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PRECISE LARGE DEVIATIONS FOR DEPENDENT REGULARLY VARYING

SEQUENCES

THOMAS MIKOSCH AND OLIVIER WINTENBERGER

Abstract. We study a precise large deviation principle for a stationary regularly varying sequence
of random variables. This principle extends the classical results of A.V. Nagaev [44] and S.V.
Nagaev [45] for iid regularly varying sequences. The proof uses an idea of Jakubowski [28, 29]
in the context of central limit theorems with infinite variance stable limits. We illustrate the
principle for stochastic volatility models, functions of a Markov chain satisfying a polynomial drift
condition and solutions of linear and non-linear stochastic recurrence equations.
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1. Introduction

The aim of this paper is to study precise large deviation probabilities for sequences of dependent
and heavy-tailed random variables. To make the notion of heavy tails precise, we assume that the
stationary sequence (Xt) has regularly varying finite-dimensional distributions in the sense defined
in Section 2.1. A particular consequence is that the distribution of a generic variable X of this
sequence has regularly varying tails. This means that there exist α > 0, p, q > 0 with p+ q = 1 and
a slowly varying function L such that

P(X > x)

P(|X | > x)
∼ p

L(x)

xα
and

P(X 6 −x)
P(|X | > x)

∼ q
L(x)

xα
, x→ ∞.(1.1)

The latter condition is often referred to as a tail balance condition.

In the case of an iid sequence satisfying (1.1) one can derive precise asymptotic bounds for the
tails of the random walk (Sn) with step sequence (Xt) given by

S0 = 0 and Sn = X1 + · · ·+Xn , n > 1 .

We recall a classical result which can be found in the papers of A.V. and S.V. Nagaev [44, 45] and
Cline and Hsing [13].

Theorem 1.1. Assume that (Xi) is an iid sequence with a regularly varying distribution in the

sense of (1.1). Then the following relations hold for α > 1 and suitable sequences bn ↑ ∞:

lim
n→∞

sup
x>bn

∣

∣

∣

∣

P(Sn − ESn > x)

nP(|X | > x)
− p

∣

∣

∣

∣

= 0(1.2)

and

lim
n→∞

sup
x>bn

∣

∣

∣

∣

P(Sn − ESn 6 −x)
nP(|X | > x)

− q

∣

∣

∣

∣

= 0 .(1.3)
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If α > 2 one can choose bn =
√
an logn, where a > α − 2, and for α ∈ (1, 2], bn = nδ+1/α for

any δ > 0. For α 6 1, (1.2) and (1.3) remain valid with ESn replaced by 0 and one can choose

bn = nδ+1/α for any δ > 0.

We call results of the type (1.2) and (1.3) a precise large deviation principle in contrast to the
majority of results in large deviation theory where the logarithmic probabilities n−1 logP(n−1(Yn −
EYn) ∈ A) are studied for sets A bounded away from zero and suitable sequences (Yn) of random
variables (not necessarily constituting a random walk) or even random elements taking values in
some abstract spaces; see e.g. the monograph by Dembo and Zeitouni [17]. As a matter of fact,
precise large deviation principles can be derived for iid heavy-tailed sequences more general than
regularly varying ones, e.g. for the general class of random walks (Sn) with subexponential steps;
see e.g. Cline and Hsing [13], Denisov et al. [18], Mogulskii [43] and the references cited therein.
We also mention that Theorem 1.1 can be extended to iid regularly varying random vectors (see
Section 2.1 for a definition) and an analog of Donsker’s theorem for large deviations in Skorokhod
space can be proved as well; see Hult et al. [26].

Theorem 1.1 serves as a benchmark result for the purposes of this paper. In this paper we extend
Theorem 1.1 to suitable regularly varying stationary sequences (Xt). Various examples of precise
large deviation principles have been derived in the literature. Under rather general dependence
conditions on the regularly varying sequence (Xt) with index α < 2, Davis and Hsing [14] and

Jakubowski [28, 29] proved the existence of some sequences (bn) such that b−1
n Sn

P→ 0 and

lim
n→∞

P(Sn > bn)

nP(|X | > bn)
.(1.4)

They could in general not specify the order of magnitude of the sequences (bn). The method of proof
for these results could not be extended to the case α > 2. Moreover, work of Lesigne and Volný [38]
indicates that results of the type of Theorem 1.1 may fail for certain stationary ergodic martingale
difference sequences. To be more precise, they proved that lim supn→∞ P(Sn > n)/[nP(|X | > n)] =
∞ is possible for such sequences. Gantert [22] proved large deviation results of logarithmic type for
stationary ergodic sequences (Xt) satisfying a geometric β-mixing condition. The latter condition
ensures that the tail asymptotics do not differ from the iid case.

An analog of Theorem 1.1 for linear processes Xt =
∑∞

j=0 ψjZt−j , t ∈ Z, under suitable as-

sumptions on the sequence of real numbers (ψj) (ensuring the existence of the infinite series) and
assuming regular variation of the iid innovations (Zt) was proved in Mikosch and Samorodnitsky
[40]. The limiting constants p and q in (1.2) and (1.3), respectively, had to be replaced by quantities
depending on p, q and the sequence (ψj). The region (bn,∞), where the large deviation principle
holds, remains the same as for an iid regularly varying sequence.

Similar results were obtained in Konstantinides and Mikosch [34] for solutions to the stochastic
recurrence equation Xt = AtXt−1 +Bt, t ∈ Z, with iid ((At, Bt))t∈Z with a generic element (A,B),
A,B > 0 a.s., B regularly varying with index α > 0 and EAα < 1. They showed that the limits
(1.4) exist and are positive for sequences (bn) comparable to those in Theorem 1.1; uniform results
like in (1.2) and (1.3) were not achieved. For the same type of stochastic recurrence equation with
B not necessarily positive, Buraczewski et al. [12] proved precise large deviation principles. The
main difference to [34] is the assumption that (Xt) is regularly varying with some positive index α
while (At, Bt) has moments of order α+ δ for some positive δ. In this case, the celebrated paper of
Kesten [32], under appropriate conditions on the distribution of (A,B), yields that (Xt) is indeed
regularly varying with index α; see also Goldie [23]. It is shown in [12] that the relation

lim sup
n→∞

sup
x>bn

P(Sn > x)

nP(|X | > x)
<∞
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holds for suitable sequences bn → ∞ such that b−1
n Sn

P→ 0. Again, the sequences (bn) are close
to those in Theorem 1.1. However, uniform relations of type (1.2) and (1.3) are not true in the
unbounded regions (bn,∞) but in bounded regions (bn, cn) such that bn → ∞ and cn = e sn for
sn → ∞ and sn = o(n).

In this paper, we will approach the problem of precise large deviations from a more general point
of view. A key idea for this approach can be found in the papers of Jakubowski [28, 29], where this
idea was used to prove central limit theory with infinite variance stable limits for the partial sums
(Sn) of a general stationary sequence with regularly varying marginals; see also the recent paper
Bartkiewicz et al. [3], where the same idea was exploited. The following inequality is crucial for
proving the results of this paper: for every k > 2, some constant b+,

∣

∣

∣

P(Sn > x)

nP(|X | > x)
− b+

∣

∣

∣

6

∣

∣

∣

P(Sn > x)− n (P(Sk+1 > x)− P(Sk > x))

nP(|X | > x)

∣

∣

∣
+
∣

∣

∣

P(Sk+1 > x)− P(Sk > x)

P(|X | > x)
− b+

∣

∣

∣
.(1.5)

Regular variation of (Xt) ensures that the second quantity in (1.5) is negligible, by first letting
x → ∞ and then k → ∞. The first expression in (1.5) provides a link between the asymptotics of
the tail P(Sn > x) for increasing values of n, x > bn and the regularly varying tails P(Sk > x) and
P(Sk+1 > x) for every fixed k. Thus the tail asymptotics of P(Sn > x) are derived from the known
tail asymptotics for finite sums, again by first letting n→ ∞ and then k → ∞.

This paper is organized as follows. In Section 2 we introduce some of the basic conditions and
notions needed throughout the paper. These include regular variation of a stationary sequence
and an anti-clustering condition. In Section 3 we prove the main result of this paper: Theorem 3.1
provides a general precise large deviation principle for regularly varying stationary sequences. Under
regular variation and anti-clustering conditions we will show precise large deviation principles of the
following type:

lim
n→∞

sup
x∈Λn

∣

∣

∣

P(Sn > x)

nP(|X | > x)
− b+

∣

∣

∣
= 0 ,(1.6)

for some non-negative constant b+ and a sequence of sets Λn ⊂ (0,∞) such that bn = inf Λn → ∞.
In Section 4 we will apply the large deviation principle (1.6) to a variety of important regularly vary-
ing time series models, including the stochastic volatility model, solutions to stochastic recurrence
equations and functions of Markov chains. These are examples of rather different dependence struc-
tures, showing that the large deviation principle does not depend on a particular mixing condition
or on the Markov property.

However, we give special emphasis to functions of a Markov chain satisfying a polynomial drift
condition. Theorems 4.6 and 4.10 are our main results for Markov chains. Theorem 4.6 is obtained
by a direct application of Theorem 3.1, exploiting a sophisticated exponential bound for partial sums
of Markov chains due to Bertail and Clémencon [8]. Theorem 4.6 implies Theorem 4.10. It yields
an intuitive interpretation of relation (1.6) in terms of the regeneration property of (Xt)t=1,...,n.
Given an atom A of the underlying chain, one can split the chain into a random number NA(n) of
iid random cycles. Denoting the block sum of the Xt’s over the ith cycle by SA,i, it will be shown
that the iid SA,i’s inherit regular variation from X , and then we can apply the classical result of

Theorem 1.1 to P

(

∑NA(n)−1
i=1 SA,i > x

)

. If b+ > 0 the tails PA(SA,1 > x) and P(|X | > x) are

equivalent. There is a major difference between an iid sequence and the dependent sequence (Xt):
if the first generation time τA is larger than n, it has significant influence on the region Λn, where
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(1.6) holds. It turns out that one has for any x > bn,

P(Sn > x)

nP(|X | > x)
∼ b+ +

P(Sn > x, τA > n)

nP(|X | > x)
,

and the second term is in general not negligible, leading to the fact that (1.6) may only be valid in
a bounded region (bn, cn). Thus we found an explanation for the same observation we experienced
in the case of a Markov chain given by a stochastic recurrence equation; see the discussion above.

