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For the zone of moderate deviation probabilities the local asymptotic minimax

lower bound of asymptotic efficiency of estimators is established. The estimation

parameter is multidimensional. The lower bound admits the interpretation as

the lower bound of asymptotic efficiency in confidence estimation.
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1 Introduction

The asymptotic normality of estimators is a key property allowing to construct
confidence sets if the sample size is sufficiently large. The problem of accuracy of
the normal approximation emerges simultaneously with its implementation. The
inequalities of the Berry-Esseen type and the Edgeworth expansions (see [13, 5, 23,
14] and references therein) show that the convergence rate to the normal distribution
has the order n−1/2 ( here n is a sample size). The significant levels α of confidence
sets have usually small values ( α = 0.1; 0.05; 0.01 are the standard values in practice
). For such small values of α the rate of convergence n−1/2 does not allow to talk
about adequate accuracy of approximation for the sample sizes of several hundreds
observations or smaller. From this viewpoint the study of asymptotic properties of
estimators in the zones of large and moderate deviation probabilities is of special
interest. The problem of lower bounds for asymptotic efficiency in these zones
emerges as well. The asymptotic efficiency of estimators in the zone of large deviation
probabilities is analyzed on the base of Bahadur efficiency [3, 28, 24, 22].

The study of large deviation probabilities of estimators is a rather difficult
problem. This problem is often replaced with the study of their moderate deviation
probabilities. Let X1, . . . , Xn be independent sample of random variable X having
the probability measure Pθ, θ ∈ R1. Let bn > 0, bn → 0, nb2n → ∞ as n → ∞. Let
θ0 ∈ R1. Then (see [11]) for any estimator θ̂n

lim inf
n→∞

inf
θ=θ0,θ0+2bn

(
1

2
nb2n)

−1 lnPθ(|θ̂n − θ| > bn) ≥ −I(θ0). (1.1)

Here we suppose that there exists the finite Fisher information I(θ) for all θ in some
vicinity of θ0. Note that the lower bound of the local Bahadur asymptotic efficiency
is a particular case of (1.1).

The natural problem arises on the quality of logarithmic approximation for
the obtaining confidence sets. The distributions of estimators admit usually the
approximation by the sums X̄ = n−1(X1+. . .+Xn) of independent random variables.
(see [25, 28, 14] and references therein). Thus it is of interest to compare for the
sample mean X̄ the confidence intervals obtained by the normal approximation
and the basic term of logarithmic asymptotic. If there exists an exponential moment
E[exp{t|X1|}] < C <∞, t > 0, the sample mean X̄ satisfies the Bernstein inequality

P (n1/2(X̄ − E[X1]) > x) < exp

{

− x2

2σ2
(1 + o(1))

}

, x > x0 (1.2)

with σ2 = Var[X1].
The confidence interval based on the main term of asymptotics of right-hand

side of (1.2) is the following
(

X̄ − σ
√

2| ln(α/2)|√
n

, X̄ +
σ
√

2| ln(α/2)|√
n

)

(1.3)

instead of the standard one
(

X̄ − xα/2
σ√
n
, X̄ + xα/2

σ√
n

)

(1.4)

2



where xα/2 satisfies α/2 = Φ(−xα/2). Here Φ(x) is the standard normal distribution
function.

If α = 0.1; 0.05; 0.01 respectively the confidence intervals defined by (1.3) are the
following

(X̄ − 2.44
σ√
n
, X̄ + 2.44

σ√
n
),

(X̄ − 2.71
σ√
n
, X̄ + 2.71

σ√
n
),

(X̄ − 3.25
σ√
n
, X̄ + 3.25

σ√
n
)

instead of the standard ones defined by the normal approximation (1.4)

(X̄ − 1.65
σ√
n
, X̄ + 1.65

σ√
n
),

(X̄ − 1.96
σ√
n
, X̄ + 1.96

σ√
n
),

(X̄ − 2.576
σ√
n
, X̄ + 2.576

σ√
n
).

If α = 0.1; 0.05, the implementation of (1.3) requires the doubling of the number of
observations for obtaining the same width of confidence interval as in (1.4). At the
same time the normal approximation works in a rather narrow zone of moderate
deviation probabilities in comparison with the Bernstein inequality (1.2). Thus the
analysis of confidence intervals on the base of logarithmic asymptotics of large
and moderate deviation probabilities is also reasonable. It should be noted that
there exist powerful methods for constructing accurate boundaries of confidence
intervals such as asymptotic expansions (see [13, 14, 5, 23, 26] and references therein),
bootstrap (see [9, 8, 28, 14] and references therein) and so on.

For the zone of moderate deviation probabilities the normal approximation of
statistics is the subject of numerous publications (see [5, 1, 8, 14, 23, 17, 18] and
references therein). The goal of the paper is to prove the sharp local asymptotic
minimax lower bound for the estimators in this zone. The estimation parameter is
multidimensional. For one - dimensional parameter the local asymptotic minimax
lower bound for the sharp asymptotics of moderate deviation probabilities of estimators
has been established in [11]. Thus the local asymptotic minimax lower bound for
estimators [15, 16, 19, 27, 28] is extended on the zone of moderate deviation probabilities.

We make use of the letters C and c as generic notation for positive constants.
Denote χ(A) the indicator of set A, [a] - the integral part of a. For any u, v ∈ Rd

denote u′v the inner product of u, v and u′ the transposed vector of u. For positive
sequences an denote an ≍ bn, if c < an/bn < C, and denote an >>> bn if an/bn → ∞
as n→ ∞. For any set of events B... denote A... the complementary event to B....

2 Main Result

Let X1, . . . , Xn be i.i.d.r.v.’s having a probability measure (p.m.) Pθ, θ ∈ Θ ⊆ Rd,
defined on a probability space (S,Υ). Suppose p.m.’s Pθ, θ ∈ Θ, are absolutely
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continuous w.r.t. p.m. ν defined on the same probability space (S,Υ). Denote
f(x, θ) = dPθ

dν
(x), x ∈ S. For any θ1, θ2 ∈ Rd denote P a

θ1,θ2
and P s

θ1,θ2
respectively

absolutely continuous and singular components of p.m. Pθ1 w.r.t. Pθ2. For all x ∈ S
such that f(x, θ) 6= 0 denote g(x, θ, θ + u) = (f(x, θ + u)/f(x, θ))1/2 − 1, u ∈ Rd.

The statistical experiment Ψ = {(S,Υ), Pθ, θ ∈ Rd} has the finite Fisher information
at the point θ ∈ Rd if there exists the vector function φθ(x) = (φθ,1(x), . . . , φθ,d(x))

′, x ∈
S, φθ,i ∈ L2(Pθ), 1 ≤ i ≤ d such that

∫

S

(

g(x, θ, θ + u)− 1

2
u′φθ(x)

)2

dPθ = o(|u|2), P s
θ+u,θ(S) = o(|u|2)

as u→ 0.
The Fisher information matrix at the point θ equals

I(θ) =

∫

S

φθφ
′
θ dPθ.

For any Pθ1, Pθ2 , θ1, θ2 ∈ Rd the Hellinger distance equals

ρ(Pθ1, Pθ2) = ρ(θ1, θ2) =

(
∫

S

(f 1/2(x, θ1)− f 1/2(x, θ2))
2 dν

)1/2

.

We make the following assumptions.
Let θ0 ∈ Θ and let Θ be open set. Let 0 < λ ≤ 1.

A1. For all θ in some vicinity Θ0 of the point θ0 ∈ Θ there exists the positive definite
Fisher information matrix I(θ).
A2. For all θ, θ + u ∈ Θ0 there hold

∫

S

(g(x, θ, θ + u)− 1

2
u′φθ(x))

2 dPθ < C|u|2+λ, P s
θ+u,θ(S) < C|u|2+λ, (2.1)

|4ρ2(θ, θ + u)− u′I(θ)u| < C|u|2+λ, (2.2)
∫

S

|φθ(x)|2+λ dPθ < C <∞, (2.3)

h′I(θ)h− h′I(θ + u)h < C|h|2|u|λ. (2.4)

The constants C in (2.1-2.4) do not depend on θ, θ + u ∈ Θ0.
We say that a set Ω ⊂ Rd is central-symmetric if x ∈ Ω implies −x ∈ Ω.
We make the following assumptions

B1. The set Ω is convex and central-symmetric.
B2. The boundary ∂Ω of the set Ω is C2-manifold.
B3. The principal curvatures at each point of ∂Ω are negative.

Denote ζ- Gaussian random vector in Rd such that Eζ = 0, E[ζζ ′] = I. Here I
is the unit matrix.

Theorem 2.1 Assume A1, A2 and B1-B3. Let nb2n → ∞, nb2+λn → 0, bn − bn−1 =
o(n−1b−1

n ) as n→ ∞. Then for any estimator θ̂n = θ̂n(X1, . . . , Xn)

lim inf
n→∞

sup
|θ−θ0|<Cnbn

Pθ(I
1/2(θ0)(θ̂n − θ) /∈ bnΩ)

P (ζ /∈ n1/2bnΩ)
≥ 1 (2.5)

with Cn → ∞ as n→ ∞.
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Wolfowitz [29] was the first who pointed out the relationship of lower bounds of
(2.5)-type with the problem of asymptotic efficiency in the confidence estimation.

In [11] Theorem 2.1 has been established for θ ∈ Θ ⊆ R1 if (2.1)-(2.3) is valid.
If d = 1, (2.4) follows from (2.2). Note that (2.4) is fulfilled evidently in the case of
location parameter. If (2.4) does not valid, we could not take I1/2(θ0) as the constant
normalized matrix in (2.5).

In confidence estimation the set Ω is usually a ball Ωr having the center zero and
the radius r > 0. In this case the asymptotic of denominator in (2.5) is known.

Corollary 2.1 Let assumptions of Theorem 2.1 be valid. Let Ω = Ωr.Then for any
estimator θ̂n = θ̂n(X1, . . . , Xn)

lim inf
n→∞

sup
|θ−θ0|<Cnbn

2d/2−1Γ(d/2)(n1/2bnr)
2−d exp{nb2nr2/2}Pθ(I1/2(θ0)(θ̂n−θ) /∈ bnΩr) ≥ 1

(2.6)
with Cn → ∞ as n→ ∞.

