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1 Introduction

The asymptotic normality of estimators is a key property allowing to construct
confidence sets if the sample size is sufficiently large. The problem of accuracy of
the normal approximation emerges simultaneously with its implementation. The
inequalities of the Berry-Esseen type and the Edgeworth expansions (see [13] 5] 23]
14] and references therein) show that the convergence rate to the normal distribution
has the order n~/2? ( here n is a sample size). The significant levels a of confidence
sets have usually small values ( @ = 0.1;0.05; 0.01 are the standard values in practice
). For such small values of a the rate of convergence n~/2 does not allow to talk
about adequate accuracy of approximation for the sample sizes of several hundreds
observations or smaller. From this viewpoint the study of asymptotic properties of
estimators in the zones of large and moderate deviation probabilities is of special
interest. The problem of lower bounds for asymptotic efficiency in these zones
emerges as well. The asymptotic efficiency of estimators in the zone of large deviation
probabilities is analyzed on the base of Bahadur efficiency [3], 28] 24, 22].

The study of large deviation probabilities of estimators is a rather difficult
problem. This problem is often replaced with the study of their moderate deviation
probabilities. Let Xi,..., X, be independent sample of random variable X having
the probability measure Py, 0 € R'. Let b, > 0,b, — 0,nb? — 0o as n — oo. Let
0o € R'. Then (see [11]) for any estimator 6,

1 A~
lim inf 9:90%20f+2b7l(§nbi)_1 In Py(|0,, — 0] > b,) > —1(6p). (1.1)
Here we suppose that there exists the finite Fisher information 7(6) for all # in some
vicinity of 8y. Note that the lower bound of the local Bahadur asymptotic efficiency
is a particular case of (ILTl).

The natural problem arises on the quality of logarithmic approximation for
the obtaining confidence sets. The distributions of estimators admit usually the
approximation by the sums X = n~'(X;+...+X,,) of independent random variables.
(see [25] 28, [14] and references therein). Thus it is of interest to compare for the
sample mean X the confidence intervals obtained by the normal approximation
and the basic term of logarithmic asymptotic. If there exists an exponential moment
Elexp{t|X;1|}] < C < 00,t > 0, the sample mean X satisfies the Bernstein inequality
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P(n**(X — E[X1]) > ) < exp {—%(1 + 0(1))} , T > @ (1.2)

with o2 = Var[X}].
The confidence interval based on the main term of asymptotics of right-hand
side of (L2)) is the following

o 0y/2[In(a/2)] o | o/2In(a/2)|
(X NG X+ NG ) (1.3)

instead of the standard one
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where /o satisfies /2 = ®(—x,/2). Here ®(x) is the standard normal distribution
function.
If & = 0.1;0.05; 0.01 respectively the confidence intervals defined by (I.3]) are the
following
X —244-7 X + 244
B T
- o o
(X 2'71\/5’ X + 2.71ﬁ),

. o o
X —320—, X +3.25—
( N \/ﬁ)

instead of the standard ones defined by the normal approximation (L4)
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X —-16—. X +1.6b—
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_ o — o
X —-196—, X +1.96—
( 96\/57 + 96\/ﬁ>’

- o o
(X 2.576\/5,)( + 2.576ﬁ).

If & = 0.1;0.05, the implementation of (L3]) requires the doubling of the number of
observations for obtaining the same width of confidence interval as in ([L4]). At the
same time the normal approximation works in a rather narrow zone of moderate
deviation probabilities in comparison with the Bernstein inequality (L.2]). Thus the
analysis of confidence intervals on the base of logarithmic asymptotics of large
and moderate deviation probabilities is also reasonable. It should be noted that
there exist powerful methods for constructing accurate boundaries of confidence
intervals such as asymptotic expansions (see [13,[14], 5,23, [26] and references therein),
bootstrap (see [9, [8, 28], 14] and references therein) and so on.

For the zone of moderate deviation probabilities the normal approximation of
statistics is the subject of numerous publications (see [5] [II, 8 14, 23| 17, 18] and
references therein). The goal of the paper is to prove the sharp local asymptotic
minimax lower bound for the estimators in this zone. The estimation parameter is
multidimensional. For one - dimensional parameter the local asymptotic minimax
lower bound for the sharp asymptotics of moderate deviation probabilities of estimators
has been established in [I1]. Thus the local asymptotic minimax lower bound for
estimators [15], 16, [19] 27, 28] is extended on the zone of moderate deviation probabilities.