2. Preliminaries

2.1. Regular variation. Throughout this paper we assume that (Xt) is stationary. Such a sequence
is regularly varying with index α > 0 if the finite-dimensional distributions of (Xt) have a jointly
regularly varying distribution in the following sense: for every d > 1, there exists a non-null Radon

measure µd on the Borel σ-field of R
d\{0}, where R = R ∪ {±∞}, (this means that µd is finite on

sets bounded away from zero) such that

nP(a−1
n (X1, . . . , Xd) ∈ ·) v→ µd(·) ,

where
v→ denotes vague convergence (see e.g. [31, 51]) and (an) satisfies nP(|X | > an) ∼ 1. The

limiting measures have the property µd(tA) = t−αµd(A), t > 0, for any Borel set A. We refer to α
as the index of regular variation of (Xt) and its finite-dimensional distributions. We refer to Basrak
and Segers [6] for an insightful description of regular variation for stationary processes.

In what follows, we refer to condition RVα if (Xt) satisfies the conditions above for some α > 0
and a sequence of limiting measures (µd).

In Section 4 we will consider some prominent examples of regularly varying time series.
The regular variation property of (Xt) implies that the limits

b+(k) = lim
x→∞

P(Sk > x)

P(|X | > x)
= lim

n→∞
nP(Sk > an), k > 1,(2.1)

exist. These quantities play a crucial role in our investigations on large deviations; see for example
Theorem 3.1. The limiting constants

b−(k) = lim
x→∞

P(Sk 6 −x)
P(|X | > x)

= lim
n→∞

nP(Sk 6 −an), k > 1,(2.2)

also exist by virtue of regular variation of (Xt).
In our main result Theorem 3.1 we require that the limit

b+ = lim
k→∞

(b+(k + 1)− b+(k))

exists; the existence of b+ does not directly follow from regular variation of (Xt). In the examples
of Section 4 we show that b+ is easily calculated for some major time series models. If b+ exists it
is non-negative since it is the limit of a Cèsaro mean: b+ = limk→∞ k−1b+(k).

The constants b+ and b− (the latter constant is defined in the straightforward way) figure promi-
nently in asymptotic results for the partial sums (Sn) with infinite variance stable limits. Indeed, the
Lévy measure ν of the stable limit has representation ν(x,∞) = b+x

−α and ν(−∞,−x) = b−x
−α,

x > 0; see Bartkiewicz et al. [3].

2.2. Anti-clustering condition. Assume that (Xt) satisfies the regular variation condition RVα.
For studying the limit theory for the extremes of dependent sequences it is common to assume anti-
clustering conditions; see e.g. Leadbetter et al. [35], Leadbetter and Rootzén [36] and Embrechts et
al. [20], Chapter 5. These conditions ensure that possible clusters of exceedances of high thresholds
by the sequence (Xt) cannot be too large. In other words, “long-range dependencies of extremes”
are avoided. Anti-clustering conditions are also needed for proving asymptotic theory for partial



PRECISE LARGE DEVIATIONS FOR DEPENDENT REGULARLY VARYING SEQUENCES 5

sums with infinite variance stable limits; see Davis and Hsing [14], Jakubowski [28, 29], Basrak and
Segers [7], and Bartkiewicz et al. [3]. In the latter reference, the different conditions are discussed
and compared. Davis and Hsing [14] and Jakubowski [28, 29] also proved large deviation results in
the case α < 2 under anti-clustering conditions.

We introduce the following anti-clustering condition which is close to those in the literature
mentioned above.

Condition ACα: There exist δk ↓ 0 as k → ∞ and a sequence of sets Λn ⊂ (0,∞), n = 1, 2, . . .,
with bn = inf Λn such that nP(|X | > bn) → 0 as n→ ∞ and

lim
k→∞

lim sup
n→∞

sup
x∈Λn

δ−α
k

n
∑

j=k

P(|Xj | > xδk | |X0| > xδk) = 0 .

This condition is tailored for the purposes of our paper: the sets (Λn) with limn→∞ bn = ∞ are
those which appear in the precise large deviation results (1.6).

Condition ACα is easily verified for the examples of time series models in Section 4.

3. Main result

In this section we formulate and prove the main result on precise large deviation principles for
regularly varying stationary sequences.

Theorem 3.1. Assume that the stationary sequence (Xt) of real-valued random variables satisfies

the following conditions.

(1) The regular variation condition RVα for some α > 0.
(2) The anti-clustering condition ACα for a sequence δk = o(k−2), k → ∞, and sets (Λn) such

that bn = inf Λn → ∞ as n→ ∞.

(3) The limit b+ = limk→∞(b+(k + 1) − b+(k)) exists, where the constants (b+(k)) are defined

in (2.1).
(4) For the sequences (Λn), (δk) from ACα and a sequence (εk) satisfying εk = o(k−1) and

(k + 1)δk 6 εk,

lim
k→∞

lim sup
n→∞

sup
x∈Λn

P

(

∑n
i=1Xi11{|Xi|6δk x} > εkx

)

nP(|X | > x)
= 0.(3.1)

Then the large deviation principle (1.6) holds.

The corresponding result for the left tails P(Sn 6 −x), x > 0, is obtained by replacing the
variables Xt by −Xt, t ∈ Z. Then one also needs to assume that the limit b− exists which is defined
correspondingly.

Remark 3.2. In the case α < 1, (3.1) is satisfied for suitable choices of (δk) and (εk). Indeed, an
application of Markov’s inequality and Karamata’s theorem (see Bingham at al. [9]) yields uniformly
for x > bn,

P

(

n
∑

i=1

Xi11{|Xi|6δk x} > εkx
)

6 (xεk)
−1 nE|X |11{|X|6δk x}

∼ δ1−α
k ε−1

k nP(|X | > x) .

Thus (3.1) is satisfied for Λn = (bn,∞) if we choose e.g. δk = e−k and εk = k−2.

Remark 3.3. Assume α ∈ (0, 2) and (Xt) conditionally independent and symmetric given some
σ-field F . This condition is often satisfied in models of the type Xt = σt Zt with iid symmetric
(Zt), for example if (Zt) and (σt) are independent; see the stochastic volatility model of Section 4.2.
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Alternatively, if (σt) is predictable with respect to the filtration generated by the sequence (Zt) then
(Xt) is conditionally independent and symmetric. Prominent examples of this type are GARCH-
type models, where (Zt) is often assumed iid standard normal or student distributed. Indeed, first
applying the Chebyshev inequality conditional on F and then taking expectations, we obtain by
Karamata’s theorem (see Bingham at al. [9]) uniformly for x ∈ Λn = (bn,∞),

P

(

n
∑

i=1

Xi11{|Xi|6δk x} > εkx
)

6 (εkx)
−2nEX211{|X|6δk x}

∼ δ2−α
k ε−2

k nP(|X | > x) .

Thus (3.1) holds e.g. for δk = e−k and εk = k−2.

Remark 3.4. Recall that (bn) is chosen such that nP(|X | > bn) → 0. For an iid (Xt), this

condition is necessary for the weak law of large numbers b−1
n Sn

P→ 0. Under this and some other
mild conditions, we may assume without loss of generality that the random variables (Xi11{|Xi|6δk x})
in (3.1) are mean corrected. Indeed, we will prove that

n sup
x∈Λn

x−1|EX11{|X|6x}| = o(1) , n→ ∞ .(3.2)

This condition is trivial if X is symmetric.
The case α < 1. By Karamata’s theorem and the choice of (bn),

n |EX11{|X|6x}| 6 nE|X |11{|X|6x} ∼ c n xP(|X | > x) 6 c xnP(|X | > bn) = o(x) .

Here and in what follows, we write c for any positive constants whose value is not of interest, for

example, the same c may denote different constants in the same formula.

The case α = 1. If EX = 0 and n = O(bn) then n |EX11{|X|6x}| = o(n) = o(x). If E|X | =
∞, E|X |11{|X|6x} is a slowly varying function, and therefore for large n and any small ǫ > 0,

n |EX11{|X|6x}| 6 nxǫ. If bn = n1+δ for some δ > 0, choosing ǫ sufficiently small, we obtain
n |EX11{|X|6x}| = o(x).
The case α > 1. By Karamata’s theorem, since EX = 0 and by the choice of (bn), as n→ ∞,

n |EX11{|X|6x}| = n |EX11{|X|>x}| 6 nE|X |11{|X|>x}

∼ c n xP(|X | > x) 6 c x [nP(|X | > bn)] = o(x) .

Proof. We have for fixed k > 2,

sup
x∈Λn

∣

∣

∣

P(Sn > x)

nP (|X | > x)
− b+

∣

∣

∣

6 sup
x∈Λn

∣

∣

∣

P(Sn > x)− n (P(Sk+1 > x)− P(Sk > x))

nP(|X | > x)

∣

∣

∣
+ sup

x∈Λn

∣

∣

∣

P(Sk+1 > x)− P(Sk > x)

P(|X | > x)
− b+

∣

∣

∣

= I1,k + I2,k .

By regular variation of (Xt), the limit

lim
n→∞

I2,k = |(b+(k + 1)− b+(k))− b+|

exists for every k > 2 and any sequence (Λn) such that inf Λn → ∞. By assumption, limk→∞ |(b+(k+
1)− b+(k)− b+| = 0. Therefore it suffices to study the asymptotic behavior of I1,k.

For any δ > 0 and x > 0, consider

Xi = Xi11{|Xi|6xδ} and Xi = Xi11{|Xi|>xδ} , i = 1, 2, . . . .
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and for n > 1,

Sn =

n
∑

i=1

Xi and Sn =

n
∑

i=1

Xi .

Then, for any ε ∈ (0, 1) and j > 1,

P(Sj > (1 + ε)x)− P(−Sj > εx) 6 P(Sj > x) 6 P(Sj > (1 − ε)x) + P(Sj > εx).

Multiple application of these inequalities yields

A1 +A2 +A3 6
P(Sn > x)− n (P(Sk+1 > x) − P(Sk > x))

nP(|X | > x)
6 B1 +B2 +B3 ,

where

A1 =
P(Sn > (1 + ε)x)− n (P(Sk+1 > (1 + ε)x) − P(Sk > (1 + ε)x))

nP(|X | > x)
,

A2 =
−P(−Sn > εx)− n (P(Sk+1 > εx)− P(−Sk > εx))

nP(|X | > x)
,

A3 =
P(Sk+1 > (1 + ε)x) − P(Sk+1 > (1− ε)x)

P(|X | > x)
,

B1 =
P(Sn > (1 − ε)x)− n (P(Sk+1 > (1− ε)x) − P(Sk > (1− ε)x))

nP(|X | > x)
,

B2 =
P(Sn > εx) + n (P(−Sk+1 > εx) + P(Sk > εx))

nP(|X | > x)
,

B3 =
P(Sk+1 > (1− ε)x) − P(Sk+1 > (1 + ε)x)

P(|X | > x)
.

