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Towards a weighted version of the Hajnal-Szemerédi Theorem

József Balogh ∗ Graeme Kemkes † Choongbum Lee ‡ Stephen J. Young §

Abstract

For a positive integer r ≥ 2, a Kr-factor of a graph is a collection vertex-disjoint copies

of Kr which covers all the vertices of the given graph. The celebrated theorem of Hajnal

and Szemerédi asserts that every graph on n vertices with minimum degree at least (1 − 1

r
)n

contains a Kr-factor. In this note, we propose investigating the relation between minimum

degree and existence of perfect Kr-packing for edge-weighted graphs. The main question we

study is the following. Suppose that a positive integer r ≥ 2 and a real t ∈ [0, 1] is given.

What is the minimum weighted degree of Kn that guarantees the existence of a Kr-factor

such that every factor has total edge weight at least t
(

r

2

)

? We provide some lower and upper

bounds and make a conjecture on the asymptotics of the threshold as n goes to infinity. This

is the long version of a “problem paper” in Combinatorics, Probability and Computing.

1 Introduction

Many results in graph theory study the relation between the minimum degree of a given graph

and its spanning subgraphs. For example, Dirac’s theorem asserts that a graph on n vertices

with minimum degree at least ⌈n2 ⌉ contains a Hamilton cycle. Hajnal and Szemerédi [3] proved

that every graph on n ∈ rZ vertices with minimum degree at least (1− 1
r )n contains a spanning

subgraph consisting of n
r vertex-disjoint copies of Kr (we call such a subgraph a Kr-factor).

In this note we propose investigating this relation in edge-weighted graphs. As a concrete

problem, we study the particular case when the spanning subgraph is the graph formed by vertex-

disjoint copies of Kr (in other words, we would like to extend the Hajnal-Szemerédi theorem to

edge-weighted graphs). Suppose we equip the complete graph Kn with edge weights w : E(Kn) →

[0, 1]. For a given weighted graph and vertex v we let degw(v) denote the weighted degree of the

vertex v. Let δw(G) be the minimum weighted degree of the graph G. The main question can be
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formulated as the following: How large must δw(Kn) be to guarantee that there exists a Kr-factor

such that every factor has total edge weight at least t
(r
2

)

for some given t ∈ [0, 1]?

More formally, for n ∈ rZ let W(r, t, n) be the collection of edge weightings on Kn such that

every Kr-factor has a clique with weight strictly smaller than t
(r
2

)

. We then define

δ(r, t, n) = sup
w∈W(r,t,n)

δw(Kn) and δ(r, t) = lim sup
n→∞

δ(r, t, n)

n
.

The main open question that we raise is the following.

Question 1. Determine the value of δ(r, t) for all r and t.

Let W∗(r, t, n) be the collection of edge weightings of Kn such that every Kr-factor has a

clique with weight at most t
(r
2

)

(instead of strictly smaller than t
(r
2

)

), and define the functions

δ∗(r, t, n) and δ∗(r, t) accordingly.

Proposition 1.1. For all r, t, and n, δ(r, t, n) = δ∗(r, t, n). Therefore, δ(r, t) = δ∗(r, t).

Proof. The inequality δ(r, t, n) ≤ δ∗(r, t, n) easily follows from the definition. Noting that the

complement of W∗(r, t, n) is open in the set of all real valued edge weightings, the set W∗(r, t, n)

is compact. Thus there is a weight function w ∈ W∗(r, t, n) so that δw(Kn) = δ∗(r, t, n). Let ε < 1

be an arbitrary positive real, and let w′ be the weight function obtained from w by multiplying 1−ε

to all the weights. One can easily see that w′ ∈ W(r, t, n), and thus δ(r, t, n) ≥ (1 − ε)δ∗(r, t, n).

Thus as ε tends to 0, we see that δ(r, t, n) ≥ δ∗(r, t, n). This concludes the proof.

