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A MODERATE DEVIATION PRINCIPLE FOR EMPIRICAL

BOOTSTRAP MEASURE

MIKHAIL ERMAKOV

Abstract. We establish two moderate deviation principles (MDP) in the
bootstrap setting. We prove MDP for the joint distribution of the empirical
measure and the empirical bootstrap measure (empirical measure obtaining by
the bootstrap procedure). We derive MDP for the conditional distribution of
the empirical bootstrap measure given the empirical probability measure.For
most common statistical functionals (in particular differentiable and homo-
geneous functionals) we show that their asymptotics of moderate deviation
probabilities in the cases of empirical measure and bootstrap empirical boot-

strap measure coincides. However the moderate deviation zones are different.

1. Introduction.

Let
- S be a Hausdorff topological space;
- F the σ-field of Borel sets in S;
- Λ the space of all probability measures on (S,F ).
Let X1, . . . , Xn be i.i.d. random variables, taking values in S and P (∈ Λ) be

unknown distribution of X1.
Denote P̂n the empirical measure (occupation measure) for X1, . . . , Xn, that is,

for any F -measurable set A,

P̂n(A) =
1

n

n
∑

i=1

I(Xi ∈ A)

In 1979, in a landmark paper Efron [12] proposed to analyze the distributions of
statistics V (X1, . . . , Xn) with the help of the bootstrap procedure. In the bootstrap

procedure we consider the empirical measure P̂n as an estimator of the probability
measure (pm) P and simulate the distribution of statistics V (X1, . . . , Xn) on the

base of pm P̂n. In other words, we simulate independent copies (X∗
1i, . . . , X

∗
ni)i∈[1,k]

of i.i.d random variables such that X∗
11 is distributed according to P̂n. After that

the empirical distribution of (V (X∗
1i, . . . , X

∗
ni))i∈[1,k] is postulated as an estimate

of the distribution of V (X1, . . . , Xn).
It is of interest to estimate large and moderate deviation probabilities of V (X1, . . . , Xn).

Such problems emerge constantly in confidence estimation and hypothesis testing.
The significant levels in the confidence estimation and the type I error probabilities
in hypothesis testing are (usually) of small values and thus are compatible with
LDP - MDP analysis. Hence it appears natural to compare V (X1, . . . , Xn) and
V (X∗

1 , . . . , X
∗
n) in terms of LDP - MDP approach.

In this paper we carry out such an MDP based comparison in the following setup.
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We represent V (X1, . . . , Xn) and V (X∗
1 , . . . , X

∗
n) as functionals of P̂n and P̂ ∗

n ,
where P ∗

n is the empirical probability measure of X∗
1 , . . . , X

∗
n, i.e.

V (X1, . . . , Xn) = T (P̂n),

V (X∗
1 , . . . , X

∗
n) = T (P ∗

n)

Thus we reduce the problem to an MDP study for T (P ∗
n)−T (P̂n) and T (P̂n)−T (P ).

The LDP - MDP analysis for empirical measures generated i.i.d. random ob-
jects is well known from Sanov [24], Groeneboom, Oosterhoff and Ruymgaart [17],
Borovkov and Mogulskii [5], Dembo and Zeitouni [10], Eichelsbacher and Schmock
[13], Arcones [2], de Acosta [8], Ermakov [15] (see also references therein). The
results there are obtained under rather general assumptions.

Our goal is twofold.
1. We develop MDP technique from the above mentioned papers for

(P ∗
n − P̂n)× (P̂n − P ).

and implement the above result for the MDP comparison of

T (P̂n)− T (P ) and T (P ∗
n)− T (P̂n).

2. We establish the MDP for a conditional distribution of the empirical bootstrap

measure P ∗
n given empirical probability measure P̂n.

We notice that the MDP for the joint

“empirical bootstrap + empirical probability”

measures is valid in a “smaller time zone” than the MDP for empirical measure
only. On the other hand, the time zone for the above-mentioned conditional MDP
is essentially larger with probability close to one. The first statement shows insta-
bility of a bootstrap procedure provided that the empirical measure belongs to the
MDP zone. The second statement confirms the wellknown fact that the bootstrap
statistics have more stable properties (see Hall [18], Wood [28], DasGupta [9]).

The LDP for the empirical bootstrap measure has been studied in Chaganty [7]
and Chaganty, Karandikar [6] using weak convergence. In contrast to that, for the
MDP analysis we use τΦ-topology (see, Arcones [2]) enabling treatment of statistics
having unbounded influence functions.

Due to involved structure of the rate function, the LDP result for P ∗
n × P̂n is far

from being “applicable” even for simple statistical cases (as exceptions, see special
cases in Chaganty [7]). In contrast to that, the MDP provides readily derived
asymptotics which are compatible with a majority of widespread statistics and
thus the MDP effectively serves T (P̂n) − T (P ) and T (P ∗

n) − T (P̂n). In particular

we show that the asymptotics of moderate deviation probabilities of T (P̂n)−T (P )

and T (P ∗
n) − T (P̂n) are calculated easily for the statistical functionals having the

Hadamard derivatives.
The assumption of differentiability is the standard tool for the proof of asymp-

totic normality of statistics T (P̂n) (see Serfling [25], van der Vaart and Wellner [27]
) and, in implicit form, were also used for the study of moderate deviation proba-
bilities (see Aleskeviciene [1], Jureckova, Kallenberg and Veraverbeke [20]; Inglot,
Kallenberg and Ledwina [19], Arcones [3]). The moderate deviations of statistics
were studied in Ermakov [15] for the case of Freshet derivative and Gao and Zhao
[16] for the case of Hadamard derivatives. In [16] the statistical functionals were
considered as functionals of empirical distribution functions and the technique of
large deviations of stochastic processes was implemented. We consider the statis-
tical functionals as the functionals of empirical probability measures or empirical
bootstrap measure.
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The remainder of the paper is organized as follows. In section 2 we present
MDP for empirical bootstrap measure, empirical measure and conditional MDP
for empirical bootstrap measure given empirical measure. The moderate deviation
probabilities of statistical functionals are studied in section 3. The proofs of MDP
and conditional MDP are given in sections 4 and 5 respectively.

2. MDP for empirical and empirical bootstrap measures

2.1. Notations. Throughout the paper, the following notations are implemented:
- Q2 ×Q1 the Cartesian product of probability measures Q2, Q1 ∈ Λ;
- Λ2 = Λ × Λ denotes the set of all measures Q2 ×Q1 with Q2, Q1 ∈ Λ;
- C, c are generic positive constants;
- χ(A) is the indicator of event A;
- [t] is the integral part of real number t;
-
∫

always denotes
∫

S
.

2.2. τΦ-topology. We begin with the definition.
Let us fix a decreasing sequence of positive numbers (bn)n≥1 with properties:

bn → 0
nb2n → ∞
bn

bn+1
→ 1







n → ∞. (2.1)

Denote Φ the set of measurable functions f : S → R with the following property:

lim
n→∞

1

nb2n
log(nP (|f(X)| > b−1

n )) = −∞. (2.2)

Let

ΛΦ =
{

P ∈ Λ :

∫

|f(X)|dP < ∞, forallf ∈ Φ
}

.

The coarsest topology in ΛΦ providing the continuous mapping

Q ⇒
∫

f dQ, for all f ∈ Φ, Q ∈ ΛΦ

is known as the τΦ-topology (henceforth, all topological concepts refer to the τΦ-
topology). Denote σΦ the smallest σ-field that makes all these mapping measurable.

For any set Ω ⊂ ΛΦ the notations: clo(Ω) and int(Ω) are used for the closure
and interior of Ω respectively.

The τΦ-topology in Λ2
Φ is the corresponding product topology. For the set Φ0(⊂

Φ) of all real bounded measurable functions, the τΦ-topology coincides with the
τ -topology (see GOR [17], Dembo and Zeitouni [10], Eichelsbacher and Schmock
[13]). For P,Q ∈ Λ and P,Q ∈ ΛΦ we define the sets Λ0 and Λ0Φ respectively of of
all differences P −Q. The τΦ-topologies in Λ0Φ and Λ2

0Φ are defined in a standard
way as well as clo(Ω̄0) and int(Ω̄0) the closure and interior of Ω̄0 ⊂ Λ2

0Φ.

2.3. Rate functions. For G ∈ Λ0, let

ρ20(G|P ) =

{

1
2

∫ (

dG
dP

)2
dP, G ≪ P

∞, otherwise

be the rate function (in statistical terms, 2ρ20(G|P ) is the Fisher information) which

arises naturally in the MDP analysis of empirical measures P̂n (see Borovkov and
Mogulskii [5]; Gao and Zhao [16], Arcones [2] and Ermakov [15] ).

In the bootstrap setting, a rate function (we shall denote it by ρ20b) is constituted
from two ones:

ρ20b(Ḡ|P ) = ρ20(G2|P ) + ρ20(G1|P ),
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where Ḡ = G2 ×G1 ∈ Λ2
0Φ

2.4. MDP for empirical bootstrap measure. For any set A ∈ F and any
signed measure G ∈ Λ0 denote |G|(A) = sup{G(B)−G(D) : B ⊆ A,D ⊆ A}. The
measure |G| is the variation of signed measure G.

Let the signed measures H,Hn ∈ Λ0Φ satisfy the following assumptions.

A. We have Pn = P + bnHn ∈ ΛΦ, P + bnH ∈ ΛΦ and Hn → H as n → ∞ in the
τΦ-topology.

B1. For any f ∈ Φ

lim sup
n→∞

sup
m

(nb2n)
−1 log

(

nbn

∫

χ(|f(x)| > b−1
n ) d|Hm|

)

= −∞.

Define the signed measure O ∈ Λ0Φ such that O(A) = 0 for all measurable sets

A ∈ ℑ. For each G ∈ Λ0Φ denote G̃ = O ×G.