We will derive upper bounds for the Bi’s. Lower bounds for the Ai’s can be derived in the same
way and are therefore omitted.

An application of Jakubowski [29], Lemma 3.2, to the stationary sequence (Xt) yields for fixed
k > 2, x, δ, ε > 0,

|B1| 6 3
k P(|X | > δ x)

nP(|X | > x)
+ 2

n
∑

j=k

P(|Xj | > δ x, |X0| > δ x)

P(|X | > x)

= B11 +B12 .

In view of regular variation of X , P(|X | > δ x)/P(|X | > x) → δ−α. Hence

lim sup
n→∞

sup
x∈Λn

B11 = 0 , k > 2 ,

An application of ACα with δ = δk yields that limk→∞ lim supn→∞ supx∈Λn
B12 = 0. Hence

lim
k→∞

lim sup
n→∞

sup
x∈Λn

B1 = 0 .

Next consider B2. In addition to the condition ε = εk = o(k−1) assume that (k+1)δk 6 εk. This
choice is always possible since we also assume δ = δk = o(k−2). Then |Sk+1| 6 ε x, P(−Sk+1 >
εx) = P(Sk > εx) = 0 and B2 degenerates to the expression P(Sn > εx)/(nP(|X | > x)). By
assumption (3.1), this condition is asymptotically negligible.
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Finally, consider B3. Fix k > 2. In what follows, the constants ε, δ ∈ (0, 1) will also depend on
k. Consider the sets

Aγ,δ(k) =
{

y ∈ R
k :

k
∑

i=1

yi11{|yi|>δ} > γ
}

, γ , δ > 0 .

Observe that

{Sk+1 > γx} = {x−1(X1, . . . , Xk+1) ∈ Aγ,δ(k + 1)} ,
the sets Aγ,δ(k) are bounded away from 0 and Aγ,δ(k) = γA1,δ/γ(k). Condition RVα ensures the
existence of the limit

lim
x→∞

B3

= µk+1(A1−ε,δ)− µk+1(A1+ε,δ)

= (1− ε)−αµk+1(A1,δ/(1−ε))− (1 + ε)−αµk+1(A1,δ/(1+ε))

= ((1− ε)−α − (1 + ε)−α)µk+1(A1,δ/(1−ε))− (1 + ε)−α(µk+1(A1,δ/(1+ε))− µk+1(A1,δ/(1−ε)))

= B31 +B32 .

By a Taylor expansion, B31 6 c ε µk+1(A1,δ/(1+ε)). We observe that

{

y ∈ R
k+1 :

k
∑

i=1

yi > 1 + kδ/(1 + ε)
}

⊂ A1,δ/(1+ε) =
{

y ∈ R
k+1 :

k
∑

i=1

yi > 1 +

k
∑

i=1

yi11{|yi|6δ/(1+ε)}

}

(3.3)

⊂
{

y ∈ R
k+1 :

k
∑

i=1

yi > 1− kδ/(1 + ε)
}

.

Assume that δ = δk = o(k−1) as k → ∞. Then for k sufficiently large,

B31 6 c ε (1− kδ/(1 + ε))−α µk+1

({

y ∈ R
k+1 :

k+1
∑

i=1

yi > 1
})

6 c ε b+(k + 1) .

Since we assume that b+ exists a Cèsaro limit argument yields that limk→∞ k−1b+(k + 1) = b+.
Now choose ε = εk = o(k−1). Then limk→∞B31 = 0. Similar arguments, using (3.3), yield

B32 6 c b+(k + 1)
(

(1− kδ/(1− ε))−α − (1 + kδ/(1 + ε))−α
)

6 ck δ b+(k + 1) = o(1) , k → ∞ ,

provided δ = δk = o(k−2). Thus we proved that

lim
k→∞

lim sup
n→∞

sup
x∈Λn

B3 = 0 .

This concludes the proof. �

4. Examples

In this section we want to apply Theorem 3.1 to a variety of time series models. Since there
exists a calculus for multivariate regular variation (e.g. Resnick [51, 52], Hult and Lindskog [24, 25],
Basrak and Segers [6]) it is not difficult to show the regular variation condition RVα, the anti-
clustering condition ACα and the existence of the limit b+ = limk→∞(b+(k + 1) − b+(k)) for the
examples below. However, it can take some efforts to prove condition (3.1). In the iid case, one
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would use exponential inequalities of Nagaev-Fuk or Prokhorov type; see e.g. the monograph Petrov
[47] for an overview of such inequalities. In the case of dependent sequences (Xt) analogs of these
inequalities exist, but their application is not always straightforward; see e.g. the case of Markov
chains in Section 4.3 below.

4.1. m0-dependent sequences. In this section we consider an m0-dependent regularly varying
sequence. A typical example of such a process is a moving average process of order m0 > 1
(MA(m0)) given by

Xt = Zt + θ1 Zt−1 + · · ·+ θm0
Zt−m0

, t ∈ Z ,

where (Zt) is an iid regularly varying sequence with index α > 0. Condition RVα is straightforward
since (Zt) is regularly varying with limiting measures concentrated on the axes. The regular variation
of the finite-dimensional distributions of (Xt) is then an application of the continuous mapping
theorem for regular variation; see Hult and Lindskog [24, 25]; cf. Hult et al. [26], Jessen and
Mikosch [30].

A related example is given by a stochastic volatility model Xt = σtηt, t ∈ Z, where (log σt)
constitutes an MA(m0) process independent of the iid regularly varying sequence (ηt) with index
α. If Eσα+ǫ < ∞ for some ǫ > 0 then (Xt) is regularly varying with index α; see e.g. Davis and
Mikosch [15, 16]. By construction, (Xt) is m0-dependent.

For m0-dependent sequences the verification of the conditions of Theorem 3.1 is simple.

Proposition 4.1. Consider an m0-dependent stationary sequence (Xt) for some m0 > 1. Assume

that (Xt) satisfies RVα for some α > 0 and EX = 0 if E|X | < ∞. Choose bn = n(1/α)∨0.5+δ for

any δ > 0. Then Theorem 3.1 holds with b+ = b+(m0 + 1)− b+(m0) in the regions Λn = (bn,∞).

Proof. Condition ACα is trivially satisfied for any choice of constants δk ↓ 0 as k → ∞ and any sets
Λn ⊂ (0,∞) such that nP(|X | > bn) → 0 as n → ∞. Moreover, b+ = b+(m0 + 1)− b+(m0) follows
from Bartkiewicz et al. [3].

It remains to prove that (3.1) holds. In view of the m0-dependence of the sequence (Xt) it is
possible to split the sum in (3.1) into two sums of independent subsums consisting of at most m0

summands. More precisely, with the convention that Xj = 0 if j > n we write

Sn =

n
∑

i=1

Xi11{|Xi|6δk x}

=

[n/m0]
∑

j=1,j even

m0(j+1)
∑

i=m0j+1

Xi11{|Xi|6δk x} +

[n/m0]
∑

j=1,j odd

m0(j+1)
∑

i=m0j+1

Xi11{|Xi|6δk x}

= S
′

n + S
′′

n.

Since

P(Sn > εkx) 6 P(S
′

n > εkx/2) + P(S
′′

n > εkx/2)

we obtain an upper bound similar to (3.1) but with sums of at most [n/2m0] iid subsums. Therefore
we may assume without loss of generality that the (Xt) in (3.1) are iid. In view of Remark 3.4
and the conditions above we may assume without loss of generality that the summands in (3.1) are
mean corrected.
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For α ∈ (0, 2), an application of Chebyshev’s inequality and Karamata’s theorem yield the esti-
mate

P

(

n
∑

i=1

(Xi11{|Xi|6δk x} − EX11{|X|6δk x}) > εkx
)

6 n (εkx)
−2

EX211{|X|6δk x}

∼ ε−2
k δ2−α

k [nP(|X | > x)] .

Now choose e.g. δk = e−k and εk = k−2. Then all assumptions on (εk) and (δk) in Theorem 3.1
are satisfied and limk→∞ ε−2

k δ2−α
k = 0. Hence (3.1) is satisfied.

In the case α > 2, we use the Nagaev-Fuk inequality (cf. Petrov [47], p. 78, 2.6.5) for p > α and
Karamata’s theorem as n→ ∞, for x ∈ Λn:

P

(

n
∑

i=1

(Xi11{|Xi|6δk x} − EX11{|X|6δk x}) > εkx
)

6 c (εkx)
−pnE|X |p11{|X|6xδk} + e−c(εkx)

2/n

6 c
(

δp−α
k ε−p

k + e−c(εkx)
2/n/[nP(|X | > x)]

)

[nP(|X | > x)] .

Choosing δk = e−k and εk = k−2, the requirements of Theorem 3.1 are satisfied and δp−α
k ε−p

k

becomes arbitrarily small for large k. Moreover, supx∈Λn
e−c(εkx)

2/n/[nP(|X | > x)] → 0 by the
choice of (bn). This proves (3.1) for α > 2.

The boundary case α = 2 can be treated in a similar way by using another version of the
Nagaev-Fuk inequality; see Petrov [47], p. 78, 2.6.4. We omit details. �

4.2. Stochastic volatility model. Consider a stationary sequence (σt) of non-negative random
variables and assume that (Zt) is an iid sequence which is independent of (σt). The stationary
sequence

Xt = σt Zt, t ∈ Z,(4.1)

is then called a stochastic volatility model. It is a standard model in financial time series analysis;
see e.g. Andersen et al. [2].

The main result of this section is a large deviation principle for such models under various
assumptions.

Theorem 4.2. Consider a stochastic volatility model (4.1) such that Z is regularly varying with

index α > 0, EZ = 0 for α > 1 and Eσ2α
0 < ∞. Moreover, consider the following additional

conditions:

(1) Z is symmetric.

(2) Eσp
0 < ∞ for some p > 2α and (σt) is strongly mixing with rate (αj) such that αj 6 cj−a

for some a > 1.

