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Abstract—This paper considers the problem of lossy compres- no information (beside the prior distribution) aboiif for
sion for the computation of a function of two correlated souces, the remaining samples. With the second strategy, instéad, t
both of which are observed at the encoder. Due to presence oneoder collects partial information abdtitat all times in the

of observation costs, the encoder is allowed to observe onIy]c f les f o S As it will b
subsets of the samples from both sources, with a fraction ofush orm of samples from sourcl; or sourceos. AS 1t will be

sample pairs possibly overlapping. For both Gaussian and biary ~ discussed in this paper, the optimal sampling strategyrtépe
sources, the distortion-rate function, or rate-distortion function, critically on the functionf(-,-), on the correlation between
is characterized for selected functions and with quadraticand &, . and S, ;, and on the link rateR.

Hamming distortion metrics, respectively. Based on theseesults, ' ’

for both examples, the optimal measurement overlap fractin is A. Related Work and Contributions

shown to depend on the function to be computed by the decoder, ) . )

on the source correlation and on the link rate. Special caseare With full sampling of both sources, i.e.f( = 1,62 =
discussed in which the optimal overlap fraction is the maximm 1), the encoder can directly calculate the functidft =

or minimum possible value given the sampling budget, illuseting  fm(Sn S7) and the problem at hand reduces to the standard
232;2’IVI&| performance trade-offs in the design of the sanpling | 5ie_distortion set-up (see, e.gJ, [1]). Instead, if theceter can
9y only measure one of the two sources, i.6;,€ 1,62 = 0) or

(f1 = 0,0, = 1), the problem at hand becomes a special case
of the indirect source coding set-up introduced!lih [2]. For a

Consider an encoder endowed with a sensor that is ablediecussion on problems related to computing and compmessio
measure two correlated discrete memoryless source sespieintnetwork scenarios, we refer {d [3]. The framework of seurc

T =(S11,..,5.n,) and S¥ = (S21,...,52,»), as shown in coding with fractional sampling was introduced in our poad
Fig.[d. Due to the energy cost of source acquisition, sargplirwork [4] for a model in which an energy-constrained sensor
guantization and compression, it might not be possibleHer tmeasures independent Gaussian sources for optimizeibfract
sensor to fully measure the sourcés and S;. To simplify, of time and the receiver wishes to reconstruct all sources
this limitation can be modelled by imposing that only;,  with given quadratic distortion constraints. The modellsa
samples can be measured from each soficé& = 1,2, with  related to that of compression with actions [of [5].
0 < 6, < 1. The encoder compresses the measured samples t®his paper formulates the problem of lossy computing with
nR bits, whereR is the communication rate in bits per sourcéractional sampling of correlated sources (Section Il)teff
symbol. Based on the received bits, the decoder reconstaucproviding a general expression for the distortion-rate el
lossy version of a target functidii” = (ST, S5) of source rate-distortion functions (Section Il), we focus on tweaesfjic
sequences$ and Sy, which is such thafl; = f(S1,,52;), examples that illustrate the trade-offs involved in theiglesf
i =1,...,n. We refer to the above problem Essy computing the sampling strategy. Specifically, we first consider dategl
with fractional sampling Gaussian sources and assume that linear functions of the for

A key aspect of the problem of lossy computing withl’ = w57 + w252 are to be reconstructed at the decoder
fractional sampling is that the encoder is allowed to choo®éth quadratic distortion constraints (Section 1V). We rihe
whichsamples to measure given the sampling budget)}). consider correlated binary sources with arbitrary fundio
To fix the ideas, assume that we hade € 0.5,60, = 0.5), T = f(51,S52) and Hamming distortion (Section V). Various
so that only half of the samples can be observed from batbnclusions are drawn regarding conditions under which the
sources. As two extreme strategies, the encoder can eitbhptimal sampling strategy prescribes the maximum or the
measure the same samples from both sources,SsayS,; minimum possible overlap between the samples measured
for i = 1,..,n/2, or it can measure the first source from the two sources.
for the first n/2 samples, namelys;; for i = 1,...,n/2,
and the second sourc§, for the remainingn/2 samples,
namely Sz ; for i = n/2 4+ 1,...,n. With the first sampling  In this section, we formally introduce the system model of
strategy, the encoder is able to directly calculate there@siinterest. As shown in Fidll 1, the encoder has access to two dis
function T; = f(S1,,S52,) for i = 1,...,n/2, while having crete memoryless source sequen§gs= (S 1, ..., 51,,) and