Theorem 2.1. Assume A and B1. Let Ω̄0 ⊂ Λ2
0Φ be σΦ measurable set of Λ2

0Φ.
Then the Moderate Deviation Principle (MDP) holds

lim inf
n→∞

(nb2n)
−1 logPn((P

∗
n − P̂n)×(P̂n−P0) ∈ bnΩ̄0) ≥ −ρ20b(int(Ω̄0−H̃), P ) (2.3)

and

lim sup
n→∞

(nb2n)
−1 logPn((P

∗
n − P̂n)× (P̂n−P ) ∈ bnΩ̄0) ≤ −ρ20b(cl(Ω̄0− H̃), P ). (2.4)

Remark 2.1. In hypothesis testing, the type II error probabilities are often ana-
lyzed for the alternatives Pn converging to the hypothesis P . Theorem 2.1 allows
to study moderate deviation probabilities in this setup. The analysis of importance
sampling efficiency is also based on MDP with a sequence pm’s Pn converging to
pm P (see Ermakov [15]). Naturally, if we suppose that Hn, H are absent, we get
the usual form of MDP. Bolthausen [4] has proved the Donsker-Varadhan LDP [11]
when the laws of random variables converge weakly and a uniform exponential inte-
gration condition is satisfied. Theorem 2.1 and further Theorems can be considered
as versions of these results.

The modern form of LDP-MDP (see de Acosta [8], Gao and Zhao [16], Leonard
and Najim [21]) covers the case of unmeasurable sets Ω̄0 and is given in terms
of outer and inner probabilities. Let (Υ,ℑ, P ) be a probability space. The outer
probability of an arbitrary subset B ⊂ Υ is

(P )∗(B) = inf{P (A);B ⊆ A,A ∈ σΛ0Θh
}

and (P )∗(B) = 1 − (P )∗(Λ0Θh
\ B) is the inner probability. All Theorems of the

paper hold also for this setup. In Theorem 2.1 it suffices to replace pm’s Pn in (2.3)
with (Pn)∗ and pm’s Pn in (2.4) with (Pn)∗.
The bootstrap procedures are often implemented with sample size k 6= n. In The-
orem 2.2 given below the results are extended to this setting. Let X∗

1 , . . . , X
∗
k be

i.i.d.r.v.’s having pm P̂n. Denote P ∗
k the empirical measure of X∗

1 , . . . , X
∗
k . Suppose

that k = k(n), k/n → ν > 0 as n → ∞.
For any Ḡ = G2 ×G1 ∈ Λ2

0 define the rate function

ρ20ν(Ḡ : P ) = ν ρ20(G2 : P ) + ρ20(G1 : P ).

For any Ω̄0 ⊂ Λ2
0 denote ρ0ν(Ω̄0 : P ) = inf{ ρ0ν(Ḡ : P ) : Ḡ ∈ Ω̄0 }.

Theorem 2.2. Assume A and B1. Then the Moderate Deviation Principle (MDP)
holds

lim inf
n→∞

(nb2n)
−1 logPn((P

∗
k − P̂n)×(P̂n−P0) ∈ bnΩ̄0) ≥ −ρ20ν(int(Ω̄0−H̃), P ) (2.5)
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and

lim sup
n→∞

(nb2n)
−1 logPn((P

∗
k − P̂n)× (P̂n−P ) ∈ bnΩ̄0) ≤ −ρ20ν(cl(Ω̄0− H̃), P ). (2.6)

The proof of Theorem 2.2 is akin to that of Theorem 2.1 and is omitted. From now
on, we assume k = n.

2.5. MDP for empirical measure. In section a version of Arcones [2] MDP for
empirical processes is given in the setup for empirical pm. These results were es-
tablished in Ermakov [15] and are given here for the comparison with the bootstrap
setup.

The MDP for the empirical probability measures holds for wider zones of mod-
erate deviations. Define the set Ψ of measurable functions f : S → R1 such that

lim
n→∞

(nd2n)
−1 log(nP (|f(X)| > ndn)) = −∞ (2.7)

where dn → 0, nd2n → ∞, dn+1/dn → 1 as n → ∞.
Assume the following.
B2. For any f ∈ Ψ

lim
n→∞

(nd2n)
−1 sup

m
log

(

ndn

∫

χ(|f(x)| > ndn) d|Hm|
)

= −∞. (2.8)

Using the reasoning of Lemma 2.5 in Eichelsbacher and Löwe [14], we get that B1
or B2 implies

supm

∫

f2d|Hm| < ∞ (2.9)

and (2.2) or (2.7) implies
∫

f2dP < ∞. (2.10)

In Lemma 2.5 in [14] (2.10) has been proved, if dn is decreasing and n1/2dn is
increasing. Since dn/dn−1 → 1 as n → ∞ we can choose a subsequence dnk

such

that n
1/2
k dnk

is increasing and dnk
/dnk−1

→ 1 as k → ∞. After that we can choose
a subsequence dnki

such that dnki
is decreasing and dnki

/dnki−1
→ 1 as i → ∞.

Implementing to the subsequence dnki
the same reasoning as in the proof of Lemma

2.5 in [14] we get (2.10).

Theorem 2.3. Assume A with Φ = Ψ and B2. Let Ω0 be σΨ measurable set of
Λ0Ψ. Then the MDP holds

lim inf
n→∞

(nd2n)
−1 logPn(P̂n ∈ P + dnΩ0) ≥ −ρ20(int(Ω0 −H), P0) (2.11)

and

lim sup
n→∞

(nd2n)
−1 logPn(P̂n ∈ P + dnΩ0) ≤ −ρ20(cl(Ω0 −H), P0) (2.12)

The Theorem 2.4 given below shows that the MDP for the empirical bootstrap
measure can not be valid if (2.2) is replaced by (2.7).

Theorem 2.4. Let the random variable Y = |f(X)| satisfy (2.2). Let the sequences
rn and en be such that b−1

n < rn, b
−1
n en → ∞, nen/rn → ∞ as n → ∞ and

lim
n→∞

(ne2n)
−1 log (nP (Y > rn)) = 0, (2.13)

lim
n→∞

(rnen)
−1 log

nen
rn

= 0. (2.14)
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Let Y1, . . . , Yn be independent copies of Y and let Y ∗
1 , . . . , Y

∗
n be obtained from

Y1, . . . , Yn using the bootstrap procedure. Then

lim
n→∞

(ne2n)
−1 logP

(

n
∑

i=1

Y ∗
i > nen

)

= 0. (2.15)

The proof of Theorem 2.5 is given in Appendix.

Example. Let P (Y > t) = exp{−tγ}, 0 < γ < 1. Then bn = o(n− 1
2+γ ). By

straightforward calculations we get that (2.13), (2.14) hold for any sequence rn =

n
1

2+γ fn, en = n− 1
2+γ f

γ
2 −δ
n where (logn)

1

1+
γ
2
−δ << fn << n

γ
(2+γ)(1+δ) and 0 <

δ < γ
2 . Thus the moderate deviation zone in Theorem 2.1 can not be improved

essentially for such an asymptotic of P (Y > t).

2.6. MDP for conditional bootstrap measure. Theorem 2.5 given below shows
that the MDP holds almost sure (a.s.) for the conditional distribution of the empiri-
cal bootstrap measure given the empirical probability measure. We call this version
of MDP the conditional MDP. In this model we allow the sample size k = kn of
bootstrap procedures to have values different from n.

Almost sure version of conditional LDP for the bootstraped sample mean has
been established Li, Rosalski and Al-Mutairi [22]. Chaganty and Karandikar [6]
have proved conditional LDP for empirical bootstrap measure in the case of weak
topology.

For a sequence of arbitrary random variables Zn : S → R1 (Zn may not be
Borel measurable) we say that lim infn→∞ Zn ≥ c inner almost surely (a.s∗ if
there exist a sequence ∆n of measurable random variables ∆n ≤ Zn such that
P (lim infn→∞ ∆n ≥ c) = 1.

We say that lim supn→∞ Zn ≤ C outer almost surely (a.s∗.) if lim infn→∞ −Zn ≥
−c a.s∗.

We say that lim supn→∞ Zn = −∞ outer almost surely (a.s∗.) if lim infn→∞ −Zn ≥
−c a.s∗ for any C > 0.

Let X∗
1 , . . . , X

∗
kn

be i.i.d.r.v.’s having pm P̂n. Denote P ∗
kn

the empirical proba-

bility measure of X∗
1 , . . . , X

∗
kn
. Suppose that kn

n < c < ∞ and kn → ∞ as n → ∞.

For each t > 2 define the set Θ = Θt of real functions f : S → R1 such that
E[|f(X)|t] < ∞.

For decreasing function h : R1
+ → R1

+ and t ≥ 2 define the set Θ = Θ2,h of real
functions f such that

P (|f(X)| > s−1) < h(s), s > 0 (2.16)

and

E[f2(X)] < ∞. (2.17)

All results are given bellow in terms of τΘ-topology.

Theorem 2.5. Let a sequence an > 0, an → 0, an+1/an → 1, kna
2
n → ∞ as n → ∞

be given. Let
∞
∑

n=1

h(can) < ∞ (2.18)

for any c > 0.
Let Ω0 ⊂ Λ0Θ2,h

. Then there hold

lim inf
n→∞

(kna
2
n)

−1 ln(P̂n)∗(P
∗
kn

∈ P̂n + anΩ0) ≥ −ρ20(int(Ω0), P ) a. s∗. (2.19)

and

lim sup
n→∞

(kna
2
n)

−1 ln(P̂n)
∗(P ∗

kn
∈ P̂n + anΩ0) ≤ −ρ20(cl(Ω0), P ) a. s∗. (2.20)
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where the closure and the interior of the set Ω0 in (2.19) and (2.20) are considered

with respect to τΘ2,h
-topology. The outer probability measure (P̂n)

∗ and the inner

probability measure (P̂n)∗ are considered with respect to σΘ2,h
-algebra.

Let Ω0 ⊂ Λ0Θt
, t > 2 and let an = o(n−1/t). Then (2.19) and (2.20) are valid

with the closure and the interior of the set Ω0 with respect to τΘt
-topology. The outer

probability measure (P̂n)
∗ and the inner probability measure (P̂n)∗ are considered

with respect to σΘt
-algebra.

Example. Let E[exp{c|f(X1)|γ}] < ∞ with γ > 0 for all f ∈ Θ. Then we have the
following asymptotics

bn = o
(

n− 1
1+γ

)

, dn = o
(

n− 1−γ
2−γ

)

and

an = o
(

| logn|−γ
)

.

Thus the conditional MDP for empirical bootstrap measure holds for the wider
zone than the usual MDP for the empirical measure.

Theorem 2.6 given below gives rates of convergence in the conditional MDP.

