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Abstract

We study the boundary of an open smooth complex algebraic va-
riety U . We ask when the cohomology of the geometric boundary
Z = X \U in a smooth compactification X is pure with respect to the
mixed Hodge structure. Knowing the dimension of singularity locus of
some singular compactification we give a bound for k above which the
cohomology Hk(Z) is pure. The main ingredient of the proof is purity
of the intersection cohomology sheaf.
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1 Introduction

Let U be a smooth complex algebraic variety which is not compact. We
study cohomological properties of U which are invariant with respect to
modifications of the interior of U . In other words we investigate cohomolo-
gical properties of the boundary. The boundary itself can have at least two
meanings. First of all from the topological point of view we may treat an
open smooth variety as the interior of a compact manifold with boundary.
In this case the boundary would mean an odd dimensional real manifold.
We call it the link at infinity. On the other hand from the geometric point
of view we may compactify our variety in the category of algebraic varieties.
The boundary is then a subvariety of the compactification. In addition we
may require that the compactification is smooth. The condition that the
boundary is a normal crossing divisor is irrelevant for us, although it is
hidden in the construction of the mixed Hodge structure. The link at the
infinity can be identified with the link of the boundary in the compacti-
fication. Regardless from the differences we show that the topological and
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geometric boundaries have a lot in common when the mixed Hodge structure
is concerned.

To some extend we try to avoid specific methods of Hodge theory having
in mind possible application (or rather open questions) for real algebraic ge-
ometry, as well as some questions about torsion for cohomology of complex
varieties. The sections §2-§4 are valid in that generality. Nevertheless the
results of §5 cannot be generalized and they hold only for rational coho-
mology of algebraic varieties. The strong functoriality of weight filtration
implies that lower weight subspaces of topological and geometric bound-
ary coincide, see Proposition 3. In similar situations this phenomenon was
already described in [10, Prop. 7.1] and [2, Prop. 5.1].

The proof of the main result of §6 uses even stronger techniques. The pu-
rity of intersection cohomology sheaf [3] imposes some conditions on the link
of the geometric boundary. We prove Theorem 11 which can be shortened
to the following statement:

Theorem 1 Suppose U is a complex smooth algebraic variety. Assume that
U admits a singular compactification Y . Suppose that the singularities of
the pair (Y, Y \U) is of dimension s. Then for any smooth compactification
X the boundary X \U has pure cohomology Hk(X \U) for k ≥ dim(U) + s.

The Theorem 1 for U admitting one-point compactification already ap-
peared in [4, Th. 2.1.11]. A vast generalization was given in [13]. The present
version gives a better bound for purity, although the situation considered
here is less general.

One can treat Theorem 1 as a contractibility criterion. For a subvariety
Z ⊂ X : if Hk(Z) is not pure for k ≥ dim(U)+s, then the pair (X,Z) cannot
be contracted to a pair (Y,W ) with singularities of the dimension smaller
or equal to s. Although the Theorem 1 resembles the Grauert criterion, it
is of different nature. In the Grauert criterion the intersection form on Z
depends on the embedding Z ⊂ X, whereas here the mixed Hodge structure
of Z does not. Of course it is needles to say that our criterion is not sufficient
for existence of a contraction.

In contrast to the previous paper [13] we try to present the subject
as elementary as possible. We have avoided to use mixed Hodge modules
[11] taking for granted that the cohomology with coefficients in a complex
of sheaves of geometric origin has a natural mixed Hodge structure. By
”geometric origin” we mean ”obtained by the standard sheaf-theoretic op-
erations”. We assume that the varieties are defined over reals or over the
complex numbers and we use classical topology. In our arguments we will
apply resolution of singularities although a part of results depends only on
the formal properties of mixed Hodge modules or Weil sheaves.
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2 Topological boundary: the link at the infinity

Let us begin with description of some invariants of open manifolds which can
be defined just using topology and basic properties resolution of singularities.
Working with Z/2-cohomology we can apply our construction also for real
algebraic manifolds. For complex manifolds we can use any coefficients, not
necessarily Q.

