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Abstract—This paper considers the problem of lossy compres-
sion for the computation of a function of two correlated sources,
both of which are observed at the encoder. Due to presence
of observation costs, the encoder is allowed to observe only
subsets of the samples from both sources, with a fraction of such
sample pairs possibly overlapping. For both Gaussian and binary
sources, the distortion-rate function, or rate-distortion function,
is characterized for selected functions and with quadraticand
Hamming distortion metrics, respectively. Based on these results,
for both examples, the optimal measurement overlap fraction is
shown to depend on the function to be computed by the decoder,
on the source correlation and on the link rate. Special casesare
discussed in which the optimal overlap fraction is the maximum
or minimum possible value given the sampling budget, illustrating
non-trivial performance trade-offs in the design of the sampling
strategy.

I. I NTRODUCTION

Consider an encoder endowed with a sensor that is able to
measure two correlated discrete memoryless source sequences
Sn
1 = (S1,1, ..., S1,n) andSn

2 = (S2,1, ..., S2,n), as shown in
Fig. 1. Due to the energy cost of source acquisition, sampling,
quantization and compression, it might not be possible for the
sensor to fully measure the sourcesS1 andS2. To simplify,
this limitation can be modelled by imposing that onlynθk
samples can be measured from each sourceSk, k = 1, 2, with
0 ≤ θk ≤ 1. The encoder compresses the measured samples to
nR bits, whereR is the communication rate in bits per source
symbol. Based on the received bits, the decoder reconstructs a
lossy version of a target functionT n = fn(Sn

1 , S
n
2 ) of source

sequencesSn
1 andSn

2 , which is such thatTi = f(S1,i, S2,i),
i = 1, ..., n. We refer to the above problem aslossy computing
with fractional sampling.

A key aspect of the problem of lossy computing with
fractional sampling is that the encoder is allowed to choose
which samples to measure given the sampling budget (θ1, θ2).
To fix the ideas, assume that we have (θ1 = 0.5, θ2 = 0.5),
so that only half of the samples can be observed from both
sources. As two extreme strategies, the encoder can either
measure the same samples from both sources, sayS1,i, S2,i

for i = 1, ..., n/2, or it can measure the first sourceS1

for the first n/2 samples, namelyS1,i for i = 1, ..., n/2,
and the second sourceS2 for the remainingn/2 samples,
namelyS2,i for i = n/2 + 1, ..., n. With the first sampling
strategy, the encoder is able to directly calculate the desired
function Ti = f(S1,i, S2,i) for i = 1, ..., n/2, while having

no information (beside the prior distribution) aboutTi for
the remaining samples. With the second strategy, instead, the
encoder collects partial information aboutT at all times in the
form of samples from sourceS1 or sourceS2. As it will be
discussed in this paper, the optimal sampling strategy depends
critically on the functionf(·, ·), on the correlation between
S1,i andS2,i, and on the link rateR.

A. Related Work and Contributions

With full sampling of both sources, i.e., (θ1 = 1, θ2 =
1), the encoder can directly calculate the functionT n =
fn(Sn

1 , S
n
2 ) and the problem at hand reduces to the standard

rate-distortion set-up (see, e.g., [1]). Instead, if the encoder can
only measure one of the two sources, i.e., (θ1 = 1, θ2 = 0) or
(θ1 = 0, θ2 = 1), the problem at hand becomes a special case
of the indirect source coding set-up introduced in [2]. For a
discussion on problems related to computing and compression
in network scenarios, we refer to [3]. The framework of source
coding with fractional sampling was introduced in our previous
work [4] for a model in which an energy-constrained sensor
measures independent Gaussian sources for optimized fraction
of time and the receiver wishes to reconstruct all sources
with given quadratic distortion constraints. The model is also
related to that of compression with actions of [5].

This paper formulates the problem of lossy computing with
fractional sampling of correlated sources (Section II). After
providing a general expression for the distortion-rate andthe
rate-distortion functions (Section III), we focus on two specific
examples that illustrate the trade-offs involved in the design of
the sampling strategy. Specifically, we first consider correlated
Gaussian sources and assume that linear functions of the form
T = w1S1 + w2S2 are to be reconstructed at the decoder
with quadratic distortion constraints (Section IV). We then
consider correlated binary sources with arbitrary functions
T = f(S1, S2) and Hamming distortion (Section V). Various
conclusions are drawn regarding conditions under which the
optimal sampling strategy prescribes the maximum or the
minimum possible overlap between the samples measured
from the two sources.

II. SYSTEM MODEL

In this section, we formally introduce the system model of
interest. As shown in Fig. 1, the encoder has access to two dis-
crete memoryless source sequencesSn

1 = (S1,1, ..., S1,n) and

http://arxiv.org/abs/1206.1389v1
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Figure 1. The encoder measures correlated sourcesS1 andS2 for a fraction
of time θ1 and θ2, respectively, and the decoder estimates a functionTn =
fn(Sn

1
, Sn

2
).