If Ω is the ellipsoid Ωσ,r =
{

θ :
∑d

i=1 σ
2
i θ

2
i > r2, θ = {θi}di=1, θi ∈ R1

}

, σ = {σi}di=1, σ1 =

σ2 = . . . = σk > σk+1 > . . . > σd > 0, we get the following asymptotic (see [20]) in
the denominator of (2.5)

P (ζ /∈ n1/2bnΩσ,r) = Ck(n
1/2bnr)

k−2 exp{−nb2nr2/2}(1 + o(1)). (2.7)

Here Ck = 21−k/2σ1−k
1 (Γ(k/2))−1

∏d
i=k+1(1− σ2

r/σ
2
1)

−1/2.
The assumptions of Theorem 2.1 are rather weak. The sharp asymptotics of

moderate deviation probabilities of likelihood ratio were established under the more
restrictive assumptions (see [5, 7, 8, 26] and references therein). The lower bounds
for moderate deviation probabilities do not require such strong assumptions (see
[2, 11]) and are usually proved more easily than the upper bounds.

The assumptions of Theorem 2.1 are different from the traditional assumption
of local asymptotic normality. Thus Theorem 2.1 could not be straightforwardly
extended on the models having this property. At the same time A1,A2 represent
slightly more stable form of usual assumptions arising in the proof of local asymptotic
normality. This allows to make use of the technique arising in the proofs of local
asymptotic normality and to get the results similar to (2.5) for other models of
estimation. This problem will be considered in the sequel.

For the semiparametric estimation the local asymptotic minimax lower bounds
in the zone of moderate deviation probabilities have been established in [12]. In
[12] the statistical functionals take the values in R1. The results were based on the
assumptions that (2.1-2.3) hold uniformly for the families of "least-favourable"distributions.
In the case of multidimensional parameter the additional assumptions (2.4) arises
only. Thus the difference is not very significant.

The plan of the proof of Theorem 2.1 is the following. In section 3 we outline the
basic steps of the proof. After that the proof are given for the most simple geometry
of the set Ω. For the arbitrary geometry of set Ω we point out the differences in
the proof at the end of section 3. The key Lemmas 3.1, 3.2 are proved in section 4.
The proof of Lemma 3.2 is based on new Theorems 4.1 and 4.2 on large deviation
probabilities of sums of independent random vectors. The proofs of Theorems 4.1
and 4.2 are given in section 5. The proofs of technical Lemmas of sections 3 and 4
are given in section 6.
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3 Proof of Theorem 2.1

To simplify the notation we suppose that θ0 equals zero. Suppose the matrix I(θ0)
is the unit.

For any θ1, θ2 ∈ Θ denote

ξs(θ1, θ2) = ln
f(Xs, θ2)

f(Xs, θ1)
, τs(θ1) = {τks(θ1)}d1 = φθ1(Xs)

with 1 ≤ s ≤ n.
We will often omit θ = θ0 in notation. For example, we shall write ξs(θ) =

ξs(θ0, θ), τs = τs(θ0). The index s will be omitted for s = 1. For example, τ = τ1(θ0).
Denote ψn = n−1/2I−1/2(θ0)

∑n
s=1 τs. Note, that (θ−θ0)′

∑n
s=1 τs is the stochastic

part of the linear approximation of logarithm of likelihood ratio.
The reasoning is based on the standard proof of local asymptotic minimax lower

bound [15, 16, 19, 27, 28]. In particular we make use of the fact that the minimax
risk exceeds the Bayes one and study the asymptotic of Bayes risks. However, in this
setup, the estimates of residual terms of asymptotics of posterior Bayes risks should
have the order o(exp{−cnb2n}). This does not allow to make use of the technique of
local asymptotic normality

n
∑

s=1

ξs(un)− n1/2u′nI
1/2ψn +

1

2
nu′nIun = oP (1) (3.1)

in the zone |un| ≤ Cbn of moderate deviation probabilities. This is the basic reason
of differences in the proof.

Instead of (3.1) we are compelled to prove that, for any ǫ > 0,

P

(

sup
u∈Un

{

n
∑

s=1

ξs(u)− n1/2u′I1/2ψn +
1

2
nu′Iu

}

> ǫ

)

= o(exp{−cnb2n}) (3.2)

where Un is a fairly broad set of parameters. Therefore, the main problem is how to
narrow down the set Un.

The following two facts have allowed to solve this problem.
The normalized values of posterior Bayes risks tend to a constant in probability.
In the zone of moderate deviation probabilities the normal approximation [4, 21]

holds for the sets of events ψn ∈ n1/2Γni where the domain Γni has a diameter
o(n−1b−1

n ).
Thus we can find the asymptotic of posterior Bayes risk independently for each

an event ψn ∈ n1/2Γni , sum over i and get the lower bound. Fixing the set Γni allows
to replace the proof of (3.2) with

P

(

sup
u∈Un

{

n
∑

s=1

ξs(u)− n1/2u′I1/2ψn +
1

2
nu′Iu,

}

> ǫ, ψn ∈ n1/2Γni, A1n

)

= o

(
∫

n1/2Γni

exp{−x2/2}dx
)

(3.3)

where P (A1n) = 1 + o(1).
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To narrow down the sets Un we define the lattice Λn in the cube Kvn , vn =
Cbn and split Λn into subsets Λnile. The set Λnile is the lattice in the union of a
finite number of very narrow parallelepipeds Knij whose orientation is given by the
position of the set Γni relative to θ0. The problem of Bayes risk minimization is
solved independently for each set Λnile and the results are added.

Note that the proof of (3.3) with Un = Λnile is based on the "chaining method"together
with the inequality

P

(

n
∑

s=1

ξs(θ1, θ2)− (θ2 − θ1)
′
n
∑

s=1

τsθ1 +
1

2
n(θ2 − θ1)

′I(θ2 − θ1) > ǫ,

ψn ∈ n1/2Γni, A1n

)

≤ C|θ2 − θ1|2bλn
∫

n1/2Γni

exp{−x2/2}dx.
(3.4)

To prove (3.4) we implement simultaneously the Chebyshev inequality to the first
sum in the left-hand side of (3.4) and theorem on large deviation probabilities for ψn.
Thus we prove some anisotropic version of theorem on large deviation probabilities
(see Theorem 4.2).

Denote vn = Cbn. Define a sequence δ1n = c1n(nbn)
−1, with c1n → 0, c−3

1nnb
2+λ
n →

0 as n → ∞. In the cube Kvn = [−vn, vn]d we define a lattice Λn = {h : h =
(j1δ1n, . . . , jdδ1n),−ln ≤ jk ≤ ln = [vn/δ1n], 1 ≤ k ≤ d}. Thus ln ≍ c−1

1nnb
2
n.

We split the cubeKκvn , 0 < κ < 1 on the small cubes Γni = xni+(−c2nδ1n, c2nδ1n]d,
where c2n → ∞, c2nδ1n = o(n−1b−1

n ), c32nc
−3
1nnb

2+λ
n → 0 as n → ∞, 1 ≤ i ≤ mn =

[(κc−1
2nCc

−1
1n )

dndb2dn ], xni ∈ Kvn .
Suppose C is chosen so that bnΩ ⊂ K(1−κ)vn .
For each xni, 1 ≤ i ≤ mn we define the partition of the cube Kvn on the subsets

Knij = K(θnij) = {x : x = λxni + u+ θnij, u = {uk}dk=1,

u⊥xni, |uk| ≤ c3nδ1n, λ ∈ R1, u ∈ Rd} ∩Kvn , 1 ≤ j ≤ m1ni,

where c3n/c2n → ∞, c3nδ1n = o(n−1b−1
n ), c33nc

−3
1nnb

2+λ
n → 0 as n→ ∞.

Let us fix i. Suppose xni is parallel to e1 = (1, 0, . . . , 0)′. This does not cause
serious differences in the reasoning. Denote Π1 the subspace orthogonal to e1. Suppose
the points θnij , 1 ≤ j ≤ m1ni are chosen so that they form a lattice in Π1 ∩ Kvn .
Define the sets

Λn(θnij) = K(θnij) ∩ Λn, 1 ≤ j ≤ m1ni, Θni = {θ : θ = θnij, 1 ≤ j ≤ m1ni}.

The risk asymptotic is defined by the set

M = {x : |x| = inf
y∈∂Ω

|y|, x ∈ ∂Ω }. (3.5)

We begin with the proof of Theorem 2.1 for the two-point case M = {−y, y}, y ∈ ∂Ω.
For arbitrary geometry of the set M we are compelled to make use of a rather
cumbersome constructions. At the same time the basic part of the proof is the
same.

Let θnij0 be such that bny ∈ K(θnij0) Then −bny ∈ K(−θnij0). Let us split Θni

on the subsets

Θi(k1, . . . , kd−d1) = {θ : θ = θnij0 + (−1)t22k2c3nδ1ne2

+ . . .+ (−1)td2kdc3nδ1ned; t2, . . . td = ±1} (3.6)
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where 0 ≤ k2, . . . , kd < C1n with C1nc3nc1n → ∞, nC3
1nc

3
3nc

3
1nb

2+λ
n → 0 as n→ ∞.

Denote
K̃ni(k1, . . . , kd−1) = ∪θ∈Θi(k1,...,kd−1)K(θ). (3.7)

It will be convenient to number the sets K̃ni(k1, . . . , kd−d1) denoting their K̃ni1, . . . , K̃nim2ni
.

Denote
Θnie = Θni ∩ K̃nie, Λnie = K̃nie ∩ Λn, 1 ≤ e ≤ m2ni. (3.8)

Thus Θnie contains k = 2d−1 points, that is, Θnie = {θj}kj=1.
In this notation the problem of risk minimization on Λn is reduced to the same

problems on the subsets Λnie

inf
θ̂n

sup
θ∈Kvn

Pθ(θ̂n − θ /∈ bnΩ)

≥ inf
θ̂n

(2ln)
−d

mn
∑

i=1

∑

θ∈Λn

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni)

≥ (2ln)
−d

mn
∑

i=1

m2ni
∑

e=1

inf
θ̂n

∑

θ∈Λnie

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni).