Theorem 2.6. Let a sequence an > 0, an → 0, an+1/an → 1, kna
2
n → ∞ as n → ∞

be given. Let function h : R1
+ → R1

+ be such that

lim
n→∞

nh
(an

c

)

= 0 (2.21)

for any c > 0.
Let Ω0 ⊂ Λ0Θt,h

, t > 2. Then for any ǫ > 0 and n > n0(ǫ, {ki}∞i=1,Ω0) there hold

(kna
2
n)

−1 log(P̂n)∗(P
∗
kn

∈ P̂n + anΩ0) ≥ −ρ20(intΘt,h
(Ω0), P )− ǫ (2.22)

and, if ρ20(clΘt,h
(Ω0), P ) < ∞ additionally,

(kna
2
n)

−1 log(P̂n)
∗(P ∗

kn
∈ P̂n + anΩ0) ≤ −ρ20(cl(Ω0), P ) + ǫ (2.23)

on the sets of events having the inner probabilities more than κn = κn(ǫ,Ω0) =
1− C(ǫ,Ω0)[β1n + β2n] where β1n = nh( an

ǫC1(ǫ,Ω0)
) and β2n = C2(ǫ,Ω0)n

1−t.

If ρ20(cl(Ω0), P ) = ∞, for any L > 0

(kna
2
n)

−1 log(P̂n)
∗(P ∗

kn
∈ P̂n + anΩ0) ≤ −L (2.24)

on the sets of events having the inner probabilities more than κ1n = κ1n(L,Ω0) =
1− C(L,Ω0)[β1n + β2n] where β1n = nh( an

C1(L,Ω0)
) and β2n = C2(L,Ω0)n

1−t.

Remark 2.2. The method of the proof of Theorem 2.6 is the following. Let f ∈
Θt,h. Denote Yi = |f(Xi)|, 1 ≤ i ≤ n and let Y (1) ≤ Y (2) ≤ . . . ≤ Y (n) be the order
statistics of Y1, . . . , Yn. Using P (max1≤i≤n f(Xi)| ≤ C1(Ω0)ǫa

−1
n ) ≥ 1−nh( an

C1(Ω0)ǫ
)

we, with probability 1− β1n, prove conditional if |f(Xi)| < C1(Ω0)ǫa
−1
n , 1 ≤ i ≤ n

holds. The rate function in the conditional MDP is defined by 1
n

∑n
s=1 f

2(Xs).

Thus we need to estimate the rate of convergence of 1
n

∑n
s=1 f

2(Xs) to Ef2(X).
These estimates causes the second term β2n in κn.

3. Moderate deviation probabilities of statistical functionals

In section we compare the asymptotics of moderate deviation probabilities of
statistics T (P̂n) − T (Pn) and T (P ∗

n) − T (P̂n). We suppose that the functional
T : Λ → R1 has the Hadamard derivative or homogeneous.
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3.1. Functionals having the Hadamard derivatives. For all r > 0 define the
set Γ0r = {G : ρ20(G : P ) < r,G ∈ Λ0}.

Let Y be a metric linear topological space with metric ρ. We say that the
functional T : Λ0Σ → Y has the Hadamard derivative T ′ : Λ0Σ → Y if the following
assumption CΣ holds with Σ = Ψ, Σ = Φ or Σ = Θ.

CΣ. For any r > 0 for each G ∈ Γ0r and any sequence Gk ∈ Γ0r converging to
G in τΣ-topology there holds

lim sup
n→∞

ρ(u−1
k (T (P0 + ukGk)− T (P0))− T ′(G), 0) = 0 (3.1)

for all sequences uk → 0 as k → ∞ and uk 6= 0, 1 ≤ k < ∞.

Theorem 3.1. Assume A,B2, CΨ. Let the functional T (P ) be continuous in τΨ-
topology. Then, for any set Ω ⊂ Y , there holds

lim inf
n→∞

(nb2n)
−1 lnPn(T (P̂n)− T (Pn) ∈ bnΩ)

≥ − inf{ρ20(G : P0) : T
′(G) ∈ int(Ω), G ∈ Λ0}

(3.2)

and

lim sup
n→∞

(nb2n)
−1 lnPn(T (P̂n)− T (Pn) ∈ bnΩ)

≤ − inf{ρ20(G : P0) : T
′(G) ∈ cl(Ω), G ∈ Λ0}.

(3.3)

If T ′(G) is continuous in τΨ-topology, then, for any δ > 0

lim sup
n→∞

(nb2n)
−1 ln(Pn)

∗(ρ(b1n(T (P̂n)− T (Pn)− T ′(P̂n − P0)), 0) ≥ δ) = −∞ (3.4)

The Hadamard differentiability of statistical functionals in the Kolmogorov met-
ric (supnorm of difference of distribution functions) are the standard tool for the
proofs of asymptotic normality (see van der Vaart and Wellner [27] Ch 3.9 and
references therein). Gao and Zhao [16] extended this approach on the moder-
ate deviation zone. The Kolmogorov metrics is continuous w.r.t. τΨ-topology (see
Groeneboom, Oosterhoff and Ruymgaart [17] Lemma 2.1 and Ermakov [15] Lemma
4.1). If S = [a, b] ⊆ R1, by contraction principle (see Theorem 4.2.1 in Dembo and
Zeitouni [10]) this implies that MDP holds for the set of empirical distribution
functions lying in the Banach space of all right continuous with left-hand limits
functions z : [a, b] → R1 equipped with the uniform norm. T Thus Theorem 3.1
in [16] can be replaced with Theorem 3.1 of this paper for the study of moderate
deviations of estimators. At the same time Theorems 3.2 and 3.3 allow to get the
results for the bootstrap setup as well.

Theorem 3.2. Assume A,B1, CΦ. Let the functional T (P ) be continuous in τΦ-
topology. Then, for any set Ω̄ ⊂ Y × Y , there holds

lim inf
n→∞

(nd2n)
−1 lnPn((T (P

∗
n)− T (P̂n), T (P̂n)− T (Pn) ∈ bnΩ̄)

≥ − inf{ρ20b(Ḡ : P0) : (T
′(G2), T

′(G1)) ∈ int(Ω̄), G2 ×G1 ∈ Λ2
0}

(3.5)

and

lim sup
n→∞

(nd2n)
−1 lnPn((T (P

∗
n)− T (P̂n), T (P̂n)− T (Pn) ∈ bnΩ̄)

≤ − inf{ρ20b(Ḡ : P0) : (T
′(G2), T

′(G1)) ∈ cl(Ω̄), G2 ×G1 ∈ Λ2
0}

(3.6)

If T ′(G) is continuous in τΦ-topology, then, for any δ > 0

lim sup
n→∞

(nd2n)
−1 ln(Pn)

∗(ρ(d−1
n (T (P ∗

n)− T (P̂n)− T ′(P ∗
n − P̂n), 0) > δ,

ρ(b1n(T (P̂n)− T (Pn)− T ′(P̂n − P0)), 0) ≥ δ) = −∞
(3.7)
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Theorem 3.3. Let a sequence an > 0, an → 0, an+1/an → 1, kna
2
n → ∞ as n → ∞

be given. Let a decreasing function h : R1
+ → R1

+ satisfy (2.18). Let the functional
T (P ) be continuous in τΘ2,h

-topology and let CΘ2,h
be valid.

Then, for any set Ω ⊂ Y , there holds

lim inf
n→∞

(kna
2
n)

−1 ln(P̂n)∗(T (P
∗
kn
)− T (P̂n) ∈ bnΩ)

≥ − inf{ρ20(G : P0) : T
′(G) ∈ int(Ω), G ∈ Λ0} a. s∗.

(3.8)

and

lim sup
n→∞

(kna
2
n)

−1 ln(P̂n)
∗(T (P ∗

kn
)− T (P̂n) ∈ bnΩ)

≤ − inf{ρ20(G : P0) : T
′(G) ∈ cl(Ω), G ∈ Λ0} a. s∗.

(3.9)

If T ′(G) is continuous in τΘ2h
-topology, then, for any δ > 0,

lim sup
n→∞

(kna
2
n)

−1 ln(P̂n)
∗(ρ(b−1

n (T (P ∗
n)− T (P̂n)− T ′(P ∗

n − P̂n), 0) > δ) = −∞ a.s∗.

(3.10)
Let the functional T (P ) be continuous in τΘt

-topology, t > 2 and let CΘt
be valid.

Let Ω ⊂ Y and let an = o(n−1/t). Then (3.8), and (3.9) hold. If T ′(G) is continu-
ous in τΘt

-topology, then (3.10) is valid as well.

Theorem 3.4. Let a sequence an > 0, an → 0, an+1/an → 1, kna
2
n → ∞ as n → ∞

be given. Let a decreasing function h : R1
+ → R1

+ satisfy (2.21). Let the functional
T (P ) be continuous in τΘt,h

-topology and let CΘt,h
be valid with t > 2.

Let Ω ⊂ Y . Then, for any ǫ > 0 and n > n0(ǫ, {ki}∞i=1,Ω, T ), there hold

lim inf
n→∞

(kna
2
n)

−1 ln(P̂n)∗(T (P
∗
kn
)− T (P̂n) ∈ bnΩ)

≥ − inf{ρ20(G : P0) : T
′(G) ∈ int(Ω), G ∈ Λ} − ǫ

(3.11)

and, if inf{ρ20(G : P0) : T
′(G) ∈ cl(Ω), G ∈ Λ0} < ∞ additionally,

lim sup
n→∞

(kna
2
n)− inf{ρ20(G : P0) : T

′(G) ∈ cl(Ω), G ∈ Λ0}+ ǫ (3.12)

on the sets of events having the inner probabilities more than κn = κn(ǫ,Ω, T ) =
1− C(ǫ,Ω)[β1n + β2n] where β1n = nh( an

ǫC1(ǫ,Ω,T ) ) and β2n = C2(ǫ,Ω, T )n
1−t.

If T ′(G) is continuous in τΘ-topology, then, for any δ > 0 and any L > 0 there
exists n0 = n0(L, δ, {ki}∞i=1, T ) such that for all n > n0

lim sup
n→∞

(kna
2
n)

−1 ln(P̂n)
∗(ρ(b−1

n (T (P ∗
n)−T (P̂n)−T ′(P ∗

n−P̂n), 0) > δ) < −L (3.13)

on the sets of events having the inner probabilities more than κ̄n = κ̄n(L, δ) =

1− C(L, δ)[β̄1n + β̄2n] where β̄1n = nh
(

an

C1(L,δ,T )

)

and β̄2n = C2(L, δ, T )n
1−t.