The proposition above shows that if an edge-weighting of Kn has minimum degree greater

than δ(r, t, n), then there exists a Kr-factor such that every copy of Kr has weight greater than

t
(r
2

)

. Therefore, the Hajnal-Szemerédi theorem in fact is a special case of our problem when

t = (
(

r
2

)

− 1)/
(

r
2

)

where we only consider the integer weights {0, 1}. Thus we believe that the

following special case is an important and interesting instance of the problem corresponding to

the Hajnal-Szemerédi theorem for r = 3 (which has been first proved by Corrádi and Hajnal [1]).

Question 2. What is the value of δ(3, 23)?

In the rest of our note we describe our partial results toward answering Question 1.

2 Lower bound

It is not too difficult to deduce the bound δ(r, t) ≥ (1 − 1/r)t from the graph showing the

sharpness of the Hajnal-Szemerédi theorem. Our first proposition provides a better lower bound

to this function.

Proposition 2.1. The following holds for every integer r ≥ 2 and real t ∈ (0, 1]:

δ(r, t) ≥
1

r
+

(

1−
1

r

)

t.
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Proof. Let n ∈ rZ with n > r and let k = n
r . Let A be an arbitrary set of k − 1 vertices and

let B be the remaining k(r − 1) + 1 vertices. Consider the weight function w that assigns weight

t to edges whose endpoints are both in B and weight 1 to all other edges. By the cardinality

of A, we see that every Kr-factor must contain a clique that lies entirely within B. Since our

weight function gives weight at most t
(r
2

)

to this clique, we see that w ∈ W∗(r, t, n). Further,

δw(Kn) = min{n− 1, k − 1 + t(n− k)}. But we have that

k − 1 + t(n− k) =

(

1

r
−

1

n
+ t(1−

1

r
)

)

n.

Therefore by Proposition 1.1, we have δ(r, t, n) ≥
(

1
r −

1
n + t(1− 1

r )
)

n and δ(r, t) ≥ 1
r +
(

1− 1
r

)

t.

Proposition 2.1 illustrates the fundamental difference between the minimum degree threshold

for containing a Kr-factor in graphs and edge-weighted graphs. For example, when r = 3, we

see that δ(3, 2/3) ≥ 7/9, while the corresponding function for graphs has value 2/3 by Hajnal-

Szemerédi theorem. This difference suggests that we indeed need some new ideas and techniques

to solve our problem.

3 Upper bound

Next, we establish an upper bound on δ(r, t). To do so, it is helpful to consider the graph induced

by the edges of heavy weights in a given edge-weighted graph. Thus, given an edge-weighted

graph Gw, we denote by Gw(t) the subgraph of Kn consisting of edges of weight at least t. For

r = 2, it is easy to establish the correct value of the function δ(2, t).

Observation 1. For every t ∈ (0, 1] we have δ(2, t) = 1+t
2 .

Proof. The lower bound on δ(2, t) follows from Proposition 2.1, and thus it suffices to establish

the upper bound. Let w be a weight function such that δw(Kn) ≥ 1+t
2 n. Now for any vertex

v ∈ Gw(t), we have degw(v) < (n − 1 − deg(v)) · t + deg(v) · 1, were deg(v) is the degree of v

in Gw(t). But then the minimum weighted degree condition implies that deg(v) ≥ n
2 , and so

by the Hajnal-Szemerédi theorem there is a K2-factor in Gw(t). By the definition of Gw(t), this

establishes the bound δ(2, t) ≤ 1+t
2 .

Even for r ≥ 3, if t is small enough, then we can determine the correct value of the function

δ(r, t).