The first invariant we propose to consider is the cohomology of the link
at infinity:

H∗(L∞U) := lim
−−−→
K⊂U

H∗(U \K) ,

where K runs through compact sets contained in U . The group H∗(L∞U)
is exactly the cohomology of the link LZ , the link of the boundary set
Z = X \ U , where X is a compactification of U . (For various approaches
to the link of a subvariety, see [5].) This cohomology group is of finite
dimension. It can be expressed in terms of sheaf operations on X:

H∗(L∞U) = H∗(LZ) = H∗(Z; i∗Rj∗QU ) ,

where j : U →֒ X and i : X \ U →֒ X are the inclusions.

3 Geometric boundary: image of boundary cycles

Another invariant considered by us is the image of boundary cycles

IB∗(U) = im(H∗(Z)→ H∗+1
c (U)) = ker(H∗+1

c (U)→ H∗+1(X)) ,

where X is a smooth compactification of U and Z = X \ U . The maps
come from the long exact sequence of the pair (X,Z).

To show the independence of X we start with a purely topological lemma.

Lemma 2 Suppose we have a map of real smooth oriented closed manifolds

f : X1 → X2

which is isomorphism of some open subsets

f|U1
: U1 = f−1(U2)

≃
→ U2 .

Denote by
IB∗

i = ker(H∗+1
c (Ui)→ H∗+1(Xi))

the kernels of the natural maps for i = 1, 2. Then f induces an isomorphism

f∗ : IB∗
2 → IB∗

1 .
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Proof. The map f∗ : H∗(X2) → H∗(X1) is injective since it is a map of
degree one of compact manifolds. The map f induces the transformation

IBk
2 →֒ Hk+1

c (U2) → Hk+1(X2)
↓ ≃ ↓ mono ↓

IBk
1 →֒ Hk+1

c (U1) → Hk+1(X1)

It follows that IBk
2 → IBk

1 is an isomorphism. ✷

To prove the independence of IB∗(U) on the compactification it remains
to say that any two smooth compactifications are dominated by a third one.

4 Basic exact sequences

We will need three exact sequences to relate the described invariants. These
exact sequences may be constructed topologically, but it is important to
know that they come from distinguished triangles in the derived category of
sheaves. It will follow, that for complex varieties the maps of the described
exact sequences preserve the mixed Hodge structure.

We start with the sequence relating the cohomology of U and the co-
homology of its link at the infinity. Let X be any compactification and
Z = X \U . It is possible to find a neighbourhood N of Z which retracts to
Z and the boundary ∂N is homeomorphic to the link of Z. Considering the
pair (X \N, ∂N) we arrive to the long exact sequence

→ Hk(U)→ Hk(LZ)
δ
→ Hk+1

c (U)→ Hk+1(U)→ . (1)

This exact sequence may be in fact obtained from the fundamental distin-
guished triangle (in the category of mixed Hodge modules on X)

i∗i
!G −→ G

[+1] տ ւ

Rj∗j
∗G

(2)

where G = j!QU . By duality we obtain the triangle

i!i
∗Rj∗QU ←− Rj∗QU

[+1] ց ր

j!QU

since j!j
!Rj∗QU ≃ j!QU . Applying the cohomology we obtain the sequence

(1).

We also need an exact sequence relating Hk(Z) and Hk(LZ). Topolo-
gically we have a retraction N → Z. The exact sequence for the manifold
with boundary (N, ∂N)

→ Hk(N)→ Hk(∂N)→ Hk+1(N, ∂N)→ Hk+1(N)→
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becomes

→ Hk(Z)→ Hk(LZ)→ Hk+1(X,U)→ Hk+1(Z)→ . (3)

The sheaf theoretic definition is given below. Let us restrict the triangle (2)
with G = QX to Z. We have i∗i∗i

!QX = i!QX and we obtain the triangle

i!QX −→ QZ

[+1] տ ւ

i∗Rj∗QU .

The associated sequence of cohomology is just (3). It plays the fundamental
role in our further consideration.

Of course the third exact sequence used by us is the sequence of the pair
(X,Z)

→ Hk(X)→ Hk(Z)→ Hk+1
c (U)→ Hk+1(X)→ . (4)

To relate the groups H∗(L∞(U)) = H∗(LZ) and IB∗(U) = im(Hk(Z) →
Hk+1

c (U)) we apply the map of exact sequences (1) and (4) induced by the
inclusion

(X \ int(N), ∂N) ⊂ (X,N) .