The large deviation principle (1.6) holds with b+ = limx→∞ P(Z > x)/P(|Z| > x) in the regions

Λn = (bn,∞) under the following conditions:

• 0 < α < 1: bn = nε+1/α for any ε > 0 .
• 1 < α < 2: Assume (1) or (2), bn = nε+1/α for any ε > 0.
• α > 2: Assume (2) for some a > max(1, (α − 2)p/(2p − α)), bn =

√
n lognsn for any

sequence (sn) such that sn → ∞.

Remark 4.3. A Gaussian stationary process (Yt) is strongly mixing under mild conditions; see
Kolmogorov and Rozanov [33]. Ibragimov [27], Theorem 5, gave necessary and sufficient conditions
for the relation αn = O(n−a) for any choice of a > 0. The conditions are in terms of the spectral
density of (Yt). It is also known that a linear Gaussian process Yt =

∑∞
j=0 ψjηt−j , t ∈ Z, with (ηt) iid
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standard normal and exponentially decaying coefficients (ψj) has an exponentially decaying mixing
rate (αj); see Pham and Tran [48]; cf. Doukhan [19]. For example, if (Yt) is a causal Gaussian
ARMA process the latter condition is satisfied.

Now assume log σt = Yt, t ∈ Z, for a Gaussian stationary sequence (Yt). This Gaussian model is
chosen in the majority of the literature on stochastic volatility models; see e.g. Andersen et al. [2].
Then (σt) inherits strong mixing from (Yt) with the same rate. Of course, Eσp < ∞ for all p > 0
and the large deviation principle holds for αn = O(n−a) for any a > 1.

Remark 4.4. If (σt) is strongly mixing with rate (αj), the corresponding stochastic volatility model
(Xt) is strongly mixing with rate (4αj); see e.g. Davis and Mikosch [15].

Proof. Condition RVα was verified for stochastic volatility models under the condition Eσα+ǫ <
∞ for some ǫ > 0 in Davis and Mikosch [15]; see also [16]. The limit measures of the reg-
ularly varying finite-dimensional distributions are concentrated on the axes and therefore b+ =
limx→∞ P(Z > x)/P(|Z| > x); see also Bartkiewicz et al. [3].

Next we verify condition ACα. Fix any δ > 0. We have

pj(δ) = P(|Xj | > xδ, |X0| > δx) 6 P(|ZjZ0|σjσ0) > (δx)2) .

The random variable |ZjZ0| is regularly varying with index α; see Embrechts and Veraverbeke [21].
An application of Markov’s and Hölder’s inequalities yields for ǫ < 2α,

pj(δ) 6 (δx)−2α+ǫ(E|Z|α−ǫ/2)2E|σjσ0|α−ǫ/2 6 (δx)−2α+ǫ(E|Z|α−ǫ/2)2E|σ|2α−ǫ .

We also have for any small ǫ > 0 and large x, P (|X | > δx) > (δx)−α−ǫ in view of the regular
variation of X . Therefore

sup
x>bn

δ−α
n
∑

j=k

P(|Xj | > xδ | |X0| > xδ) 6 c n δ−α+2ǫb−α+2ǫ
n .

The right-hand side converges to zero if we choose α 6 2, bn = nε+1/α for any ε > 0 or α > 2,
bn =

√
n lognsn, sn → ∞ and ǫ sufficiently small. The choice of δ = δk → 0 is arbitrary.

Next we prove condition (3.1).
The case α < 1. Condition (3.1) is immediate from Remark 3.2 for δk = e−k and εk = k−2.
The following decomposition will be useful in the case α > 1:

P

(

n
∑

i=1

σiZi11{|σiZi|6δk x} > εkx
)

6 P

(

n
∑

i=1

[σiZi11{|σiZi|6δk x} − σiE(Z11{|σiZ|6δk x} | σi)] > (εk/2)x
)

+P

(

n
∑

i=1

σiE(Z11{|σiZ|6δk x} | σi) > (εk/2)x
)

= I1 + I2 .

Lemma 4.5. Assume α > 1, and either Z is symmetric or (σt) is strongly mixing with rate function

(αj) satisfying αj 6 cj−a for some c > 0, a > 1 and Eσp <∞ for some p > 2α. Then

lim
n→∞

sup
x>bn

I2
nP(|X | > x)

= 0 .



12 T. MIKOSCH AND O. WINTENBERGER

Proof. In the case of symmetric Z, I2 = 0. Thus we deal with the case of mixing (σt). First observe
that for any y > 0,

I2 6 P

(

n
∑

i=1

σi11{σi6y}E(Z11{|σiZ|6δk x} | σi) > (εk/2)x
)

+ nP(σ > y)

= I21 + I22 .

Clearly, since Eσp <∞ for some p > 2α, we can find y = y(x) = o(x), y → ∞ as x→ ∞ such that

sup
x>bn

I22
nP(|X | > x)

= sup
x>bn

P(σ > y)

P(|X | > x)
= o(1) .

Indeed, we can choose y = x0.5−γ for any γ > 0 close to zero. Write

σi = σi11{σi6y}E(Z11{|σiZ|6δk x} | σi) , i = 1, 2, . . . ,

and Sn =
∑n

i=1 σi. The Markov inequality yields

P(Sn > εkx) 6 (εkx)
−2

ES
2

n

= (εkx)
−2

[

nEσ2 + 2

n−1
∑

j=1

(n− j)E(σ0σj)
]

= I3 + I4 .

Then, since EZ = 0, by Karamata’s theorem

I3
nP(|X | > x)

6 c
x−2[E|Z|11{|Z|>δkx/y}]

2

P(|X | > x)
6 c

y−2[P(|X > x/y)]2

P(|X | > x)
.

The right-hand side is negligible uniformly for x > bn. We also have

(n/x)2 (Eσ)2

nP(|X | > x)
=

n(E(X111{|X1|>δkx ,σ16y}))
2

x2P(|X | > x)

6
n(E|X |11{|X|>δkx})

2

x2P(|X | > x)

6 c nP (|X | > x) 6 nP (|X | > bn) → 0 .

Therefore we may assume without loss of generality that the random variables σj in I4 are centered.
Using a classical bound for the covariance of a strongly mixing sequence, the fact that EZ = 0 and
Karamata’s theorem, for r, q > 0 such that r−1 + 2q−1 = 1, 1 < r < a,

|cov(σ0, σj)| 6 c α
1/r
j (Eσq)2/q

6 c α
1/r
j y2[E(|Z|11{|Z|>δkx/y})]

2

6 c α
1/r
j x2[P(|Z| > x/y)]2 .

Finally, we get the following bound

sup
x>bn

I4
nP(|X | > x)

6 c
∞
∑

j=1

α
1/r
j sup

x>bn

[P(|Z| > x/y)]2

P(|X | > x)
.

The right-hand side converges to zero. This proves the lemma. �
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The case α ∈ (1, 2). In view of Lemma 4.5 it remains to bound I1. Applying Chebyshev’s inequality
conditionally on (σi) we obtain

I1 6 (εkx)
−2

E

[

n
∑

i=1

σ2
i var(Z11{|σiZ|6δk x} | σi)

]

6 (εkx)
−2nE(X211{|X|6δk x}) .

Now an application of Karamata’s theorem and regular variation of X yield

sup
x>bn

I1
nP(|X | > x)

6 c sup
x>bn

δ2k
ε2k

P(|X | > xδk)

P(|X | > x)
∼ c

δ2−α
k

ε2k
.

Now choose (δk) and (εk) as in the case α < 1 to conclude that

lim
k→∞

sup
x>bn

I1
nP(|X | > x)

= 0 .

The finishes the proof of (3.1) in the case α ∈ (1, 2).

The case α > 2. We again have to study I1. Using the Nagaev-Fuk inequality (cf. Petrov [47], p.
78, 2.6.5) conditionally on (σt), we obtain for p > α,

P

(

n
∑

i=1

[σiZi11{|σiZi|6δkx} − σi E(Zi11{|σiZi|6δkx} | σi)] > (εk/2)x | (σi)
)

6 c (εkx)
−p

n
∑

i=1

σp
i E(|Zi|p11{|σiZi|6δkx} | σi) + e−c(εkx)

2/
∑n

i=1
σ2

i .

The expectation of the first term is of the asymptotic order cδp−α
k /εpk. The latter relation converges

to zero for δk = e−k and εk = k−2. Consider the expectation of the second term on the sets
{∑n

i=1 σ
2
i > c(εkx)

2/(2α log x)} and its complement to obtain the bound

E(e−c(εkx)
2/

∑n
i=1

σ2

i ) 6 x−2α + P

(

n
∑

i=1

σ2
i > c(εkx)

2/(2α log x)
)

.

The first term is negligible with respect to nP(|X | > x). For the second one, note that x2/(n log x) >
c b2n/(n log bn) → ∞. Therefore we may assume without loss of generality that the σ2

i ’s are mean
corrected. Now use Rio [53], p. 87, (6.19a), under the mixing condition αj 6 cj−a to obtain for any
r > 1:

P

(

n
∑

i=1

(σ2
i − Eσ2) > c(εkx)

2/(2α log x)
)

6 c nr/2(log x)rx−2r + c n(log(x)/x2)(a+1)p/(a+p).

The first term is negligible with respect to nP (|X > x) for r sufficiently large. The second term is
negligible as well if 2(a+ 1)p/(a+ p) > α. The latter condition is satisfied by assumption. �

4.3. Regularly varying functions of Markov chains. In this section we assume that Xt =
h(Φt), t ∈ Z, is a measurable real-valued function of a stationary Markov chain (Φt) which possesses
an atom A in some general space: The context is classical; see Nummelin [46] and Meyn and Tweedie
[39] which will serve as our main references, and (Φt) can be seen as the enlargement of a Harris
recurrent Markov chain. In Section 4.4 we will look at the example of a solution to a stochastic
recurrence equation which constitutes such a Markov chain. We assume that the function h is such
that (Xt) is regularly varying with index α > 0. Notice in particular that h is not the null function.



14 T. MIKOSCH AND O. WINTENBERGER

Throughout we will also assume the following polynomial drift condition for p > 0 which is
inspired by Samur [54] who used a more general condition.

• DCp: There exist constants β ∈ (0, 1), b > 0 such that for any y,

E(|h(Φ1)|p | Φ0 = y) 6 β |h(y)|p + b 11A(y).

In this condition, we suppress the dependence of β, b, A on the value p. Note that DCp implies
geometric ergodicity of (Φt); see Meyn and Tweedie [39], p. 371. In what follows, we write τA for
the first time the chain visits the set A, PA denotes the probability measure of the Markov chain
conditional on {Φ0 ∈ A} and EA is the corresponding expectation. We will also write Px and Ex if
{Φ0 = x}.