Theorem 3.1. For every r ≥ 3, there exists a positive real tr such that for every t ∈ (0, tr) we

have

δ(r, t) =
1

r
+

(

1−
1

r

)

t.
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Proof. We have δ(r, t) ≥ 1
r +
(

1− 1
r

)

t by Proposition 2.1. It remains for us to establish the upper

bound. Let ε be an arbitrary positive real. For n sufficiently large, let w be a weight function

such that δw(Kn) ≥
(

1
r +

(

1− 1
r

)

t+ ε
)

n. We will say a copy of a Kr is heavy if it has weight

at least
(r
2

)

t. A collection of vertex disjoint copies of Kr is heavy if each Kr in the collection is

heavy. An edge is overweight if it has weight at least
(r
2

)

t. Let tr be a sufficiently small positive

real depending on r to be determined later. We will find a heavy Kr-factor given that t < tr and

n is a large enough integer divisible by r.

Take a maximum heavy collection of vertex-disjoint copies of Kr, that maximizes the number

of overweight edges. Call this collection R, and suppose that |R| = ρ. Denote by VR be the

vertices covered by R, thus |VR| = rρ. We may assume that ρ < n
r , as otherwise we have a heavy

Kr-factor. Then there exist r distinct vertices v1, v2, · · · , vr /∈ VR. Let L = {v1, v2, · · · , vr}. If

there is an overweight edge whose both endpoints are in V (Kn) \ VR, then we can find a larger

collection than R by taking the union of this edge with r − 2 vertices of L. Thus all the edges

within V (Kn) \ VR have weight at most
(r
2

)

t.

Fact 1. For every R ∈ R, if there exists an overweight edge between V (R) and L, then there

exists a unique vertex in R which intersects every overweight edge between V (R) and L.

Proof. Fix a copy of Kr in R and denote it by R. If there are two vertex-disjoint overweight edges

between V (R) and L, then we can find two heavy vertex-disjoint copies of Kr over V (R) ∪ L.

Therefore all the overweight edges between V (R) and L share a common endpoint. In particular,

there are at most r overweight edges between V (R) and L.

Now suppose that there are at least two overweight edges between V (R) and L, and that the

common endpoint is in L. Without loss of generality, let x ∈ V (R) and v1 ∈ L be vertices such

that there are at least two overweight edges of the form {y, v1} for y ∈ V (R) \ {x}. Then by the

assumption that we maximized the number of overweight edges, there are at least two overweight

edges among the edges {y, x} for y ∈ V (R) \ {x} (otherwise we can replace R by R \ {x} ∪ {v1}).

However, if this is the case, then we can find two independent overweight edges in V (R)∪L, and

this contradicts the maximality of R. Thus if there are at least two overweight edges between

V (R) and L, then they share a common endpoint in V (R).

Let R′ be the subset of copies of Kr of R which have at least r− 1 overweight edges incident

to it whose other endpoint is in L. Let ρ′ = |R′|.

Fact 2. For R ∈ R′, there exists a unique vertex xR ∈ V (R) incident to all the overweight edges

within V (R) ∪ L. Moreover, all the edges incident to xR within R are overweight.

Proof. For a fixed copy R ∈ R′, let xR ∈ V (R) be the vertex guaranteed by Fact 1. If there is

an overweight edge in R which does not intersect xR, then we can find two heavy vertex-disjoint

copies of Kr over the set of vertices V (R) ∪ L, and this violates the maximality of R. Therefore,

all the overweight edges within R are incident to xR. Moreover, if there are less than r − 1 such

edges, then we can find a copy of KR over the vertex set {xR} ∪ L which contains at least r − 1

4



overweight edges. This contradicts the maximality of overweight edges of R. Therefore, all the

edges incident to xR within R are overweight.

Let X be the subset of vertices which are covered by copies of Kr in R′ that are incident to

an overweight edge (guaranteed by Fact 2), and let Y be the vertices which are covered by copies

of Kr in R′ that are not in X.

Fact 3. For every y ∈ Y and R ∈ R \ R′, y is incident to R by at most one overweight edge.