I. INTRODUCTION

Il. SYSTEM MODEL
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57,8 —f Encoder R Decoder [ 7" message of rat& bits per source sample (where the normal-

§7.6, 1 ization is with respect to the overall number of sampigsand
a decoderg : {1,...,2"%} — T which maps the message
from the encoder into an estimaf®, such that distortion

Figure 1. The encoder measures correlated souf¢end Sy for a fraction
of time 61 and 62, respectively, and the decoder estimates a functin=

Fr(Sy, SH). constraintD is satisfied, i.e.,
_ _ o lp > (T, Ty)| < D. )
S% = (Sa,1, ..., S2.n) respectively, which consist of indepen- no |

dent and identically distributed (i.i.d.) samplg ;, S2,;) with
Si; €S andSy; € Sp, i =1,...,n, whereS; and S, are Given any sampling profile (61,62,612), a tuple
the alphabet sets fa#; and.S, respectively. All alphabets are (R, D, 61,62, 6,2) is said to be achievable, if for any> 0,
assumed to be finite unless otherwise stated. Due to presemiee sufficiently large:, there exists dn, R, D +e¢, 61, 62, 6012)
of observation costs, we assume the encoder can only sarmgside. Thedistortion-rate functiorfor a given sampling profile
a fractiond,, of the samples for sourc§y, with 0 < 6, <1 D(R,01,02,0:2) is defined asD(R,0:,0,012) = inf{D:
for k = 1, 2. Given the i.i.d. nature of the sources, without losthe tuple (R, D, 01, 62,612) is achievablg. The distortion-
of generality, we assume that the encoder measures théfirstate function with sampling budget(6:,6,), D(R,6:,6),
fraction of samples of sourcg and measures th# fraction is defined as D(R,60:,62) = ming,, D(R,61,02,0:2)
of samples ofS, starting from samplex(6; — 612) + 14, as where the minimum is taken over alp;, satisfying
shown in Fig[2. The samples measured at the encoder from (g Similar definitions are used for the rate-distortion
two sources thus overlap for a fractiép,, with 6., satisfying function. Specifically, therate-distortion functiongiven a
sampling profile(61, 62, 612) and distortionD is defined as
912,min <012 < 9127771&17 (1) R(D, 91, 92, 912) = 1nf{R the tUple (R, D, 91, 92, 912) is
achievablé, and the rate-distortion function with sampling
budget (6‘1, 6‘2) as R(D, 6‘1, 92) = min912 R(D, 6‘1, 92, 6‘12)
where the minimum is taken over dl|, satisfying [(1).

with Olg,mm = (91 + 6y — 1)+ and 912777“11 = min(91,92),
where ()t denotes max(-,0). We refer to the triple
(61,02,012) as asampling profile and to (61,62) as the
sampling budget

The decoder wishes to estimate a functidi® =
(ST, 5%), whereT; = f(S1,,52,) fori=1,...,n. We let
d: TxT — [0,+00) be a distortion measure, wheFeand 7 In this section, we characterize the distortion-rate fiomst
are the alphabet sets of the variableand” respectively. We D(R,6,65,615) and D(R, 61, 6,) defined above as well as
assume, without loss of generality, that for edob 7 there their rate-distortion counterparts. To elaborate, we fefine
exists at € T such thatd(t,t) = 0. The link between the the standard distortion-rate function for the memorylessse
encoder and the decoder can support a rat® dits/sample. 7 as D15(R) = min p(ilE): I(T: T)<RE[d( A)] [1]. We sim-
Formal definitions follow. ilarly define the corresponding rate- distortion functioithw
full sampling as Ri2(D) = min, . pracry<p (T3 1).
Moreover, we define the |nd|rect distortion-rate functiam f

IIl. RATE-DISTORTION TRADE-OFF WITH FRACTIONAL
SAMPLING

n

s, I compression off” when only S, is observed at the encoder,
s, I for k = 1,2, @ Di(R) = min, ... 1(s,iy<n BT D).
We S|m|IarIy define the correspondmg rate- dlstortlon func
né -6, né, n(6,-8,) n(1+4,-6 -6, tion Rk(D) = min p(ilsk): E[d(T,T)<D (Sky ) F|na||y,
we define Dy min 85 Dimin = limpoo Dp(R) =

Figure 2. Sampling profil€d:, 02, 612) at the encoder: a fractiofly — 612,
of samples is measured only from soutgeg; a fraction, 612, of samples is mm k() E( (gk(Sk) )) for k=12, where funCt'Ongk( )

measured from both sources; a fractidh, — 612, of samples is measured iS deflned agy : Sk — 7, which mapsSj, to an estimatd’.

