > 0. (7.13)

When the index k increases (with fixed n), the eigenfunctions unk become localized
more and more near the origin [287]. These eigenfunctions are called “focusing eigen-
modes” and illustrated on Fig. 7.12. The theorem illustrates that the definition of
localization is sensitive to the norm: the above focusing modes are L∞-localized, but
they are not L2-localized. Similar results for whispering gallery and focusing modes
hold for a ball in three dimensions [287].

7.7.2. Bouncing ball modes. Filled ellipses and elliptical annuli are simple
domains for illustrating bouncing ball modes. For fixed foci (i.e., a given parameter a
in the elliptic coordinates in Eq. (3.15)), these domains are characterized by two radii,
R1 (R1 = 0 for filled ellipses) and R2, as Ω = {(r, θ) : R1 < r < R2, 0 ≤ θ < 2π},
while the eigenfunctions unkl were defined in Sec. 3.4. For each α ∈

(
0, π2

)
, we

consider an elliptical sector Ωα inside an elliptical domain Ω (Fig. 3.1)

Ωα = {(r, θ) : R1 < r < R2, θ ∈ (α, π − α) ∪ (π + α, 2π − α)} .
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n = 0 n = 5 n = 20 n = 50

n = 0 n = 5 n = 20 n = 50

Fig. 7.11. Formation of whispering gallery modes for the unit disk with Dirichlet boundary
condition: for a fixed k (k = 1 for top figures and k = 2 for bottom figures), an increase of the index
n leads to stronger localization of eigenfunctions near the boundary.

k = 1 k = 5 k = 20 k = 50

k = 1 k = 5 k = 20 k = 50

Fig. 7.12. Formation of focusing modes for the unit disk: for a fixed n (n = 0 for top
figures and n = 1 for bottom figures), an increase of the index k leads to stronger localization of
eigenfunctions at the origin.

For any p ≥ 1, there exists Λα,n > 0 such that for any eigenvalue λnkl > Λα,n, the
corresponding eigenfunction unkl satisfies [287]

‖unkl‖Lp(Ω\Ωα)

‖unkl‖Lp(Ω)

< Dn

(
16α

π − α/2

)1/p

exp
(
−a
√
λnkl

[
sin
(π

4
+
α

2

)
− sinα

])
,

(7.14)
where

Dn = 3

√
1 + sin

(
3π
8 + α

4

)[
tan

(
π
16 −

α
8

)]n .
Given that λnkl →∞ as k increases (for any fixed n and l), while the area of Ωα can
be made arbitrarily small by sending α → π/2, the estimate implies that there are
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k = 1 k = 5 k = 9 k = 20

k = 1 k = 5 k = 9 k = 20

Fig. 7.13. Formation of bouncing ball modes unkl in a filled ellipse of radius R = 1 (top) and
an elliptical annulus of radii 0.5 and 1 (bottom), with the focal distance a = 1. For fixed n = 1 and
l = 1, an increase of the index k leads to stronger localization of the eigenfunction near the vertical
semi-axis (from [287]).

infinitely many eigenfunctions unkl which are Lp-localized in the elliptical sector Ωα:

lim
k→∞

‖unkl‖Lp(Ω\Ωα)

‖unkl‖Lp(Ω)
= 0. (7.15)

These eigenfunctions, which are localized near the minor axis, are called “bouncing
ball modes” and illustrated on Fig. 7.13. The above estimate allows us to illustrate
bouncing ball modes which emerge for any convex planar domain with smooth bound-
ary [97, 217]. At the same time, the estimate is as well applicable to elliptical annuli,
providing thus an example of bouncing ball modes for non-convex domains.

7.7.3. Domains without localization. The analysis of geometrical properties
of eigenfunctions in rectangle-like domains Ω = (0, `1)× ...× (0, `d) ⊂ Rd (with sizes
`1 > 0, ..., `d > 0) may seem to be the simplest case because the eigenfunctions are
expressed through sines (Dirichlet) and cosines (Neumann), as discussed in Sec. 3.1.
The situation is indeed elementary when all eigenvalues are simple, i.e. (`i/`j)

2 are
not rational numbers for all i 6= j. For any p ≥ 1 and any open subset V ⊂ Ω, one
can prove that [287]

Cp(V ) = inf
n1,...,nd

{‖un1,...,nd‖Lp(V )

‖un1,...,nd‖Lp(Ω)

}
> 0. (7.16)

This property is in sharp contrast to Eq. (7.12) for eigenfunctions in the unit disk (or
ball). The fact that Cp(V ) > 0 for any open subset V means that there is no eigen-
function that could fully “avoid” any location inside the domain, i.e., there is no Lp-
localized eigenfunction. Since the set of rational numbers has zero Lebesgue measure,
there is no Lp-localized eigenfunctions in almost any randomly chosen rectangle-like
domain.