(3.9)

Thus we can minimize the Bayes risk on each subset Λnie independently and make
use of the own linear approximation (3.1) of logarithms of likelihood ratio on each
set Un = Λnie.

For the arbitrary geometry of the set M the additional summation over index
l, 1 ≤ l ≤ m3ni caused the different points of M arises in (3.9). Thus the right-hand
side of (3.9) is the following

(2ln)
−d

mn
∑

i=1

m3ni
∑

l=1

m2nil
∑

e=1

inf
θ̂n

∑

θ∈Λnile

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni). (3.10)

The definition of the sets Λnile is akin to Λnie. The statement (3.9) with the right-
hand side (3.10) is the basic difference of the proof for the arbitrary geometry of M .
For the completeness of the proof we shall write the index l in the further reasoning.
This index should be omitted for the two-point case.

The plan of the further proof is the following. First the basic reasoning will be
given. After that we define the partitions of Λn on the sets Λnile for the arbitrary
geometry of M . The basic reasoning is given on the set of events A1n such that

P (A1n) = 1 +O(nb2+λn ). (3.11)

The definition of the set A1n is rather cumbersome. To simplify the understanding
of the proof we have postponed the definition of the set A1n to the end of section.

For each θ ∈ Λnile denote

Snθ =
n
∑

s=1

ξs(θ)− θ′
n
∑

s=1

τs + 2nρ2(0, θ)

and define the events
Bnθ = {X1, . . . , Xn : Snθ > ǫ1n}

8



where ǫ1n → 0, ǫ−2
1n c

−3
1nnb

2+λ
n → 0 as n→ ∞.

Denote Bnile = ∪θ∈Λnile
Bnθ. For any θnij ∈ Θnile denote Bni(θnij) = ∪θ∈Λ(θnij)Bnθ.

We have

inf
θ̂n

∑

θ∈Λnile

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni)

≥ inf
θ̂n

∑

θ∈Λnile

E

[

χ(θ̂n − θ /∈ bnΩ) exp

{

n
∑

s=1

ξs(θ)

}

, ψn ∈ n1/2Γni, A1n

]

≥ E

[

inf
t

∑

θ∈Λnile

χ(t− θ /∈ bnΩ) exp

{

θ
n
∑

s=1

τs −
1

2
nθ′Iθ + o(1)

}

,

ψn ∈ n1/2Γni, Anile|A1n

]

P (A1n) = Rn.

(3.12)

Denote ∆n = exp{ψ′
nψn/2}, y = yθ = n1/2θ−ψn. Then, using nbnδn → 0, nb2+λn → 0

as n→ ∞, we get

(2ln)
−dRn ≥ (2ln)

−dE

[

∆n inf
t

∑

θ∈Λnile

χ(t− yθ − ψn /∈ n1/2bnΩ) exp

{

−1

2
y′θIyθ

}

,

ψn ∈ n1/2Γni, Anile|A1n

]

(1 + o(1))

= (2vn)
−dE

[

∆n inf
t

∫

n1/2Knile−ψn

χ(t− y /∈ n1/2bnΩ) exp

{

−1

2
y′Iy

}

dy,

ψn ∈ n1/2Γni, Anile|A1n}
]

(1 + o(1))
.
= (2vn)

−dInile(1 + o(1)).

(3.13)

For each κ ∈ (0, 1) denote

Kniκ(θnij) = {x : x = λxni + u+ θnij , u = {uk}d1, |uk| ≤ (c3n − Cc2n)δ1n,

u⊥xni, λ ∈ R1} ∩K(1−κ)vn ,

Knileκ = ∪θ∈Θnile
Kniκ(θ).

If ψn ∈ n1/2Γni ⊂ Kκvn , then n1/2Knileκ ⊂ n1/2Knile − ψn and therefore

Inile ≥ UnileJ̄nile(1 + o(1)) (3.14)

with
Unile = E [∆n, ψn ∈ Γni, Anile|A1n] ,

J̄nile
.
= inf

t
Jnile(t)

.
= inf

t

∫

n1/2Knileκ

χ(t− y /∈ n1/2bnΩ) exp

{

−1

2
y′Iy

}

dy.

Lemma 3.1
J̄nile = Jnile(0). (3.15)
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Summing over l and e, by (3.15), we get

m3ni
∑

l=1

m2nil
∑

e=1

J̄nileκ ≥ P (I1/2(θ0)ζ /∈ n1/2bnΩ)(1 + o(1)). (3.16)

We have

Unile = E
[

∆n, ψn ∈ n1/2Γni|A1n

]

−E
[

∆n, ψn ∈ n1/2Γni, Bnile|A1n

] .
= U1ni − U2nile.

(3.17)

Lemma 3.2 For all i, 1 ≤ i ≤ mn

U1ni = mes(Γni)(1 + o(1)), (3.18)

U2nile = o(mes(Γni)) (3.19)

as n→ ∞.

Summing over i, by Lemma 3.2, we get

mn
∑

i=1

Unile ≥ mes(Kκvn)(1 + o(1)) = (2κvn)
d(1 + o(1)). (3.20)

By (3.16,3.20), we get

mn
∑

i=1

m3ni
∑

l=1

m4ni
∑

e=1

J̄nileκUnile ≥ (2κvn)
dP (I1/2(θ0)ζ /∈ n1/2bnΩ)(1 + o(1)). (3.21)

Since κ, 0 < κ < 1, is arbitrary, (3.9), (3.12)-(3.14),(3.21) together imply Theorem
2.1.

For the arbitrary geometry of the set M the reasoning is the following. Let us
allocate in M connectivity components M1, . . . ,Ms1 having the greatest dimension.
These components define the asymptotic of lower bound of risks. Denote M̃ =
∪s1i=1Mi. Define the linear manifold N having the smallest dimension d1 such that
M̃ ⊂ N . Define in Rd the coordinate system, such that N is induced the first d1
coordinates. Denote e1, . . . , ed the vectors of the coordinate system.

Denote ynij
.
= y(θnij)

.
= {x : x = λxni + θnij , λ > 0} ∩ bn∂Ω, 1 ≤ j ≤ mni. Define

the sets Yni = {y : y = ynij, 1 ≤ j ≤ m1ni}. We allocate in Yni the subset Ỹni of all
points ynij such that K(θnij) ∩ bnM̃ is not empty.

For each ynij ∈ Ỹni we set znij ∈ bnM̃ such that

|ynij − znij | = inf
z∈bnM̃

|ynij − z|. (3.22)

Define the set Z̃ni = {z : z = znij, ynij ∈ Ỹni}. Denote m4ni the number of points of
Z̃ni.

We split Z̃ni on subsets of points Z̃nil = {znil1, . . . , znild1}, 1 ≤ l ≤ m3ni such that
the vectors znil1, . . . , znild1 induce N . Note that t < d1 points could not enter in these
partitions since m4ni may not be a multiple of d1. However their exception is not
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essential for the further reasoning. Moreover, for the existence of such a partition
we may have to define different constants c3n in the definition of different sets Knij.
However, this does not affect significantly on the subsequent proof and we omit the
reasoning.

For each znile define the point ynile, ynile ∈ Ỹni such that |ynile − znile| ≤ c3nδ1n.
For each set Z̃nil

.
= {zni1j1 , . . . , znid1 jd1} = {znil1, . . . , znild1} we make the following.

For each point θnisjs, 1 ≤ s ≤ d1 we draw the linear manifold Lisjs = {z : z =
θnisjs + λ1ed1+1 + . . . + λd−d1ed, λ1, . . . , λd−d1 ∈ R1}. We split Θni ∩ Lisjs on the
subsets

Θisjs(k1, . . . , kd−d1) = {θ : θ = θnisjs + (−1)t12k1c3nδ1ned1+1

+ . . .+ (−1)td−d12kd−d1c3nδ1ned; t1, . . . td−d1 = ±1} (3.23)

where 0 ≤ k1, . . . , kd−d1 < C1n with C1nc3nc1n → ∞, nb2+λn C3
1nc

3
3nc

3
1n → 0 as n→ ∞.

Denote
K̃isjs(k1, . . . , kd−d1) = ∪θ∈Θisjs (k1,...,kd−d1

)K(θ).

Denote m2nil(is, js) the number of sets K̃isjs(k1, . . . , kd−d1).
Without loss of generality we can assume that m2nil(i1, j1) = m2nil(i2, j2) = . . . =

m2nil(id, jd)
.
= m2nil, 1 ≤ l ≤ m3ni. This can always be achieved by making different

constants c3n defining the sets Knij . Denote

K̄nil(k1, . . . , kd−d1) = ∪d1s=1K̃isjs(k1, . . . , kd−d1). (3.24)

It will be convenient to number the sets K̄nil(k1, . . . , kd−d1) denoting their K̄nil1, . . . , K̄nilm2nil
.

Denote
Θnile = Θni ∩ K̄nile, Λnile = K̄nile ∩ Λn, 1 ≤ e ≤ m2nil. (3.25)

Thus Θnile contains d12
d−d1 points, that is, Θnile = {θsj}d−d1,ks=1,j=1, k = 2d−d1 .

The further proof of Theorem 2.1 follows to the reasoning for the two-point
{y,−y} geometry of set M given above.

Now the definition of the set A1n = A1nile and the complementary set B1n =
B1nile = Dnile∪B4nile∪B3nile will be given. The definitions of the setsDnile, B4nile, B3nile

are given bellow.
For all s, 1 ≤ s ≤ n, denote Dns(θnij) = {Xs : f(Xs, 0) 6= 0, f(Xs, θ) = 0, θ 6=

0, θ ∈ Λn(θnij}, Dn(θnij) = ∪ns=1Dns(θnij), Dnile = ∪θ∈Θnile
Dn(θ).

Now we define the set B2nile ⊂ B4nile. For any θ1, θ2 ∈ Θ denote ηs(θ1, θ2) =
g(Xs, θ1, θ2) with 1 ≤ s ≤ n. Define the sets of events B2s(θ1, θ2) = {Xs : |ηs(θ1, θ2)| ≥
ǫ}, B2s(θ2) = B2s(0, θ2) with 0 < ǫ < 1

3
.