Sn
2 = (S2,1, ..., S2,n) respectively, which consist ofn indepen-

dent and identically distributed (i.i.d.) samples(S1,i, S2,i) with
S1,i ∈ S1 andS2,i ∈ S2, i = 1, ..., n, whereS1 andS2 are
the alphabet sets forS1 andS2 respectively. All alphabets are
assumed to be finite unless otherwise stated. Due to presence
of observation costs, we assume the encoder can only sample
a fractionθk of the samples for sourceSk, with 0 ≤ θk ≤ 1
for k = 1, 2. Given the i.i.d. nature of the sources, without loss
of generality, we assume that the encoder measures the firstθ1
fraction of samples of sourceS1 and measures theθ2 fraction
of samples ofS2 starting from samplen(θ1 − θ12) + 11, as
shown in Fig. 2. The samples measured at the encoder from the
two sources thus overlap for a fractionθ12, with θ12 satisfying

θ12,min ≤ θ12 ≤ θ12,max, (1)

with θ12,min = (θ1 + θ2 − 1)+ and θ12,max = min(θ1, θ2),
where (·)+ denotes max(·, 0). We refer to the triple
(θ1, θ2, θ12) as a sampling profile, and to (θ1, θ2) as the
sampling budget.

The decoder wishes to estimate a functionT n =
fn(Sn

1 , S
n
2 ), whereTi = f(S1,i, S2,i) for i = 1, ..., n. We let

d : T ×T̂ → [0,+∞) be a distortion measure, whereT andT̂
are the alphabet sets of the variablesT andT̂ respectively. We
assume, without loss of generality, that for eacht ∈ T there
exists at̂ ∈ T such thatd(t, t̂) = 0. The link between the
encoder and the decoder can support a rate ofR bits/sample.
Formal definitions follow.

1
S

2S

)( 121 θθ −n 12θn )( 122 θθ −n )1( 2112 θθθ −−+n

n

Figure 2. Sampling profile(θ1, θ2, θ12) at the encoder: a fraction,θ1−θ12 ,
of samples is measured only from sourceS1; a fraction,θ12, of samples is
measured from both sources; a fraction,θ2 − θ12, of samples is measured
only from sourceS2; and the remaining fraction,1 + θ12 − θ1 − θ2, of
samples is not measured for either source (0 ≤ θ1, θ2 ≤ 1, and θ12 as in
(1)).

Definition 1: A (n,R,D, θ1, θ2, θ12) code for the problem
of lossy computing of two memoryless sources with fractional
sampling consists of an encoderh : Snθ1

1 × Snθ2
2 →

{1, ..., 2nR}, which maps the measuredθ1-fraction of source
S1, i.e., (S1,1, ..., S1,nθ1), and the measuredθ2-fraction of
sourceS2, i.e., (S2,n(θ1−θ12)+1, ..., S2,n(θ1+θ2−θ12)), into a

1Throughout the paper, quantities such asnθ1, nθ2 andn(θ1 + θ2 − θ12)
are implicitly assumed to be rounded to the largest smaller integer.

message of rateR bits per source sample (where the normal-
ization is with respect to the overall number of samplesn); and
a decoderg : {1, ..., 2nR} → T̂ n, which maps the message
from the encoder into an estimatêT n, such that distortion
constraintD is satisfied, i.e.,

1

n
E

[

n
∑

i=1

d(Ti, T̂i)

]

≤ D. (2)

Given any sampling profile (θ1, θ2, θ12), a tuple
(R,D, θ1, θ2, θ12) is said to be achievable, if for anyǫ > 0,
and sufficiently largen, there exists a(n,R,D+ǫ, θ1, θ2, θ12)
code. Thedistortion-rate functionfor a given sampling profile
D(R, θ1, θ2, θ12) is defined asD(R, θ1, θ2, θ12) = inf{D:
the tuple (R,D, θ1, θ2, θ12) is achievable}. The distortion-
rate function with sampling budget(θ1, θ2), D(R, θ1, θ2),
is defined as D(R, θ1, θ2) = minθ12 D(R, θ1, θ2, θ12)
where the minimum is taken over allθ12 satisfying
(1). Similar definitions are used for the rate-distortion
function. Specifically, therate-distortion functiongiven a
sampling profile(θ1, θ2, θ12) and distortionD is defined as
R(D, θ1, θ2, θ12) = inf{R: the tuple (R,D, θ1, θ2, θ12) is
achievable}, and the rate-distortion function with sampling
budget (θ1, θ2) as R(D, θ1, θ2) = minθ12 R(D, θ1, θ2, θ12)
where the minimum is taken over allθ12 satisfying (1).