only from sourceSs; and the remaining fractionl + 612 — 61 — 02, of .
samples is not measured for either sourgée<( 01,62 < 1, and 612 as in Lemma 1:For any glven samplmg pl’OfI|é91, 02, 912) and

@). - - link rate R, the distortion-rate function for computiri§j is
given byl

Definition T A (n, R, D, 01,604, 612) code for the problem R,
of lossy computing of two memoryless sources with fractiona D(R,01,02,612) = i (61— 012) D1 <ﬁ)
sampling consists of an encodér : S7% x Sy%? — iy e Rl 2
{1,...,2"}, which maps the measureéd-fraction of source + 012D (9 ) (02 — 012) Dy (ﬁ)
Sy, i.e., (S11,-..,S1,n6,), @nd the measure6,-fraction of 12 2~ V12
Source So, 1.€., (S2,n(61—612) 415 - S2.n(61+62—61))s INTO A + (146012 — 61 — 62)Dpnacs ©))

1Throughout the paper, quantities suchn#s, nf2 andn (6 + 62 — 012) 2For any given convex functio®)(z) for > 0, we define0 - Q(z/0) =
are implicitly assumed to be rounded to the largest smatieger. 0, forz >0, if limgz—oz - Q(1/z) = 0.



With D40 = ming 4 E[d(T, t)], and where the minimization A. Computation ofl’ = S,

is taken under the constraint

Ri +Ra+ Ri2 £ R. 4)

For convenience, we let
Dyin(01,02,012) = lim D(R, 61,65, 6,2)
R—o0
=(01 — 012) D1 min + (02 — 012) D2 min
+ (14612 — 01 — 02)Dipas- (5)

Similarly, for any given sampling profilé6,, 60, 6:2) and
distortion level D > D, (601,02,612), the rate-distortion
function for computingl” is given by

D,
6, — 0
(61 — 012) Ry (91 — 912>
D D
+ 012R12 (i) + (02 — 012)R2 < 2 ) , (6)
912 92 - 912

where the minimization is taken over all choicesof, Do
and Dy, satisfying D12 > 0,

min

R(D7917927912) - D1 DieD
1,712,172

Di > (61 — 012)D1,min, (7a)
Dy > (02 — 012) D2 min, (7b)
D1+Ds+ Dig 4+ (146012 — 01 — 02) D < D, (7€)

In the lemma above, ratB;, is assigned for the description
of the (6, — 612)-fraction of samples in which only source

Sy is measuredk = 1,2, while rate Ry, is assigned for

the description of thé,,-fraction of samples in which both

sources are measured (recall fify. 2). Distortidhs D, and

D, are the corresponding average per-symbol distortions’in

Proposition 1: For a given sampling budge¥,,6-), the
distortion-rate function for computing = S; is
_ 2R
10, +6,27%, if R<%log, (pi)
101 = p?(02 — 07)
+(601 + 62 — 6‘1‘2)27ﬁ

) 02 —07,
. 61 +605—67%
(p ) 17Tv27Y12 ,

D(R,0:,0;) =

otherwise,

(8)
where 07, = 612,m:in IS the optimal fraction of samples to
be measured by both the encoder and the decoder. The rate-
distortion functionR(D, ;,6-) can be obtained by inverting
function [8) with respect to variabl®.

Proof: See AppendikA. [

Proposition[]L confirms the intuition that if the receiver
is interested in source 1 only, i.el; = S;, the encoder
should simultaneously measure both sourSgsand S for
a fraction of time to be kept as small as possible. Moreover,
if R <6;/2logy(1/p?), the entire rateR is used to describe
only the#, -fraction of samples measured from soufgeonly;
otherwise, both thé, -fraction of sources; and the(d, —67,)-
fraction of sourceS; that is not overlapped are described at
positive rates. Note that, for rate < 6;/2log,(1/p?), since
only sourceS; is described, the choice of the overlapping
fraction, in fact, does not matter, i.e., amy, satisfying
012 min < 012 < 012,mas 1S also optimal in this case.