We obtain the commutative diagram

Hk(Z) → Hk+1
c (U)

↓ ‖
Hk(LZ) → Hk+1

c (U) .

We see that

IBk(U) = im(Hk(Z)→ Hk+1
c (U)) ⊂ im(Hk(L∞(U))→ Hk+1

c (U)) .

In general the inclusion is proper.

5 Mixed Hodge structure

From now on we consider only complex algebraic varieties and rational co-
homology.

The considered invariants Hk(L∞U) and IBk(U) are equipped with a
mixed Hodge structures. The first one is given by the sheaf-theoretic de-
scription:

H∗(L∞U) = H∗(Z; i∗Rj∗QU ) .

The second one, IB∗(U), has a structure induced from H∗(Z). In the sit-
uation of Lemma 2 the map IBk

2 → IBk
1 preserves quotient mixed Hodge

structures and since it is an isomorphism of vector spaces it must be also an
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isomorphism of all weight subspaces. In fact by the definition of the mixed
Hodge structure we have

IBk(U) = WkH
k+1
c (U) .

For us the most interesting part is the weight subspace Wk−1. Using
basic properties of the mixed Hodge structure we will give three description
of that weight space.

Proposition 3 Let X be a smooth compactification of U and Z = X \ U .
Then the following groups are isomorphic:

1. Wk−1H
k(L∞U) ,

2. Wk−1H
k+1
c (U) ,

3. Wk−1H
k(Z) .

Note that in the statement of the theorem we do not assume that Z is a
smooth divisor with a normal crossing. As a corollary from Proposition 3
we have

Corollary 4 Let X be a smooth compactification of U and Z = X \U . The
cohomology Hk(Z) is pure of weight k if and only if Hk(LZ) is of weight
≥ k.

Also we note (compare [10, Prop. 7.1]):

Corollary 5 The impure part of cohomology of the boundary set Wk−1H
k(Z)

does not depend on the smooth compactification.

Remark 6 Note that the group Wk−1H
k(Z) is a topological invariant of

Z, since by [12] it is the kernel of the canonical map to the intersection
cohomology Hk(Z) → IHk(Z). Also by the construction of the mixed
Hodge structure we have

Wk−1H
k(Z) = ker(g∗ : Hk(Z)→ Hk(Z̃)) ,

where g : Z̃ → Z is any dominating proper map from a smooth variety,
possibly of bigger dimension.

The entire cohomology of the boundary of a smooth compactification
is not an invariant of U . Of course when we blow up something at the
boundary then the cohomology is modified, nevertheless the lower parts of
weight filtration remains unchanged.
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Remark 7 With help of the Decomposition Theorem of [3] we have better
insight to what happens with the cohomology of the boundary. Let f be a
map of pairs (X1, Z1)→ (X2, Z2) which is an isomorphism outside Z1. The
push-forward of the constant sheaf on X1 decomposes:

Rf∗QX1
≃ QX2

⊕
⊕

α

IC(Vα;Lα) .

The supports of the intersection sheaves IC(Vα;Lα) are contained in Z2,
therefore

H∗(Z1) = H∗(Z2; (Rf∗QX1
)|Z2

) ≃ H∗(Z2)⊕
⊕

α

IH∗(Vα;Lα) .

Again we see that the difference between H∗(Z1) and H∗(Z2) is pure since⊕
α IH

∗(Vα;Lα) is a summand of H∗(X1) .

Remark 8 Using another powerful tool, namely the Weak Factorization
Theorem [1], we can trace how the cohomology of the boundary may change.
Each time when we blow up a smooth center S contained in the boundary the
pure summand coker

(
H∗(S)→ H∗(PNS/X)

)
contributes to the cohomology

of the blown up boundary. Here H∗(PNS/X) is the projectivization of the
normal bundle of S in X.

The proof of Proposition 3 is divided into Lemmas 9 and 10.

Lemma 9 We have

Wk−1H
k(Z) ≃Wk−1H

k+1
c (U) .

Proof. We recall that Hk(X) is of weight k and Hk+1(X) is of weight k+1.
Therefore the long exact sequence

→ Hk(X)→ Hk(Z)
δ
→ Hk+1

c (U)→ Hk+1(X)→

induces an isomorphism of graded pieces for ℓ < k

GrWℓ Hk(Z) ≃ GrWℓ Hk+1
c (U) .