For the proof of Theorem 3.1 it suffices to implement the contraction principle
of Theorem 4.2.23 in [10] to the sequence of functions fk(G) = b−1

k (T (Pn + bkG)−
T (Pn)). In Theorem 4.2.23 in [10] it is assumed that

lim sup
k→∞

sup
G∈Γ0r

ρ(fk(G), T ′(G)) = 0. (3.14)

Since Γr is compact and sequentially compact set in the τΨ-topology (see EIchels-
bacher and Schmock [13] Lemma 2.1) then (3.14) follows from (3.1).

The proof of (3.4) is akin to the proof of similar statement (3.4) of Theorem
3.1 in Gao and Zhao [16] and Theorem 3.9.4 in van der Vaart and Wellner [27].
We consider the mapping φk : Λ0Θ → Y × Y with φk(G) = (fk(G), T ′(G)) for all

G ∈ Λ0Θ. By (3.2),(3.3), we get that φn(P̂n − P0) satisfies MDP with the rate
function

ρ̄2(y1, y2) = inf{ρ20(G : P0) : T
′(G) = y1 = y2} (y1, y2) ∈ Y × Y.
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Hence, by the classical contraction principle (see Theorem 4.2.1 in Dembo and
Zeitouni [10]), we get (3.4).

The reasoning in the proofs of Theorems 3.2, 3.3 and 3.4 are similar.

3.2. Examples. In what follows, Y = R1 and we shall suppose that the assump-
tions of Theorems 3.1 and 3.2 are satisfied in the case of moderate deviations of
empirical measure and bootstrap measure respectively. In this case CΣ can be
rewritten in the following form.

C1Σ There exists h : S → R1, E[h(X1)] = 0 such that, for any r > 0 for each
G ∈ Γ0r and any sequence Gk ∈ Γ0r converging to G in τΣ-topology there holds

lim
k→∞

u−1
k (T (P0 + ukGk)− T (P0))−

∫

hdG = 0 (3.15)

for all sequences uk → 0 as k → 0 and uk 6= 0, 1 ≤ k < ∞.
By Theorem 3.2, we get

lim
n→∞

(nb2n)
−1 logPn(T (P

∗
n)− T (P̂n) > bn)

= lim
n→∞

(nb2n)
−1 logPn

(∫

h d(P ∗
n − P̂n) > bn

)

= −1

2
inf

{∫

(g22 + g21) dP :

∫

g2h dP > 1, g1, g2 ∈ L2(P )

}

= −1

2

(∫

h2 dP

)−1

(3.16)

and, by Theorem 3.1,

lim
n→∞

(nd2n)
−1 logPn(T (P̂n)− T (Pn) > dn)

= lim
n→∞

(nb2n)
−1 logPn

(∫

h d(P̂n − Pn) > dn

)

= −1

2
inf

{∫

g2 dP :

∫

gh dP > 1, g ∈ L2(P )

}

= −1

2

(∫

h2dP

)−1

.

(3.17)

By Theorem 3.3, we get

lim inf
n→∞

(kna
2
n)

−1 log(P̂n)∗(T (P
∗
kn
)− T (P̂n) > an)

= lim sup
n→∞

(kna
2
n)

−1 log(P̂n)
∗(T (P ∗

kn
)− T (P̂n) > an) = −1

2

(∫

h2dP

)−1

a.s.

(3.18)

Thus, the asymptotics of moderate deviations probabilities of T (P ∗
n)− T (P̂n) and

T (P̂n)− T (Pn) coincide. At the same time

lim
n→∞

(nb2n)
−1 logPn(T (P

∗
n)− T (Pn) > bn)

= lim
n→∞

(nb2n)
−1 logPn

(∫

hd(P ∗
n − Pn) > bn

)

=
1

2
inf

{∫

(g22 + g21) dP :

∫

(g2 − g1)h dP > 1, g1, g2 ∈ L2(P )

}

=− 1

4

(∫

h2dP

)−1

.

(3.19)



A MODERATE DEVIATION PRINCIPLE FOR EMPIRICAL BOOTSTRAP MEASURE 11

3.3. Homogeneous functionals. Let N : Λ0Φ → R1 be a seminorm continuous
in the τΦ-topology. Define the set Ω0 = {G : N(G) > 1, G ∈ Λ0Φ} and let the
signed measure H ∈ cl(Ω0) be such that ρ20(H : P ) = 1

2

∫

h2 dP = ρ20(Ω0 : P ) with

h = dH
dP . Then we have

lim
n→∞

(nd2n)
−1 logP (N(P̂n − P ) > dn) = −ρ20(Ω0 : P ) = −1

2

∫

h2dP, (3.20)

lim
n→∞

(nb2n)
−1 logP (N(P ∗

n − P̂n) > bn) =

− 1

2
inf

{∫

(g22 + g21)dP : N(G2) ≥ 1; g1 =
dG1

dP
, g2 =

dG2

dP
; G2, G1 ∈ Λ0Φ

}

=

− ρ20(Ω0 : P ) = −1

2

∫

h2dP.

(3.21)

and

lim
n→∞

(nb2n)
−1 logP (N(P ∗

n − P ) > bn) = −1

2
ρ20(Ω0 : P ) = −1

4

∫

h2dP. (3.22)

In particular, the statements (3.20) and (3.22) are valid for the functionals

N(Q− P ) = N1(Q− P, P ) = max{|F (x)− F0(x)|q(F0(x)) : x ∈ S} (3.23)

and

N(Q− P ) = N2(Q − P, P ) =

(∫

S

(F (x) − F0(x))
2q(F0(x))dF0(x)

)1/2

(3.24)

respectively. Here q is a bounded weight function, S = R1 and F, F0 are the distri-
bution functions of Q,P respectively. If q ≡ 1, N1(P̂n−P, P ) and N2

2 (P̂n−P, P ) are
Kolmogorov and omega-squared test statistics respectively. The functionals N1, N2

depend on the probability measure P additionally. Thus (3.21) holds only in the
case of q ≡ 1. Let us show that, if q is continuous in [0, 1] the presence of weight
function q does not influence seriously on the asymptotic (3.21), that is,

lim
n→∞

(nb2n)
−1 logP (Ni(P

∗
n − P̂n, P̂n) > bn) =

lim
n→∞

(nb2n)
−1 logP (Ni(P

∗
n − P̂n, P ) > bn) =

− ρ20(Ω0 : P ) = −1

2

∫

h2 dP

(3.25)

with i = 1, 2. Note that, if q is continuous in [0,1], the following assumption holds.

C1. There exists function ω(t), ω(t)/t → 0 as t → 0 such that, for all P,Q,R ∈ ΛΦ

|N(Q − P, P )−N(Q− P,R)| ≤ ω(sup
x

|F̄ (x)− F0(x)|)

where F̄ stands for the distribution function of R.

Let F̂n be the distribution function of P̂n. Then, by Theorem 2.3,

P (ω(sup
x

|F̂n(x) − F0(x)|) > cbn) ≤ exp{−CnCnb
2
n}

where Cn → ∞ as n → ∞.
Hence, estimating similarly to the proof of (3.17) in [15] we get (3.25).

Let us find the asymptotic

lim
n→∞

(nb2n)
−1 logP (Nγ(P ∗

n − P )−Nγ(P̂n − P ) > bn)
.
= −1

2
J

with γ > 0.
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By Theorem 2.1, we get

J = inf

{∫

(r2 + g2) dP : Nγ(G+R)−Nγ(G) ≥ 1;

g =
dG

dP
, r =

dR

dP
;G,R ∈ Λ0Φ

}

.
= inf V (G,R).

(3.26)

Since N(G+R) ≤ N(G) +N(R), we get

J ≥ inf

{∫

(r2 + g2) dP : (N(G) +N(R))γ −Nγ(G) ≥ 1;

g =
dG

dP
, r =

dR

dP
;G,R ∈ Λ0Φ

}

.
= inf U(G,R). (3.27)

It is easy to see that for the fixed G

arg inf
R

U(G,R) = λH, λ = λ(G) > 0 (3.28)

where the signed measure H ∈ cl(Ω0) is the same as in example 3.3.
Let r = λh be fixed and let us consider the problem of minimization of U(G, λH)

with respect to G. We begin with the dual problem. Let N(R) = d =const and
one needs to find

sup

{

(N(G) + d)γ −Nγ(G) :

∫

g2 dP = 1, g =
dG

dP
,G ∈ Λ0Φ

}

Let γ ≥ 1. Since the function (x+ d)γ − xγ is increasing the supremum is attained

on the charge G0 = cG̃ where G̃ = arg sup{N(G) :
∫

g2 dP = 1, g = dG
dP , G ∈ Λ0Φ}

and g̃ = dG̃
dP = h/ρ0. Therefore inf{U(G,R) : G,R ∈ Λ0Φ} is attained on the

signed measures G,R having the densities g = ah, r = dh with a, d ∈ R1. However
V (aH, dH) = U(aH, dH). Hence we get

J = inf{d2 + a2 : (d+ a)γ − aγ > 1}
∫

h2(s) dP. (3.29)

If γ < 1, then arg sup{(x + d)γ − xγ : x ≥ 0} = 0. Therefore inf{U(G,R) : G,R ∈
Λ0Φ} = dγ and

J = inf

{∫

r2dP : Nγ(R) ≥ 1, r =
dR

dP

}

= 2ρ20(Ω0, P ) =

∫

h2 dP.

4. Proof of Theorem 2.1

For each r > 0 define the set Γr = {Ḡ ∈ Λ2
0 : ρ20b(Ḡ : P ) ≤ r}.

Lemma 4.1. Let (2.7) hold. Then
i. Γr ⊂ Λ2

0Ψ,
ii. the set Γr is τΨ-compact and sequentially τΨ-compact set in Λ2

0Ψ,
iii. the τ and τΨ- topologies coincide in Γr.