B. Computation ofl" = S; + So

We now consider the case in which the desired function is
T = 51+ 55. Note thatT" is a Gaussian random variable with
zero mean and variand®,,., = 2(1 + p), and thatl" and 5,

the reconstruction ofl’ at the decoder. The proof follows - : . . L
. ; . Qr, S») are jointly Gaussian with correlation coefficieht=
immediately from the independence of the samples measure, . o

. . o 1+ p)/2. Moreover, sincd’ = 0 for p = —1, it is enough
from the different fraction of samples, and it is thus onditte . :

: . . 1o focus onp € (—1,1]. We observe that the distortion-rate
The following property is a consequence of the operatio

- . NRinction forT = S1+ S5 is given byD12(R) = 2(1+p)27 2%,
definitions given above. for R > 0 [1]. Moreover, the indirect distortion-rate function
is given asDy(R) = 2(1 + p)(1 — p? + p?2728), for R > 0
andk = 1,2 [6].

Proposition 2: Given sampling budget (61, 62),
distortion-rate function for computing’ = S; + S5 is

Lemma 2: D(R, 61,602) is continuous and convex ik,

for R > 0. Similarly, R(D,6,,05) is continuous and con-

vex in D, for D > Dy,in(01,62), where D, (61, 62)
hmR*}OO D(R7 917 92) = min912 szn (917 027 912)'

IV. GAUSSIAN SOURCES

In this section, we focus on the case in which sourcés
S1 and .S, are jointly Gaussian, zero-mean, unit-variance and
correlated with coefficienp, with p € [—1,1]. The decoder

wishes to compute a weighted sum functiBr= f(S1, S2) =

the

_ _2(R-Ryp)
D(R,01,05) = min (14 p)(01 + 0 — 2015)2 717022012

012,R12
214 p) (14 phiz + 0127 55 ) = (14 p)2(61 + 62),
(9)

w151 + w3 Sy, With wy, wy € R, under the mean square errofyhere the minimization in{9) is taken over @i, satisfying

(MSE) distortion measuré(t,?) = (¢t — £). In the following,
we study two specific choices for the weighis = 1, ws = 0

andw; = we = 1, resulting in the weighted sum functions

(@) and all Ry, satisfying0 < Ri5 < R.
Proof: See AppendixB. [ |
In order to obtain further analytical insight into the opaim

T = 5 andT = 5; + Sy, respectively. These two casegampling strategy, we now consider some special cases of
are selected in order to illustrate the impact of the choice piarest.

the functionf (S, S2) on the optimal sampling strategy. The Corollary 1: For R — oo, we have
discussion can be extended with appropriate modifications t ’

arbitrary choices of weight&w, , ws).

Dmin(ela 92) = 2(1 +P)(1 +p9T2) - (1 +P)2(91 +92)7 (10)



wheref7, = 012 min it p > 0, 075 = 012,mas if p <0, and

07, is arbitrary if p = 0. Y

This corollary is easily obtained from Propositidn 2. It say 2sp iﬁi;“
that, if the sourcesq;,S;) have positive correlation, i.e., ' == =-p=05
p > 0, and there are no rate limitation& (— ~o), the MSE 2p

distortion increases linearly with,,, and it is thus optimal
to setf,, to be the smallest possible valdg, = 612 min-
In contrast, ifp < 0, the MSE distortion decreases linearly o
with 612, and thus the optimab;j, is the largest possible ) ’
value, 87, = 012 mq- This shows the relevance of the source
correlation in designing the optimal sampling strategy.

The general conclusions about the optimal sampling strate-

15F - A

Distortion D

gies discussed above for infinite rate can be extended te finit S o

rates R in certain regimes. Corollary] 2 below states that if

p <0, then, just as in the case of infinite ralieof Corollary ~Figure 3.  Distortion-rate function whefy = 0.5 and 6 = 0.75, with
[, the encoder should sét- to be as |arge as possible, i_e_f:orrelatlon coefficienp chosen to bep = —0.5,0, 0.5, respectively.

075 = 612,mas. irrespective of the value aR. Furthermore,
Corollary[3 below suggests that for sufficiently small rats

0.55

optimal overlapf;, tends to be maximum, i.&4f5 = 612, max:
for a larger range of correlation coefficientsthanp < 0. 05 :
This is mainly because when rafe is small enough, it is !
generally more efficient to use the available rate to describ o , ——yS
T directly during the overlapping@,.-fraction, rather than oal ! SR
indirectly describingl’ based on observations ¢f; or S, o ! P==
alone. . . o 035y !
Corollary 2: For p < 0, the distortion-rate function is 0al '
___2m \
(91 + 65 — 9?2)(1 + p)22 01+02-075 L e
075
(2 \01t+02-07, * 0.2 : : : . . . .
D(R,6,,62) = (”P) +2(1+p)(1 + pbi,) °o 05 1 15 2 25 3 35 4