Proof. Suppose that we are given vertices x ∈ X and y ∈ Y covered by R ∈ R. Without loss

of generality, suppose that x is adjacent to v1, · · · , vr−1 ∈ L by overweight edges. By way of

contradiction, suppose that there exists R′ ∈ R \ R′ with V (R′) = {z1, z2, · · · , zr} such that

{y, z1} and {y, z2} are both overweight. If R′ contains an edge e other than {z1, z2} that is

overweight, then among the edges {x, v1}, {y, z1}, {y, z2}, e (which are all overweight), we can find

at least three vertex-disjoint edges. Therefore we can find three vertex-disjoint copies of Kr over

the vertex set V (R) ∪ V (R′) ∪ L. However, this contradicts the maximality of R. If there are

no overweight edges within R′ other than (possibly) {z1, z2}, then the two copies of Kr over the

vertex sets {x, v1, · · · , vr−1}, {y, z1, z2, · · · , zr−1} contain at least r+ 1 overweight edges, while R

and R′ combined contain at most r overweight edges (see Fact 2). Therefore we conclude that

there exists at most one overweight edge of the form {y, zi}.

Fact 4. There does not exist a heavy Kr over a vertex set of the form {vi, y1, y2, · · · , yr−1} for

vi ∈ L and y1, · · · , yr−1 ∈ Y .

Proof. Suppose that for some vi ∈ L and y1, . . . , yr−1 ∈ Y the vertices {v1, y1, . . . , yr−1} induce

a heave Kr. Suppose that {y1, · · · , yr−1} are contained in s disjoint copies R1, · · · , Rs of Kr

belonging to R, and let x1, · · · , xs be the ‘dominating’ vertices of these Kr guaranteed by Fact

2 (note that s ≤ r − 1). If s ≤ r − 2, then since each xi are incident to L by at least r − 1

overweight edges, we can find s + 1 vertex-disjoint copies of a heavy Kr over the vertices L ∪

V (R1)∪ · · · ∪V (Rs). On the other hand, if s = r− 1, then there exists an index j such that there

exists z ∈ V (Rj) \ {xj , y1, · · · , yr−1}. Then by using the overweight edge {xj , z} (see Fact 2) and

the overweight edges between {x1, · · · , xs} and L, we can find at least s + 1 = r vertex-disjoint

copies of a heavy Kr over the vertices L ∪ V (R1) ∪ · · · ∪ V (Rs). This contradicts the maximality

of R.

For a set of vertices T , let w(T ) =
∑

v1,v2∈T
w(v1, v2). By Fact 4, it suffices to show that

r
∑

i=1

∑

T⊂( Y

r−1
)

w({vi} ∪ T ) ≥

(

r

2

)

tr

(

|Y |

r − 1

)

,

5



which contradicts the assumption that ρ < n
r . Note that

r
∑

i=1

∑

T⊂( Y

r−1
)

w({vi} ∪ T ) =

(

|Y | − 1

r − 2

) r
∑

i=1

∑

y∈Y

w(vi, y) +
1

2
r

(

|Y | − 2

r − 3

)

∑

y1∈Y

∑

y2∈Y \{y1}

w(y1, y2)

=

(

|Y |

r − 1

)





r − 1

|Y |

r
∑

i=1

degw(vi, Y ) +
r(r − 1)(r − 2)

2|Y |(|Y | − 1)

∑

y∈Y

degw(y, Y )





≥

(

|Y |

r − 1

)





r − 1

|Y |

r
∑

i=1

degw(vi, Y ) +
r(r − 1)(r − 2)

2|Y |2

∑

y∈Y

degw(y, Y )



 (1)

where degw(v, Y ) is the weighted degree of v to vertices in Y .

For the first term on the right hand side of (1), we have

r
∑

i=1

degw(vi, Y )

=

r
∑

i=1

(

degw(vi)− degw(vi,X)− degw(vi, VR \ (X ∪ Y ))− degw(vi, V \ VR))
)

≥ (1 + (r − 1)t+ rε)n− rρ′ −

(

(r − 2) + (r2 − r + 2)

(

r

2

)

t

)

(ρ− ρ′)− r

(

r

2

)

t(n− rρ).