For any θ ∈ Θnile denote B2nis(θ) = ∪θ′∈Λn(θ)B2s(θ
′), B2ni(θ) = ∪ns=1B2nis(θ).

Denote B2niles = ∪θ∈Θnile
B2nis(θ), B2nile = ∪ns=1B2niles.

The estimates of P (B2nile) are based on the "chaining method". For simplicity
we suppose that ln = 2m. This does not cause serious differences in the reasoning.
For each θ ∈ Θnile we define the sets Ψj = Ψj(θ), 1 ≤ j ≤ m of points hk =
θ + kδ1ne1, hk ∈ Λnile, such that |k| is divisible by 2m−j and is not divisible by
2m−j+1,−l1n ≤ k ≤ l1n. Denote Ψm+1 = Ψm+1(θ) = Λn(θ) \ ∪mk=1Ψk(θ). Denote
Ψ0(θ) = {θ0}. We say that the points h ∈ Ψj and h1 ∈ Ψj−1 are neighbors if h1 is
the nearest point of Ψj−1 for h. For any h ∈ Ψj we denote Π(h) = {h1 : h1 ∈ Ψj−1

and h, h1− are neighbors }.
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For any θ ∈ Θnile for each h ∈ Ψj(θ), 2 ≤ j ≤ m+ 1, and all s, 1 ≤ s ≤ n define
the events

Vhs(θ) = {X1 : |ηs(h1, h)| > ǫj−2, ηs(0, h1) + 1 >
1

3
− ǫ

j
∑

k=0

k−2, h1 ∈ Π(h)}.

Denote

B4nis(θ) = B2s(θ) ∪ ∪2≤j≤m+1 ∪h∈Ψj(θ) Vhs(θ), B4niles = ∪θ∈Θnile
B4nis(θ)

and B4nile = ∪ns=1B4niles(θ). It is clear that B2nis(θ) ⊂ B4nis(θ).

Lemma 3.3
P (B2nile ∪Dnile) ≤ P (B4nile ∪Dnile) = o(1). (3.26)

Define the event B3ns = {Xs : |τs| > ǫv−1
n }. For any θ ∈ Θnile for each h ∈

Ψj(θ), 1 ≤ j ≤ m+ 1, and all s, 1 ≤ s ≤ n define the events

B3nhs = {Xs : |τsh − τs| > ǫb−1
n 2j/2}.

Denote

B3nis(θ) = B3ns ∪ ∪2≤j≤m+1 ∪h∈Ψj(θ) B3nhs(θ), B3niles = ∪θ∈Θnile
B3nis(θ).

and B3nile(θ) = ∪ns=1B3niles

Lemma 3.4
P (B3nile ∩ A4nile) = o(1). (3.27)

For any θ ∈ Θnile denote B1ns(θ) = B4ns(θ) ∪ B3ns(θ) ∪ Dns(θ). Denote B1n(θ) =
∪ns=1B1ns(θ), B1n

.
= B1nile = ∪θ∈Θnile

B1n(θ).
By Lemmas 3.3 and 3.4, we get (3.11).

4 Proofs of Lemmas 3.1 and 3.2

We begin with the proof of Lemma 3.2. The proof of (3.18) is based on some version
of Osypov-van Bahr Theorems [4, 21] on large deviation probabilities.

Let Z be random vector in Rd such that E[Z] = 0,Var(Z) = I, where I is unit
matrix. Let P (|Z| < ǫb−1

n ) = 1, where ǫ > 0 as n→ ∞. Suppose E|Z|2+λ < C <∞.
Let Z1, . . . , Zn be independent copies of Z. Denote Sn = n−1/2(Z1 + . . .+ Zn).

Denote µn the probability measure of Gaussian random vector ζ with E[ζ ] = 0
and covariance matrix nI. For any Borel set W denote Wδ δ- vicinity of W, δ > 0.

Theorem 4.1 Let the set W belong to a ball in Rd having the radius r = o(ǫnn
1/2bn)

where ǫn → 0 as n → 0. Let nb2n → ∞, nb2+λn → 0 as n → ∞. Let W = W1 \W2

where W1,W2 are the convex sets. Then

P (Sn ∈ W ) = µn(W )(1 +O(bλn)) +O(bλn)µn(Wcn) (4.1)

where cn = o(n−1/2bλ−1
n ).
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The differences in the statements of Theorem 4.1 and Osypov - van Bahr Theorem
[4, 21] are caused the differences in the assumptions. In [4, 21] the results have been
proved if E[exp{c|Z|}] <∞.

Let us check up that the assumptions of Theorem 4.1 are fulfilled for the random
vector Z = I−1/2(θ0)τχ(A1n1).

Lemma 4.1
E[τ, A1n1] = O(b1+λn ), (4.2)

E[ττ ′, A1n1] = I(θ0) +O(bλn). (4.3)

Lemma 4.1 and Theorem 4.1 imply (3.18).

Lemma 4.2 Uniformly in θ ∈ Λnile

Eθ[Snθ|A1n] = o(1). (4.4)

Let ǫ1n be such that

sup
θ∈Λnile

|E[Snθ|A1n] ≤
ǫ1n
4
. (4.5)

Let h ∈ Ψj , h1 ∈ Π(h), 2 ≤ j ≤ m+ 1. We have

Snh − E[Snh|A1n] = Snh1 + S1nh + S2nh −E[Snh1 + S1nh + S2nh|A1n] (4.6)

where

S1nh =
n
∑

s=1

ξs(h1, h)− h̄′
n
∑

s=1

τsh1, (4.7)

S2nh = h̄′
n
∑

s=1

(τsh1 − τs) (4.8)

with h̄ = h− h1.
Denote

B0n = {X1, . . . , Xn : sup
h∈Ψ1

Snh > ǫ1n/4}.

For any h ∈ Ψj, 2 ≤ j ≤ m+ 1 denote

B5nh = {X1, . . . , Xn : j2(S1nh −E[S1nh|A1n]) > ǫ1n/4},
B6nh = {X1, . . . , Xn : j2(S2nh −E[S2nh|A1n]) > ǫ1n/4}.

Denote Bn = B0n ∪ (∪θ∈Λnile\Ψ1(B5nθ ∪ B6nθ)). Note that Bn ⊇ Bnile. Hence

U2nile ≤ U3nile
.
= E

[

∆n, ψn ∈ n1/2Γni, Bn|A1n

]

. (4.9)

Denote rni = infx∈Γni
|x|. We have

U3nile ≤ C exp{nr2ni/2}
(

V0n +
∑

θ∈Λ1nile

(V5nθ + V6nθ)

)

(4.10)

where Λ1nile = Λnile \Θnile,

Venθ = P
(

ψn ∈ n1/2Γni, Benθ |A1n

)

, e = 5, 6, (4.11)

V0n = P
(

ψn ∈ n1/2Γni, B0n |A1n

)

. (4.12)
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Lemma 4.3 Let ζ Gaussian random vector having the covariance matrix I(θ0) and
let E[ζ ] = 0. Then for any h ∈ Ψj , h1 ∈ Π(h)

V0n ≤ Cnb2+λn ǫ−2
1nP (ζ ∈ n1/2Γni), (4.13)

V5nh ≤ Cn|h̄|2bλnǫ−2
1n j

4P (ζ ∈ n1/2Γni), (4.14)

V6nh ≤ Cn|h̄|2bλnǫ−2
1n j

4P (ζ ∈ n1/2Γni). (4.15)

The number of points Ψj, 1 ≤ j ≤ m, equals 2j and, if h ∈ Ψj, then h̄ = bn2
−j.

The number of points Ψm+1 equals Ccd−1
3n 2m and, if h ∈ Ψm+1, then |h̄| ≤ Cc3nδ1n.

Hence, by Lemma 4.3, we get

U3nile ≤ Cnǫ−2
1n exp{nr2ni/2}P (ζ ∈ n1/2Γni)

×
(

b2+λn + bλn

(

m
∑

j=1

2j(bn2
−j)2j4 + cd+1

3n m42mδ21n

))

.
(4.16)

Note that m satisfies δ1n = vn2
−m or 2m = Cc−1

1nnb
2
n(1 + o(1)). Hence

nǫ−2
1n b

λ
nc
d+1
3n m42mδ21n = Cnǫ−2

1n b
λ
nc
d+1
3n c−1

1nnb
2
nm

4c−2
1nn

−2b−2
n = Cǫ−2

1n b
λ
nc
d+1
3n c−3

1nm
4 = o(1).

(4.17)
By (4.16, 4.17), we get

U3nile = o(mes(Γni)). (4.18)

By (4.9) and (4.18), we get (3.19).
Proof of Lemma 4.3 is based on Theorem 4.2.

Theorem 4.2 Let we be given a random vector V = (X,Z) where random variable
X and random vector Z = (Z1, . . . , Zd) are such that E[V ] = 0. Let

P (|X| < ǫ) = 1, E[|X|2] < Cb2+λn , (4.19)

P (|Z| < ǫb−1
n ) = 1, E[|Z|2+λ] < C <∞, (4.20)

E[XZk] = O(b1+λn ), 1 ≤ k ≤ d (4.21)

with 0 < ǫ < 1. Suppose the covariance matrix of random vector Z is positively
definite.

Let V1 = (X1, Z1), . . . , Vn = (Xn, Zn) be independent copies of random vector V .
Let U be a bounded set in Rd being a difference of two convex sets.

Denote SnX = n−1/2(X1+ . . .+Xn) and Sn = n−1/2(Z1+ . . .+Zn). Denote Y the
Gaussian random vector having the same covariance matrix as the random vector
Z.