We make use of the letters C and c as generic notation for positive constants.
Denote y(A) the indicator of set A, [a] - the integral part of a. For any u,v € R?
denote u'v the inner product of u, v and «’ the transposed vector of u. For positive
sequences a,, denote a, =< by, if ¢ < a, /b, < C, and denote a,, >>> b, if a,, /b, — 00
as n — 0o. For any set of events B denote A _ the complementary event to B .

2  Main Result

Let X1,..., X, beiidr.v.’s having a probability measure (p.m.) P, € © C R%
defined on a probability space (S,T). Suppose p.m.’s Py, 0 € O, are absolutely



continuous w.r.t. p.m. v defined on the same probability space (S,T). Denote
f(z,0) = dd%(z),x € S. For any 61,60, € R? denote Pg, , and Py 4, respectively
absolutely continuous and singular components of p.m. P, w.r.t. Py,. For allz € §
such that f(z,0) # 0 denote g(z,0,0 +u) = (f(z,0 +u)/f(z,0))"? — 1,u € R%.

The statistical experiment ¥ = {(S,T), Py, 0 € R%} has the finite Fisher information
at the point § € R? if there exists the vector function ¢g(x) = (¢e.1(2), ..., daa(r)),x €
S, g € La(Fy),1 <i < d such that

[ (o600 - %u%be(w)zdpe = ollu),  Piyua(S) = offul)

as u — 0.
The Fisher information matrix at the point 6 equals

1(6) = [S budl Py,

For any Py, Pp,, 01,0, € R? the Hellinger distance equals

1/2
o(Por. Poy) = plts. ) = ( [0 - f1/2<x,92>>2dv) |

We make the following assumptions.
Let 6y € © and let © be open set. Let 0 < A < 1.
A1. For all 6 in some vicinity 6 of the point 6y € O there exists the positive definite
Fisher information matrix 1(6).
A2. For all 0,0 + u € ©g there hold

1
[ (01,064 0 = Su'6u(a))? By < CIP™, Pyl ) < ClaP™, (1)

[4p%(0,6 + u) — u'I()u] < Clu***, (22)
/ﬁmm%wm<0<m, (2.3)
S

RI(0)h — KW IO +u)h < Clhf|ul. (2.4)

The constants C' in (2.IH2.4)) do not depend on 6,0 + u € O.
We say that a set Q C R? is central-symmetric if z € Q implies —z € Q.
We make the following assumptions
B1. The set €2 is convex and central-symmetric.
B2. The boundary 99 of the set Q is C?-manifold.
B3. The principal curvatures at each point of 02 are negative.
Denote (- Gaussian random vector in R? such that E¢ = 0, E[(('] = I. Here I
is the unit matrix.

Theorem 2.1 Assume Al, A2 and B1-B3. Let nb} — co,nbz™ — 0, b, — by_1 =
o(n™1b 1) as n — oo. Then for any estimator 0,, = 0,(X1, ..., X,)

. Py(I'2(60)(6,, — 0) ¢ b, )
liminf su >1 2.5
00 |9—90\<p0nbn P(C ¢ n1/2b,Q) = (2.5)

with C,, — 00 asn — o0.




Wolfowitz [29] was the first who pointed out the relationship of lower bounds of
(2.5)-type with the problem of asymptotic efficiency in the confidence estimation.

In [II] Theorem 2.I] has been established for § € © C R! if ([2.1))-(2.3) is valid.
If d =1, ([24) follows from (2.2]). Note that (2.4]) is fulfilled evidently in the case of
location parameter. If (Z4]) does not valid, we could not take I'/2(6;) as the constant
normalized matrix in (2Z3]).

In confidence estimation the set 2 is usually a ball €2, having the center zero and
the radius 7 > 0. In this case the asymptotic of denominator in (2.5) is known.

Corollary 2.1 Let assumptions of Theorem[2.1 be valid. Let Q2 = 2. Then for any
estimator 0, = 0,(X1, ..., X,)
liminf  sup  2%27'0(d/2)(n'?b,r)? ¢ exp{nb?r? )2} Py (1'% (6,)(0,—0) ¢ b,S2,) > 1

n—o0 ‘6_60|<C7Lb7l

(2.6)
with C,, — 00 asn — o0.