—(14p)2(01 +02), if R > 2log, (125,
_2R .~ Figure 4. Optimal overlap fractiofi, as a function of raté? whenf; = 0.5
2(1+p) (1 — 07y + 0752 iz ) , otherwise andg, = 0.75, with correlation coefficienp chosen to be» = —0.5,0, 0.5,
(11) respectively.
wheref;, = 6012 mq. IS the optimal overlapping fraction.
Proof: The proof is obtained by solvind](9) fgr < 0. . . ) )
For p < 0, we can show that it is optimal to hav, = 12 = 012.maa leading to the distortion-rate function as stated
612.ma= DY Simply considering the monotonicity of functionin the corollary. [
D(R, 6,02, 612), written as a function of,5, with respect to
612. Details of this step are omitted here. Wi, known, ¢. Numerical Results
the corresponding optimaR;, and the resulting minimum
distortion can be computed. u In this subsection, we numerically evaluate the distortion
Corollary 3: For any 0 < p < 1, if R < ratetradeofffor computation of functidh = 5, + S,. Recall
(12.min/2) logy(2/(1 + p)), the distortion-rate function is that forT" = .S, the optimal overlap fraction is always ,in.
given as Fig.[3 and Fig[¥ show the minimum MSE distortidh and
, the optimal overlap fractiod;, versus rateR, respectively,
D(R,01,605) = 2(1 + p)(1 — 0%,) 4+ 2(1 + p)07,2" %2, (12) for 6, = 0.5, 62 = 0.75, andp = —0.5,0,0.5. The curves
are obtained by numerically solving the optimization [it. (9)
wherefi, = 612,maz- It can be seen from Fid.l 4 that, as predicted by Corollary
Proof: Given R < (612,min/2)log,(2/(1 + p)), for [2, the optimal overlap fractiofi, is equal to the maximum
any feasible ;2 satisfying [1), we always haveR < possible fractior:z ,q. = 0.5, for p = —0.5 < 0 andp = 0.
(612/2)10g5(2/(1 + p)). In this case, for any giver;2, Moreover, forp = 0.5 > 0, with sufficiently small ratesR,
applying the standard Lagrangian method [fb (9), we obteais described in Corollafyl 3, the optimal overlap fractip
¥, = R. Substituting into [(9) and considering the monoequals to the maximum overlafz mq.. = 0.5. However, as
tonicity of function D(R, 61, 62,60:2) with respect to6,2, R grows beyond some thresholgl, drops to the minimum
we can show that the optimal overlap fraction is given byalue 612 ..., = 0.25, which is consistent with Corollaiy 1.

B




V. BINARY SOURCES sufficiently largeR, if 0 < p < 1/3, the average Hamming

In this section, we consider binary sources so tBat= distortion increases Iinea_lrly withh» and thus we s_hould set
Sy =T =T ={0,1}, and (S, S») is a doubly symmetric 612 to the smallegt possible Va'Lﬁgzmm; instead, if1/3 <
binary source (DSBS) characterized by probabilityspr P < 1/2, the optimal value off, is the largest possible,
S] = p, 0 < p < 1/2. We take the Hamming distortion as th?@Mely,f12,maz- _ _ S
distortion measure, i.ed(t, ) = 1—4,;, wheres,; = 1if t = { Be_fore we proceed to investigate 'Fhe gener_al rate-d|stu)rt|
ands,; = 0 otherwise. Since all non-trivial binary functionsfunction R(D,6:,6,), we first derive the indirect rate-
are equivalent, up to relabeling, to either the exclusive@R distortion functionk, (D) for T = 51 © .55 when only 5,
the AND [7], it suffices to consider only these two options observed at the encoder. .
for function T = f(Sy, S2): (i) the exclusive OR or binary Lemma 3:_The indirect rate-distortion function fof’ =
sum, i.e., T = S; @ So; (ii) the AND or binary product, i.e., 1 ® 52 is given by
T = S1 ® S3. In the following, we focus on deriving the ) p—1 1
rate-distortionR(D, 61, 6,) for convenience, since in general L, h (D +y(1-p)+ T) - §h(y)
it takes a simpler analytical form as compared to the distort R;(D) = =Y