III. R ATE-DISTORTION TRADE-OFF WITH FRACTIONAL

SAMPLING

In this section, we characterize the distortion-rate functions
D(R, θ1, θ2, θ12) and D(R, θ1, θ2) defined above as well as
their rate-distortion counterparts. To elaborate, we firstdefine
the standard distortion-rate function for the memoryless source
T asD12(R) = minp(t̂|t): I(T ;T̂ )≤R E[d(T, T̂ )] [1]. We sim-
ilarly define the corresponding rate-distortion function with
full sampling asR12(D) = minp(t̂|t): E[d(T,T̂ )]≤D I(T ; T̂ ).
Moreover, we define the indirect distortion-rate function for
compression ofT when onlySk is observed at the encoder,
for k = 1, 2, asDk(R) = minp(t̂|sk): I(Sk;T̂ )≤R E[d(T, T̂ )].
We similarly define the corresponding rate-distortion func-
tion Rk(D) = minp(t̂|sk): E[d(T,T̂ )]≤D I(Sk; T̂ ). Finally,
we define Dk,min as Dk,min = limR→∞ Dk(R) =
mingk(·)E(d(gk(Sk), T )), for k = 1, 2, where functiongk(·)
is defined asgk : Sk → T̂ , which mapsSk to an estimatêT .

Lemma 1:For any given sampling profile(θ1, θ2, θ12) and
link rate R, the distortion-rate function for computingT is
given by2

D(R,θ1, θ2, θ12) = min
R1,R12,R2≥0

(θ1 − θ12)D1

(

R1

θ1 − θ12

)

+ θ12D12

(

R12

θ12

)

+ (θ2 − θ12)D2

(

R2

θ2 − θ12

)

+ (1 + θ12 − θ1 − θ2)Dmax, (3)

2For any given convex functionQ(x) for x ≥ 0, we define0 ·Q(x/0) =
0, for x ≥ 0, if limx→0 x ·Q(1/x) = 0.



with Dmax = mint̂∈T̂ E[d(T, t̂)], and where the minimization
is taken under the constraint

R1 +R2 +R12 ≤ R. (4)

For convenience, we let

Dmin(θ1, θ2, θ12) = lim
R→∞

D(R, θ1, θ2, θ12)

=(θ1 − θ12)D1,min + (θ2 − θ12)D2,min

+ (1 + θ12 − θ1 − θ2)Dmax. (5)

Similarly, for any given sampling profile(θ1, θ2, θ12) and
distortion level D ≥ Dmin(θ1, θ2, θ12), the rate-distortion
function for computingT is given by

R(D,θ1, θ2, θ12) = min
D1,D12,D2

(θ1 − θ12)R1

(

D1

θ1 − θ12

)

+ θ12R12

(

D12

θ12

)

+ (θ2 − θ12)R2

(

D2

θ2 − θ12

)

, (6)

where the minimization is taken over all choices ofD1, D2

andD12 satisfyingD12 ≥ 0,

D1 ≥ (θ1 − θ12)D1,min, (7a)

D2 ≥ (θ2 − θ12)D2,min, (7b)

D1+D2 +D12 + (1 + θ12 − θ1 − θ2)Dmax ≤ D, (7c)

In the lemma above, rateRk is assigned for the description
of the (θk − θ12)-fraction of samples in which only source
Sk is measured,k = 1, 2, while rate R12 is assigned for
the description of theθ12-fraction of samples in which both
sources are measured (recall Fig. 2). DistortionsD1, D2 and
D12 are the corresponding average per-symbol distortions in
the reconstruction ofT at the decoder. The proof follows
immediately from the independence of the samples measured
from the different fraction of samples, and it is thus omitted.
The following property is a consequence of the operational
definitions given above.

Lemma 2:D(R, θ1, θ2) is continuous and convex inR,
for R ≥ 0. Similarly, R(D, θ1, θ2) is continuous and con-
vex in D, for D ≥ Dmin(θ1, θ2), where Dmin(θ1, θ2) =
limR→∞ D(R, θ1, θ2) = minθ12 Dmin(θ1, θ2, θ12).

IV. GAUSSIAN SOURCES

In this section, we focus on the case in which sources
S1 andS2 are jointly Gaussian, zero-mean, unit-variance and
correlated with coefficientρ, with ρ ∈ [−1, 1]. The decoder
wishes to compute a weighted sum functionT = f(S1, S2) =
w1S1 +w2S2, with w1, w2 ∈ R, under the mean square error
(MSE) distortion measured(t, t̂) = (t− t̂)2. In the following,
we study two specific choices for the weightsw1 = 1, w2 = 0
andw1 = w2 = 1, resulting in the weighted sum functions
T = S1 and T = S1 + S2, respectively. These two cases
are selected in order to illustrate the impact of the choice of
the functionf(S1, S2) on the optimal sampling strategy. The
discussion can be extended with appropriate modifications to
arbitrary choices of weights(w1, w2).

A. Computation ofT = S1

Proposition 1: For a given sampling budget(θ1, θ2), the
distortion-rate function for computingT = S1 is

D(R, θ1, θ2) =



























1− θ1 + θ12
− 2R

θ1 , if R ≤ θ1
2 log2

(

1
ρ2

)

,

1− θ1 − ρ2(θ2 − θ∗12)

+(θ1 + θ2 − θ∗12)2
− 2R

θ1+θ2−θ∗
12

·
(

ρ2
)

θ2−θ∗12
θ1+θ2−θ∗12 , otherwise,

(8)
where θ∗12 = θ12,min is the optimal fraction of samples to
be measured by both the encoder and the decoder. The rate-
distortion functionR(D, θ1, θ2) can be obtained by inverting
function (8) with respect to variableD.