When at least one ratio (`i/`j)
2 is rational, certain eigenvalues are degenerate, and

the associated eigenfunctions are linear combinations of products of sines or cosines
(see Sec. 3.1). Although the computation is still elementary for each eigenfunction,
it is unknown whether the infimum Cp(V ) from Eq. (7.16) is strictly positive or not,
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Fig. 7.14. Several eigenstates with localization on period orbits for the spiral-shaped billiard
with ε = 0.1, from [260] (by Liu et al.).

for arbitrary rectangle-like domain Ω and any open subset V . For instance, the most
general known result for a rectangle Ω = (0, `1) × (0, `2) states that C2(V ) > 0 for
any V ⊂ Ω of the form V = (0, `1) × ω, where ω is any open subset of (0, `2) [82].
Even for the unit square, the statement Cp(V ) > 0 for any open subset V appears as
an open problem. More generally, one may wonder whether Cp(V ) is strictly positive
or not for any open subset V in polygonal (convex) domains.

7.7.4. Quantum billiards. The above examples of whispering gallery or bounc-
ing ball modes illustrate that certain high-frequency eigenfunctions tend to be local-
ized in specific regions of circular and elliptical domains. But what is the structure of
a high-frequency eigenfunction in a general domain? What are these specific regions
on which a sequence of eigenfunctions may be localized, and whether do they exist
for a given domain? Answers to these and other related questions can be found by
relating the high-frequency behavior of a quantum system (in our case, the structure
of Laplacian eigenfunctions) to the classical dynamics in a billiard of the same shape
[8, 100, 172, 257]. In particular, some orbits of a particle moving in a classical billiard
may be reflected as “scars” in the spatial structure of eigenfunctions in the related
quantum billiard [22, 53, 173, 174, 182, 183, 199, 210, 212, 351, 352, 372, 373]. This
effect is illustrated on Fig. 7.14 by Liu and co-workers who investigated the localiza-
tion of Dirichlet Laplacian eigenfunctions on classical period orbits in a spiral-shaped
billiard [260] (see also [247]).

In the classical dynamics, one may distinguish the domains with regular, inte-
grable and chaotic dynamics. In particular, for a bounded domain Ω with an ergodic
billiard flow [362], Shnirelman’s theorem (also known as quantum ergodicity theorem
[105, 403, 404]) states that among the set of L2-normalized Dirichlet (or Neumann)
Laplacian eigenfunctions, there is a sequence ujk of density 1 (i.e., lim

k→∞
jk/k = 1),
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Fig. 7.15. Examples of chaotic billiards: (a) Bunimovich stadium (union of a square and
two half-disks) [75, 76, 102, 182, 380, 381], (b) Sinai’s billiard [363, 364], (c) mushroom billiard
[39, 77], and (d) hyperbolic billiard [2]. Many other examples are given in [76].

such that for any open subset V ⊂ Ω, one has [360]

lim
k→∞

∫
V

|ujk(x)|2dx =
µd(V )

µd(Ω)
. (7.17)

(this version of the theorem was formulated in [82]). Loosely speaking, {ujk} is a
sequence of non-localized eigenfunctions which become more and more uniformly dis-
tributed over the domain (see [82, 154, 199] for further discussion and references).
At the same time, this theorem does not prevent the existence of localized eigenfunc-
tions. How large the excluded subsequence of (localized) eigenfunctions may be? In
the special case of arithmetic hyperbolic manifolds, Rudnick and Sarnak proved that
there is no such excluded subsequence [339]. This statement is known as the quantum
unique ergodicity (QUE). The validity of this statement for other dynamical systems
(in particular, ergodic billiards) remains under investigation [38, 127, 178]. The re-
lated notion of weak quantum ergodicity was discussed by Kaplan and Heller [211].
A classification of eigenstates to regular and irregular ones was thoroughly discussed
(see [322, 391] and references therein).