_1 _ _ D 1-p
rate functionD(R, 61, 65). sh(2d+y(l-2p)+p-1), §<D<3E

. 0, D>z,

A. Computation of = 57 & Ss (15)
disorton functon for computing’ = $: & 6. ' gen by _ P00f See AppendiD.
By symmetry, the indirect rate-distortion functid®, (D)

h(p) — h (%) 7 for T when S, is observed at the encoder is also given by
) 2 Lemmal[B. The rate-distortion functioR,(D) for variable

D,61,05) = _ p* 13

(D, 01,62) _'f (1-0)p<D<p, (13 T is instead given from standard results [1] Bs:(D) =
0, if D> p, h((1=p)/2)—h(D)if 0< D < (1-p)/2, andRi5(D) =0

if D> (1-p)/2.
Proposition 5: For a given sampling budge®,,6-), the
rate-distortion function for computing = S; ® S» is given

whereh(z) = —xlogy(z) — (1 — ) logy (1 — z) is the binary
entropy function, and;, = 612mq, IS the optimal overlap
fraction, for (1 — 07,)p < D < p.

The above proposition can be proved by using the fa@t

thatT = S; & S, is a Bernoullip) random variable, and is min 0 (n(12P) g (P2
independent of; and.S,. Therefore, the observation of either 010,D3,D15 > 2 012

Sy or Sy is not useful for _computing”, and thus one ShOUId_R(D, 01,05) = +(6) + 62 — 2012) Ry (&Jrei)ijzeu ,
choose the overlap fraction to be as large as possible, i.e., £ D (0 0 < D < A=p

075 = 012,mas- The rate-distortion functiori_(13) then follows '_ mmgi 2) < D < 55,
immediately from the rate-distortion function of the bipar 0, it D> =*,

random variablel’ [1]. (16)
B. Computation of" = S; ® S» where D, (61,62) is as given in Propositioi]4 and the

minimization is taken over all choices @2, D3 and Do
such that [(1) is satisfiedp(6; + 02 — 2612)/2 < D3 <
Fél —p)(01 402 —2612)/2, pbh12/2 < D12 < (1—p)b12/2, and

In this subsection, we focus on the binary prodIict S;®
S, which is Bernoulli distributed with probabilityl — p)/2.
For convenience, we start by finding the minimum possib
distortion at the decoder give(,62), i.e., Dynin(01,02) as
defined in Lemmé&l2, and the minimum required rate to achieve
it. Then, we proceed to derive the rate-distortion function

Proposition 4: For given sampling budgé# , 6> ), the min-
imum achievable distortion for computinf = S; ® S, is C. Numerical Results

given by In this subsection, we numerically evaluate the distortion
1—p 1 1-3p\ .. rate tradeoff for computation of functich = S; ® S,. Recall
Dinin(01,02) = 9 + (p - 5) (61 +62)+ (T) 012 that for T = S1 @ Ss, the optimal overlap fraction is always
(14)  612,maz- Fig.[3 and Figl b plot the minimum average Hamming
wherefys = 612,mae If 1/3 < p < 1/2 and 05, = 012 min,  distortionD and the optimal overlap fractidff, for ; = 0.5,
if 0 < p < 1/3. Moreover, distortionD,,;,(61,02) can 6, = 0.75, andp = 0.1,0.2,0.4. In Fig.[8, as predicted by
be achieved as long aB > R,in(01,602) = 61 + 62 — Proposition#, the minimum rat&,,;,(61,6-) that achieves
(2—-nh (1%”)) 05,. distortion D,,.;, (01, 02), is given by0.9982, 0.9927, 0.69 for
Proof: See AppendiX . m p=20.1,0.2,0.4, respectively. It can be observed from Hig. 6,
The results in Propositidd 4 can be seen as the countergartp = 0.4 > 1/3, the optimal overlap fractiod?, is equal
of Corollary[d for binary sources. In fact, they show that, foto the maximum possible valu#s ;... = 0.5, for any 0 <

1 —
D3+ Do + (Tp) (1+612—6,—0:)=D. (17)

Proof: See AppendiXE. [ |
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Figure 5. Distortion-rate function whefy = 0.5 andf2 = 0.75, with p  Figure 6. Optimal overlap fractiofi{, as a function ofR when6; = 0.5
chosen to be = 0.1, 0.2, 0.4, respectively. and @y = 0.75, with p chosen to be = 0.1, 0.2, 0.4, respectively.