Proof: See Appendix A.
Proposition 1 confirms the intuition that if the receiver

is interested in source 1 only, i.e.,T = S1, the encoder
should simultaneously measure both sourcesS1 and S2 for
a fraction of time to be kept as small as possible. Moreover,
if R ≤ θ1/2 log2(1/ρ

2), the entire rateR is used to describe
only theθ1-fraction of samples measured from sourceS1 only;
otherwise, both theθ1-fraction of sourceS1 and the(θ2−θ∗12)-
fraction of sourceS2 that is not overlapped are described at
positive rates. Note that, for rateR ≤ θ1/2 log2(1/ρ

2), since
only sourceS1 is described, the choice of the overlapping
fraction, in fact, does not matter, i.e., anyθ12 satisfying
θ12,min < θ12 ≤ θ12,max is also optimal in this case.

B. Computation ofT = S1 + S2

We now consider the case in which the desired function is
T = S1+S2. Note thatT is a Gaussian random variable with
zero mean and varianceDmax = 2(1+ ρ), and thatT andS1

(or S2) are jointly Gaussian with correlation coefficientρ̃ =
√

(1 + ρ)/2. Moreover, sinceT = 0 for ρ = −1, it is enough
to focus onρ ∈ (−1, 1]. We observe that the distortion-rate
function forT = S1+S2 is given byD12(R) = 2(1+ρ)2−2R,
for R ≥ 0 [1]. Moreover, the indirect distortion-rate function
is given asDk(R) = 2(1 + ρ)(1 − ρ̃2 + ρ̃22−2R), for R ≥ 0
andk = 1, 2 [6].

Proposition 2: Given sampling budget (θ1, θ2), the
distortion-rate function for computingT = S1 + S2 is

D(R, θ1, θ2) = min
θ12,R12

(1 + ρ)2(θ1 + θ2 − 2θ12)2
−

2(R−R12)

θ1+θ2−2θ12

+ 2(1 + ρ)
(

1 + ρθ12 + θ122
−

2R12
θ12

)

− (1 + ρ)2(θ1 + θ2),

(9)

where the minimization in (9) is taken over allθ12 satisfying
(1) and allR12 satisfying0 ≤ R12 ≤ R.

Proof: See Appendix B.
In order to obtain further analytical insight into the optimal

sampling strategy, we now consider some special cases of
interest.

Corollary 1: For R → ∞, we have

Dmin(θ1, θ2) = 2(1+ρ)(1+ρθ∗12)− (1+ρ)2(θ1+θ2), (10)



whereθ∗12 = θ12,min if ρ > 0, θ∗12 = θ12,max if ρ < 0, and
θ∗12 is arbitrary if ρ = 0.

This corollary is easily obtained from Proposition 2. It says
that, if the sources (S1, S2) have positive correlation, i.e.,
ρ > 0, and there are no rate limitations (R → ∞), the MSE
distortion increases linearly withθ12, and it is thus optimal
to set θ12 to be the smallest possible valueθ∗12 = θ12,min.
In contrast, ifρ < 0, the MSE distortion decreases linearly
with θ12, and thus the optimalθ∗12 is the largest possible
value,θ∗12 = θ12,max. This shows the relevance of the source
correlation in designing the optimal sampling strategy.

The general conclusions about the optimal sampling strate-
gies discussed above for infinite rate can be extended to finite
ratesR in certain regimes. Corollary 2 below states that if
ρ ≤ 0, then, just as in the case of infinite rateR of Corollary
1, the encoder should setθ12 to be as large as possible, i.e.,
θ∗12 = θ12,max, irrespective of the value ofR. Furthermore,
Corollary 3 below suggests that for sufficiently small rates, the
optimal overlapθ∗12 tends to be maximum, i.e.,θ∗12 = θ12,max,
for a larger range of correlation coefficientsρ than ρ ≤ 0.
This is mainly because when rateR is small enough, it is
generally more efficient to use the available rate to describe
T directly during the overlappingθ12-fraction, rather than
indirectly describingT based on observations ofS1 or S2

alone.
Corollary 2: For ρ ≤ 0, the distortion-rate function is

D(R, θ1, θ2) =



































(θ1 + θ2 − θ∗12)(1 + ρ)22
− 2R

θ1+θ2−θ∗
12

·
(

2
1+ρ

)

θ∗12
θ1+θ2−θ∗12 + 2(1 + ρ)(1 + ρθ∗12)

−(1 + ρ)2(θ1 + θ2), if R >
θ∗

12

2 log2

(

2
1+ρ

)

,

2(1 + ρ)
(

1− θ∗12 + θ∗122
− 2R

θ∗12

)

, otherwise,
(11)

whereθ∗12 = θ12,max is the optimal overlapping fraction.
Proof: The proof is obtained by solving (9) forρ ≤ 0.