Here is the main result of this section.

Theorem 4.6. Assume that (Φt) is a stationary Markov chain possessing an atom A and that h
is a function such that Xt = h(Φt), t ∈ Z, satisfies the conditions (1)− (3) of Theorem 3.1 for the

regions Λn = (bn, cn) specified below. Also assume EX = 0 if E|X | < ∞ and DCp for all p < α.
Then the precise large deviation principle (1.6) holds under the following conditions:

• 0 < α < 1: Λn = (bn,∞) for any sequence (bn) satisfying nP(|X | > bn) → 0.
• 1 < α and α 6= 2: Λ = (bn, cn) for any sequence (bn) satisfying bn = n1/α∨0.5+δ for any

δ > 0, and (cn) such that cn > bn and

P(τA > n) = o(nP(|X | > cn)) .(4.2)

Proof. We will apply Theorem 3.1. Since we assumed conditions (1)–(3) of this result it remains to
verify (3.1).

The case 0 < α < 1. The proof follows from Remark 3.2.
The case α > 1 and α /∈ N. This case is more involved. We will prove it in a similar way as in the
iid or m0-dependent cases, by using moment and exponential inequalities tailored for regenerative
split Markov chains. Without loss of generality we will only consider the strongly aperiodic case.

Notice that DCp is satisfied for p = [α]. For all integers p < [α], applying Jensen’s inequality,
we obtain

E(|X1|p | Φ0 = y) 6

(

E(|X1|[α] | Φ0 = y)
)p/[α]

6

(

β |h(y)|[α] + b 11A(y)
)p/[α]

6 βp/[α] |h(y)|p + bp/[α] 11A(y).(4.3)

Thus b > 0, β ∈ (0, 1) and A in DCp can be chosen the same as in DC[α].
Let (τA(j))j>1 be the sequence of visiting times of the Markov chain to the set A, i.e. τA(1) = τA

and τA(j + 1) = min{k > τA(j) : Φk ∈ A}. Notice that the sequence (τA(j + 1) − τA(j))j>1

constitutes an iid sequence and NA(t) = #{j > 1 : τA(j) 6 t}, t > 0, is a renewal process. The
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following inequality holds for any integrable function f on R:

P

(

n
∑

i=1

f(Xi) > εkx
)

= P

(

n
∑

i=1

f(Xi) > εkx ,NA(n) = 0
)

+ P

(

n
∑

i=1

f(Xi) > εkx ,NA(n) = 1
)

+P

(

n
∑

i=1

f(Xi) > εkx ,NA(n) > 2
)

6 P(τA > n) + 2P
(

τA
∑

j=1

f(Xj) > εkx/3, τA 6 n
)

+P

(

NA(n)−1
∑

j=1

τA(j+1)
∑

t=τA(j)+1

f(Xj) > εkx/3
)

+ 2P
(

n
∑

i=τA(NA(n))+1

f(Xi) > εkx/3
)

= I1 + I2 + I3 + I4 .

We mentioned in Remark 3.4 that we may assume without loss of generality that the random
variables Xi, i = 1, 2, . . . , are mean corrected. Now we choose f(Xi) = Xi − EX i where

X i = Xi11{|Xi|6δkx} , i = 1, 2, . . . , x > 0 .

Bounds for I1, I2, I4. For I4, we use the Markov inequality of order k0 = [α]+1 and the stationarity
of (Xi)

I4 6 c (xεk)
−k0

[

E

∣

∣

∣

n
∑

i=τA(NA(n))+1

X i

∣

∣

∣

k0
]

+ Eτk0

A [E|X |11{|X|>δkx}]
k0

]

6 c x−k0

[

E

(

n
∑

i=τA(NA(n))+1

|Xi|
)k0

+ [xP(|X | > x)]k0

]

6 c x−k0

[

EA

(

τA
∑

i=1

|X i|
)k0

+ [xP(|X | > x)]k0

]

.

Since for α > 1, k0 > 2, we use Proposition 4.7 given below to show that I4 is negligible with respect
to nP(|X | > x). As to I2, we again use the Markov inequality:

I2 6 c (xεk)
−k0

[

E

∣

∣

∣
1{τA6n}

τA
∑

i=1

Xi

∣

∣

∣

k0

+ Eτk0

A [E|X |11{|X|>δkx}]
k0

]

6 c x−k0

[

E

(

1{τA6n}

τA
∑

i=1

|X i|
)k0

+ [xP(|X | > x)]k0

]

.

We iteratively apply Lemma 4.8 given below to the first term in the right-hand side to obtain an
estimate of I2 proportional to

(4.4) x−k0E

(

1{τA6n}

τA
∑

i=1

|X i|k0

)

= x−k0E

(

n
∑

i=1

|Xi|k011{τA>i}

)

.
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An application of Pitman’s identity [50] yields

E

(

n
∑

i=1

|Xi|k011{τA>i}

)

= P(Φ0 ∈ A)EA

(

τA−1
∑

k=0

n
∑

i=1

|Xk+i|k011{τA>k+i}

)

6 nP(Φ0 ∈ A)EA

(

τA
∑

i=1

|Xi|k0

)

.

From a Wald-type identity, I2 6 cn(xεk)
−k0E|X |k0 . Hence I2 is negligible with respect to nP(|X | >

x) by an application of Karamata’s theorem.
Finally, I1 is negligible with respect to nP(|X | > x) because we assume that P(τA > n) =

o(nP(|X | > cn)).

Bounds for I3. The following moment inequality is the key to the bound of I3:

Proposition 4.7. Assume that (Xt) = (h(Φt)) for a real-valued measurable function h and a

Markov chain (Φt) satisfying the drift condition DCk0−1 for some integer k0 > 2. Then for x > 0
and some constant c > 0,

EA

(

τA
∑

j=1

|Xj |
)k0

6 cE|X|k0 .(4.5)

Proof. We can expand the left-hand side of (4.5) as follows

EA

(

τA
∑

j=1

|Xj |
)k0

=

k0
∑

k=1

∑

∑
k
i=1

si=k0,si>1,i=1,...,k

EA

(

τA
∑

j1=1

τA
∑

j2=j1+1

· · ·
τA
∑

jk=jk−1+1

|Xji |si
)

.(4.6)

We will estimate the moments on the right-hand side by employing Lemma 4.8 below. For the cases
k0 = 2, 3 such a result was proved by Samur [54] and we use the idea of the proof in [54] for our
generalization. Before we formulate the basic moment estimate we need some notation: According
to the proof of Theorem 14.2.3 of Meyn and Tweedie [39], there exists a constant c(A) > 0 such
that

EΦ0

(

τA
∑

k=1

1A(Xk)
)

6 c(A) a.s.

Lemma 4.8. Assume DCp and let f, g be non-negative measurable functions on R such that f(x) 6
|y|p and g(y) = 0 for |y| > δkx. Then for any ℓ > 1, n ∈ N ∪ {∞}

(4.7) E

(

1{τA6n}

τA
∑

j=ℓ

g(Xj)

τA
∑

i=j+1

f(Xi) | Fℓ

)

6 E

(

1{τA6n}

τA
∑

j=ℓ

g(Xj)[C |Xj |p + b c(A)] | Fℓ

)

,

where Fℓ = σ((Φt)t6ℓ).

Proof. As mentioned in Samur [54], {τA > j} ∈ Fj for all j. Therefore

E

(

1{τA6n}

τA
∑

j=ℓ

g(Xj)

τA
∑

i=j+1

f(Xi) | Fℓ

)

=

n
∑

j=ℓ

E

(

11{τA>j}g(Xj)

τA
∑

i=j+1

f(Xi) | Fℓ

)

=

n
∑

j=ℓ

E

(

11{τA>j}g(Xj)E
(

τA
∑

i=j+1

f(Xi) | Fj

)

| Fℓ

)

6

n
∑

j=ℓ

E

(

11{τA>j}g(Xj) EΦj

(

τA
∑

i=1

f(Xi)
)

| Fℓ

)

.
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In the last inequality we used the stationarity of (Φt) and the strong Markov property. From
Theorem 14.2.3 of Meyn and Tweedie [39] we obtain

EΦj

(

τA
∑

i=1

f(Xi)
)

6 C |Xj |p + b c(A).

Since g vanishes for |y| > x the result for the truncated random variables Xj follows. This finishes
the proof of Lemma 4.8. �

By (4.3) for 1 6 p 6 k0 − 1, DCp is satisfied for the same choice of (b, A). We can iteratively apply
Lemma 4.8 to the expectations of the tetrahedral sums on the right-hand side of (4.6), starting with
the tetrahedron with the largest index. In the last step of the iteration we are left with a sum of
the type

EA

(

τA
∑

i=1

|Xi|k0)
)

= E|X |k0 EA(τA) ,

where we used Wald’s identity for any bounded f on the right-hand side. Thus, each of the sum-
mands on the right-hand side of (4.6) can be bounded by the expression

EA(τA)E|X|k0

k
∑

j=0

Ck−j(b c(A))j

and so the desired result follows. �

Bounds for I3 in the case 1 < α < 2. By Markov’s inequality of order 2,

P

(

NA(n)−1
∑

j=1

τA(j+1)
∑

t=τA(j)+1

f(Xj) > εkx/3
)

6 c(εx)−2
E

(

NA(n)−1
∑

j=1

τA(j+1)
∑

t=τA(j)+1

f(Xj)
)2

.

From the regeneration scheme, we know that the cycles (
∑τA(j+1)

t=τA(j)+1 f(Xj)) are independent. Thus

we can expand the expectation term and bound it by nEA[SA(f)
2]. The desired result follows by

an application of Proposition 4.7 with k0 = 2 and Karamata’s Theorem.

Bounds for I3 in the case α > 2 and α /∈ N. The following inequality of Bertail and Clémencon [8]
is the key to the bound of I3 for α > 2. It will be convenient to write SA(f) =

∑τA
i=1 f(Xi).