It follows that the boundary map Wk−1H
k(Z) → Wk−1H

k+1
c (U) is an iso-

morphism. ✷

Lemma 10 We have

Wk−1H
k(LZ) ≃Wk−1H

k+1
c (U) .

Proof. We consider the long exact sequence (1). Since U is smooth Wk−1H
k(U) =

0. Therefore for ℓ < k

GrWℓ Hk(LZ) ≃ GrWℓ Hk+1
c (U) .

Again the boundary map Wk−1H
k(LZ) → Wk−1H

k+1
c (U) is an isomor-

phism. ✷
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6 Singular versus smooth compactifications

Let W ⊂ Y be a pair of varieties. Assume that Y \W is smooth. By the
singularity of the pair we mean the set of points at which W in Y analytically
does not look like a submanifold (of any dimension) in a manifold. The
singularity set consists of points at which W or Y is singular. Below we give
the exact statement of our main result.

Theorem 11 Let U be a smooth variety. Suppose that U admits a com-
pactification Y and let W = Y \ U be the boundary set. Denote by s the
dimension of the singularities of the pair (Y,W ). Let X be a smooth com-
pactification of U and Z = X \ U . For k ≥ dim(U) + dim(W ) we have:

i) the cohomology of the link Hk(LZ) is of weight ≥ k + 1,
ii) the restriction map Hk(Z)→ Hk(LZ) vanishes.

For k ≥ dim(U) + s we have:
iii) the cohomology of the boundary Hk(Z) is pure of weight k, that is

Wk−1H
k(Z) = 0

iv) the cohomology of the link Hk(LZ) is of weight ≥ k.

Note that by Proposition 3 the claim iv) does not depend on the choice
of the smooth compactification X.

Let n = dim(U). By Poincaré duality we have

Hk(Z)∗ = H2n−k(X,U)(n) ,

Hk(LZ)∗ = H2n−1−k(LZ)(n) ,

where (n) denotes the Tate twist shifting the weights by 2n. The dual
version of the Theorem 11 is the following:

Theorem 12 With the assumption of Theorem 11:

For k ≤ dim(U)− dim(W ) we have
i’) the cohomology of the link Hk−1(LZ) is of weight ≤ k − 1,
ii’) the boundary map Hk−1(LZ)→ Hk(X,U) vanishes.

For k ≤ dim(U)− s we have
iii’) the cohomology Hk(X,U) is pure of weight k, that is

WkH
k(X,U) = Hk(X,U)

iv’) the cohomology of the link Hk−1(LZ) is of weight ≤ k.
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To distinguish two copies of U in X and in Y we will use the letter V
for the copy of U in Y . The identification map U → V is denoted by f :

Z = X \ U ⊂ X = U ⊃ U

≃
y f

W = Y \ V ⊂ Y = V ⊃ V

Remark 13 In our setup, we can apply completion and resolution of sin-
gularities. Therefore X can be replaced by a dominating smooth variety for
which the map f extends to the boundary.

Some information about the weights of cohomology of the link and the
boundary can be deduced when we have a proper map f : U → V and a
compactification of V . A statement which generalizes i) and ii) in terms of
a defect of semismallness [4] is formulated in [13]. The direct generalization
of iii) and iv) would involve precise information about the singularities of
the perverse cohomology sheaves pHkRf∗QU .

The Theorem 11 can be localized around a topological component of
X \ U . Precisely, consider the set of ends, i.e. U∞ = π0(X \ U). This set
does not depend on the choice of X provided that X is normal. A map of
algebraic varieties which is proper induces a map of their ends. To deduce
purity of the cohomology of a part of the boundary of U it is enough to have
information about a singular completion of the corresponding end.

7 Proofs

Before the proof of Theorem 11 let us recall the key property of the link of
a subvariety

Theorem 14 ([5]) Let Y be a variety and let W be a compact subvariety.
Let us assume that Y \W is smooth. Then Hk(LW ) is of weight ≤ k for
the degrees k < dim(Y )− dim(W ).

Theorem 14 immediately follows from the purity of the intersection sheaf
[6, 3] since the stalk cohomology Hk(ICY ) is isomorphic to Hk(Rj∗QV ) for
k < dim(Y )− dim(W ) and H∗(LW ) = H∗(W ; (Rj∗QV )|W ).