Proof. The reasoning are akin to the proof of Lemma 2.1 in Eichelsbacher and
Schmock [13]. For any charge Ḡ = G1 × G2 ∈ Γr, any measurable set A ⊆ S and
any φ1, φ2 ∈ Ψ we have

∫

A

|φ1| d|G1|+
∫

A

|φ2| d|G2| ≤

α

(∫

A

φ2
1 dP +

∫

A

φ2
2 dP

)

+ α−1

(

∫

A

(

dG1

dP

)2

dP +

∫

A

(

dG2

dP

)2

dP

) (4.1)

for all α > 0. By (2.10), this implies i if A = S.
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Fix ǫ > 0. Let α = r/ǫ and let n = n(ǫ) be such that

r

ǫ

(

∫

|φ1|>n

φ2
1 dP +

∫

|φ2|>n

φ2
2 dP

)

< ǫ

Then

α−1

(

∫

|φ1|>n

(

dG1

dP

)2

dP +

∫

|φ2|>n

(

dG2

dP

)2

dP

)

≤ ǫ

Hence, by (4.1), we get
∫

|φ1| d|G1|+
∫

|φ2| d|G2| −
∫

|φ1|<n

|φ1| d|G1| −
∫

|φ2|<n

|φ2| d|G2| < 2ǫ

Therefore the map Γr ∋ Ḡ = G1 ×G2 →
∫

|φ1| d|G1|+
∫

|φ2| d|G2| is τ -continuous
as the uniform limit of functions

∫

|φ1|<n

φ1 dG1 +

∫

|φ2|<n

φ2 dG2.

This implies that the τ and τΨ-topologies coincide in Γr. Since the sets Γ0r and
Γr ⊂ Γ2

0r are τ -compact and sequentially τ -compact these sets are τΨ-compact and
sequentially τΨ-compact as well. This completes the proof of Lemma 4.1.

The same reasoning of the proof of Lemma 4.1 can be repeated in the case of
τΦ-topology. Thus the sets Γ0r are τΦ- compact as well.

In Lemmas 4.2-4.5 given bellow we suppose that the assumptions of Theorem
2.1 hold.

For any u, v ∈ Rk denote u′v the inner product of u and v. For any f ∈ Φ and
any signed measure G ∈ Λ0Φ denote < f,G >=

∫

fdG.
Let f1, . . . , fk1 , g1, . . . , gk2 ∈ Φ and G ∈ Λ0Φ. Let E[fi(X)] = 0, E[gj(X)] = 0

with 1 ≤ i ≤ k1, 1 ≤ j ≤ k2. Define the covariance matricesRf = {E[fi(X)fj(X)]}k1

i,j=1

and Rg = {E[gi(X)gj(X)]}k2

i,j=1. Denote ~f = {fi}k1

i=1 , ~g = {gi}k2

i=1 and ḡi =
1
n

∑n
l=1 gi(Xl), 1 ≤ i ≤ k2.

By a version of Dawson-Gartner Theorem (see [10] Theorem 4.6.9 and [21]),
Theorem 2.1 follows from Lemma 4.2 given below. Note that the de Acosta [2]
approach (see section 5) also allows to deduce Theorem 2.1 from Lemma 4.2.

Lemma 4.2. For the random vectors ~Un( ~X) =
(

1
n

∑n
i=1 f1(Xi), . . . ,

1
n

∑n
i=1 fk1(Xi) ,

1
n

∑n
i=1 g1(X

∗
i )− ḡ1, . . . ,

1
n

∑n
i=1 gk2(X

∗
i )− ḡk2

)

the MDP holds, that is, for any

Ω ⊂ Rk1+k2

lim inf
n→∞

(nb2n)
−1 logPn(~Un( ~X) ∈ bnΩ) ≥ − inf

x∈int(Ω)
x′If,gx (4.2)

and

lim sup
n→∞

(nb2n)
−1 logPn(~Un( ~X) ∈ bnΩ) ≤ − inf

x∈cl(Ω)
x′If,gx (4.3)

where for any x = (y, z) ∈ Rk1+k2 , y ∈ Rk1 and z ∈ Rk2

x′If,gx = sup
t∈Rk1 ,s∈Rk2

(

t′y + s′z− < t′f,H > −1

2
t′Rf t−

1

2
s′Rgs

)

.

Note that, if there exist R−1
f and R−1

g , then

x′Ifgx =
1

2
((y− < f,H >)′R−1

f (y− < f,H >) +
1

2
z′R−1

g z.

Lemma 4.2 follows from Lemmas 4.3 and 4.4 given below.
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Lemma 4.3. We have

lim
n→∞

(nb2n)
−1 logPn( max

1≤i≤k1

max
1≤l≤n

|fi(Xl)| > b−1
n ) = −∞ (4.4)

and

lim
n→∞

(nb2n)
−1 logPn( max

1≤i≤k2

max
1≤l≤n

|gi(X∗
l )| > b−1

n ) = −∞. (4.5)

Proof. We have

Pn( max
1≤i≤k1

max
1≤l≤n

|fi(Xl)| > b−1
n ) ≤ n

k1
∑

i=1

Pn(|fi(X1)| > b−1
n ) ≤

n

k1
∑

i=1

P (|fi(X1)| > b−1
n ) + nbn

k1
∑

i=1

∫

χ(|fi(X1)| > b−1
n ) d|Hn|

By (2.1) and B1, this implies (4.4).
Since g1, . . . , gk2 ∈ Φ, the same statement hold for these functions as well and

we get

Pn( max
1≤i≤k2

max
1≤j≤n

|gi(Xj)| > b−1
n ) = O(exp{−Cnb2n})

for each C > 0. This implies (4.5).

For any h ∈ Φ denote hn(x) = h(x)χ(|h(x)| < b−1
n ). Denote ~fn = {fin}k1

i=1 and

~gn = {gin}ki=1. Define the random vector Ũn( ~X) =
(

1
n

∑n
i=1 f1n(Xi), . . . ,

1
n

∑n
i=1 fk1n(Xi),

1
n

∑n
i=1 g1n(X

∗
i )−ḡ1n, . . . ,

1
n

∑n
i=1 gk2n(X

∗
i )− ḡk2n

)

where ḡin = 1
n

∑n
l=1 gin(Xl), 1 ≤

i ≤ k2. Define the events Wn = {X1, . . . , Xn : max1≤i≤k1 max1≤j≤n |fi(Xj)| <
b−1
n ,max1≤i≤k2 max1≤j≤n |gi(Xj)| < b−1

n }. Denote W̄n the complement of the event
Wn.

By Lemma 4.2, we get

Pn(~Un( ~X) ∈ bnΩ) ≤ Pn(~Un( ~X) ∈ bnΩ|W̄n)P (W̄n) + P (Wn)

< Pn(~Un( ~X) ∈ bnΩ|W̄n) exp{o(nb2n)} + exp{−Cnb2n(1 + o(1))}
(4.6)

and

Pn(~Un( ~X) ∈ bnΩ) ≥ Pn(~Un( ~X) ∈ bnΩ|W̄n)P (W̄n) > Pn(~Un( ~X) ∈ bnΩ|W̄n) exp{o(nb2n)}.
(4.7)

where the constant C in (4.6) can be chosen arbitrary
Therefore Lemma 4.2 follows from Lemma 4.4 given below.

Lemma 4.4. For the random vectors Ũn( ~X) the MDP holds, that is, (4.2) and

(4.3) are valid with ~Un( ~X) = Ũn( ~X).

By Gartner-Ellis Theorem (see Dembo and Zeitouni [10]) Lemma 4.4 follows
from Lemma 4.5 given below.

Lemma 4.5. Let fi ∈ Φ, gj ∈ Φ for all 1 ≤ i ≤ k1, 1 ≤ j ≤ k2. Then

lim
n→∞

(nb2n)
−1 logEn

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl) + bn

n
∑

l=1

s′(~gn(X
∗
l )− ḡn)

}]

=

< t′ ~f,H > −1

2
t′Rf t−

1

2
s′Rgs

(4.8)

where ḡn = (ḡ1n, . . . , ḡk2n).
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Proof. We begin with the proof of upper bound in (4.8). We have

In = En

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl) + bn

n
∑

l=1

s′(~gn(X
∗
l )− ḡn)

}]

=

En

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl)

}

n
∏

l=1

EP̂n
[exp{s′(~gn(X∗

l )− ḡn)}]
]

=

En

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl)

}(

1

n

n
∑

l=1

exp{bns′(~gn(Xl)− ḡn)}
)n]

≤

En

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl)

}(

1 +
b2n
2n

n
∑

l=1

(s′(~gn(Xl)− ḡn))
2+

+C(s, k2)
b3n
6n

n
∑

l=1

|s′(~gn(Xl)− ḡn)|3
)n]

≤

En

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl) +
b2n
2

n
∑

l=1

(s′(~gn(Xl)− ḡn))
2+

C(s, k2)b
3
n

n
∑

l=1

|s′(~gn(Xl)− ḡn)|3
}]

.
= I1n.

(4.9)

The first inequality in (4.9) follows from the Taylor formula and

|s′( ~gn(x) − ḡn)| ≤ |s| | ~gn(x) − ḡn| < |s|2k1/22 b−1
n (4.10)

Denote φn(Xl) = s′(~gn(Xl)− En[~gn(X1)]) with 1 ≤ l ≤ n.
By straightforward calculations, we get

n
∑

l=1

(s′(~gn(Xl)− ḡn))
2 =

n
∑

l=1

φ2
n(Xl)− n(s′ḡn − En[s

′~gn(X1)])
2. (4.11)

We have
n
∑

l=1

|s′(~gn(Xl)− ḡn)|3 ≤ 8

n
∑

l=1

|φn(Xl)|3+

8n|s′(ḡn − En[~gn(X1)])|3 .
= 8V1 + 8nV2.

(4.12)

Since

|s′(~gn(X1)− Egn(X1))|3 ≤ |s|3/2|~gn(X1)− Engn(X1)|3/2

= |s|3/2




k2
∑

j=1

(gjn(X1)− En[gjn(X1))
2





3/2

< 8|s|3k3/22 b−3
n

(4.13)

we get

b3n|V1| = b3n

n
∑

l=1

|φn(Xl)|3χ(|φn(Xl)| ≤ ǫb−1
n |s|)+

b3n

n
∑

l=1

|φn(Xl)|3χ(|φn(Xl)| ≥ ǫb−1
n |s|) ≤

ǫ|s|b2n
n
∑

l=1

φ2
n(Xl) + 8|s|3k3/22

n
∑

l=1

χ(|φn(Xl)| ≥ ǫb−1
n |s|).

(4.14)
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By the Jensen’s inequality, we get

V2 = n−3

∣

∣

∣

∣

∣

n
∑

l=1

φn(Xl)

∣

∣

∣

∣

∣

3

≤ n−1
n
∑

l=1

|φn(Xl)|3 = n−1V1. (4.15)

By (4.11)-(4.15), we get

I1n ≤ En

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl) +
b2n
2
(1− 2C(s, k2)ǫn)

n
∑

l=1

(φ2
n(Xl)

− b2n
2n

(

n
∑

l=1

φn(Xl)

)2

+ C(s, k2)|s|3
n
∑

i=1

χ(|φn(Xl)| ≥ ǫb−1
n |s|))











.
= En[Wn]

(4.16)

where ǫ = ǫn → 0 as n → ∞.
For each r > 0 define the eventsAn = Anr

.
= {X1, . . . , Xn : s′ḡn−En[s

′gn(X1)] <
rbn}. Denote Ān the complement of An.