Lemma 4.9. Assume that σ2
A = EAτ

2
A < ∞ and σ2

f = EA[(SA(f))
2] < ∞. Then for any x,

sufficiently large n, M = (M1,M2) ∈ (0,∞)2 with Euclidean norm ‖M‖,

I3 6 c0 ‖M‖2 exp
{

− n(1 + |ρ̃|)σ̃2

2‖M‖2 H
(

√
2‖M‖εkx

n(1 + |ρ̃|σ̃σ̃f

)}

(4.8)

+(n− 1)PA(|SA(f)| > M1) + (n− 1)PA(τA > M2) ,(4.9)

where H is the Bennett function H(x) = (1+x) ln(1+x)−x, σ̃2
f = varA(SA(f)11{|SA(f)|6M1}), σ̃

2
A =

varA(τA11{|τA|6M2}), ρ̃ = (σ̃Aσ̃f )
−1covA(SA(f)11{|SA(f)|6M1}, τA11{|τA|6M2}), σ̃

2 = σ̃2
f σ̃

2
A/(σ̃

2
f + σ̃

2
A),

and some c0 > 0.

Bertail and Clémencon [8] also assume that EASA(f) = 0. This condition is always satisfied in
our situation since Ef(X) = 0; see Meyn and Tweedie [39], (17.23) in Theorem 17.3.1. Under our
conditions, σ2

A is finite for any α and σ2
f is finite for α > 2; see Proposition 4.7. One even has the

stronger property: there exists a constant κ > 0 such that

sup
x∈A

Exe
κτA <∞ ,(4.10)
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see Meyn and Tweedie [39], (15.2) in Theorem 15.0.1. We will choose M1 = M2 = γk x for some
constants γk > 0. A careful study of the proof in [8] shows that ρ̃, σ̃, σ̃f are bounded for α > 2.
Then the exponential inequality (4.8) turns into

I3 6 c (xγk)
2e−cn/(xγk)

2H(cx2γkεk/n) + nPA(τA > xγk) + nPA(|SA(f)| > xγk)

= I31 + I32 + I33 ,

for suitable constants c > 0. Choose γk = o(εk). Then for k large, uniformly for x > bn such that
bn/n

δ+0.5 → ∞ for some δ > 0,

I31
nP(|X | > x)

6 c
x2(1−cεk/γk)ncεk/γk

nP(|X | > x)
= o(1) , n→ ∞ .

As for I32, it follows from (4.10) and Markov’s inequality that

I32
nP(|X | > x)

6 c
e−κxγk

P(|X | > x)
= o(1) ,

uniformly for x > bn. Finally, Markov’s inequality, an application of Proposition 4.7 to I33 with
k0 = [α] + 1 and Karamata’s theorem yield

PA(|SA(f)| > xγk) 6 (xγ)−k0E|SA(f)|k0 6 c (xγk)
−k0E|X |k0 ∼ c δk0−α

k γ−k0

k P(|X | > x) .

Choose δk = o(γ
k0/(k0−α)
k ) as k → ∞. This is always possible because we may choose εk = k−2,

δk = e−k and γk = k−3 throughout the proof. Then we obtain

lim
k→∞

sup
x>bn

I33
nP(|X | > x)

6 lim
k→∞

c δk0−α
k γ−k0

k = 0 .

Thus we proved for α > 2

lim sup
k→∞

lim
k→∞

sup
x>bn

I3
nP(|X | > x)

= 0 .

The case α > 2 and α ∈ N. In this case, let us fix α/(α + 1) < β < 1 and consider the process
(|Xt|β = |h(Φt)|β). It satisfies DCα and concavity of x→ xβ as β < 1 implies that

EA

(

τA
∑

i=1

|Xi|
)βk0

6 EA

(

τA
∑

i=1

|X i|β
)k0

.

We apply Proposition 4.7 to (|Xt|β) with k0 = α+1 and we obtain EA|SA|βk0 6 E|X1|βk0 . Noticing
that βk0 > α, the use of Karamata’s theorem as above yields that E|X1|βk0 is negligible with respect
to nP(|X | > x). Now we can follow the lines of the proof in the case of non-integer α. �

In what follows, we will use the notation of Theorem 4.6 and its proof. Our next goal is to give
an intuitive interpretation of the large deviation principle of Theorem 4.6: we want to show that
the large deviation probability P(Sn > x) is essentially determined by P(maxi=1,...,NA(n) SA,i > x),
where

SA,i =

τA(i+1)
∑

t=τA(i)+1

Xt , i ∈ Z ,

and (NA(t))t>0 is the renewal process generated from the iid sequence (τA(j + 1)) − τA(j)). The
sequence (SA,i) constitutes an iid sequence. We write τA = τA(1), SA =

∑τA
i=1Xi and λ = (EτA)

−1.



PRECISE LARGE DEVIATIONS FOR DEPENDENT REGULARLY VARYING SEQUENCES 19

Theorem 4.10. Assume that the conditions of Theorem 4.6 hold, α > 1, α 6= 2 and b+ > 0. Then

PA(SA > x) ∼ E(τA)b+P(|X | > x) and the precise large deviation principle for the function of

Markov chain (Xt) can be written in the form

sup
x∈Λn

∣

∣

∣

P(Sn > x)

nPA(SA > x)
− (EτA)

−1
∣

∣

∣
→ 0 ,

where Λn = (bn, cn) is chosen as in Theorem 4.6.

Proof. Using the disjoint partition {NA(n) = 0}, {NA(n) = 1}, {NA(n) > 2}, we obtain

P(Sn > x) = P

(

n
∑

i=1

Xi > x, τA > n
)

+ P

(

τA(1)
∑

i=1

Xi +

n
∑

i=τA(1)+1

Xi > x, τA(2) > n > τA(1)
)

+P(Sn > x,NA(n) > 2).

Using the definitions of (τA(i)) and NA(n), we obtain for small ε ∈ (0, 1)

P(Sn > x) 6 P(τA > n) + 2P(SA > xε/2, τA 6 n) + P

(

NA(n)−1
∑

i=1

SA,i > x(1 − ε)
)

+2P
(

n
∑

i=τA(NA(n))+1

Xi > xε/2
)

= J1 + J2 + J3 + J4.

and

P(Sn > x) > P

(

SA +

NA(n)−1
∑

i=1

SA,i +

n
∑

t=τA(NA(n))+1

Xt > x ,NA(n) > 2
)

> P

(

NA(n)−1
∑

i=1

SA,i > (1 + ε)x, |SA| 6 εx/2,
∣

∣

∣

n
∑

t=τA(NA(n))+1

Xt

∣

∣

∣
6 εx/2 , NA(n) > 2

)

> P

(

NA(n)−1
∑

i=1

SA,i > (1 + ε)x
)

− P(|SA| > εx/2)

−P

(∣

∣

∣

n
∑

t=τA(NA(n))+1

Xt

∣

∣

∣
> εx/2

)

− P(NA(n) 6 2)

= J5 − J6 − J7 − J8 .

Lemma 4.11. Under the conditions of the theorem, for any small ε > 0, uniformly for x ∈ Λn,

P

(

∑NA(n)−1
i=1 SA,i > x(1 + ε)

)

nP(|X | > x)
+ o(1) 6

P(Sn > x)

nP(|X | > x)
6

P

(

∑NA(n)−1
i=1 SA,i > x(1 − ε)

)

nP(|X | > x)
+ o(1) .

Proof. By assumption, the probability J1 6 P(τA > n) is negligible with respect to nP(|X | > x) on
Λn.

By standard computations and using the same notation as in the proof of Theorem 4.6 we have

J4/2 6 P

(

n
∑

i=τA(NA(n))+1

Xi > xε/2
)

+ P

(

∪n
i=τA(NA(n))+1 {|Xi| > xδ}

)

.
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The second term is estimated by

E(

n
∑

i=τA(NA(n))+1

1{|Xi|>xδ}) 6 EA(

τA
∑

i=1

1{|Xi|>xδ}) = E(τA)P(|X | > xδ).

The first term can be shown to be negligible with respect to nP(|X | > x) as in the proof of Theorem
4.6. So J4 = o(nP(|X | > x)).

The term J2 can be treated in the same way as I2 in the proof of Theorem 3.1. An application

of Markov’s inequality yields an estimate of the form cx−k0

[

E

(

1{τA6n}

∑τA
i=1 |Xi|k0

)

+ [nP(|X | >

x)]k0

]

. Using (4.4), Pitman’s and Wald-type identities we obtain J2 6 cn(xε)−k0E|X |k0 . Hence J2

is negligible with respect to nP(|X | > x) by an application of Karamata’s theorem.
Collecting the bounds above, the upper bound in the lemma is proved.
As regards the lower bound, J6 and J7 are of the order o(nP(|X | > x)) in view of the bounds for

J2 and J4 in the proof above, respectively. Moreover,

J8 = P(NA(n) 6 2) 6 P(τA > n) + P(τA(2) > n) 6 3P(τA > n/2) ,

and the latter probability is negligible with respect to nP(|X | > x) as for J1 above. �

Denote Λ̃n = (bn, e
sn) ∩ Λn for some (sn) such that sn/n→ 0.

Lemma 4.12. Under the conditions of the theorem, for any small ξ, ε > 0, uniformly for x ∈ Λ̃n,

λ(1 − ε)P(SA > x(1 + ξ)(1 + ε))

P(|X | > x)
+ o

(

PA(SA > x)

P(|X | > x)

)

+ o(1)(4.11)

6

P

(

∑NA(n)−1
i=1 SA,i > x

)

nP(|X | > x)

6
λPA(SA > x(1− ξ))

P(|X | > x)
+ o

(

PA(SA > x)

P(|X | > x)

)

+ o(1) .(4.12)

Proof. We have for δ > 0,

P

(

NA(n)−1
∑

i=1

SA,i > x
)

= P

(

NA(n)−1
∑

i=1

SA,i > x , |NA(n)− 1− nλ| > δn
)

+P

(

NA(n)−1
∑

i=1

SA,i > x , |NA(n)− 1− nλ| 6 δn
)

= K1 +K2 .

In view of (4.10), τA has exponential moment and therefore one can apply standard large deviation
theory (e.g. Cramér’s theorem; see Dembo and Zeitouni [17]) to obtain

K1 6 P(|NA(n)− 1− nλ| > δn) 6 e−γn ,

for some γ = γ(δ) > 0. In view of the definition of Λ̃n, K1 = o(nP(|X | > x)) on Λ̃n. We also have

P

(

nλ
∑

i=1

SA,i − max
|m−nλ|6δn

∣

∣

∣

nλ
∑

i=m

SA,i

∣

∣

∣
> x

)

6 K2 6 P

(

nλ
∑

i=1

SA,i + max
|m−nλ|6δn

∣

∣

∣

nλ
∑

i=m

SA,i

∣

∣

∣
> x

)

.