Remark 15 In [2, §6] the Decomposition Theorem of [3] was used to give
estimates for the dimension of intersection cohomology of the link by means
of resolution. But it seems that the purity of the intersection sheaf was not
used directly.

9



Proof of (12.i’-ii’).
By Remark 13 we assume that the map f extends to X. The extended

map (denoted by the same letter) induces a map of sheaves i′∗Rj′∗QV →
Rf∗i

∗Rj∗QU . Therefore the mixed Hodge structures of the isomorphic
groups H∗(LW ) and H∗(LZ) coincide. By Theorem 14 and the assump-
tion on the dimension of W the cohomology Hk−1(LW ) is of weight ≤ k−1.
The claim 12.ii’ follows from the long exact sequence (3): the boundary map

Hk−1(LZ)→ Hk(X,U)

vanishes because the first term is of weight ≤ k − 1 and the second term is
of weight ≥ k.

Proof of (12.i-ii) follows by duality.

Proof of (12.iii-iv) If W = Sing(Y ) then s = dim(W ) and the state-
ment i) is even stronger then required. The Proposition 3 implies ii).

Suppose now Sing(Y ) ( W . We may assume that f extends to a map
X → Y and also we may assume that the map f is a resolution of sin-
gularities of the pair (Y,W ). Let W̃ ⊂ X be the proper transform of W .

Denote by E ⊂ X the exceptional set of f and let F = E ∩ W̃ . Consider
the Mayer-Vietoris exact sequence for Z = E ∪ W̃ :

→ Hk−1(E)⊕Hk−1(W̃ )
α
→ Hk−1(F )

δ
→ Hk(Z)→ Hk(E)⊕Hk(W̃ )→ .

By (11.i) applied to the map (X,E)→ (Y, f(E)) the cohomology of the link
Hk(LE) is of weight ≥ k + 1 for k ≥ dim(X) + s. Hence by Proposition 3

the cohomology Hk(E) is pure for k ≥ dim(X) + s. Of course Hk(W̃ ) is

pure since we assume that W̃ is smooth. To prove the purity of Hk(Z) it
remains to show that the map δ of the Mayer-Vietoris sequence is trivial.

By (11.ii) applied to F ⊂ W̃ the map

Hk−1(F )→ Hk−1(LF )

vanishes for k − 1 ≥ dim(W ) + s. By the exact sequence (3) for that pair
the restriction map

Hk−1(W̃ , W̃ \ F )→ Hk−1(F )

is surjective. The above map factors through Hk−1(W̃ ), therefore the map

Hk−1(W̃ )→ Hk−1(F )

is surjective. It follows that the restriction map α is surjective and the
boundary map δ is trivial for k ≥ dim(X) + s ≥ dim(W ) + s + 1. This
completes the proof.

Proof of (12.iii’-iv’) follows by duality. ✷
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Remark 16 If the singularity set is empty then s = −∞ by convention.
The claims (11.i-ii) hold for all degrees by trivial reasons.

The special case when W is a point (an isolated singularity resolu-
tion) was studied from the very beginning of the theory. In that case
both maps Hn−1(LZ) → Hn(X,U) and Hn(X) → Hn(LZ) are trivial.
The map Hn(X,U) → Hn(Z) is an isomorphism. After the identification
Hn(X,U) = Hn(Z)∗ we obtain a nondegenerate intersection form which
was studied for example in [7].

8 Questions about real algebraic varieties

The Hodge theory for real algebraic varieties and Z/2 coefficients is not
available. The approach of [8, 9] does not lead to a strongly functorial
weight filtration. Nevertheless one defines impure cohomology of a singular
compact variety X: it is the kernel of H∗(X) → H∗(X̃), where X̃ is any
resolution. We say that the cohomology of a real variety is pure if the kernel
H∗(X)→ H∗(X̃) is trivial. The definition does not depend on X̃ . One can
ask the question about the generalization of the Theorem 11:

Question 17 With the assumption of Theorem 3 for real algebraic varieties:
What properties of (Y,W ) would guarantee purity of H∗(Z) in some range
of degrees?

The dimension of the singularity set is far to weak invariant. It is well
known that any real algebraic set can be contracted to a point.
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