R < 1. However, for smaller probabilities = 0.1,0.2, the

optimal overlap fraction equals to the maximum possible®al APPENDIXA

012,maz = 0.5 for sufficiently smaller rates and then drops to PROOF OFPROPOSITIONT]

the minimum possible valués ., = 0.25 after R grows

beyond a threshold. Moreover, the smaller the probabijlity

is, the larger range of rate® over which the optimal overlap Given ' = S;, we have the distortion rate functions

fraction 07, is 612,min = 0.25. Di(R) = Di3(R) = 2728 and Dy(R) = 1 — p? 4 p?2728
We note that with a largep, it is easier to describ€ [6]. In this case, applying Lemnid 1, we obtain

directly, sinceT ~ Bernoulli((1 — p)/2), but the indirect

description ofT" based onS; or S; becomes more difficult

sinceT becomes less correlated wifh or S, This explains ~ D(R, 01,62,012)

Why_the optima}l overlap fraction should be ch_osen as the . (6, _912)2—% +9122—i§% ¥ (62 — O12)

maximum possible valu#;s ... = 0.5 whenp is larger R1,R3,R12>0

than1/3 (see the curve = 0.4). In this sense, the regime ) (1 _ 2 _i_pz?f%) 4 (14012 — 0y — )

p > 1/3 may be considered as the binary counterpart of the

regimep < 0 for the Gaussian sum case in Section IV-B. (18)
For probabilitiesp < 1/3, the numerical results above imply — in 9,2 7 2 + (05 — 912)p227%

that the optimal overlap depends on the link r&teSimilar O<R:<R

to the Gaussian sum case when< p < 1 (Corollary[3), +1—01— p*(02 — b12), (19)

when R is sufficiently small, it remains optimal to choose the

overlap fraction to be the maximum possible; howeverRas

grows sufficiently large, it is more advantageous to have tid1ere the minimization in[{18) is under the constralrt (4).
overlap fraction as small as possible, which is consistetit wNote that the optimization in[(18) is equivalent to that in
Propositior{ 4. (19), since in any optimal solution, we hav@>/612 =

Ry /(6,1 —612) by the convexity of functior 2" for » > 0, and
the condition [(#) must be met with equality. It can be easily
In this paper, we have considered the problem of lossgen that functionD(R, 61, 62,60,2) above is monotonically
compression for computing a function of correlated sourcason-decreasing with respect th,. Therefore, the optimal
Motivated by the fact that acquiring the information neeggs overlap is the minimum possible, which equéjs = 612 .

for computation may be costly in sensor networks, we assumiddreover, the optimal raté?; that minimizes [(I9) can be
that the encoder can only observe a fraction of the samplastained using standard Lagrangian methods simildrito48] a
from each source according to a sampling strategy that is

subject to design. The results highlight the dependenckeof t

optimal sampling strategy on the function to be computed 007 < B ﬁl i>+
by the decoder, on the source correlation and on the link 270, + 0, — 67 2 062 P>
rate. Interesting future work includes investigation dated

scenarios with side information or distributed source ngdi ) ] ) »
With the so obtained?s, the results in Propositidd 1 follows
3The correlation betweefi’ and Sy or Ss is given by/(1 —p)/(1+p). immediately.

VI. CONCLUSIONS

(20)



APPENDIXB p < 1/3, it is optimal to choose the minimum overlap
PROOF OFPROPOSITIONZ| fraction 67, = 612,min. Substitutingd;, in (23), we obtain
Applying Lemmé.l to this case, for a given sampling profil@min(f1,02) as stated in the proposition. Finally, from the

(61,02,012), we obtain the distortion-rate function as discussion above, it follows that, for ay > R (61, 02) =
01+ 02— (2 — h((1 —p)/2)) 0%y, distortion D, (01, 62) can

D(R, 01, 02,0612) be achieved at the decoder.
2R
= min 2(01— 012)(1 + p) (1= + 2270 APPENDIXD
L o _am PROOF OFLEMMA 3
+2(02 — 012)(1 + p) (1 —p +p2 91’912) The indirect rate-distortion functioR, (D) for T is given
Camyy o by [2]
(21) p(]s1): Ed(T,7)<D