Then, for the sufficiently large n,

I
.
= P (SnX > ǫ1n, Sn ∈ nbnv + rnU) ≤ CP (SnX > ǫ1n)P (Y ∈ nbnv + rnU) (4.22)

where ǫ1n, rn are chosen so that nb2+λn c−3
n1 ǫ

−2
1n → 0 as n→ ∞ and rn > cn1n

−1/2b−1
n .
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It is clear that ǫ1n, rn can be chosen such that ǫ1n → 0, rnn
1/2bn → 0 as n → ∞. In

the proof of (4.14,4.15) we suppose that ǫ1n and rn satisfy these assumptions.
For the estimates of V5nh in (4.14) we implement Theorem 4.2 with Z = τ and

X = ϕ(h1, h) = ξ(h1, h)− h̄′τh1 −
d
∑

k=1

ρkh1hτk.

Here τ = {τk}dk=1 and ρh1h = {ρkh1h}dk=1 = rh1h(E[ττ
′|A1n1])

−1 with rh1h = {rkh1h}dk=1, rkh1h =
E[(ξ(h1, h)− h̄′τh1)τk|A1n1].

Thus S1nh is replaced with

Snx = S1nh −
n
∑

s=1

d
∑

k=1

ρkh1hτks =

n
∑

s=1

ϕs(h1, h).

It is easy to see that E[ϕ(h1, h)τk|A1n1] = 0, 1 ≤ k ≤ d. This implies (4.21).
Now we show that

n
∑

s=1

d
∑

k=1

ρkh1hτks = o(1) (4.23)

if ψn ∈ n1/2Γni This justifies such a replacement.
By Lemma 4.4 given bellow, |rkh1h| ≤ C|h̄|1+λ/2, if 2 ≤ k ≤ d. Hence, since

ψn ∈ n1/2Γni,

rkh1h

n
∑

s=1

τks = O(|h̄|1+λ/2b−1
n ) = o(1) (4.24)

with 2 ≤ k ≤ d.

Lemma 4.4 Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1, h1 ∈ Π(h) and let v ⊥ h̄, u ∈ Rd. Then

E[(ξ(h1, h)− h̄′τh1)(v
′τ), A1n1] = O(|v||h̄|1+λ/2). (4.25)

By Lemma 4.5 given bellow |r1h1h| ≤ C|h̄|bλn. Hence, since ψn ∈ n1/2Γni,

r1h1h

n
∑

s=1

τ1s = O(n|h̄|b1+λn ) = o(1). (4.26)

By (2.4), (4.24), (4.26), we get (4.23).

Lemma 4.5 Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1, h1 ∈ Π(h) and let v ‖ h̄. Then

E[(ξ(h1, h)− h̄′τh1)(v
′τ), A1n1] = O(|v||h̄|bλn). (4.27)

Note that
2η(h1, h)− 2η2(h1, h) ≤ ξ(h1, h) ≤ 2η(h1, h) < 2ǫ (4.28)

if A1n1 holds.
By (4.28) and Lemma 4.6 given bellow, we get (4.19).
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Lemma 4.6 For all θ ∈ Λnile

E[(ξ(θ)− θ′τ)2, A1n1] = O(|θ|2+λ). (4.29)

Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1 и h1 ∈ Π(h). Then

E[(ξ(h1, h)− h̄′τh1)
2, A1n1] = O(|h̄|2+λ). (4.30)

This completes the proof of (4.14).
The proof of (4.13) is akin to the proof of (4.14) and is omitted.
For the estimates of V6nh in (4.15) we choose Z = τ and

X
.
= h̄′(τh1 − τ)−

d
∑

k=1

ρ̄kh1hτk.

Here τ = {τk}dk=1 and ρ̄kh1h = {ρ̄kh1h}dk=1 = r̄h1h(E[ττ
′|A1n1])

−1 with r̄h1h =
{r̄kh1h}dk=1, r̄kh1h = E[h̄′(τh1 − τ)τk|A1n1], 1 ≤ k ≤ d.

Using the same reasoning as in the proof of (4.14) and Lemmas 4.7, 4.8 given
bellow we get (4.15).

Lemma 4.7 Let u, h ∈ Rd. Then

E[(u′(τ − τh))
2, A1n1] = O(|u|2|h|λ). (4.31)

Lemma 4.8 Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1, h1 ∈ Π(h). Let v ⊥ h̄, v ∈ Rd. Then

E[h̄′(τh1 − τ)(v′τ), A1n1] = O(|v||h̄||h1|λ/2). (4.32)

If v ‖ h̄,
E[h̄′(τh1 − τ)(v′τ), A1n1] = O(|v||h̄||h1|λ). (4.33)

Proof of Lemma 3.1. The set Λnile is defined by the set of the points Θnile =
{θsj}d1,ks,j=1, k = 2d−d1 . The reasoning first will be given for |t| < c < ∞. Denote

n1/2ysj(t) ∈ (n1/2bn∂Ω − t) ∩ (n1/2K(θsj)) the point in which n1/2ysj = n1/2y(θsj)
will pass at the shift t. Denote n1/2ys+d1,j(t) ∈ (n1/2bn∂Ω − t) ∩ (n1/2K(θsj)) the
point in which n1/2yd1+s = −n1/2ysj will pass at the shift t.

Lemma 4.9 There holds

2d1
∑

s=1

k
∑

j=1

exp

{

−1

2
n|ysj(t)|2

}

≥ 2

d1
∑

s=1

k
∑

j=1

exp

{

−1

2
n|ysj|2

}

. (4.34)

Proof of Lemma 4.9. For a while we fix s ≤ d1 and j. We slightly modify the
coordinate system for the further reasoning. Suppose xni = (1, β2, . . . , βd) and ysj =
(bn, 0, . . . , 0, δd1+1,nn

−1/2, . . . , δdnn
−1/2)(1+ o(n−1/2b−1

n )) with δkn ∈ R1, d1+1 ≤ k ≤
d.

Define the line y = n1/2(ysj + uxni), u ∈ R1, that is,

y1 = n1/2bn + u, y2 = β2u, . . . , xd1 = βd1u,
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yd1+1 = δd1+1,n + βd1+1u, . . . , yd = δd,n + βdu, |δkn| < C, d1 + 1 ≤ k ≤ d, u ∈ R1.

Denote δkn = 0 for 1 < k ≤ d1.
Since the reasoning is given in a sufficiently small vicinity of point n1/2ysj the

surface n1/2bn∂Ω admits the approximation in this vicinity by an ellipsoid

(x1 − n1/2bn)
2 + α2x

2
2 + . . .+ αdx

2
d = nb2n

where −α2, . . . ,−αd are the principal curvatures of the surface ∂Ω at the point
(1, 0, . . . , 0). Thus, in the further reasoning, we can replace the set n1/2bn∂Ω with
the ellipsoid. After the shift t = (t1, . . . , td) the ellipsoid is defined by the equation

(x1 − n1/2bn + t1)
2 + α2(x2 + t2)

2 + . . .+ αd(xd + td)
2 = nb2n

and intersects the line y = n1/2(θsj+uxni), u ∈ R1 at the point n1/2ysj(t) having the
coordinates

n1/2y1(t) = n1/2bn − t1 + ω1n, n
1/2yk(t) = δkn − β2t1 + β2ω1n, 1 < k ≤ d. (4.35)

with

ω1n = −(2n1/2bn)
−1(α2(δ2n+t2−β2t1)2+ . . .+αd(δdn+td−βdt1)2)(1+o(1)). (4.36)

Arguing similarly we get that the ellipsoid intersects the line y = n1/2(−ysj +
uxni), u ∈ R1 at the point n1/2ys+d1,j(t) having the coordinates

n1/2y′1(t) = −n1/2bn−t1+ω2n, n1/2y′s(t) = −δkn−βkt1+βkω2n 1 < k ≤ d1 (4.37)

with

ω2n = (2n1/2bn)
−1(α2(−δ2n+t2−β2t1)2+. . .+αd(−δdn+td−βdt1)2)(1+o(1)). (4.38)

Substituting (4.35, 4.37) in (4.34) we find that, if t1 >>> n−1/2b−1
n , then

max{exp{−n(y1(t)2)/2}, exp{−n(y′1(t)2)/2}} >>> exp{−(nb2n + δ2d1+1 . . .+ δ2d)/2}.

Thus we can suppose t1 < cn−1/2b−1
n and neglect the addendums βit1, 2 ≤ i ≤ d in

(4.36,4.38).
Using (4.35, 4.37) , we get

exp

{

−1

2
n|ysj(t)|2

}

+ exp

{

−1

2
n|ys+d1,j(t)|2

}

= exp{−n|ysj|2/2}
(

exp

{

n1/2bnt1 +

d
∑

k=d1+1

αktkδkn

}

+exp

{

−n1/2bnt1 −
d
∑

k=d1+1

αktkδkn

})

exp

{

1

2

d
∑

k=d1+1

αkt
2
k

}

(1 + o(1)).

(4.39)
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Taking the points ysj, 1 ≤ j ≤ 2d−d1 , with all possible values ±δkn, d1 < k ≤ d and

summing up for them exp{− |y2sj(t)|
2

2
} we get

exp

{

−
nb2n + δ2d1+1,n + . . . δ2dn

2

}

× (exp{n1/2bnt1}+ exp{−n1/2bnt1})

×
d
∏

k=d1+1

(exp{αktkδkn}+ exp{−αktkδkn})(1 + o(1)).

(4.40)

Since exp{v}+exp{−v}− 2 ≥ 0 with v ∈ R1, then (4.40) implies (4.34) for |t| < C.
In essence, we have considered only the case u = 0. Any point yu = n1/2(ysj +

uxni), 0 < u <<< 1, pass after the shift t at the point n1/2(ysj(t) + uxni) ∈ (Rd \
(n1/2bnΩ − t)) ∩ (n1/2K(θsj)). Thus for any point yu, 0 < u <<< 1 we can write a
similar inequality (4.34). Since the shift t is negligible,

mes((n1/2bn∂Ω) ∩K(θsj)) = mes((n1/2bn∂Ω− t) ∩K(θsj))(1 + o(1)). (4.41)

This implies J̄nile(t) ≥ Jnile(0).
Let us consider the case c << |t| << Cn1/2bn. Note that, since all the principal

curvatures in all points of ∂Ω are negative, we can conclude n1/2bnΩ into an ellipsoid

Ξ = {x = {xi}di=1 : x
2
1 + . . .+ x2d1 + ᾱd1+1x

2
d1+1 + . . .+ ᾱdx

2
d = nb2n}

passing through the points ynile and −ynile, 1 ≤ e ≤ d1 and such that ᾱk < 1, d1 +
1 ≤ k ≤ d. Denote ysj(t) ∈ (n1/2bn∂Ω − t) ∩ {y : y = θsj + xniu, u ∈ R1} and
ȳsj(t) ∈ (Ξ− t)∩ {y : y = θsj + xniu, u ∈ R1} the point in which the ysj will pass at
the shift t.