Since the coefficient of n is positive for small enough t, we can substitute n > rρ to get
r
∑

i=1

degw(vi, Y ) > r(r − 1)tρ+

(

2− (r2 − r + 2)

(

r

2

)

t

)

(ρ− ρ′) + rεn. (2)

For the second term on the right hand side of (1), by Fact 3 and the fact |Y | = (r − 1)ρ′, for

a vertex y ∈ Y , we have

degw(y, Y ) ≥

(

1

r
+

r − 1

r
t+ ε

)

n− ρ−

(

r

2

)

t(n− ρ− |Y |)

=

(

1

r
+

r − 1

r
t−

(

r

2

)

t+ ε

)

n+

(

r

2

)

t(r − 1)ρ′ −

(

1−

(

r

2

)

t

)

ρ.

Since the coefficient of n is positive for small enough t, we can substitute n > rρ to get

degw(y, Y ) > (r − 1)tρ− (r − 1)

(

r

2

)

t(ρ− ρ′) + εn. (3)

Using (2) and (3) in (1),

1
(

|Y |
r−1

)

r
∑

i=1

∑

T⊂( Y

r−1
)

w({vi} ∪ T )

≥
r − 1

|Y |

(

r(r − 1)tρ+

(

2− (r2 − r + 2)

(

r

2

)

t

)

(ρ− ρ′) + rεn

)

+
r(r − 1)(r − 2)

2|Y |

(

(r − 1)tρ− (r − 1)

(

r

2

)

t(ρ− ρ′) + εn

)

6



If t is small enough, then the coefficient of ρ in the right hand side is positive. Hence we can

substitute ρ ≥ ρ′ to get,

1
( |Y |
r−1

)

r
∑

i=1

∑

T⊂( Y

r−1
)

w({vi} ∪ T ) ≥

(

r(r − 1)2

|Y |
+

r(r − 1)2(r − 2)

2|Y |

)(

tρ′ +
εn

r − 1

)

=
r2(r − 1)2tρ′

2|Y |
+

r2(r − 1)

2|Y |
εn

≥
r2(r − 1)2tρ′

2|Y |

=
r(r − 1)t

|Y |

(

r

2

)

.

Since |Y | = (r − 1)ρ′, we have

1
(

|Y |
r−1

)

r
∑

i=1

∑

T⊂( Y

r−1
)

w({vi} ∪ T ) > r

(

r

2

)

t.

Thus, by Fact 4, we contradict our assumption that ρ < n
r . Hence δ(r, t) ≤ 1

r +
r−1
r t+ ε for every

positive ε, and our claimed upper bound follows.

It is worth noting that this proof gives a value of tr of 4

(r
2
)(r3−r2−2r+4)

. Thus for r = 3, we

have t3 ≥
1
12 .

For general values of t, we suggest two approaches which establish some upper bound (that

unfortunately does not match the lower bound given in Proposition 2.1).

3.1 First approach: hypergraphs

In our first approach, we reduce our problem into the problem of finding a perfect matching in

hypergraphs as in Observation 1. The following lemma establishes the minimum number of heavy

Kr’s that each vertex must belong to in a given edge-weighted graph.

Lemma 3.2. If w is a weight function with minimum weighted degree at least δn, then every

vertex is in at least
(

1− 1−δ
1−t

)

(n−1
r−1

)

cliques of size r ≥ 3 with weight at least t
(r
2

)

.

Proof. Let w be an arbitrary weight function, v be an arbitrary vertex, and let αv be the number

of Kr’s of weight at least t
(

r
2

)

containing v. Now letting Sv be the sum of the weights of all
(

n−1
r−1

)

Kr’s containing v, we have that

Sv ≤ αv

(

r

2

)

+

((

n− 1

r − 1

)

− αv

)

t

(

r

2

)

.