For ρ ≤ 0, we can show that it is optimal to haveθ∗12 =
θ12,max by simply considering the monotonicity of function
D(R, θ1, θ2, θ12), written as a function ofθ12, with respect to
θ12. Details of this step are omitted here. Withθ∗12 known,
the corresponding optimalR∗

12 and the resulting minimum
distortion can be computed.

Corollary 3: For any 0 < ρ ≤ 1, if R ≤
(θ12,min/2) log2(2/(1 + ρ)), the distortion-rate function is
given as

D(R, θ1, θ2) = 2(1 + ρ)(1− θ∗12) + 2(1 + ρ)θ∗122
− 2R

θ∗12 , (12)

whereθ∗12 = θ12,max.
Proof: Given R ≤ (θ12,min/2) log2(2/(1 + ρ)), for

any feasible θ12 satisfying (1), we always haveR ≤
(θ12/2) log2(2/(1 + ρ)). In this case, for any givenθ12,
applying the standard Lagrangian method to (9), we obtain
R∗

12 = R. Substituting into (9) and considering the mono-
tonicity of function D(R, θ1, θ2, θ12) with respect toθ12,
we can show that the optimal overlap fraction is given by
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Figure 3. Distortion-rate function whenθ1 = 0.5 and θ2 = 0.75, with
correlation coefficientρ chosen to beρ = −0.5, 0, 0.5, respectively.
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as a function of rateR whenθ1 = 0.5
andθ2 = 0.75, with correlation coefficientρ chosen to beρ = −0.5, 0, 0.5,
respectively.

θ∗12 = θ12,max, leading to the distortion-rate function as stated
in the corollary.

C. Numerical Results

In this subsection, we numerically evaluate the distortion-
rate tradeoff for computation of functionT = S1+S2. Recall
that forT = S1, the optimal overlap fraction is alwaysθ12,min.
Fig. 3 and Fig. 4 show the minimum MSE distortionD and
the optimal overlap fractionθ∗12 versus rateR, respectively,
for θ1 = 0.5, θ2 = 0.75, and ρ = −0.5, 0, 0.5. The curves
are obtained by numerically solving the optimization in (9).
It can be seen from Fig. 4 that, as predicted by Corollary
2, the optimal overlap fractionθ∗12 is equal to the maximum
possible fractionθ12,max = 0.5, for ρ = −0.5 < 0 andρ = 0.
Moreover, forρ = 0.5 > 0, with sufficiently small ratesR,
as described in Corollary 3, the optimal overlap fractionθ∗12
equals to the maximum overlapθ12,max = 0.5. However, as
R grows beyond some threshold,θ∗12 drops to the minimum
valueθ12,min = 0.25, which is consistent with Corollary 1.



V. B INARY SOURCES

In this section, we consider binary sources so thatS1 =
S2 = T = T̂ = {0, 1}, and (S1, S2) is a doubly symmetric
binary source (DSBS) characterized by probability Pr[S1 6=
S2] = p, 0 ≤ p ≤ 1/2. We take the Hamming distortion as the
distortion measure, i.e.,d(t, t̂) = 1−δtt̂, whereδtt̂ = 1 if t = t̂
and δtt̂ = 0 otherwise. Since all non-trivial binary functions
are equivalent, up to relabeling, to either the exclusive ORor
the AND [7], it suffices to consider only these two options
for function T = f(S1, S2): (i) the exclusive OR or binary
sum, i.e.,T = S1 ⊕ S2; (ii ) the AND or binary product, i.e.,
T = S1 ⊗ S2. In the following, we focus on deriving the
rate-distortionR(D, θ1, θ2) for convenience, since in general
it takes a simpler analytical form as compared to the distortion-
rate functionD(R, θ1, θ2).

A. Computation ofT = S1 ⊕ S2

Proposition 3: For given sampling budget(θ1, θ2), the rate-
distortion function for computingT = S1 ⊕ S2 is given by

R(D, θ1, θ2) =















h(p)− h
(

D−(1−θ∗

12)p
θ∗

12

)

,

if (1 − θ∗12)p ≤ D < p,

0, if D ≥ p,

(13)

whereh(x) = −x log2(x)− (1− x) log2(1− x) is the binary
entropy function, andθ∗12 = θ12,max is the optimal overlap
fraction, for (1− θ∗12)p ≤ D < p.

The above proposition can be proved by using the fact
that T = S1 ⊕ S2 is a Bernoulli(p) random variable, and is
independent ofS1 andS2. Therefore, the observation of either
S1 or S2 is not useful for computingT , and thus one should
choose the overlap fraction to be as large as possible, i.e.,
θ∗12 = θ12,max. The rate-distortion function (13) then follows
immediately from the rate-distortion function of the binary
random variableT [1].

B. Computation ofT = S1 ⊗ S2

In this subsection, we focus on the binary productT = S1⊗
S2, which is Bernoulli distributed with probability(1− p)/2.
For convenience, we start by finding the minimum possible
distortion at the decoder given(θ1, θ2), i.e., Dmin(θ1, θ2) as
defined in Lemma 2, and the minimum required rate to achieve
it. Then, we proceed to derive the rate-distortion function.