We can write

Ĩn = En[Wnχ(An)] + En[Wnχ(Ān)]
.
= U1n + U2n. (4.17)

Let An hold. Then we get

r2b4n
2n

(

n
∑

l=1

φn(Xl)

)2

=
nb2n
2

(s′ḡn − En[s
′~gn(X)])2 <

nr2b4n
2

.

Therefore

log[U1n] ≤ logEn

[

exp

{

bn

n
∑

l=1

t′ ~fn(Xl) +
b2n
2

n
∑

l=1

φ2
n(Xl)(1 + 2C(s, k2)ǫ)+

C(s, k2)|s|3
n
∑

l=1

χ(|φn(Xl)| ≥ ǫb−1
n ) +O(nr2b4n)

}]

=

n logEn

[

exp

{

bnt
′ ~fn(X1) +

b2n
2
φ2
n(X1)(1 + 2C(s, k2)ǫ)+

C(s, k2)|s|3χ(|φn(X1)| ≥ ǫb−1
n ) +O(r2b4n)

}]

.

(4.18)

Expanding in the Taylor series, we get

logU1n ≤ n logEn

[

1 + bnt
′ ~fn(X1) +

b2n
2
(t′ ~fn(X1))

2+

b2n
2
φ2
n(X1)(1 + 2C(s, k2)ǫ) + C(s, t, k1, k2)ωn +O(r2b4n)

] (4.19)

where ωn = ω1n + ω2n + ω3n + ω4n + ω5n with

ω1n =
b3n
6
|t′ ~fn(X1)|3, ω2n = 3

b3n
2
|t′ ~fn(X1)|φ2

n(X1),

ω3n =
b4n
8
φ4
n(X1), ω4n =

b4n
12

(t′ ~fn(X1))
2φ2

n(X1),

ω5n = χ(|φn(X1)| ≥ ǫb−1
n ).

We have

ω1n ≤ b3n|t′ ~fn(X1)|3χ(|t′ ~fn(X1)| < ǫb−1
n )+χ(ǫb−1

n < |t′ ~fn(X1)| < b−1
n )

.
= ω1n1+ω1n2,

ω2n ≤ b3n|t′ ~fn(X1)|φ2
n(X1)χ(|t′ ~fn(X1)| < ǫb−1

n )+

C(s, t, k1, k2)χ(ǫb
−1
n < |t′ ~fn(X1)| < b−1

n )
.
= ω2n1 + ω2n2,

ω3n ≤ b4nφ
4
n(X1)χ(φn(X1) < ǫb−1

n ) + Cχ(ǫb−1
n < φn(X1) < cb−1

n )
.
= ω3n1 + ω3n2,
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ω4n ≤ b4n(t
′ ~fn(X1))

2φ2
n(X1)χ(|t′ ~fn(X1)| < ǫb−1

n )+

cχ(ǫb−1
n < |t′ ~fn(X1)| < b−1

n )
.
= ω4n1 + ω4n2.

By (2.1), we get

En[ω1n1] ≤ cǫ|t|b2nEn(t
′ ~fn(X1))

2, En[ω2n1] ≤ cǫ|t|b2nEnφ
2
n(X1),

En[ω3n1] ≤ cǫ2|s|2b2nEnφ
2
n(X1), En[ω4n1] ≤ cǫ2|t|2b2nEnφ

2
n(X1)

and

En[ω5n] ≤ ǫ−2b2nEn[φ
2
n(X1)χ(|φn(Xi)| ≥ ǫb−1

n )] = o(ǫ−2b2n), (4.20)

En[χ(ǫb
−1
n < |t′ ~fn(X1)| < b−1

n )] ≤
ǫ−2b2nEn[|t′ ~fn(X1)|2χ(ǫb−1

n < |t′ ~fn(X1)|)] = o(ǫ−2b2n)
(4.21)

where the last equalities in (4.20), (4.21) hold by A and (2.9), (2.10).
Hence we get En[ωn] = o(b2n).
Therefore we get

log(U1n) ≤ −nb2n
2

(

2 < t′ ~f,H > −t′Rf t− s′Rgs
)

(1 +O(1))
.
= vn. (4.22)

By the Hoelder’s inequality, we get

U2n ≤ (En[W
1+δ
n ])

1
1+δ (P (Ān))

δ
1+δ . (4.23)

By (4.16), we get

En[W
1+δ
n ] ≤ En

[

exp

{

(1 + δ)

(

bn

n
∑

i=1

t′ ~fn(Xi) + b2n

n
∑

i=1

φ2
n(Xi)(1 + 2C(s, k2)ǫ)+

2C(s, k2)

n
∑

i=1

χ(φn(Xi) > ǫb−1
n )

)}]

.

Hence, repeating the estimates of U1n, we get

En[W
1+δ
n ] ≤ exp

{

− (1 + δ)nb2n
2

(2 < t′ ~f,H > −t′Rf t− s′Rgs)(1 +O(1))

}

(4.24)

Note that (2.1) implies (2.7) and (2.7) implies

lim
n→∞

(nr2b2n)
−1 log(nP (|f(X)| > rnbn)) = −∞

for each r > 1.
Hence, by Theorem 2.4 in Arcones [2], we get

logPn(Ān) ≤ −cr2nb2n (4.25)

By (4.23),(4.24),(4.25) we get that

U2n = o(U1n) (4.26)

if r sufficiently large. This completes the proof of upper bound for In.
The proof of lower bound is based on similar estimates. Define the events

Bn = {x1, . . . , xn : |fni(xs)| < ǫb−1
n , |gnj(xs)| < ǫb−1

n , 1 ≤ s ≤ n, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}.
By (2.1),(4.20), (4.21), we get

Pn(|fni(X1)| > ǫb−1
n ) < ǫ−2b2nEn[f

2
ni(X1)χ(|fni(X1)| > ǫb−1

n )] = o(ǫ−2b2n).

Estimating Pn(gni(X1)| > ǫb−1
n ) similarly, we get

P (Bn) =

k1
∏

i=1

(1−P (|fni(X1)| > ǫb−1
n ))n

k2
∏

i=1

(1−P (|gni(X1)| > ǫb−1
n ))n = exp{−o(nb2n)}.
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Hence

In ≥ En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)

}(

1

n

n
∑

i=1

exp{bns′(~gn(Xi)− ḡn)}
)n

χ(Bn)

]

≤

En

(

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)

}(

1

n

n
∑

i=1

exp{bns′(~gn(Xi)− ḡn)}
)n∣
∣

∣

∣

∣

Bn

]

P (Bn) =

En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)

}(

1

n

n
∑

i=1

exp{bns′(~gn(Xi)− ḡn)}
)n∣
∣

∣

∣

∣

Bn

]

exp{−o(nb2n)}

.
= I2n exp{−o(nb2n)}.

(4.27)

Expanding in the Taylor series, we get

I2n ≥ En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)

}(

1 +
b2n
2n

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2−

C(s, k2)
b3n
n

n
∑

i=1

|s′(~gn(Xi)− ḡn)|3
)n∣
∣

∣

∣

∣

Bn

]

≥

En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)

}(

1 +
b2n
2n

(1− 2ǫ)

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2

)n∣
∣

∣

∣

∣

Bn

]

.
= I3n

(4.28)

where the last inequality follows from

n
∑

i=1

|s′(~gn(Xi)− ḡn)|3 ≤ 2ǫb−1
n

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2

Since ln(1 + x) ≥ 1 + x− x2 with x > 0 we get

I3n = En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)

}

exp

{

n ln

(

1 +
b2n
2
(1− 2ǫ)

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2

)}∣

∣

∣

∣

∣

Bn

]

≥

En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi) +
b2n
2
(1− 2ǫ)

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2−

b4n
4n

(

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2

)2






∣

∣

∣

∣

∣

∣

Bn



 ≥

En

[

exp

{

bn

n
∑

i=1

t′ ~fn(Xi)+

b2n
2
(1 − 2ǫ− 4ǫ2)

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2

}∣

∣

∣

∣

∣

Bn

]

.
= I4n

(4.29)

where the last inequality follows from

b4n
4n

(

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2

)2

≤ ǫ2b2n

n
∑

i=1

(s′(~gn(Xi)− ḡn))
2.
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Arguing similarly to the proof of upper bound we get

(nb2n)
−1 ln I4n = −nb2n

2

(

−2 < t′ ~f,H > −t′Rf t− (1− 2ǫ− 2ǫ2)s′Rgs
)

(1 +O(1)).

(4.30)
Since the choice of ǫ > 0 is arbitrary, this completes the proof of lower bound and
the proof of Lemma 4.5.

5. Proofs of Theorems 2.5 and 2.6

We begin with the proof of Theorem 2.6. The reasoning is akin to the proof of
the Sanov Theorem in de Acosta [8].

Lemma 5.1. . Let (2.17)-(2.23) hold. Then
i. Γ0r ⊂ Λ0Θ,
ii. the set Γ0r is τΘ-compact and sequentially τΘ-compact set in Λ0Θ,
iii. the τ and τΘ- topologies coincide in Γ0r.

The proof of Lemma 5.1 is akin to the proof of Lemma 4.1 and is omitted. It
suffices to note only that (2.17) holds.

We begin with the proof of upper bound in (2.23). Denote η = ρ20(cl(Ω0), P ) and
fix δ, 0 < 2δ < η. IT is clear that Γ0,η−δ ⊂ Λ0Θ \ Ω0

For any f1, . . . , fl ∈ Θ, G ∈ Λ0,Θ and γ > 0 denote

U(f1, . . . , fl, G, γ) =

{

R :

∣

∣

∣

∣

∫

fid(R −G)

∣

∣

∣

∣

< γ,R ∈ Λ0Θ, 1 ≤ i ≤ l

}

.

Define the linear space

Λ̃0Θ = {G : G =

k
∑

i=1

λiGi, Gi ∈ Λ0Θ, λi ∈ R1, 1 ≤ i ≤ k, k = 1, 2, . . .}.