Let W be the total weight of w. Since edges incident with v occur in
(n−2
r−2

)

Kr’s containing v and

the edges not incident to v occur in
(n−3
r−3

)

such Kr’s, we have

Sv ≥

(

n− 3

r − 3

)

W +

((

n− 2

r − 2

)

−

(

n− 3

r − 3

))

degw(v).

7



Combining these inequalities we have

αv ≥
1

1− t

(

n− 1

r − 1

)(

2(n − r)

r(n− 1)(n − 2)
degw(v) +

2(r − 2)

r(n− 1)(n − 2)
W − t

)

=
1

1− t

(

n− 1

r − 1

)(

δ
n

n − 1
− t

)

≥
δ − t

1− t

(

n− 1

r − 1

)

.

We now apply Daykin and Häggkvist’s theorem [2] which asserts that an r-uniform hypergraph

has a perfect matching if every vertex of it lies in at least
(

1− 1
r

)

(

(n−1
r−1

)

− 1
)

hyperedges. This

gives the following bound:

Proposition 3.3. For every t ∈ (0, 1] and r ≥ 3 we have δ(r, t) ≤ 1− 1−t
r .

Hàn, Person and Schacht [4] have conjectured that Daykin and Häggkvist’s theorem can be

improved, and an r-uniform hypergraph has a perfect matching if every vertex lies in at least

(1 −
(

r−1
r

)r−1
− o(1))

( n
r−1

)

hyperedges. If this conjecture were proved, then we would have

δ(r, t) ≤ 1− (1− t)
(

r−1
r

)r−1
.

Since in [4] the conjecture was proved for r = 3, we have that δ(3, t) ≤ 5
9 + 4

9t. It is worth

noting that this technique cannot be applied to obtain an upper bound matching Proposition 2.1.

Consider the case when r = 3 and t = 2
3 . The lower bound from Proposition 2.1 reads as

δ(3, 23) ≥ 7
9 . To obtain a matching upper bound using this method, we would need to improve

the conclusion of Lemma 3.2 so that in every edge-weighted graph of minimum degree at least
7
9n, every vertex is contained in at least (59 + o(1))

(n
2

)

copies of K3. However, the following graph

has minimum degree 29
36n, and there are vertices which are contained in at most 319

648n
2 copies of

K3. Let A ∪ B be a vertex partition such that A has size 29
36n and B has size 7

36n. First, assign

weight 1 to all the edges connecting A and B and give weight 1 to an 11
18n-regular graph on A.

Give weight 0 to each of the remaining edges. The minimum weighted degree of this graph is
29
36n > 7

9n > 2
3n, so this graph has a triangle factor by the Hajnal-Szemerédi theorem. However,

every vertex in B is only in 29
36n · 11

18n · 1
2 =

(

319
648 + o(1)

) (n
2

)

<
(

5
9 + o(1)

) (n
2

)

triangles. Similar

constructions can be made for other values of r and t as well.

3.2 Second approach: induction

We improve the upper bound by using two reductive schemes to build a Kr-factor out of a Kr′-

factor of the graph (or a large portion of the graph).

Scheme 1. Suppose r = pq with p, q > 1, and let w be an arbitrary weight function with

minimum weighted degree δn. Let K be an arbitrary Kp-factor of Kn with minimum average

weight tp and consider the weight function wK on Kn/p defined as follows. Associate to each

vertex in Kn/p a distinct clique in K; the weight of an edge is the average weight in w of the

edges between the corresponding cliques. Now the minimum weighted degree under w′ is at least

8



pδn−p(p−1)
p2

=
(

δ − p−1
n

)

n
p . Letting K ′ be an arbitrary Kq-factor of this graph with minimum

average weight tq, the factors K and K ′ induce a Kpq-factor in Kn with minimum weight at

least tq
(

q
2

)

p2 + tp
(

p
2

)

q. Thus δ(pq, t, n) ≤ max
{

δ(p, t, n), δ(q, t, n
p ) +

p−1
p

}

. Consequently, we have

δ(pq, t) ≤ max {δ(p, t), δ(q, t)}.