Proposition 4: For given sampling budget(θ1, θ2), the min-
imum achievable distortion for computingT = S1 ⊗ S2 is
given by

Dmin(θ1, θ2) =
1− p

2
+

(

p−
1

2

)

(θ1+θ2)+

(

1− 3p

2

)

θ∗12,

(14)
whereθ∗12 = θ12,max if 1/3 ≤ p ≤ 1/2 and θ∗12 = θ12,min

if 0 ≤ p < 1/3. Moreover, distortionDmin(θ1, θ2) can
be achieved as long asR ≥ Rmin(θ1, θ2) = θ1 + θ2 −
(

2− h
(

1−p
2

))

θ∗12.
Proof: See Appendix C.

The results in Proposition 4 can be seen as the counterpart
of Corollary 1 for binary sources. In fact, they show that, for

sufficiently largeR, if 0 ≤ p < 1/3, the average Hamming
distortion increases linearly withθ12 and thus we should set
θ12 to the smallest possible valueθ12,min; instead, if1/3 ≤
p ≤ 1/2, the optimal value ofθ12 is the largest possible,
namely,θ12,max.

Before we proceed to investigate the general rate-distortion
function R(D, θ1, θ2), we first derive the indirect rate-
distortion functionR1(D) for T = S1 ⊗ S2 when onlyS1

is observed at the encoder.
Lemma 3:The indirect rate-distortion function forT =

S1 ⊗ S2 is given by

R1(D) =



















min
1−p−2D

1−2p ≤y≤1
h

(

D + y(1− p) +
p− 1

2

)

−
1

2
h(y)

− 1
2h(2d+ y(1− 2p) + p− 1), p

2 < D ≤ 1−p
2 ,

0, D ≥ 1−p
2 ,

(15)

Proof: See Appendix D.
By symmetry, the indirect rate-distortion functionR2(D)

for T when S2 is observed at the encoder is also given by
Lemma 3. The rate-distortion functionR12(D) for variable
T is instead given from standard results [1] asR12(D) =
h((1− p)/2)− h(D) if 0 ≤ D ≤ (1− p)/2, andR12(D) = 0
if D > (1 − p)/2.

Proposition 5: For a given sampling budget(θ1, θ2), the
rate-distortion function for computingT = S1 ⊗ S2 is given
as

R(D, θ1, θ2) =



























min
θ12,D3,D12

θ12

(

h

(

1− p

2

)

− h

(

D12

θ12

))

+(θ1 + θ2 − 2θ12)R1

(

D3

θ1+θ2−2θ12

)

,

if Dmin(θ1, θ2) ≤ D < 1−p
2 ,

0, if D ≥ 1−p
2 ,

(16)

where Dmin(θ1, θ2) is as given in Proposition 4 and the
minimization is taken over all choices ofθ12, D3 and D12

such that (1) is satisfied,p(θ1 + θ2 − 2θ12)/2 ≤ D3 ≤
(1−p)(θ1+θ2−2θ12)/2, pθ12/2 ≤ D12 ≤ (1−p)θ12/2, and

D3 +D12 +

(

1− p

2

)

(1 + θ12 − θ1 − θ2) = D. (17)

Proof: See Appendix E.

C. Numerical Results

In this subsection, we numerically evaluate the distortion-
rate tradeoff for computation of functionT = S1⊗S2. Recall
that for T = S1 ⊕ S2, the optimal overlap fraction is always
θ12,max. Fig. 5 and Fig. 6 plot the minimum average Hamming
distortionD and the optimal overlap fractionθ∗12 for θ1 = 0.5,
θ2 = 0.75, and p = 0.1, 0.2, 0.4. In Fig. 5, as predicted by
Proposition 4, the minimum rateRmin(θ1, θ2) that achieves
distortionDmin(θ1, θ2), is given by0.9982, 0.9927, 0.69 for
p = 0.1, 0.2, 0.4, respectively. It can be observed from Fig. 6,
for p = 0.4 > 1/3, the optimal overlap fractionθ∗12 is equal
to the maximum possible valueθ12,max = 0.5, for any 0 ≤
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Figure 5. Distortion-rate function whenθ1 = 0.5 and θ2 = 0.75, with p
chosen to bep = 0.1, 0.2, 0.4, respectively.

R ≤ 1. However, for smaller probabilitiesp = 0.1, 0.2, the
optimal overlap fraction equals to the maximum possible value
θ12,max = 0.5 for sufficiently smaller rates and then drops to
the minimum possible valueθ12,min = 0.25 after R grows
beyond a threshold. Moreover, the smaller the probabilityp
is, the larger range of ratesR over which the optimal overlap
fraction θ∗12 is θ12,min = 0.25.