Define τΘ- topology in Λ̃0Θ. It is clear that Λ0Θ ⊂ Λ̃0Θ.
Since Λ̃0Θ is the Hausdorff linear topological space, the space Λ̃0Θ is regular

space (see Theorem B2 in [10]). Thus for each G ∈ Γ0,η−δ there exists open set
U(f1, . . . , fl, G, γ) ⊂ Λ0Θ \ cl(Ω0). The set Γ0,η−δ is compact. Therefore there
exists finite covering of Γ0,η−δ by the sets U1 = U(f11, . . . , f1l1 , G1, c1), . . . , Um =
U(fm1, . . . , fmlm , Gm, cm). Denote U = ∪m

i=1Ui.
Thus for the proof of (2.23) it suffices to estimate

P̂n(P
∗
n /∈ P + anU) ≥ (P̂n)

∗(P ∗
n ∈ P + anΩ).

This is the finite dimensional problem.
For each i, j, 1 ≤ j ≤ li, 1 ≤ i ≤ m define the signed measure Fij having the

density
dFij

dP = fij − E[fij(X)]. Define the linear spaces

L = {F : F =

k
∑

i=1

li
∑

j=1

λijFij , λij ∈ R1, 1 ≤ j ≤ li, 1 ≤ i ≤ m},

and

l̃ =

{

f : f =
dF

dP
, F ∈ L

}

.

Define the sets Γ̂0c =
{

f : f = dF
dP , F ∈ Γ0c ∩ L

}

, c > 0.

There exists a finite number of functions q1, . . . , ql ∈ Γ̂η−2δ such that E[qi(X)] =
0, E[q2i (X)] = 2(η − 2δ), 1 ≤ i ≤ l and

Γη−2δ ∩ L ⊂ ∩l
i=1V (qi) ∩ L ⊂ Γη−δ ∩ L (5.1)
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with

Vi = V (qi) =

{

G :

∣

∣

∣

∣

∫

qidG

∣

∣

∣

∣

< 2(η − 2δ), G ∈ Λ0Θ

}

.

Denote

V = ∩k
i=1Vi.

Since Γη−δ ∩ L ⊂ U ∩ L we get V ⊂ U . Hence

Ω0 ⊂ W = Λ0Θ \ V.
Therefore it suffices to estimate the right hand-side of

log(P̂n)
∗(P ∗

kn
∈ P̂n + anΩ0) ≤ log P̂n(P

∗
kn

∈ P̂n + anW ).

We have

P̂n(P
∗
kn

∈ P̂n + anW ) ≤
k
∑

i=1

P̂n(P
∗
kn

/∈ P̂n + anUi) =

k
∑

i=1

P̂n

(∫

qi d(P
∗
kn

− P̂n)− 2an(η − 2δ) > 0

)

.

(5.2)

Thus it suffices to show that, for each f ∈ Θ, E[f(X)] = 0, E[f2(X)] = η − 2δ and
n > n0(ǫ, f),

(kna
2
n)

−1 log P̂n

(∫

fd(P ∗
kn

− P̂n) > 2an(η − 2δ)

)

≤ −2
(η − 2δ)2

V ar[f(X1)]
(1−ǫ) = (η−2δ)(1−ǫ)

(5.3)
with probability κn(ǫ, U(f, q)).

Denote s2
.
= s2f

.
= s2n = 1

n

∑n
i=1 f

2(Xi) − f̄2 with f̄ = 1
n

∑n
i=1 f(Xs). We put

γ =
√
2sǫ

324σ where σ2 = V ar[f(X1)] = η − 2δ.

By Theorem 28 Ch.4 in Petrov [23] we get P (|s2n − σ2| > ǫ) < β2n(f) with
β2n(f) = C1(f, ǫ)n

1−t. Thus, to prove (5.3), we can suppose that

|s2n − σ2| < ǫ. (5.4)

Define the sets of events Anf = {X1, . . . , Xn : max1≤s≤n |f(Xs)| < σγa−1
n }. We

have

P (Anf ) < 1− nP (|f(X1)| > σγa−1
n ) = 1− nh

(

an
σγ

)

.
= 1− β2n. (5.5)

Note that, by (2.21), nh
(

an

σγ

)

→ 0 as n → ∞. Therefore it suffices to prove (5.3),

if Anf hold.
The further reasoning is based on slightly simplified version of Theorem 3.2 in

[26]. This version of Theorem is given below.
Let Y1n, . . . , Ykn,n be i.i.d.r.v’.’s having pm Pn, E[Y1n] = 0, V ar[Y1n] = σ2, |Yin| <

σγa−1
n . Denote

Sn =
1√
knσ

kn
∑

i=1

Yin.

Suppose that

a−2
n z−2 logE[exp{zanσ−1Y1n}] < C if |z| < κ. (5.6)

and

ω =

√
2κ

36max{1, C} > 1. (5.7)

Denote ∆ = ωank
1/2
n .
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Theorem 5.1. Assume (5.6,5.7). Then

P (Sn > k1/2n an) = (1− Φ(k1/2n an)) exp{L(k1/2n an)}
(

1 + θf1(k
1/2
n an)

k
1/2
n an + 1

∆

)

(5.8)
with

f1(k
1/2
n an) =

60(1 + 10∆2 exp{−(1− ω−1
n )

√
∆})

1− ω−1
n

.

and

− kna
2
n

3ω
< L(k1/2n an) <

kna
2
n

2

1

1 + ω
. (5.9)

Note that, if ω > 16 and ank
1/2
n > 100 then

|θ1f1(k1/2n an)|
k
1/2
n an + 1

∆
< 6. (5.10)

If |z| < κ and |f(Xi)| < σγa−1
n , 1 ≤ i ≤ n, we have

logEP̂n
{exp{zan(f(X∗

1 )− f̄)/s}} =

log

[

1

n

n
∑

l=1

exp{zan(f(Xi)− f̄)/s}
]

=

log

(

1 +
z2a2n
2

+
θ3z3a3ns

−3

6n

n
∑

i=1

(f(Xi)− f̄)3 exp{θzan(f(Xi)− f̄)/s}
)

.
= τn

(5.11)

with 0 < θ < 1.
Since

exp{θzan(f(X1)− f̄)/s} < exp{2γκθσs−1} .
= R,

using ln(1 + x) < x, x > 0, we get

τn < log

(

1 +
z2a2n
2

(1 + γκσRs−1)

)

<
z2a2n
2

(1 + γκσRs−1) = z2a2nD (5.12)

with D = 1+γκRσs−1

2 .
If

κ =
s

2γσ
, (5.13)

then R < 3 and D < 2. Therefore

ω >
9

2ǫ
, L(k1/2n an) ≤

k
1/2
n a2n
2

ǫ

9/2 + ǫ
.

Hence, by (5.8),(5.10), we get

(kna
2
n)

−1 log P̂n

(∫

fd(P ∗
kn

− P̂n) > 2an(η − 2δ)

)

≤

− 1

2
s−2(η − 2δ)2

(

1− ǫ

9/2 + ǫ

)

+ (log 7− 1

2
log(2πs−2(1 + ǫ)))(kna

2
n)

−1 ≤

− 1

2
s−2(η − 2δ)2

(

1− ǫ

2

)

+ C(kna
2
n)

−1

= −1

2
s−2(η − 2δ)2(1− ǫ

2
) + C(kna

2
n)

−1

≤ −1

2
s−2(η − 2δ)2

(

1− ǫ

2

)

+ C(kna
2
n)

−1.

(5.14)
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This implies (5.3) if (5.4) and |f(Xi)| < σγa−1
n , 1 ≤ i ≤ n hold. This completes the

proof of (2.23).
If ρ20(cl(Ω0), P ) = ∞, we put η = L. After that we implement the same reasoning

for the proof of (2.24).
The proof of lower bound (2.22) is based on standard reasoning (see Sanov [24],

Dembo and Zeitouni [10], de Acosta [8] and references therein) and estimates of
Theorem 5.1. For any δ > 0 there exists open set U = U(f1, . . . , fl, G, γ1, . . . , γl)
such that U ⊂ int(Ω0) and ρ20(U, P ) < η + δ, ρ20(G,P ) < η + δ. Hence it suffices to
find the lower bound for the asymptotic

(kna
2
n)

−1 log P̂n(P
∗
k ∈ P̂n + anU).

Similarly to the proof of upper bound we can suppose that the signed measure G

has the density g = dG
dP =

∑l
i=1 λifi, fi ∈ Θ. Thus the problem became the finite

dimensional problem as well.
Let us fix λ, 0 < λ < 1 such that λG ∈ U . Note that value of λ can be chosen

arbitrary from some vicinity of 1. Define the set U1 = U ∩ U(g,G, 2(1− λ)2||g||2).
It is clear that we can choose λ so that ρ20(U1 : P ) ≤ λ2||g||2

Lemma 5.2. There exist simplex Ũ ⊂ U1 bounded the hyperplane Π = {R :
∫

g dR = 2λ2||g||2, R ∈ Λ0Θ} and hyperplanes Πi = {R :
∫

gidR = ci, R ∈ Λ0Θ}
with gi ∈ Θ, 1 ≤ i ≤ l such that ρ20(Πi : P ) ≥ λ2||g||2 = ρ20(Π : P ).

Let Lemma 5.2 be valid. Suppose Abf holds with f = g and f = gi, 1 ≤ i ≤ l.
Then, applying Theorem 5.1, we get

P̂n(P
∗
kn

∈ P̂n + anU1) ≥ P̂n(P
∗
kn

∈ P̂n + anŨ) ≥

P̂n

(∫

gd(P ∗
kn

− P̂n) > 2λ2||g||2an
)

−

l
∑

i=1

P̂n

(∫

gi(dP
∗
kn

− P̂n) > anci

)

≥

P̂n

(
∫

gd(P ∗
kn

− P̂n) > 2λ2||g||2an
)

−
l
∑

i=1

exp{−ρ20(Πi : P )a2nkn(1 + ǫn)}.

(5.15)

with ǫn → 0 as n → ∞.
Thus it remains to implement Theorem 5.1 to the first addendum in the right-

hand side of (5.15).
By (5.8) and (5.9), we get

(a2nkn)
−1 log P̂n

(∫

g dP ∗
kn

− P̂n) > an||g||
)

≥

− 1

2
||g||2

(

1 +
1

3ω

)

+ c(kna
2
n)

−1 = −1

2
||g||2

(

1 +
s

9σ
ǫ
)

+ c(kna
2
n)

−1.