If Q is the ellipsoid Q,, = {9 S 0202 > 02 0 = {0,346, € Rl} yo={o} 01 =

Oy = ...= 0 > Oy > ... > 0q > 0, we get the following asymptotic (see [20]) in
the denominator of (2.5
P(¢ ¢ n'?b,9,,) = Cr(n'?b,r)F 2 exp{—nb2r?/2}(1 + o(1)). (2.7)

Here Cic = 214201 (D (k/2)) " T 4y (1 — 02/0%) 12

The assumptions of Theorem 2] are rather weak. The sharp asymptotics of
moderate deviation probabilities of likelihood ratio were established under the more
restrictive assumptions (see [5l [7, 8 26] and references therein). The lower bounds
for moderate deviation probabilities do not require such strong assumptions (see
[2, 11]) and are usually proved more easily than the upper bounds.

The assumptions of Theorem 2.1] are different from the traditional assumption
of local asymptotic normality. Thus Theorem 2.1l could not be straightforwardly
extended on the models having this property. At the same time A1,A2 represent
slightly more stable form of usual assumptions arising in the proof of local asymptotic
normality. This allows to make use of the technique arising in the proofs of local
asymptotic normality and to get the results similar to (ZH) for other models of
estimation. This problem will be considered in the sequel.

For the semiparametric estimation the local asymptotic minimax lower bounds
in the zone of moderate deviation probabilities have been established in [12]. In
[12] the statistical functionals take the values in R'. The results were based on the
assumptions that (2.IH2.3) hold uniformly for the families of "least-favourable"distributions.
In the case of multidimensional parameter the additional assumptions (2.4) arises
only. Thus the difference is not very significant.

The plan of the proof of Theorem 2.1]is the following. In section 3 we outline the
basic steps of the proof. After that the proof are given for the most simple geometry
of the set Q. For the arbitrary geometry of set {2 we point out the differences in
the proof at the end of section 3. The key Lemmas [B.1] are proved in section 4.
The proof of Lemma is based on new Theorems A.1] and on large deviation
probabilities of sums of independent random vectors. The proofs of Theorems [4.1]
and are given in section 5. The proofs of technical Lemmas of sections 3 and 4
are given in section 6.



3 Proof of Theorem 2.1

To simplify the notation we suppose that 6y equals zero. Suppose the matrix (6p)
is the unit.
For any 61,60, € © denote

f(XS> 92)

F(X..00) 75(01) = {71s(01)} = ¢, (X,)

55(91, 92) =In
with 1 < s <n.

We will often omit § = 6y in notation. For example, we shall write &(0) =
€5(00,0), 75 = 75(0p). The index s will be omitted for s = 1. For example, 7 = 71(6y).

Denote 1, = n~Y2I71/2(6y) Y7 7,. Note, that (0 —6,)' >_"_, 7, is the stochastic
part of the linear approximation of logarithm of likelihood ratio.

The reasoning is based on the standard proof of local asymptotic minimax lower
bound [15] 16, 19, 27, 28]. In particular we make use of the fact that the minimax
risk exceeds the Bayes one and study the asymptotic of Bayes risks. However, in this
setup, the estimates of residual terms of asymptotics of posterior Bayes risks should
have the order o(exp{—cnb?}). This does not allow to make use of the technique of
local asymptotic normality

- 1
Z Es(up) — 02l TV 4, + §nuillun =op(1) (3.1)
s=1

in the zone |u,| < Cb, of moderate deviation probabilities. This is the basic reason
of differences in the proof.
Instead of ([B.I]) we are compelled to prove that, for any € > 0,

P (sup {igs(u) — 2 TV, + %nu’]u} > e) = o(exp{—cnb?})  (3.2)

uEUn =1

where U, is a fairly broad set of parameters. Therefore, the main problem is how to
narrow down the set U,,.

The following two facts have allowed to solve this problem.

The normalized values of posterior Bayes risks tend to a constant in probability.

In the zone of moderate deviation probabilities the normal approximation [4], 21]
holds for the sets of events v, € n'/?T,; where the domain I',; has a diameter
o(n~1b1).

Thus we can find the asymptotic of posterior Bayes risk independently for each
an event 1, € n'/?T,,; , sum over i and get the lower bound. Fixing the set T',,; allows
to replace the proof of (B.2]) with

. 1
P (sup {ng(u) — V2 TV, + §nu’lu, } > €, 1, € n'/?T,;, A1n>

UEUn s=1

— 0 < /n Pl /Q}dx)

where P(A,) =1+ o(1).