There were numerous studies of Laplacian eigenfunctions in chaotic domains such
as Bunimovich stadium [75, 76, 102, 182, 291, 380, 381], Sinai’s billiard [363, 364],
mushroom billiard [39, 77] or hyperbolic billiard [2], illustrated on Fig. 7.15. Al-
though the literature on quantum billiards is vast, we only mention selected works
on the spatial structure of high-frequency eigenfunctions. McDonald and Kaufman
studied the Bunimovich stadium billiard and reported a random structure of nodal
lines of eigenfunctions and Wigner-type distribution for eigenvalue spacings [267, 268].
Bohigas and co-workers studied eigenvalue spacings for the Sinai’s billiard and also
obtained the Wigner-type distribution [62]. It means that eigenvalue spacings for
these chaotic billiards obey the same distribution as that for random matrices from
the Gaussian Orthogonal Ensemble. This is in a sharp contrast to regular billiards
for which eigenvalue spacings generally follow a Poisson distribution. The problem of
circular-sector and polygon billiards was studied (e.g., see [254–256, 337]).

Bäcker and co-workers analyzed the number of bouncing ball modes in a class of
two-dimensional quantized billiards with two parallel walls [26]. Bunimovich intro-
duced a family of simple billiards (called “mushrooms”) that demonstrate a continuous
transition from a completely chaotic system (stadium) to a completely integrable one
(circle) [77]. Barnett and Betcke reported the first large-scale statistical study of
very high-frequency eigenfunctions in these billiards [39]. Using nonstandard numer-
ical techniques [38], Barnett also studied the rate of equidistribution for a uniformly
hyperbolic, Sinai-type, planar Euclidean billiard with Dirichlet boundary condition,
as illustrated on Fig. 7.16. This study brought a strong numerical evidence for the
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Fig. 7.16. Illustration of spatial distribution of the Dirichlet eigenfunction |um|2 (shown as
density plots: larger values are darker) with m = 1, 10, 100, 1000 and m ≈ 50000 [38] (by A. Barnett,
with permission).

QUE in this system. The spatial structure of high-frequency eigenfunctions shown
on Fig. 7.16 looks somewhat random. This observation goes back to Berry who con-
jectured that high-frequency eigenfunctions in domains with ergodic flow should look
locally like a random superposition of plane waves with a fixed wavenumber [50]. This
analogy is nicely illustrated on Fig. 7.17 by Barnett [38]. O’Connor and co-workers
analyzed the random pattern of ridges in a random superposition of plane waves [290].

Dietz and co-workers analyzed the number of nodal domains in a pseudointegrable
barrier billiard [124]. Tomsovic and Heller reported a remarkable accuracy of the semi-
classical approximation that relates the classical and quantum billiards [380, 381].
In some cases, eigenfunctions can therefore be constructed by purely semiclassical
calculations. Li et al. studied the spatial distribution of eigenstates of a rippled
billiard with sinusoidal walls [252]. For this type of ripple billiards, a Hamiltonian
matrix can be found exactly in terms of elementary functions that greatly improves
computation efficiency. They found both localized and extended eigenfunctions, as
well as peculiar hexagon and circle-like pattern formations.

Prosen computed numerically very high-lying energy spectra for a generic chaotic
3D quantum billiard (a smooth deformation of a unit sphere) and analyzed Weyl’s
asymptotic formula and the nearest neighbor level spacing distribution. He found
significant deviations from the Gaussian Orthogonal Ensemble statistics that were
explained in terms of localization of eigenfunctions onto lower dimensional classically
invariant manifolds [323]. He also found that the majority of eigenstates were more
or less uniformly extended over the entire energy surface, except for a fraction of
strongly localized scarred eigenstates [324]. An extensive study of 3D Sinai’s billiard
was reported by Primack and Smilansky [321]. Deviations from a semi-classical de-
scription were discussed by Tanner [378]. Casati and co-workers investigated how the
interplay between quantum localization and the rich structure of the classical phase
space influences the quantum dynamics, with applications to hydrogen atoms under
microwave fields [91–94] (see also references therein).

A large number of physical experiments were performed with classical and quan-
tum billiards. For instance, Gräf and co-workers measured more than thousand first
eigenmodes in a quasi two-dimensional superconducting microwave stadium billiard
with chaotic dynamics [161]. Sridhar and co-workers performed a series of experi-
ments in microwave cavities in the shape of Sinai’s billiard [368, 369]. In particular,
they observed bouncing ball modes and modes with quasi-rectangular or quasi-circular
symmetry which are associated with nonisolated periodic orbits (which avoid the cen-
tral disk). Some scarring eigenstates, which are associated with isolated periodic
orbits (which hit the central disk, see Fig. 7.15b), were also observed. Kudrolli et al.
investigated the signatures of classical chaos and the role of periodic orbits in the eigen-
value spectra of two-dimensional billiards through experiments in microwave cavities
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Fig. 7.17. (Left) Density plot of a Dirichlet-Laplacian eigenfunction |um|2 for m ≈ 50000
with the eigenvalue λm ≈ 106. There are about 225 wavelengths across the diagonal; (Right)
Density plot of one sample from the ensemble of random plane waves with the same wavenumber
and mean intensity, shown in a square region of space (with no boundary conditions) [38] (by A.
Barnett, with permission).