It is easy to see

2d1
∑

s=1

k
∑

j=1

exp

{

−|ysj(t)|2
2

}

≥
2d1
∑

s=1

k
∑

j=1

exp

{

−|ȳsj(t)|2
2

}

. (4.42)

For the points ȳsj(t) we can make estimates similar to the case |t| < C < ∞ and
can get

2d1
∑

s=1

k
∑

j=1

exp

{

−|ȳnils(t)|2
2

}

≥
2d1
∑

s=1

k
∑

j=1

exp

{

−|ynils|2
2

}

. (4.43)

The statement (4.43) implies J(t) > J(0) for c << |t| << Cn1/2bn.
Finally, after the shift t, |t| ≍ n1/2bn one of the points ynile or −ynile, 1 ≤ e ≤ d1

will be located at a distance having the order n1/2bn outside the ellipsoid Ξ and
hence outside n1/2bnΩ. This implies J(t) > J(0).

5 Proofs of Theorems 4.1 and 4.2

The proof of Theorem 4.1 contains only some different technical details in comparison
with the proof of similar Theorem in [21]. The proof of Theorem 4.2 is based on a
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fairly new analytical technique (see [6, 10]) and is more interesting. Thus we begin
with the proof of Theorem 4.2.

Proof of Theorem 4.2. We begin with auxillary estimates of moments of random
variable X and random vector Z. We have

E[|X||Z|2] ≤ (E|X| 2+λ
λ )

λ
2+λ (E|Z|2+λ) 2

2+λ ≤ C(E[X2])
λ

2+λ ≤ Cbλn, (5.1)

E[X2|Z|] ≤ Cb−1
n E[X2] ≤ Cb1+λn , (5.2)

E[X2|Z|2] ≤ Cb−2
n E[X2] ≤ Cbλn, (5.3)

E[X2|Z|3] ≤ Cb−3
n E[X2] ≤ Cbλ−1

n , (5.4)

E[X2|Z|3] ≤ CE[|Z|3] ≤ Cbλ−1
n E[|Z|2+λ] ≤ Cbλ−1

n . (5.5)

For each x = {x1, . . . , xd} ∈ Rd denote ||x|| = max1≤i≤d |xi|. For any z ∈ Rd and
any A ⊂ Rd denote ||A − z|| = infx∈A ||x − z||. For any ǫ > 0 denote Aǫ = {x :
||A− x|| ≤ ǫ, x ∈ Rd}.

Define twice continuously differential functions f1n : R1 → R1 such that

f1n(x) =

{

1 if |x| > ǫ1n

0 if |x| < ǫ1n/2

and 0 ≤ f1n(x) ≤ 1,
∣

∣

∣

∂f1n(x)
∂xi1∂xi2

∣

∣

∣
≤ Cǫ−2

1n , 1 ≤ i1, i2 ≤ d, x ∈ Rd.

Denote cn = cn1n
−1/2b−1

n . We slightly modify the setup of Theorem 4.2 in the
proof. The reasoning will be given with rn = 1. Theorem 4.2 follows from the
reasoning if we put rn = cn.

Define three- times continuously differentiable functions f2n : Rd → R1 such that

f2n(x) =

{

1 if x ∈ n1/2bnv + U

0 if x /∈ n1/2bnv + Ucn

and 0 ≤ f2n(x) ≤ 1, | ∂3f2n(x)
∂xi1∂xi2∂xi3

| ≤ Cc−3
n , 1 ≤ i1, i2, i3 ≤ d if x ∈ Rd.

Denote
SknX = X1 + . . .+Xk−1 +Xk+1 + . . .+Xn,

Wkn = n−1/2(Z1 + . . .+ Zk−1 + Yk+1 + . . .+ Yn).

Hereafter Y1, . . . , Yn are independent copies of random vector Y . Random variables
Y, Y1, . . . , Yn do not depend on X1, . . . , Xn, Z1, . . . , Zn.

For any γ > 0 denote

Gn(γ) = sup E[f1n(SnX), SnZ ∈ n1/2bnv + Uγ ]

where the supremum is taken over all distributions of (X,Z) satisfying the assumptions
of Theorem 4.2.

Lemma 5.1 Let assumptions of Theorem 4.2 be satisfied. Then

E[f1n(SnX), SnZ ∈ n1/2bnv + U ]

≤ E[f1n(SnX)]P (Y ∈ n1/2bnv + Ucn) + Cnb2+λn c−3
n1 ǫ

−2
1nGn−1(γn)

(5.6)

for n > n0. Here γn = ǫb−1
n (n−1)−1/2+(n(n−1)−1/2bn− (n−1)1/2bn−1)+C/n+ cn

where C depends on U .
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Proof of Lemma 5.1. We have

E[f1n(SnX)f2n(SnZ)] ≤ E[f1n(SnX)f2n(Y )] + ∆ (5.7)

where
∆ = |E[f1n(SnX)f2n(SnZ)]− E[f1n(SnX)f2n(Y )]|. (5.8)

It is clear that ∆ ≤ ∆1 + . . .+∆n where

∆k = |E[f1n(SknX+Xk)f2n(Wkn+n
−1/2Zk)]−E[f1n(SknX+Xk)f2n(Wkn+n

−1/2Y )]|
(5.9)

for 1 ≤ k ≤ n.
Expanding f1n and f2n in the Taylor series, we get

∆k = |E[f1n(SknX +Xk)(f2n(Wkn + n−1/2Z)]− f2n(Wkn + n−1/2Y ))]|

≤
∣

∣

∣

∣

E

[(

f1n(SknX) + f ′
1n(SknX)Xk +

1

2

∫ 1

0

f ′′
1n(SknX + ωXk)(1− ω) dωX2

k

)

×
(

n−1/2(Zk − Y )′f ′
2n(Wkn) +

1

2
n−1(Z ′

kf
′′
2n(Wkn)Zk − Y ′f ′′

2n(Wkn)Y )

+
1

6
n−3/2

∫ 1

0

(1− ω)2(f ′′′
2n(Wkn + ωZk)Z

3
k − f ′′′

2n(Wkn + ωY )Y 3) dω

)]
∣

∣

∣

∣

.

(5.10)

After opening the brackets in the right-hand side of (5.10) it remains to estimate
each of the resulting addendums independently. The estimates are performed in the
same way, using (4.19, 4.20, 4.21, 5.1 - 5.5). Therefore, we estimate only three of
them.

Using (5.4), we get

∣

∣

∣

∣

n−3/2E

[
∫ 1

0

f ′′
1n(SknX + ωXk)(1− ω1) dω1X

2
k

×
∫ 1

0

(1− ω)2(f ′′′
2n(Wkn + ω2Zk)Z

3
k − f ′′′

2n(Wkn + ω2Y )Y
3) dω2

]
∣

∣

∣

∣

≤ Cn−3/2c−3
n ǫ−2

1n b
λ−1
n Gkn(γn) ≤ Cǫ−2

1n c
−3
n1 b

2+λ
n Gkn(γn).

(5.11)

The first inequality in (5.11) is obtained on the base of the following reasoning

Wkn + n−1/2Z ∈ n1/2bnv + Ucn ⇒Wkn ∈ n1/2bnv + Uǫn−1/2b−1
n +cn

⇒ n1/2(n− 1)−1/2Wkn ∈ (n− 1)1/2bn−1v + (n(n− 1)−1/2bn − (n− 1)1/2bn−1)v

+ n1/2(n− 1)−1/2Uǫn−1/2b−1
n +cn

⇒ n1/2(n− 1)−1/2Wkn ∈ (n− 1)1/2bn−1v + Uγn .

(5.12)

Using (5.1), we get

E[|f ′
1n(Sk,n−1,X)Xkn

−1f ′′
2n(Wkn)Z

2
k |]

≤ Cn−1bλnc
−2
n ǫ−1

1nGkn(γn) ≤ Cb2+λn ǫ−1
1n c

−2
n1Gkn(γn).

(5.13)
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Using (4.21), we get

n−1/2E[f ′
1n(SknX)Xk(Zk − Y )f ′

2n(Wkn)]

= n−1/2E[XkZk]E[f
′
1n(SknX)f

′
2n(Wkn)] ≤ Cn−1/2b1+λn ǫ−1

1n c
−1
n1Gkn(γn).

(5.14)

This completes the proof of Lemma 5.1.
We begin the proof of Theorem 4.2 with auxilliary estimates.

P (Y ∈ n1/2bn + Ucn) ≤ exp{Ccnn1/2bn}P (Y ∈ n1/2bn + U)

≤ a0P (Y ∈ n1/2bn + U).
(5.15)

Note that
Y ∈ (n− 1)1/2bn−1v + Uγn ⇒ Y ∈ n1/2bnv + Uωn (5.16)

with ωn = γn + n1/2bn − (n− 1)1/2bn−1.
Therefore

P (Y ∈ (n− 1)1/2bn−1v + Uγn) ≤ P (Y ∈ n1/2bnv + Uωn)

≤ C exp{n1/2bnωn}P (Y ∈ n1/2bnv + U) ≤ a1P (Y ∈ n1/2bnv + U).
(5.17)

The further reasonings are based on an induction on n. We take a sufficiently large
n = n0 such that Cn0ǫ

−2
1n0
c−3
n0,1b

2+λ
n0

< a with aa0a1 < 1. We take Cn0 such that

Cn0P (Y ∈ n
1/2
0 bn0 + U)E[f1n(Sn0X)] ≥ 1. (5.18)

Then

E[f1n(Sn0X), Sn0Z ∈ n
1/2
0 bn0v + U ] ≤ Cn0P (Y ∈ n

1/2
0 bn0 + U)E[f1n(Sn0X)]. (5.19)

Suppose Theorem 4.2 was proved for n− 1 ≥ n0. Let us prove it for n. We show

E[f1n(SnX), SnZ ∈ n1/2bnv + U ] ≤ CnP (Y ∈ n1/2bn + U)E[f1(SnX)] (5.20)

where Cn = a0+Cn−1aa1. Then, since Cn form geometric progression with exponent
aa0a1 < 1, Theorem 4.2 follows from (5.20).