Here we define
∑b

i=m for any real value b > m, m ∈ N, as
∑[b]

i=m and the sums
∑m

i=b are defined

accordingly. Notice that b−1
n

∑nλ
i=1 SA,i

P→ 0 from the fact that n−1NA(n)
a.s.→ λ. Then, for any
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ξ ∈ (0, 1), a maximal inequality of Lévy-Ottaviani-Skorokhod type for sums of iid random variables
(e.g. Petrov [47], Theorem 2.3 on p. 51) yields

K2 6 P

(

nλ
∑

i=1

SA,i > x (1 − ξ)
)

+ P

(

max
|m−nλ|6δn

∣

∣

∣

nλ
∑

i=m

SA,i

∣

∣

∣
> xξ

)

6 P

(

nλ
∑

i=1

SA,i > x (1 − ξ)
)

+ cP
(
∣

∣

∣

δn
∑

i=1

SA,i

∣

∣

∣
> 0.5ξx

)

.(4.13)

Similarly, using the independence of the random variables (SA,i) and a maximal inequality,

K2 > P

(

λn
∑

i=1

SA,i > x(1 + ξ)
)

− cP
(∣

∣

∣

δn
∑

i=1

SA,i

∣

∣

∣
> 0.5ξx

)

,(4.14)

where δ, ξ can be made arbitrarily small provided n is sufficiently large. Next we give bounds for
the probabilities in (4.13) and (4.14). We have for any real s > 0 and y > 0,

P(

sn
∑

i=1

SA,i > y) 6

sn
∑

i=1

P

(

sn
∑

k=1

SA,k > y, SA,i > y, SA,j 6 y, j 6= i
)

+P(∪sn
k=1,j 6=k{SA,k > y, SA,j > y})

6 snP(

sn
∑

k=1

SA,k > y, SA,1 > y, SA,j 6 y, j 6= 1) + [nPA(SA > y)]2

6 s nPA(SA > y) + [s n(PA(SA > y)]2 .

Hence, because of the regular variation of X , uniformly for x ∈ Λ̃n,

P

(

∑NA(n)−1
i=1 SA,i > x

)

nP(|X | > x)
6

λPA(SA > x(1 − ξ)) + cδPA(|SA| > 0.5ξx)

P(|X | > x)
+ o

(

PA(SA > x)

P(|X | > x)

)

6
λPA(SA > x(1 − ξ))

P(|X | > x)
+ o

(

PA(SA > x)

P(|X | > x)

)

.

We obtain the last inequality, taking into account that the argument above can be applied to the
left tail of SA as well. This proves the upper bound (4.12).

On the other hand, for s > 0, sufficiently large n, small ε > 0 and y ∈ Λ̃n,

P(
sn
∑

i=1

SA,i > y) > P

(

∪sn
i=1

{

∑

k 6=i

SA,k 6 εy, SA,i > y(1 + ε), SA,j 6 y(1 + ε), j 6= i
})

> snP
(

sn
∑

k=2

SA,k 6 εy, SA,1 > y(1 + ε), SA,j 6 y(1 + ε), j 6= 1
)

> (1− ε)snPA(SA > y(1 + ε)) .

We conclude from (4.14) that, uniformly for x ∈ Λ̃n,

P

(

∑NA(n)−1
i=1 SA,i > x

)

nP(|X | > x)
> (1− ε)

λP(SA > x(1 + ξ)(1 + ε))− cδPA(|SA| > 0.5ξx(1 + ε))

P(|X | > x)
.

Now, the lower bound (4.11) is proved in a similar fashion as above. �
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In view of Lemmas 4.11 and 4.12, letting first x → ∞ and then ε → 0 and ξ → 0 and using
regular variation of X we obtain

b+
λ

= lim
x→∞

PA(SA > x)

P(|X | > x)
uniformly on Λ̃n.

In particular this relation holds along the sequences xn = cbn ∈ Λ̃n satisfying xn+1/xn → 1.
A sequential version of regular variation then implies that PA(SA > x) is regularly varying; see
Bingham et al. [9], Theorem 1.9.2. An application of Theorem 1.1 and Theorem 4.6 finishes the
proof of the theorem. �

Remark 4.13. Regular variation of PA(SA > x) also implies the following:

sup
x>bn

∣

∣

∣

P

(

∑NA(n)−1
i=1 SA,i > x

)

nP(|X | > x)
− b+

∣

∣

∣
→ 0 .

For the region x ∈ Λ̃n this fact was proved above. Now assume that x > e sn . We have by
Theorem 1.1 for α > 1, since x > k for k 6 n, uniformly for x > e sn ,

P

(

NA(n)−1
∑

i=1

SA,i > x
)

∼
n
∑

k=2

P(NA(n) = k) k PA(SA > x)

∼ PA(SA > x)ENA(n) ∼ n (EτA)
−1

PA(SA > x) .

An inspection of the proof of Theorem 4.10 now shows why the precise large deviation principle for
(Xn) might in general not hold in the region (cn,∞): the first and the last blocks in Sn are always
negligible if τA 6 n. Thus for any x > bn one has

P(Sn > x)

nP(|X | > x)
∼ b+ +

P(Sn > x, τA > n)

nP(|X | > x)
= b+ + r(x).(4.15)

In the region Λn, r(x) is uniformly negligible because it is smaller than P(τA > n)/(nP(|X | > x)).
Therefore the precise large deviation result of Theorem 4.6 holds. However, r(x) cannot be neglected
in general. It may influence the very large deviations for x > cn in a complicated way: the Nummelin
regeneration scheme cannot be used on {τA > n}. Below two special examples of functions of Markov
chains are given, where the specific dynamics of the models give some clue on the behavior of the
second term.

Example 4.14. Consider the autoregressive process of order 1, Xt = ϕXt−1+Bt for some constant
ϕ ∈ (−1, 1) and an iid sequence (Bt) such that B is regularly varying with index α and EB = 0 if
E|B| < ∞. It is known from Mikosch and Samorodnitsky [40] that one can choose Λn = (bn,∞)
with (bn) from Theorem 1.1 and

b+ = (1− |ϕ|α)
( p

(1− ϕ)α+
+

q

(1− ϕ)α−

)

,

where p = 1 − q = limx→∞ P(B > x)/P(|B| > x). This result was derived without any further
conditions on B. The same result follows from Theorem 4.6 under more restrictive conditions, e.g.
if B has a non-singular distribution with respect to Lebesgue measure (see Alsmeyer [1]). Thus the
remainder term r(x) in (4.15) is uniformly negligible over (bn,∞).
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4.4. Solution to stochastic recurrence equations. In this section, we consider a special class of
stationary Markov chains (Xt) for which we can apply Theorem 4.6 by considering it as a function
of its enlargement (Φt) possessing an atom. Let ((At, Bt))t∈Z be an iid sequence such that for a
generic element (A,B) the following set of conditions SREα holds:

• A > 0, A 6= 0 a.s., B 6= 0 a.s., and the distribution of (A,B) is non-singular with respect to
the Lebesgue measure on R

2.
• The Markov chain Xt = Ψt(Xt−1) is the unique solution to a stochastic recurrence equation
with iid iterated functions Ψt satisfying the following additional conditions:

– The Lipschitz coefficients Lt of the mapping Ψt satisfy E log+ Lt <∞.
– The top Lyapunov exponent of (Ψt) is strictly negative.
– For any t,

AtXt−1 − |Bt| 6 Xt 6 AtXt−1 + |Bt| .(4.16)

• There exists an α > 0 such that EAα = 1, EAα+δ <∞ and E|B|α+δ <∞ for some δ > 0.
• The conditional law of logA, given A 6= 0, is non-arithmetic.
• The distribution of X is regularly varying with index α > 0 in the following sense: There
exist constants c+∞, c

−
∞ > 0 such that c+∞ + c−∞ > 0 and

P(X > x) ∼ c+∞ x−α , and P(X 6 −x) ∼ c−∞ x−α as x→ ∞ .(4.17)

These conditions are motivated by the well studied affine case:

Xt = AtXt−1 +Bt , t ∈ Z .(4.18)

The stochastic recurrence equation (4.18) has attracted a lot of attention, starting with pioneering
work of Kesten [32] who proved that (4.18) has a stationary solution (Xt) under mild conditions on
the distribution of (A,B). This solution has a regularly varying marginal distribution with index
α > 0 solving the equation EAκ = 1, κ > 0. Kesten’s theory was formulated for multivariate Xt’s.
In the one-dimensional case, Goldie [23] gave an alternative proof of the regular variation of X and
he also determined the constants c−∞ and c+∞. In particular, for B > 0 a.s. he showed that

c+∞ =
E[(B1 +A1X0)

α − (A1X0)
α]

αEAα logA
.

Buraczewski et al. [12] proved a precise large deviation principle (1.6) in the affine case (4.18) in
the region Λn = (bn, cn), where (bn) is chosen as in Theorem 4.6 and cn = e sn for any sequence (sn)
such that sn → ∞ and sn = o(n). The proof in [12] is rather technical and uses some deep analysis
of the structure of the random walk (Sn) determined by the equation (4.18). In what follows, we
will show that Theorem 3.1 can be used to establish the same results by using the Markov structure
of the sequence (Xt). The proofs of this section will need less technical efforts than in [12] and give
some insight into precise large deviation principles for classes of Markov chains larger than the affine
case (4.18).

Goldie [23] already considered stochastic recurrence equations beyond affine structures. Some of
his examples satisfy inequality (4.16):

Example 4.15. Consider the solution to the stochastic recurrence equation

Xt = max(AtXt−1, Bt) , t ∈ Z.(4.19)

It exists under the conditions E logA < 0, E log+B <∞ and satisfies (4.16). Moreover, if EAα = 1,
EAα logA < ∞, the conditional law of logA, given A 6= 0, is non-arithmetic and E(B+)α < ∞,
then the unique solution to (4.19) satisfies relation (4.17); see Goldie [23], Theorem 5.2.
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Example 4.16. Consider an iid sequence ((At, Ct, Dt))t∈Z with a generic element (A,C,D) such
that A > 0 a.s. and C,D are real-valued. The solution to the equation

Xt = At max(Ct, Xt−1) +Dt , t ∈ R ,

was considered by Letac [37]. It exists under the conditions E logA < 0, E log+ C <∞, E log+D <
∞ and satisfies (4.16) if D > 0 a.s. Indeed, if we write Bt = At C

+
t +Dt then

|Xt −AtXt−1| 6 At (Ct −Xt−1)+ +Dt 6 At C
+
t +Dt = Bt .