[230, 231]. The eigenvalue spectra were analyzed by using the nearest neighbor spacing
distribution for short-range correlations and the spectral rigidity for longer-range cor-
relations. The density correlation function was used for studying the spatial structure
of eigenstates. The role of disorder was also investigated. Chinnery and Humphrey
visualized experimentally acoustic resonances within a stadium-shaped cavity [102].
Bittner et al. performed double-slit experiments with regular and chaotic microwave
billiards [58]. Chaotic resonators were also employed for getting specific properties of
lasers (e.g., high-power directional emission or “Fresnel filtering”) [157, 336].

8. Other points and concluding remarks. This review was focused on the
geometrical properties of Laplacian eigenfunctions in Euclidean domains. We started
from the basic properties of the Laplace operator and explicit representations of its
eigenfunctions in simple domains. After that, the properties of eigenvalues and their
relation to the shape of a domain were briefly summarized, including Weyl’s asymp-
totic behavior, isoperimetric inequalities, and Kac’s inverse spectral problem. The
structure of nodal domains and various estimates for the norms of eigenfunctions
were then presented. The main Section 7 was devoted to the spatial structure of
eigenfunctions, with a special emphasis on their localization in small subsets of a do-
main. One of the major difficulties in the study of localization is that localization
is a property of an individual eigenfunction. For the same domain, two consecutive
eigenfunctions with very close eigenvalues may have drastically different geometrical
structures (e.g., one is localized and the other is extended). One needs therefore fine
analytical tools which would differently operate with localized and non-localized eigen-
functions. In the review, we distinguished two types of localization, for low-frequency
and high-frequency eigenfunctions.

In the former case (that we also called bottleneck localization), an eigenfunction
remains localized in a subset because of a geometric constraint that prohibits its ex-
tension to other parts of the domain. A standard example is a dumbbell (two domains
connected by a narrow channel), for which an eigenfunction may be localized in one
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domain if its typical wavelength is larger than the width of the channel (meaning
that an eigenfunction cannot “squeeze” through the channel). Such kind of “expul-
sion” from a channel is quite generic, as the analysis is applicable to domains with
branches of variable cross-sectional profiles. It is important to note that a geometric
constraint does not need to be strong (e.g., two domains may be separated by a cloud
of point-like obstacles of zero measure). Another example is an elongated triangle, in
which there is no “obstacles” at all. From a practical point of view, the low-frequency
localization is important for the theory of quantum, optical and acoustical waveguides
and microelectronic devices.

The high-frequency localization manifests in quantum billiards when a sequence
of eigenfunctions tends to concentrate onto some orbits of the associated classical
billiard. In this regime, the asymptotic properties of eigenvalues and eigenfunctions
are strongly related to the underlying classical dynamics (e.g., regular, integrable or
chaotic). For instance, the ergodic character of the classical system may be reflected
in the spatial structure of eigenfunctions. Working on simple domains, we illustrated
several kinds of localized eigenfunctions which emerge for a large class of domains.
We also provided examples of rectangular domains without localization. Although
a number of rigorous and numerical results were obtained (e.g., quantum ergodicity
theorem for ergodic billiards), many questions about the spatial structure of high-
frequency eigenfunctions remain open, even for very simple domains (e.g., a square).

Although the review is quite long and counts four hundred citations, it is far
from being complete. As already mentioned, we focused on the Laplace operator in
bounded Euclidean domains and mostly omitted technical details, in order to keep
the review at a level accessible to scientists from various fields. Many other issues had
to be omitted.

(i) Many important results for Laplacians on Riemannian manifolds or weighted
graphs could not be included. In addition, we did not discuss the spectral properties
of domains with “holes” [101, 224, 266, 345, 392], as well as their consequences for
diffusion in domains with static traps [162, 215, 216, 286, 382].