We note that with a largerp, it is easier to describeT
directly, sinceT ∼ Bernoulli((1 − p)/2), but the indirect
description ofT based onS1 or S2 becomes more difficult
sinceT becomes less correlated withS1 or S2.3 This explains
why the optimal overlap fraction should be chosen as the
maximum possible valueθ12,max = 0.5 when p is larger
than 1/3 (see the curvep = 0.4). In this sense, the regime
p ≥ 1/3 may be considered as the binary counterpart of the
regime ρ ≤ 0 for the Gaussian sum case in Section IV-B.
For probabilitiesp < 1/3, the numerical results above imply
that the optimal overlap depends on the link rateR. Similar
to the Gaussian sum case when0 < ρ ≤ 1 (Corollary 3),
whenR is sufficiently small, it remains optimal to choose the
overlap fraction to be the maximum possible; however, asR
grows sufficiently large, it is more advantageous to have the
overlap fraction as small as possible, which is consistent with
Proposition 4.

VI. CONCLUSIONS

In this paper, we have considered the problem of lossy
compression for computing a function of correlated sources.
Motivated by the fact that acquiring the information necessary
for computation may be costly in sensor networks, we assumed
that the encoder can only observe a fraction of the samples
from each source according to a sampling strategy that is
subject to design. The results highlight the dependence of the
optimal sampling strategy on the function to be computed
by the decoder, on the source correlation and on the link
rate. Interesting future work includes investigation of related
scenarios with side information or distributed source coding.

3The correlation betweenT andS1 or S2 is given by
√

(1 − p)/(1 + p).
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Figure 6. Optimal overlap fractionθ∗
12

as a function ofR when θ1 = 0.5
andθ2 = 0.75, with p chosen to bep = 0.1, 0.2, 0.4, respectively.

APPENDIX A
PROOF OFPROPOSITION1

Given T = S1, we have the distortion rate functions
D1(R) = D12(R) = 2−2R andD2(R) = 1 − ρ2 + ρ22−2R

[6]. In this case, applying Lemma 1, we obtain

D(R, θ1, θ2, θ12)

= min
R1,R2,R12≥0

(θ1 − θ12)2
−

2R1
θ1−θ12 + θ122

−
2R12
θ12 + (θ2 − θ12)

·
(

1− ρ2 + ρ22−
2R2

θ2−θ12

)

+ (1 + θ12 − θ1 − θ2)

(18)

= min
0≤R2≤R

θ12
−

2(R−R2)
θ1 + (θ2 − θ12)ρ

22
−

2R2
θ2−θ12

+ 1− θ1 − ρ2(θ2 − θ12), (19)

where the minimization in (18) is under the constraint (4).
Note that the optimization in (18) is equivalent to that in
(19), since in any optimal solution, we haveR12/θ12 =
R1/(θ1−θ12) by the convexity of function2−2r for r ≥ 0, and
the condition (4) must be met with equality. It can be easily
seen that functionD(R, θ1, θ2, θ12) above is monotonically
non-decreasing with respect toθ12. Therefore, the optimal
overlap is the minimum possible, which equalsθ∗12 = θ12,min.
Moreover, the optimal rateR∗

2 that minimizes (19) can be
obtained using standard Lagrangian methods similar to [8] as:

R∗
2 =

θ2 − θ∗12
θ1 + θ2 − θ∗12

(

R−
θ1
2
log2

1

ρ2

)+

. (20)

With the so obtainedR∗
2, the results in Proposition 1 follows

immediately.



APPENDIX B
PROOF OFPROPOSITION2

Applying Lemma 1 to this case, for a given sampling profile
(θ1, θ2, θ12), we obtain the distortion-rate function as

D(R, θ1, θ2, θ12)

= min
R1,R12,R2

2(θ1 − θ12)(1 + ρ)
(

1− ρ̃2 + ρ̃22−
2R1

θ1−θ12

)

+ 2(θ2 − θ12)(1 + ρ)
(

1− ρ̃2 + ρ̃22−
2R2

θ1−θ12

)

+ 2θ12(1 + ρ)2−
2R12
θ12 + 2(1 + θ12 − θ1 − θ2)(1 + ρ)

(21)

= min
R1,R12,R2

2θ12(1 + ρ)2
−

2R12
θ12 + 2(1 + θ12 − θ1 − θ2)(1 + ρ)

+ 2(θ1 + θ2 − 2θ12)(1 + ρ)

(

1− ρ̃2 + ρ̃22−
2(R1+R2)

θ1+θ2−2θ12

)

,

(22)

where the constraint onR1, R2 andR12 is as in (4). Note that
in the above, the problem in (21) is reduced to an equivalent
problem in (22) sinceR1/(θ1 − θ12) = R2/(θ2 − θ12) holds
in any optimal solution by the convexity of2−2r for r ≥ 0.
Moreover, it can be easily seen that the condition (4) must hold
with equality, i.e., we haveR1 +R2 = R−R12. Substituting
this andρ̃ =

√

(1 + ρ)/2 to (22) and taking the minimum over
all θ12 satisfying (1), we can obtainD(R, θ1, θ2) as stated in
the proposition.