Applying (5.6) and the inductive assumption , we get

E[f1n(SnX), SnZ ∈ n1/2bnv + U ] ≤ P (Y ∈ n1/2bn + Uc1n)E[f1n(SnX)]

+ Cnb2+λn c−3
n1 ǫ

−2
1nCn−1E[f1n(SnX)]P (Y ∈ (n− 1)1/2bn−1 + Uγn)

≤ (a0 + Cn−1aa1)E[f1n(SnX)]P (Y ∈ n1/2bn + U).

(5.21)

This implies Theorem 4.2.
Proof of Theorem 4.1. In the proofs of Theorem 4.1 and Osypov Theorem [21]

the basic reasonings coinside. The difference is only in the preliminary estimates.
On these estimates the basic reasoning are based on.

Denote φ(h) = E[exp{h′X}]. Define random vector Xh having the conjugate
distribution

Fh(dx) = F (dx, h) = φ−1(h) exp{h′x}F (dx).
Denote

m(h) = Eh[Xh], σ(h) = Var[Xh].

For any v ∈ Rd denote h(v) the solution of the equation

m(h) = v. (5.22)
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Lemma 5.2 For all v, |v| < ǫbn, ǫ > 0 there exists the solution h(v) of equation
(5.22) and

φ(h) = 1 + |h|2/2 +O(|h|3bλ−1
n ), (5.23)

m(h) = h+O(|h|2bλ−1
n ), (5.24)

h(v) = v +O(|v|2bλ−1
n ), (5.25)

σ(h) = I(1 +O(|h|2bλ−1
n )). (5.26)

Proof of Lemma 5.2. Expanding in the Taylor series we get

φ(h) = 1 +
1

2

∫

(h′x)2 dF (x) +O

(

|h|3
∫

|x|3 dF (x)
)

= 1 +
1

2
|h|2 +O(|h|3bλ−1

n ),

(5.27)

m(h) = φ−1(h)

∫

x exp{h′x} dF (x)

=

∫

x(h′x)dF (x)(1− |h|2/2 +O(|h|3bλ−1
n ) +O

(
∫

x(h′x)2dF (x)

)

= h+O(|h|2 + |h|2bλ−1
n ).

(5.28)

Substituting (5.28) in (5.22), we get (5.25). Estimating similarly to (5.28), we get
(5.26).

Denote
Λ(h, v) = −(h, v) + lnφ(h). (5.29)

By (5.23,5.25), we get

lnφ(h(v)) =
1

2
h2(v)(1 +O(bλn)). (5.30)

By (5.26), we get
det−1/2σ(h(v)) = 1 +O(bλn). (5.31)

By (5.25) and (5.30) we get

Λ(h(v), v) = |v|2(1 +O(|v|bλ−1
n ))− 1

2
|v|2(1 +O(bλn))

=
1

2
|v|2 +O(|v|2bλn).

(5.32)

The estimates (5.23-5.26) and (5.30-5.32) are the versions of similar estimates in
[21]. Using these estimates we get Theorem 4.1 on the base of the same reasoning
as in [21]. This reasoning is omitted

6 Proofs of Lemmas 3.3,3.4,4.1,4.2 and 4.4-4.8

The Lemmas will be proved in the following order: 3.3,3.4,4.1,4.2,4.6,4.4,4.7,4.5,4.8.
Proof of Lemma 3.3. Let h ∈ Ψj(θ) and h1 ∈ Π(h). By (2.1) and (2.3), we get

Ph1(|η(h1, h)| > ǫ) ≤ Ph1(|η(h1, h)−
1

2
h̄′τh1| > ǫ/2) + Ph1(|h̄′τh1| > ǫ/2)

< 4ǫ−2Eh1[(η(h1, h)−
1

2
h̄′τh1)

2] + 22+λǫ−2−λ|h̄|2+λEh1|τh1 |2+λ ≤ C|h̄|2+λ.
(6.1)
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By straightforward calculations, using (6.1), for 1 ≤ j ≤ m, we get

P (Vh(θ)) ≤ CPh1(|η(h1, h)| > ǫj−2) ≤ Cǫ−2j4|h̄|2+λ ≤ Cj4
(

bn
2j

)2+λ

. (6.2)

In the case of j = m + 1 the constant C in (6.2) is replaced with Ccd−1
3n . By (6.2),

we get

P (B4n(θ)) < Cn
m
∑

j=1

2j
(

bn
2j

)2+λ

j4 + Cncd−1
3n 2mc2+λ3n δ2+λ1n m4. (6.3)

Note that 2m = Cc−1
1nnb

2
n(1 + o(1)) . Therefore, using n−λb−λn < nb2+λn , we get

P (B4n(θ)) < Cnb2+λn + Cncd+1+λ
3n 2−m(1+λ)m4b2+λn

≤ Cnb2+λn ǫ−2−λ + CCnc
d+2+λ
3n n−λb−λn m4 = O(nb2+λn ) = o(1)

(6.4)

if c3n tends to infinity sufficiently slowly.
Since P

(s)
h,h1

(S) < C|h̄|2+λ, then, arguing similarly (6.2)-(6.4), we get

P (Dnile) ≤ Cn

m+1
∑

j=1

∑

h∈Ψj(θ)

P
(s)
h,h1

(S)

≤ Cn

m
∑

j=1

2j(bn2
−j)2+λ + Cncd+1+λ

3n 2mδ2+λ1n = o(1).

(6.5)

Now (6.4,6.5) implies (3.26).
Proof of Lemma 3.4. Applying the Chebyshev inequality and using (2.3), we get

P (B3n1) ≤ ǫ−2−λb2+λn E[|τ |2+λ] < Cb2+λn . (6.6)

Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1. By Chebyshev inequality, we get

P (|τsh − τs| > ǫb−1
n 2j/2|A4n1) < C2−j(2+λ)/2b2+λn ǫ−2−λ(E[|τh|2+λ|A4n1] + E[|τ |2+λ])

< C2−j(2+λ)/2b2+λn ǫ−2−λ(Eh[|τh|2+λ] + E[|τ |2+λ]) ≤ C2−j(2+λ)/2b2+λn .

(6.7)

By (6.6), (6.7), we get

P (B3nile) < Cn

m
∑

j=1

2jb2+λn 2−j(2+λ)/2 + Cncd−1
3n 2m2−m(2+λ)/2b2+λn < Cnb2+λn = o(1).

(6.8)
By (6.4),(6.5) and (6.8), we get

P (B1nile) < Cnb2+λn . (6.9)

Proof of Lemma 4.1 Since E[τ ] = 0, we have

|E[τ, A1n1]| = |E[τ, B1n1]|
≤ E[|τ |, |τ | > b−1

n ] + E[|τ |, B1n1 ∩ {|τ | ≤ b−1
n })]

≤ b1+λn E|τ |2+λ + b−1
n P (B1n1) = O(b1+λn )

(6.10)
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where the last equality follows from (2.3),(6.4),(6.6).
The proof of (4.3) is similar and is omitted.
The considerable part of the subsequent estimates is based on the following

lemma.

Lemma 6.1 Let h ∈ Ψj(θ), h1 ∈ Π(h), 1 ≤ j ≤ m + 1, θ ∈ Θnile. Then, for any
a ≥ 0, b ≥ 0, a+ b ≥ 2 + λ, there holds

Eh1[|h̄τh1 |a|η(h1, h)|b, A1n1] ≤ C|h̄|2+λ. (6.11)

Proof of Lemma 6.1. By (2.1) and (2.3, we get

Eh1 [|h̄τh1 |a|η(h1, h)|b, A1n1] ≤ CEh1 [|h̄τh1|a+b, A1n1] + CEh1 [|η(h1, h)|a+b, A1n1]

≤ CEh1 [|h̄τh1|a+b, A1n1] + CEh1 [|η(h1, h)− h̄τh1 |a+b, A1n1]

≤ CEh1 [|h̄τh1|2+λ, A1n1] + CEh1 [|η(h1, h)− h̄τh1|2, A1n1] ≤ C|h̄|2+λ.
(6.12)

Proof of Lemma 4.2. Expanding ξn in the Taylor series, we get

Snθ =
n
∑

s=1

(2ηns(θ)− θ′τs)−
n
∑

s=1

η2ns(θ) +
2

3

n
∑

s=1

η3ns(θ)

(1 + κηns(θ))3
+ 2nρ2(0, θ) (6.13)

where 0 ≤ κ ≤ 1.
Since E[η2n(θ)] = ρ2(0, θ) and 2E[ηn(θ)] = −E[η2n(θ)] = −ρ2(0, θ), by virtue of

(2.2), we get

E[(2ηn(θ)− θ′τ)− η2ns(θ) +
1

2
θ′Iθ] = O(|θ|2+λ). (6.14)

By (6.4,6.9), we get

E[|ηn(θ)|, B1n1) ≤ E[|ηn(θ)|, |ηn(θ)| > ǫ] + E[|ηn(θ)|, B1n1 \ {|ηn(θ)| < ǫ}]
≤ E[|ηn(θ)|, |ηn(θ)| > ǫ] + ǫP (B1n1) ≤ E[|ηn(θ)|, |ηn(θ)| > ǫ] + Cb2+λn .

(6.15)

By (2.1, 2.3), we get

E[|ηn(θ)|, |ηn(θ)| > ǫ]

≤ E[|ηn(θ)|, |ηn(θ)| > ǫ, |ηn(θ)−
1

2
θ′τ | < ǫ/2] + E[|ηn(θ)|, |ηn(θ)| > ǫ, |θτ | < ǫ/2]

≤ CE[|θ′τ |, |ηn(θ)| > ǫ, |ηn(θ)−
1

2
θ′τ | < ǫ/2] + 4ǫ−1E[(ηn(θ)−

1

2
θ′τ)2]

≤ Cǫ−1−λE[|θ′τ |2+λ] + Cb2+λn ≤ Cb2+λn .