(5.16)

This completes the proof of lower bound.
Proof of Lemma 5.2. The problem is reduced to the following. There is given a
parallelepiped U1 in Rl+1 and 0 /∈ U1, ρ(0, U1) = infx∈U1 |x|. The point u lies on the
face Π of parallelepiped U1 and ρ(0, u) = ρ(0, U1). One needs to point out simplex
V ⊂ U1 such that Π ∩ V is the face of V , u ∈ Π ∩ V and for any hyperplane Π1

passing through another face of V it holds ρ(0,Π1) > ρ(0, u). Let the distance of
u from any face other than Π exceeds r0. A simple trigonometric reasoning shows
that the simplex V can be defined as follows. We take the vertex v = (1 + 1

2r
2)u

of V where r << r0 and all other vertices vi, 1 ≤ i ≤ l belong Π and |vi − u| = r.
For the proof of this statement it suffices to consider the case l = 1. Let us

draw through v the line L intersecting the line Π at the point w and such that w
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is orthogonal to L. Then |u − v| = |w − u|2|u|−1(1 + o(1)). Therefore, if the line
L1, v ∈ L1 intersect Π at the point z = c|w − u|2|u|−1, c < 1 then ρ(0, L1) > |u|.
This completes the proof of Lemma 5.2.
Proof of Theorem 2.5. The reasoning is based on estimates of Theorem 2.6. We
begin with the proof of upper bound (2.20) in the case of τΘ2h

-topology. Suppose
that ρ20(cl(Ω0), P ) < ∞. If ρ20(cl(Ω0), P ) = ∞, the reasoning are similar. It suffices
to prove that for any ǫ > 0

(kna
2
n)

−1 log(P̂n)
∗(P ∗

kn
∈ P̂n + anΩ0) ≤ −ρ20(cl(Ω0), P ) + ǫ a. s. (5.17)

By the Strong Law of Large Numbers and (2.17), for any f ∈ Θ, we get

s2n(f) → σ2(f) a. s. (5.18)

with σ2(f) < ∞.
By (2.18) and (2.16), for any δ > 0, we get

P (max
i≥l

ai|f(Xi)| ≤ δ) =

∞
∏

i=l

(1 − P (|f(Xi)| > δa−1
s ))

≥
∞
∏

i=l

(1− h(ai/δ)) ≥ exp{
∞
∑

i=l

h(ai/δ)} = 1 + o(1).

(5.19)

as l → ∞.
For any k,

P ( max
1≤i≤k

an|f(Xi)| > δ) = o(1) (5.20)

as n → ∞.
Note that maxi≥k ai|f(Xi)| < δ implies maxk≤i≤n |f(Xi)| < δa−1

n . Therefore,
by (5.19) and (5.20), we get

max
1≤s≤n

|f(Xs)| < δa−1
n a. s. (5.21)

Using (5.18),(5.21), we can implement the same technique for the proof of (5.3)
as in the proof of (2.22) in Theorem 2.6. This completes the proof of (2.20

For the proof of (2.20) in the case of τΘt
-topology it suffices to show that, for

any δ > 0

Ik
.
= P (max

i>k
ai|f(Xi)| > δ) = o(1) (5.22)

as k → ∞.
We have

Ik ≤
∞
∑

i=k

P (f(Xi) > δa−1
i )

=

∞
∑

i=k+1

(n− k)P (δa−1
i−1 < |f(Xs)| ≤ δa−1

i )
.
= Jk.

(5.23)

Define the function u(x) = δa−1
i−1 + δ(a−1

i − a−1
i−1)(x − i + 1) if x ∈ [a−1

i−1, a
−1
i ).

Define the inverse function v(y) = inf{t : u(t) = y, t ∈ R1}. Define the distribution
function F (x) = P (|f(X)| < x), x ∈ R1

+.
Then

Jk ≤ 2

∫ ∞

a−1
k

v(x)dF (x) ≤ 2

∫ ∞

a−1
k

xtdF (x) = o(1) (5.24)

as k → ∞. This implies (5.22).
The proof of lower bound (2.19) is based on similar reasoning and is omitted.
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6. Appendix

Proof of Theorem 2.4. One needs to show that

− logP

(

n
∑

i=1

Y ∗
i > nen

)

= o(ne2n) (6.1)

Define the events Ani = Uni ∪ Vni, 1 ≤ i ≤ n with Uni = {Yi : |Yi| < b−1
n } and

Vni = {Yi : rn < Yi}. Denote An = ∩n
i=1Ani.

By (2.2), we get

P (An) > 1− P ( max
1≤i≤n

|Yi| > b−1
n ) >

1− nP (|Y1| > b−1
n ) = 1 + o(1).

(6.2)

Denote Pcn the conditional probability measure Y1 given Y1 ∈ An1.
By (6.2), we get

P

(

n
∑

i=1

Y ∗
i > nen

)

≥ P

(

n
∑

i=1

Y ∗
i > nen|An

)

P (An) =

Pcn

(

n
∑

i=1

Y ∗
i > nen

)

(1 + o(1)).

(6.3)

Thus it suffices to prove (6.1) with pm P replaced by pm Pcn. Denote pn =
Pcn(Y1 > rn). By (2.2), we get npn → 0 as n → ∞. Define the events Wn(kn) =
{ Y1, . . . , Yn : n − kn random variables Y1, . . . , Yn belong (0, b−1

n ) and kn random
variables Y1, . . . , Yn belong (rn,∞) }. Suppose that k = kn → ∞ as n → ∞ and

lim
n→∞

knnpn = 0, lim
n→∞

(rnen)
−1 log

nen
rnkn

= 0. (6.4)

By the Stirling formula, we get

vn
.
= Pcn(Wn(k)) =

n!

(n− k)!k!
pkn(1− pn)

n−k =

(2π)−1/2 exp{(n+ 1/2) logn− (n− k + 1/2) log(n− k)− (k + 1/2) log k+

k log pn + (n− k) log(1 − pn)}(1 + o(1)) =

exp

{

−(n− k + 1/2) log
n− k

n(1− pn)
− k log

k

npn
(1 + o(1))

}

=

exp{−n(1− k/n)(−k/n+ pn)(1 + o(1))− k log[k/(npn)](1 + o(1))} =

exp{(k − npn − k log(k/(npn))(1 + o(1))} =

exp

{

−k log
k

npn
(1 + o(1))

}

.

(6.5)

It follows from (2.13),(6.5) that we can choose k = kn, such that

| log vn| = O(kn| log(npn)|) = o(ne2n). (6.6)

Define the random variable ln which equals the number of Y ∗
i , 1 ≤ i ≤ n such that

Y ∗
i ∈ (rn,∞). Denote un = cnenrn

= c
ne2n
rnen

with c > 1 and denote mn = [un].

Suppose that un

kn
→ ∞ as n → ∞. Then estimating similarly to (6.5) we get

Pc(ln > un|Wn(kn)) = exp

{

−un log
un

kn
(1 + o(1))

}

(6.7)

Denote c1 = c− 1. Denote Y 1∗ ≤ . . . ≤ Y n∗ the order statistics of Y ∗
1 , . . . , Y

∗
n .



A MODERATE DEVIATION PRINCIPLE FOR EMPIRICAL BOOTSTRAP MEASURE 25

The event {Y ∗
1 , . . . , Y

∗
n :
∑n

i=1 Y
∗
i > nen} contains the event

Un =







Y ∗
1 , . . . , Y

∗
n :

n−mn
∑

j=1

Y j∗ > −c1nen, |Y j∗| < b−1
n ,

1 ≤ j ≤ n−mn, Y
t∗ > rn, n−mn < t ≤ n

}

since, if Un holds,
n
∑

t=n−mn−1

Y t∗ > rnmn = crn
nen
rn

= cnen.

Hence it suffices to show that

logPc(Un) = o(ne2n). (6.8)

We have

Pc(Un) ≥ Pc(ln = mn)Pc

(

n−mn
∑

i=1

Y ∗
i > −c1nen, |Y ∗

i | < b−1
n , 1 ≤ i ≤ n−mn

)

≥

Pc(ln = mn|Wn(kn))Pc(Wn(kn))Pc

(

n−mn
∑

i=1

Y ∗
i > −c1nen, |Y ∗

i | < b−1
n , 1 ≤ i ≤ n−mn

)

.

(6.9)

Denote qn = Pc(|Y1| < b−1
n ). Define the conditional probability measure Pbn of the

random variable Y1 given |Y1| < b−1
n .

We have

Pc(|Y ∗
1 | < b−1

n ) =
n
∑

i=1

n!

(n− i)!i!
qin(1 − qn)

n−i i

n
=

= qn

n
∑

i=1

(n− 1)!

(n− i)!(i− 1)!
qi−1
n (1 − qn)

n−i = qn

(6.10)

We have

Pc

(

n−mn
∑

i=1

Y ∗
i > −c1nen| |Y ∗

i | < b−1
n , 1 ≤ i ≤ n−mn

)

=

1− Pc

(

n−mn
∑

i=1

Y ∗
i < −c1nen| |Y ∗

i | < b−1
n , 1 ≤ i ≤ n−mn

)

.

(6.11)

By Chebyshev inequality, using (6.10), we get

Pc

(

n−mn
∑

i=1

Y ∗
i < −c1nen| |Y ∗

i | < b−1
n , 1 ≤ i ≤ n−mn

)

≤

n−mn

c21(n−mn)2e2n
Ec[VarP̂n

(Y ∗
1 | |Y ∗

1 | < b−1
n )] =

q2n
c21(n−mn)e2n

n
∑

t=0

Ct
nq

t
n(1− qn)

n−tEbn






(n− t)−1

n−t
∑

i=1



Yi − (n− t)−1
n−t
∑

j=1

Yj





2





=

q2n
c21(n−mn)e2n

n
∑

t=0

Ct
nq

t
n(1− qn)

n−t t− 1

t
Varbn [Y ] ≤ q2n

c21(n−mn)e2n
Varbn [Y ].

(6.12)

and
lim
n→∞

q2nVarbn [Y ] = Var[Y ]. (6.13)
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By (6.5,6.7), we get

Pc(ln = mn|Wn(kn))Pc(Wn(kn)) =

exp

{

−cne2n
rnen

log
nen
rnkn

− ckn log
kn
npn

(1 + o(1))

}

= exp{−o(ne2n)}
(6.14)

where the last equality follows from (6.4,6.6). Now (6.8) follows from (6.11-6.14).
This completes the proof of Theorem 2.4.
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