This example is also known to satisfy (4.17) (see Goldie [23], Theorem 6.2): if A > 0, E(AC+)α <∞,
E|B|α <∞ and A satisfies all conditions of the previous example then (4.17) holds.

Goldie [23] gave various other examples of stochastic recurrence equations satisfying (4.17). Re-
cently, Mirek [42] considered multivariate analogs of not necessarily affine stochastic recurrence
equations satisfying a condition of type (4.16) (adjusted to the multivariate case). He proved the
regular variation of the marginal distribution and also gave examples supplementary to those in
[23]. The use of (4.16) in his paper was also the motivation for us to include in this paper stochastic
recurrence equations which do not necessarily satisfy (4.18).

In what follows, it will be convenient to write

Π0 = 1 and Πj =

j
∏

i=1

A1 · · ·Aj , j > 1 .

Theorem 4.17. Assume that the stationary Markov chain (Xt) satisfies the condition SREα for

some α > 0 and EX = 0 if E|X | <∞. Then the precise large deviation principle (1.6) holds with

b+ = E

[(

1 +

∞
∑

i=1

Πi

)α

−
(

∞
∑

i=1

Πi

)α]

(4.20)

in the regions Λn = (bn, cn) given by

• 0 < α < 1: Λn = (bn,∞) for any (bn) satisfying of bn/n
1/α → ∞.

• 1 < α and α 6= 2: Λ = (bn, cn) for any sequence (bn) satisfying bn/n
1/α∨0.5+δ → ∞ for any

δ > 0, and cn = e γn for sufficiently small γ > 0.

Proof. The condition RVα follows from regular variation of the marginals. Indeed, iteration of
(4.18) yields for fixed d > 1,

X0Πn +Rn,1 6 Xt 6 X0Πn +Rn,2 , n = 1, . . . , d,

where (Rn,i)n=1,...,d, i = 1, 2, is independent of X0. Moreover, by the assumptions on (A,B),
E|Rn,i|α+δ <∞. Therefore

Xd = (X1, . . . , Xd) = X0(Π1, . . . ,Πd) +Rd .

Since X0 is assumed regularly varying with index α an application of a multivariate version of a
result of Breiman [10] (see Basrak et. al [4]) shows that X0(Π1, . . . ,Πd) is regularly varying, and it
follows from Lemma 3.12 in Jessen and Mikosch [30] and from E|Rd|α+δ < ∞ for some δ > 0 that
Xd is regularly varying with index α. This also means that one can use the same calculations for
b+(d) given in Bartkiewicz et al. [3] and hence the limit b+ exists and is given by the expression
(4.20). Notice that [3] derive the constant b+ only for α ∈ (0, 2). However, the proofs in the cases
α ∈ (1, 2) and α > 1 are identical.

Next we verify conditionACα for the region (bn,∞) for any sequence (bn) satisfying bn/n
1/α → ∞

or, equivalently, nP(|X | > bn) → 0. Write Πij = Ai · · ·Aj for any i, j ∈ Z with the convention that
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Πij = 1 if j, i. Iterating (4.16), we obtain

Xj 6 Πj X0 +

j
∑

i=1

Πi+1,j |Bi| , j > 0 .(4.21)

The second term in the right-hand side of (4.21) is independent of X0. Hence for δk > 0,

P(|Xj | > xδk | |X0| > xδk)

6 P(Πj |X0| > xδk/2 | |X0| > xδk) + P

(

j
∑

i=1

Πi+1,j |Bi| > xδk/2
)

= I1(x) + I2(x) .

Under condition SREα it follows from Kesten [32] and Goldie [23] that

Qj =

j
∑

i=−∞

Πi+1,j |Bi| <∞ ,

and (Qj) is the causal solution to the stochastic recurrence equation Qj = AjQj−1 + |Bj |, t ∈ Z,
which according to the Kesten-Goldie theory is regularly varying with index α. Therefore

sup
x>bn

n I2(x) = n I2(bn) → 0 , n→ ∞ ,

for every δk > 0 and any sequence (bn) such that bn/n
1/α → ∞. We also have

I1(x) 6
P(min(Πj , 1) |X0| > xδk/2)

P(|X0| > xδk)
.

In view of (4.17) there exists a constant c > 0 such that P(X0 > x) 6 c x−α, x > 0.
Using this inequality conditionally on (Ai)16i6j , we obtain

P(min(Πj , 1) |X0| > xδk/2 | (Ai)16i6j) 6 c (2min(Πj , 1))
α(xδk)

−α ,

and taking expectations,

I1(x) 6 cE(min(Πj , 1))
α(xδk)

−α .

Since min(yα, 1) 6 yα−ǫ for y > 0, ǫ ∈ (0, α), fixed δk > 0, and large n,

sup
x>bn

δ−α
k

n
∑

j=k

P(|Xj | > xδk | |X0| > xδk) 6 c δ−2α
k

n
∑

j=k

(EAα−ǫ)j .

Since EAα−ε < 1, the right-hand side is bounded by c(EAα−ε)k/δ2αk . Thus ACα is satisfied for any

choice of (bn) with bn/n
1/α → ∞ and (δk) such that (EAα−ε)k = o(δ2αk ) as k → ∞. In particular,

one can choose (δk) decaying to zero exponentially fast.
Our next goal is to verify (3.1).

The case 0 < α < 1. Condition (3.1) is immediate from Remark 3.2. We can choose (δk) decaying
exponentially fast, as discussed above, and εk = k−2.

The case α > 1 and α 6= 2. In this case the verification of (3.1) is much more involved. We will
employ Theorem 4.6. According to this result, we need to verify that (Xt) is irreducible strongly
aperiodic and that the Markov chain satisfies DCp for p < α. However, since EAα = 1, by convexity
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of the function f(x) = EAx, x > 0, we have f(p) < 1 as p < α. Writing p = βk where 0 < β < 1
and k is an integer then

E(|X1|p −Ap|x|p | X0 = x) 6 E((Aβ |x|β + |B|β)k − (Aβ |x|β)k | X0 = x)

=

k−1
∑

j=0

(

k

j

)

(|x|β)jE[(Aβ)j(|B|β)k−j ]

6 c(1 + |x|p−β) .

Hence DCp is satisfied for any p < α.
An application of a result of Alsmeyer [1] yields that the Markov chain (Xt) is aperiodic and

irreducible. The aperiodicity and P-irreducibility follow from Theorem 2.1 and Corollary 2.3 in [1] if
and only if the transition kernel of the Markov chain has a component which is absolutely continuous
with respect to Lebesgue measure. The latter condition is satisfied in view of the non-singularity of
the distribution of (A,B) assumed in SREα and since

Px(X > ε) > P(Ax−B > ε) and Px(X 6 −ε) > P(Ax+B 6 −ε) for any ε > 0.

Thus all assumptions of Theorem 4.6 are satisfied and therefore its conclusion applies. �

4.5. The GARCH(1, 1) model. Consider the model (4.1) with the specification that (Zt) is an iid
symmetric sequence and

σ2
t = α0 + σ2

t−1 (α1Z
2
t−1 + β1) = α0 + σ2

t−1At ,(4.22)

where α0, α1 > 0 and β1 > 0. This stochastic recurrence equation defines a GARCH(1, 1) process.
The GARCH(1, 1) process has been used most frequently for applications in financial time series
analysis; see Andersen et al. [2]. The theory of Section 4.4 can be applied to the affine stochastic
recurrence equation (4.22). There exists a unique stationary solution to (4.22) under the assumption
E logA < 0 and σ is regularly varying under mild conditions on the distribution of Z. We will now
show a precise large deviation principle for the process (Xt)

Theorem 4.18. Consider a GARCH(1, 1) process (Xt) given by (4.1) and (4.22) with α0, α1 > 0,
β1 ∈ [0, 1). We assume that there exists an α > 0, α 6= 2 such that:

• Z is symmetric with var(Z) = 1, E|Z|α+δ <∞ for some δ > 0 and the distribution of Z2 is

non-singular with respect to Lebesgue measure.

• There exists an α > 0 such that EAα/2 = 1.

Then the precise large deviation result (1.6) holds in the region Λn = (n1/α+δ,∞) if α < 2 and

Λn = (n1/2+δ, e γn) for sufficiently small γ > 0 if α > 2 with

b+ =
E[|Z0 +A0.5

1 T∞|α − |A0.5
1 T∞|α]

2E|Z|α ,

and T∞ =
∑∞

t=1 Zt

∏t−1
i=1 A

0.5
i+1 .

Proof. We verify the conditions of Theorem 3.1. Since (σ2
t ) satisfies the affine stochastic recurrence

equation (4.22) the assumptions on the distribution of A imply that the conditions of Goldie [23],
Theorem 5.2, are satisfied and therefore σ satisfies the relation P(σ > x) ∼ c∞x

−α for some positive
c∞ as x → ∞. Following the argument of the proof on top of p. 366 in Bartkiewicz et al. [3], we
can show that for d > 1,

P

(
∣

∣

∣
(X1, . . . , Xd)− σ0(Z1A

0.5
1 , . . . , ZdΠ

0.5
d )

∣

∣

∣
> x

)

P(|σ| > x)
→ 0 .



PRECISE LARGE DEVIATIONS FOR DEPENDENT REGULARLY VARYING SEQUENCES 27

Observing that E|Z1A
0.5
1 |α+δ <∞, it follows from Lemma 3.12 in Jessen and Mikosch [30] and from

a generalization of Breiman’s result in Basrak et al. [4] that RVα holds.
The constant b+ was derived in [3] for α ∈ (0, 2) but the proof generalizes to arbitrary α > 0.
As to ACα, it follows by the argument leading to (4.21) that

σ2
j = Πjσ

2
0 + α0

j
∑

i=1

Πi+1,j , j > 0 .

Then

P(|Xj| > δkx | |X0| > δkx) 6 P

(

ΠjZ
2
j σ

2
0 > (δkx)

2/2 | |X0| > δkx
)

+ P

(

Z2
jα0

j
∑

i=1

Πi+1,j > (δkx)
2/2

)

,

and now one can follow the proof of ACα in Theorem 4.17. No conditions on (δk) are required so
far and (bn) is chosen such that bn/n

1/α → ∞.
Next we verify (3.1).

The case 0 < α < 2. Here one can use Remark 3.3.

The case α > 2. We apply Theorem 4.6 to Xt = h(Φt), t ∈ Z, where the Markov chain (Φt) is an
enlargement of the irreducible Markov chain (Xt, σ

2
t ) possessing an atom A. �
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