(6.16)

By (6.15) and (6.16), we get

E[ηn(θ)|B1n1] ≤ Cb2+λn . (6.17)

Arguing similarly to (6.15, 6.16), we get

E[η2n(θ), B1n1] = O(b2+λn ). (6.18)
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By (6.14,6.9,6.10,6.17),(6.18), we get

E[(2ηn(θ)−
1

2
θ′τ)− η2ns(θ) +

1

2
θ′Iθ, B1n1] = O(|bn|2+λ). (6.19)

By Lemma 6.1, we get

E

[
∣

∣

∣

∣

η3n(θ)

(1 + κηn(θ))3

∣

∣

∣

∣

, A1n1

]

≤ CE[|η3n(θ)|, A1n1] ≤ C|θ|2+λ. (6.20)

By (6.13),(6.14),(6.19),(6.20) we get (4.4).
Proof of Lemma 4.6. Using (6.13), we get

E[(ξ(θ)− θ′τ)2, A1n1] ≤ CE[(ηn(θ)−
1

2
θ′τ)2]

+ CE[η4n(θ), A1n1] + CE[η6n(θ), A1n1].
(6.21)

By Lemma 6.1, we get
E[η4n(θ), A1n1] = O(|θ|2+λ). (6.22)

and
E[η6n(θ), A1n1] = O(|θ|2+λ). (6.23)

By (2.1), (6.21), (6.22), (6.23) we get (4.29).
Estimating similarly to (6.21-6.23), we get

E[(ξ(h1, h)−
1

2
h̄′τh1)

2, A1n1]

≤ CEh1 [(ξ(h1, h)−
1

2
h̄′τh1)

2, A1n1] ≤ C|h̄|2+λ.
(6.24)

This implies (4.30).
Proof of Lemma 4.4. Applying the Cauchy inequality, by (4.31), we get

E[(ξ(h1, h)− h̄′τh1)(v
′τ), A1n1]

≤ (E[(ξ(h1, h)− h̄′τh1)
2, A1n1])

1/2(E[(v′τ)2, A1n1])
1/2 ≤ C|v||h̄|1+λ/2.

(6.25)

This completes the proof of Lemma 4.4.
Proof of Lemma 4.7. Using the inequality (a + b)2 − 2b2 ≤ 2a2, putting a =

η(0, u) + 1
2
u′τ − η(h, h+ u) + 1

2
u′τh and b = η(h, h+ u)− η(0, u), we get

E[(u′(τ − τh))
2, A1n1]− 2E[(η(h, h+ u)− η(0, u))2, A1n1]

≤ 2E[(η(h, h+ u)− 1

2
u′τh − η(0, u) +

1

2
u′τ)2, A1n1]

.
= J.

(6.26)

Using the inequality 2a2 ≤ 4(a+b)2+4b2, putting a = η(h, h+u)− 1
2
u′τh−η(0, u)+

1
2
u′τ and b = η(0, u)− 1

2
u′τ , by (2.1), we get

J ≤ 4E[(η(h, h+ u)− 1

2
u′τh)

2, A1n1] + 4E[(η(0, u)− 1

2
u′τ)2, A1n1]

≤ CEh[(η(h, h+ u)− 1

2
u′τh)

2] + C|u|2+λ ≤ C|u|2+λ.
(6.27)
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Thus, for the proof of (4.31), it suffices to show

J1
.
= E[(η(h, h+ u)− η(0, u))2, A1n1] = O(|u|2|h|λ). (6.28)

By straightforward calculations, we get

(η(h, h+ u)− η(0, u))2

= (η(0, h+ u)− η(0, h)− η(0, u)− η(0, h)η(0, u))2(η(0, h) + 1)−2.

Therefore

J1 = E[(η(0, h+ u)− η(0, h)− η(0, u)− η(0, h)η(0, u))2(η(0, h) + 1)−2, A1n1]

≤ CE[(η(0, h+ u)− η(0, h)− η(0, u)− η(0, h)η(0, u))2, A1n1]

≤ CE[(η(0, h+ u)− 1

2
(h+ u)′τ − (η(0, h)− 1

2
h′τ)− (η(0, u)− 1

2
u′τ))2, A1n1]

+ CE[η2(0, h)η2(0, u)), A1n1]
.
= J11 + J12.

(6.29)

Applying (2.1), we get

J11 ≤ CE[(η(0, h+ u)− 1

2
(h+ u)′τ)2] + CE[(η(0, h)− 1

2
h′τ)2]

+ CE[(η(0, u)− 1

2
u′τ)2] ≤ C|h+ u|2+λ + C|h|2+λ.

(6.30)

By Lemma 6.1, we get

J12 ≤ CE[η4(0, h), A1n1] + CE[η4(0, u), A1n1] ≤ C(|u|2+λ + |h|2+λ). (6.31)

By (6.29-6.31,6.27,6.26), we get

E[(u′(τ − 1

2
τh))

2, A1n1] ≤ C(|h+ u|2+λ + |u|2+λ + |h|2+λ). (6.32)

Putting |u| = c0|h| and C1 = C((1 + c0)
2+λ + c2+λ0 + c20)c

−2
0 , we get

E[(u′(τ − τh))
2, A1n1] ≤ C1|u|2|h|λ. (6.33)

This completes the proof of Lemma 4.7.
Proof of Lemma 4.5. Denote

W
.
= E[(h′1τ)(ξ(h1, h)− h̄′τh1)|A1n1] = E[(h′1(τ − τh1))(ξ(h1, h)− h̄′τh1)|A1n1]

+ E[(h′1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]
.
=W11 +W12.

(6.34)

By (4.31),(4.30), we get

W11 ≤ (E[(h′1(τ − τh1))
2|A1n1])

1/2(E[(ξ(h1, h)− h̄′τh1)
2|A1n1])

1/2

≤ C|h1|1+λ/2|h̄|1+λ/2.
(6.35)
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We have

W12 = Eh1[(1 + η(h1, 0))
2(h′1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

= Eh1[(h
′
1τh1)(ξ(h1, h)− h̄′τh1)|A1n1] + 2Eh1[η(h1, 0)(h

′
1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

+ Eh1[η
2(h1, 0)(h

′
1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

.
= W121 +W122 +W123.

(6.36)

By (6.13), we get

W121 = Eh1 [h
′
1τh1(2η(h1, h)− h̄τh1), A1n1]− Eh1[h

′
1τh1η

2(h1, h), A1n1]

+
2

3
Eh1

[

h′1τh1
η3(h1, h)

(1 + κη(h1, h))3
, A1n1

]

.
=W1211 +W1212 +W1213.

(6.37)

By (2.1),(2.2), we get

O(|h̄|2+λ) = Eh1 [(η(h1, h)−
1

2
h̄′τh1)

2] = ρ2(h1, h)−Eh1 [η(h1, h)h̄
′τh1 ] +

1

4
h̄I(h1)h̄

=
1

2
h̄′I(h1)h̄(1 + |h̄|λ)−Eh1 [η(h1, h)h̄τh1 ].

(6.38)

Since h1 ‖ h̄, by (6.38), we get

Eh1 [h
′
1τh1η(h1, h)] =

1

2
h′1I(h1)h̄(1 +O(|h̄|λ)). (6.39)

Applying the Holder’s inequality, we get

Eh1 [h
′
1τh1(η(h1, h)−

1

2
h̄′τh1), B1n1]

≤ (Eh1 [(h
′
1τh1)

2+λ])
1

2+λ (Eh1 [(η(h1, h)−
1

2
h̄τh1)

2])1/2(Ph1(B1n1))
λ

2(2+λ)

= O(|h1||h̄|1+λ/2bλ/2n ).

(6.40)

By (6.39),(6.40),(4.3), we get

W1211 = O(|h′1||h̄|bλn). (6.41)

By Lemma 6.1, we get

W1212 +W1213 = O(|h1||h̄|1+λ. (6.42)

By (6.37),(6.41),(6.42), we get

W121 = O(|h′1||h̄|bλn). (6.43)

Using Lemma 6.1 and (6.13), we get

W122 +W123 = O(|h̄|1+λ|h1|). (6.44)

By (6.36), (6.43), (6.44), we get

W12 = O(|h′1||h̄|bλn). (6.45)
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By (6.34), (6.35), (6.45), we get (4.27).
Proof of Lemma 4.8. We begin with the proof of (4.32). Using (4.31), we get

]E[h̄′(τ − τh1)τk, A1n1] ≤ (E[h̄′(τ − τh1)
2, A1n1])

1/2(E[τ 2k ])
1/2 < C|h̄||h1|λ/2. (6.46)

The proof of (4.33) is based on the following reasoning. By (4.31), we get

O(|h̄|2bλn) = E[(h̄(τ − τh1))
2, A1n1] = E[(h̄τ)2, A1n1]−

− 2E[(h̄τ)(h̄τh), A1n1] + E[(h̄τh1)
2, A1n1]

.
= J1 − 2J2 + J3.

(6.47)

We have

J3 = Eh1 [(η(h1, 0) + 1)2(h̄τh1)
2, A1n1]

= Eh1[η
2(h1, 0)(h̄τh1)

2, A1n1] + 2Eh1 [η(h1, 0)(h̄τh1)
2, A1n1]

+ Eh1[(h̄τh1)
2, A1n1] = J31 + 2J32 + J33.

(6.48)

By Lemma 6.1, we get
J31 + 2J32 ≤ C|h̄|2|h|λ. (6.49)

Estimating similarly to the proof of (4.2),(4.3), we get

J33 = h̄′I(h)h̄+O(|h̄|2bλn). (6.50)

By (6.48)-(6.50), we get

J3 = h̄′1I(h1)h̄1 +O(|h̄|2bλn). (6.51)

By (6.47), (4.3),(6.51), we get

J2 = h̄′1Ih̄1 +O(|h̄|2bλn). (6.52)

By (6.52),(4.3), we get
J1 − J2 = O(|h̄|2bλn). (6.53)

This implies (4.33).
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