Scheme 2. Let δ′ = max
{

δ(r − 1, t), 12 +
t
2

}

. We prove that δ(r, t) ≤ δ′. Let ε be an arbitrary

fixed positive real, and assume that n0 is large enough so that δ(r − 1, t, n) ≤ (δ(r − 1, t) + ε
2)n

for all n ≥ n0. Assume that we are given an edge-weighted graph G on n ≥ 2n0 vertices with

minimum degree at least (δ′ + ε)n. We partition randomly the vertices of G into a set A of size
r−1
r n and a set B of size 1

rn = k. By the Chernoff-Hoeffding inequalities, for large enough n,

there is such a partition which additionally satisfies that for every vertex the weighted degree into

A is at least (δ′ + ε
2)

r−1
r n and into B is at least δ′ 1rn. By the assumption on δ′, we can find a

Kr−1-factor KA on A with minimum average weight t.

Using KA we construct a complete weighted bipartite graph H, where the vertices on one side

are associated with cliques in KA and the vertices on the other side are associated with vertices

in B. For a clique K ∈ KA and a vertex v ∈ B, we assign as weight of the edge (K, v), the

average of the weights of the edges between v and the vertices in K. Notice that the minimum

weighted degree of H is at least δ′k ≥ (12 + t
2)k. Recall that H(t) is the unweighted subgraph

of H consisting of edges with weight at least t. By a similar argument as in Observation 1, the

minimum degree in H(t) is at least k
2 . Thus by Hall’s theorem, there is a perfect matching M in

H(t).

Now notice that KA and M lift to a Kr-factor of G with minimum weight t
(

r−1
2

)

+ t(r− 1) =

t
(

r
2

)

. Consequently, δ(r, t, n) ≤ (δ′ + ε)n. Since ε can be arbitrarily small, we have δ(r, t) ≤ δ′ =

max
{

δ(r − 1, t), 12 +
t
2

}

.

By Proposition 2.1, Observation 1, and Scheme 2, we obtain the following theorem.

Theorem 3.4. For every r ≥ 3 and t ∈ (0, 1],

1

r
+

(

1−
1

r

)

t ≤ δ(r, t) ≤
1

2
+

t

2
.

For the special case related to triangle factors that we discussed in the beginning, we have
7
9 ≤ δ(3, 23) ≤

5
6 . We note that Theorem 3.4 has been proved without using Scheme 1, however,

Scheme 1 implies that if there is an improvement on the upper bound for any r, then there is

an improvement in the upper bound for an infinite class of r′. For example, for any fixed k,

δ(rk, t) ≤ δ(r, t). Because of the dependence on the bipartite matching result (which cannot be

improved) a similar statement does not hold using just Scheme 2.

3.3 Open Question

In this article, we proposed the study of the function δ(r, t). Based on the evidence given by

Proposition 2.1 and Theorem 3.1, we make the following conjecture.

9



Conjecture 1. For every r ≥ 2 and t ∈ (0, 1],

δ(r, t) =
1

r
+

(

1−
1

r

)

t.

The function δ(r, t) shows different behavior from its non-weighted counterpart (which is

related to the Hajnal-Szemerédi’s theorem). As one can see from the discussion of Subsection

3.2, the approach of examining the function by fixing t and varying r, opens up new possibilities

which has no counterpart in the Hajnal-Szemerédi theorem. We note that our results suggest,

but does not quite establish, the fact that for fixed t, δ(r, t) is a decreasing function of r. Further

note that the weighted case has an extra power coming from the ability to include any edge in a

Kr-factor, even if that edge has weight 0. This suggests that there could be a relation to results

of Kuhn and Osthus [5] on the existence of H-factors in graphs.
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