2R
:Rl.%lf?& 2015(1 4 )2~ “12 +2(1 4615 — 01 — 02)(1 + p) Letp(t = 1|s; = 0) = > andp(¢ = 1s1 = 1) = y, where0 <
Y 2ty 41t r<1 ar_ldO <y g_ 1 Note that if we s_eleci_z; =y=0,ie.,
+2(01 + 69 — 26012)(1 + p) (1 -+ p~22m> , T'= 0 with probability 1, the average distortidn = (1—p)/2
is achievable at the decoder. Thus, or> (1 — p)/2, we
(22) have R; (D) = 0. Moreover, from the proof of Propositidn 4,
where the constraint oR;, Re and Ry, is as in [4). Note that it follows that D > p/2 must hold. For the nontrivial case
in the above, the problem ifi_(R1) is reduced to an equivalent2 < D < (1 — p)/2, the expected distortion constraint can
problem in [22) sinceR, /(0 — 612) = Ra/(62 — 612) holds be written as

in any optimal solution by the convexity & 2" for r > 0. . r 1l—y Y

Moreover, it can be easily seen that the conditidn (4) mulst ho E(d(T,T)) D) + 2 (1—p)+ 9P

with equality, i.e., we havé®; + Ro = R — Ry». Substituting r+2p—1y+1—p

this andp = /(1 + p)/2 to (22) and taking the minimum over = D) <D, (25)

all 01 satls_f_ylng (@), we can obtaif)(, 61, >) as stated in and the mutual informatioti(S;;7") can be written as
the proposition.

APPENDIXC I(S1;T) = H(T) — H(T|51)

PROOF OFPROPOSITIONZ _p(EEY) lh(:c) —“h(y).  (26)
. . . . 2 2 2
For any given sampling profiléd;, 6, 6:2), in order to ) ST o )
minimize the distortion with respect t®, we can takeR FOr any giveny, considering the monotonicity of (6) with
to be arbitrarily large (in fact, given the binary alphabetgespect tor for 0 <z < 2d—(1—p)+(1-2p)y, we can easily
R = 1 suffices). With no rate limitations, it is easy to se€how that[(26) is minimized at = 2d—(1—p)+(1-2p)y, i.e.,
that, during the);,-fraction,T can be computed at the encodef23) is met with equality. Therefore, fer/2 < D < (1-p)/2,
and described to the decoder losslessly with a rate equiagto We can rewrite[(24) as ii_(15) of the lemma.
entropy of 7', h((1 — p)/2). During the (0, — 012)-fraction, APPENDIX E
IonlyI soulrce31h|s observed and can be(zjdescrlbecdéto trt:et()jecoder PROOF OFPROPOSITIONS)
osslessly wit arate(1/2)_ — 1. Based _On sourcs;, the best If we setT = 0 at the decoder, the resulting Hamming
estimate at the decoder is as follovid:= 0 if S; =0, and . oo
A i . : . . distortion is (1 — p)/2. Hence, forD > (1 — p)/2, zero
T = 1if S; = 1, leading to average Hamming distortion : . o X
L . . rate is required for description, i.eR(D,0;,62) = 0. For
p/2. Similarly, during the (62 — 6,2)-fraction, the average 1—p ) . .
) . o ; Dpin(61,682) < D < =5E, for any given sampling profile
Hamming distortion is alsp/2. During the(1+612— 601 —65)- 2 .
. . . ; (01,02,6012), we can use Lemmal 1 by settinB1 ,min =
fraction, neither sourcé; nor sourceS, is observed. Since ’
. C g s . . Do min = p/2, D13 min = 0 @and D00 = (1 —p)/?. Due
T is Bernoulli distributed with(1 — p)/2, the best estimate .~ ! y L !
S - . . . .~ to the convexity ofR;(D), it is optimal to haveD, /(6 —
is given byt = 0, leading to average Hamming distortion . . ) .
(1 — p)/2. Therefore, when there is no constraint on r&te %2) = D2/(02~012) in any optimal solution. Moreover, with
’ Dpin(01,02) < D < Lr for optimality, [Z¢) must be met

1

we have k o) - 2
with equality, i.e.,
D(R,01,03,012) _ g, — _
P 1—p Dy+ Dyt Dy + W20 20)020) (27)
25(91 +92—2912)+?(1+912_91_92) 2
anle, Dqs andDQ must be such tthl/(Gl—Gu), D12/912
:1;79 + (p _ 1) (01 + 65) + 1- 3p912. (23) and Dy /(02 — 012) are all less than or equal t®,,,, =
2 2 2 (1 —p)/2. If we let D5 = Dy + D», then D5 satisfies
It can bg easily seen that,;bfz 1/3, it is optimal to choo;e p(61 + 65 — 2615) <D< (1= p)(01 + 05 — 2612) 08
the maximum overlap fractiofi}, = 612maqs; Otherwise if 5 >3 = B . (28)



Finally, taking the minimum ofR(D, 61, 62, 612) over all 615
satisfying [(1), we obtaiR(D, 6, 62) as in the proposition for
Dmin(91792) S D < 1%17
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