(ii) There are important developments of numerical techniques for computing the
Laplacian eigenbasis. In fact, standard finite difference or finite element methods rely
on a regular or adapted discretization of a domain that reduces the continuous eigen-
value problem to a finite set of linear equations [25, 104, 110, 148, 169, 189, 232, 342].
Since finding the eigenbasis of the resulting matrix is still an expensive computational
task, various hints and tricks are often implemented. For instance, for planar polygo-
nal domains, one can exploit the behavior of eigenfunctions at corners through radial
basis functions in polar coordinates and the integration of related Fourier-Bessel func-
tions on subdomains [121, 126, 312]. Another “trick” is conformal mapping of planar
polygonal domains onto the unit disk, for which the modified eigenvalue problem can
be efficiently solved [28, 29]. Yet another approach known as the method of particular
solutions was suggested by Fox and co-workers [145] and later progressively improved
[40, 55]. The main idea is to consider various solutions of the eigenvalue equation for
a given value of λ and to vary λ until a linear combination of such solutions would
satisfy the boundary condition at a number of sample points along the boundary.
One can also mention a stochastic method by Lejay and Maire for computing the
principal eigenvalue [248]. The eigenvalue problem can also be reformulated in terms
of boundary integral equations that reduces the dimensionality and allows for rapid
computation of eigenvalues [262]. Kaufman and co-workers proposed a simple expan-
sion method in which wave functions inside a two-dimensional quantum billiard are



43

expressed in terms of an expansion of a complete set of orthonormal functions defined
in a surrounding rectangle for which the Dirichlet boundary conditions apply, while
approximating the billiard boundary by a potential energy step of a sufficiently large
size [213].

(iii) we also did not discuss various applications of Laplacian eigenfunctions which
nowadays range from pure and applied mathematics to physics, chemistry, biology and
computer sciences. One can mention manifold parameterizations by eigenfunctions of
the Laplacian and heat kernels [207], the use of Laplacian spectra as a diagnostic tool
for network structure and dynamics [269], efficient image recognition and analysis
[335, 343, 344], shape optimization and spectral partition problems [5, 85–87, 311,
367, 390], computation and analysis of diffusion-weighted NMR signals [164–166], etc.
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val for many valuable discussions and for his passion to localization that strongly
motivated our work.

Appendix: Lower estimate for the L2-norm of Dirichlet-Laplacian eigen-
functions restricted onto subdomains. In this Appendix, we sketch the proof for
the lower estimate (6.28), following and extending the ideas by Filoche and Mayboroda
[143]. Although the results are formulated for the Laplace operator on domains with
smooth boundaries, extensions to other elliptic operators or more general boundaries
are possible.

Theorem 8.1. Let u be an eigenfunction of the Laplace operator in a bounded
domain Ω ⊂ Rd with Dirichlet boundary condition, and λ the associated eigenvalue.
Let D ⊂ Ω is an open subdomain of Ω, and v the harmonic function in D with
v|∂D = u|∂D on a piecewise smooth boundary ∂D. Then the following inequality
holds:

‖u‖L2(D) ≥
λ1(D)

λ+ λ1(D)
‖v‖L2(D), (8.1)

where λ1(D) is the first Dirichlet-Laplacian eigenvalue in D, and dD(λ) is the distance
from λ to the spectrum of the Dirichlet-Laplace operator in D.

Proof. Following the proof by Filoche and Mayboroda, we consider the function
w = u− v which satisfies

−∆w = λu (x ∈ D), w = 0 (x ∈ ∂D).

Let {ϕDk } denote the set of L2-normalized eigenfunctions (with eigenvalues λDk ) of
the Dirichlet-Laplace operator in D that form an orthonormal basis in L2(D). The
function ∆w can be expanded over this basis as

−∆w =
∑
k

ckϕ
D
k ,

where the coefficients ck are

ck =

∫
D

(−∆w(x)) ϕDk (x) = λDk

∫
D

w(x)ϕDk (x)dx.
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One gets

(λ‖u‖L2(D))
2 = ‖∆w‖2L2(D) =

∑
k

c2k =
∑
k

λDk ∫
D

w(x)ϕDk (x)dx

2

≥ (λD1 )2
∑
k

∫
D

w(x)ϕDk (x)dx

2

≥
(
λD1 ‖w‖L2(D)

)2
,

from which

λ‖u‖L2(D) ≥ λD1 ‖u− v‖L2(D).

Adding λD1 ‖u‖L2(D) to both sides, one gets

(λ+ λD1 )‖u‖L2(D) ≥ λD1
(
‖u− v‖L2(D) + ‖u‖L2(D)

)
≥ λD1 ‖v‖L2(D),

from which the inequality (8.1) follows.
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