APPENDIX C
PROOF OFPROPOSITION4

For any given sampling profile(θ1, θ2, θ12), in order to
minimize the distortion with respect toR, we can takeR
to be arbitrarily large (in fact, given the binary alphabets,
R = 1 suffices). With no rate limitations, it is easy to see
that, during theθ12-fraction,T can be computed at the encoder
and described to the decoder losslessly with a rate equal to the
entropy ofT , h((1 − p)/2). During the(θ1 − θ12)-fraction,
only sourceS1 is observed and can be described to the decoder
losslessly with a rateh(1/2) = 1. Based on sourceS1, the best
estimate at the decoder is as follows:T̂ = 0 if S1 = 0, and
T̂ = 1 if S1 = 1, leading to average Hamming distortion
p/2. Similarly, during the(θ2 − θ12)-fraction, the average
Hamming distortion is alsop/2. During the(1+θ12−θ1−θ2)-
fraction, neither sourceS1 nor sourceS2 is observed. Since
T is Bernoulli distributed with(1 − p)/2, the best estimate
is given by t̂ = 0, leading to average Hamming distortion
(1 − p)/2. Therefore, when there is no constraint on rateR,
we have

D(R, θ1, θ2, θ12)

=
p

2
(θ1 + θ2 − 2θ12) +

1− p

2
(1 + θ12 − θ1 − θ2)

=
1− p

2
+

(

p−
1

2

)

(θ1 + θ2) +
1− 3p

2
θ12. (23)

It can be easily seen that, ifp ≥ 1/3, it is optimal to choose
the maximum overlap fractionθ∗12 = θ12,max; otherwise if

p < 1/3, it is optimal to choose the minimum overlap
fraction θ∗12 = θ12,min. Substitutingθ∗12 in (23), we obtain
Dmin(θ1, θ2) as stated in the proposition. Finally, from the
discussion above, it follows that, for anyR ≥ Rmin(θ1, θ2) =
θ1+ θ2− (2− h((1− p)/2)) θ∗12, distortionDmin(θ1, θ2) can
be achieved at the decoder.

APPENDIX D
PROOF OFLEMMA 3

The indirect rate-distortion functionR1(D) for T is given
by [2]

R1(D) = min
p(t̂|s1):Ed(T,T̂ )≤D

I(S1; T̂ ). (24)

Let p(t̂ = 1|s1 = 0) = x andp(t̂ = 1|s1 = 1) = y, where0 ≤
x ≤ 1 and0 ≤ y ≤ 1. Note that if we selectx = y = 0, i.e.,
T̂ = 0 with probability 1, the average distortionD = (1−p)/2
is achievable at the decoder. Thus, forD ≥ (1 − p)/2, we
haveR1(D) = 0. Moreover, from the proof of Proposition 4,
it follows that D ≥ p/2 must hold. For the nontrivial case
p/2 ≤ D < (1 − p)/2, the expected distortion constraint can
be written as

E(d(T, T̂ )) =
x

2
+

1− y

2
(1 − p) +

y

2
p

=
x+ (2p− 1)y + 1− p

2
≤ D, (25)

and the mutual informationI(S1; T̂ ) can be written as

I(S1; T̂ ) = H(T̂ )−H(T̂ |S1)

= h

(

x+ y

2

)

−
1

2
h(x) −

1

2
h(y). (26)

For any giveny, considering the monotonicity of (26) with
respect tox for 0 ≤ x ≤ 2d−(1−p)+(1−2p)y, we can easily
show that (26) is minimized atx = 2d−(1−p)+(1−2p)y, i.e.,
(25) is met with equality. Therefore, forp/2 ≤ D < (1−p)/2,
we can rewrite (24) as in (15) of the lemma.

APPENDIX E
PROOF OFPROPOSITION5

If we set T̂ = 0 at the decoder, the resulting Hamming
distortion is (1 − p)/2. Hence, forD ≥ (1 − p)/2, zero
rate is required for description, i.e.,R(D, θ1, θ2) = 0. For
Dmin(θ1, θ2) ≤ D < 1−p

2 , for any given sampling profile
(θ1, θ2, θ12), we can use Lemma 1 by settingD1,min =
D2,min = p/2, D12,min = 0 and Dmax = (1 − p)/2. Due
to the convexity ofR1(D), it is optimal to haveD1/(θ1 −
θ12) = D2/(θ2−θ12) in any optimal solution. Moreover, with
Dmin(θ1, θ2) ≤ D < 1−p

2 , for optimality, (7c) must be met
with equality, i.e.,

D1 +D2 +D12 +
(1 + θ12 − θ1 − θ2)(1 − p)

2
= D, (27)

andD1, D12 andD2 must be such thatD1/(θ1−θ12), D12/θ12
and D2/(θ2 − θ12) are all less than or equal toDmax =
(1− p)/2. If we let D3 = D1 +D2, thenD3 satisfies

p(θ1 + θ2 − 2θ12)

2
≤ D3 ≤

(1− p)(θ1 + θ2 − 2θ12)

2
. (28)



Finally, taking the minimum ofR(D, θ1, θ2, θ12) over all θ12
satisfying (1), we obtainR(D, θ1, θ2) as in the proposition for
Dmin(θ1, θ2) ≤ D < 1−p

2 .
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