(3.3)



To narrow down the sets U, we define the lattice A,, in the cube K, ,v, =
Cb,, and split A,, into subsets A,;.. The set A,;. is the lattice in the union of a
finite number of very narrow parallelepipeds K,;; whose orientation is given by the
position of the set I',; relative to 6,. The problem of Bayes risk minimization is
solved independently for each set A, ;. and the results are added.

Note that the proof of (B:3]) with U,, = A, is based on the "chaining method"together
with the inequality

(Z 55 91, ‘92 92 91 ZTSQI -+ n(92 ‘91) [(‘92 — ‘91) > €,
(3.4)

Un € N2, Aln) < ClOy — 91|Qbf;/ exp{—2?/2}dx.
nl/2T,;

To prove ([B.4) we implement simultaneously the Chebyshev inequality to the first
sum in the left-hand side of (8.4]) and theorem on large deviation probabilities for v,,.
Thus we prove some anisotropic version of theorem on large deviation probabilities
(see Theorem [1.2)).

Denote v, = Cb,. Define a sequence dy,, = c1,(nb,)~t, with ¢y, — 0, cl_s’nbff’\ —
0 as n — oco. In the cube K,, = [~v,,v,]¢ we define a lattice A, = {h : h =
(J161ms - -+ Ga01n)s —ln < Jk < lp = [V /01n],1 < k < d}. Thus I, < cj,/nb?.

We split the cube K, ,0 < k < 1on the small cubes Ty = Zpit+(—Conbin, Condin)?,
where ¢y, — 00, Cond1, = o(n 107 1), 3 e inb N = 0asn — 00,1 < i < m, =
(ke Oy )'n db2d] Tni € Ky,

Suppose C'is chosen so that b, C K(1_y)e, -

For each x,;,1 < i < m, we define the partition of the cube K, on the subsets

Knij = K(Hmj) = {LE‘ X = >\.§L’n2 + u 4+ Hm-j,u = {uk}izl,
’LLJ_LU”Z', \uk| S C3n51n7 A € Rl u € Rd} N Kv ,1 <] < Ming,

where c3,,/Can — 00, €301, = 0(n 71071, €3 e inb* A — 0 as n — oo.

Let us fix 7. Suppose x,; is parallel to e; = (1,0, ...,0)'. This does not cause
serious differences in the reasoning. Denote II; the subspace orthogonal to e;. Suppose
the points 6,,;,1 < j < my,,; are chosen so that they form a lattice in II; N K, .
Define the sets

The risk asymptotic is defined by the set
M={z:|z| = 1nf lyl, =€ 00}. (3.5)

We begin with the proof of Theorem 2.1l for the two-point case M = {—y,y},y € 0.
For arbitrary geometry of the set M we are compelled to make use of a rather
cumbersome constructions. At the same time the basic part of the proof is the
same.

Let 6,j, be such that b,y € K(0,;;,) Then —b,y € K(—0,;,). Let us split ©,;,

on the subsets
@i(kb ey kd—dl) = {9 10 = Qmjo + (—1)t22k’203n51n62

3.6
+ ...+ (—1)td2]€d03n51n€d; tg, Ce td = :l:l} ( )
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where 0 < ky, ..., kg < Cy,, with Cy,e3,01, — 00,nC3 3.3 02 — 0 as n — oc.
Denote }
Kyi(ki, .. ka—1) = Usco, (k... k1) K (0). (3.7)
It will be convenient to number the sets f(m-(/fl, ..., kq_q,) denoting their Kpits ..., Knimgm-
Denote
Onic = Oni N Knie,  Anic = Knie N An, 1< e < mop. (3.8)

Thus O, contains k = 297! points, that is, O = {0},
In this notation the problem of risk minimization on A,, is reduced to the same
problems on the subsets A,;.

inf sup Py(6, — 0 ¢ b,Q)

On 0CK,,
> inf (21,,) @ - Py(0, — 0 ¢ b,9,¢,, € /T
Mn MAng

> (20,)7Y ) Cinf > Py(0, — 0 ¢ b,Q, b, € n'?Tyy).

i—1 e=1 " pen,..

Thus we can minimize the Bayes risk on each subset A,;. independently and make
use of the own linear approximation (3.I]) of logarithms of likelihood ratio on each
set U, = Apie-

For the arbitrary geometry of the set M the additional summation over index
[,1 <1< masy caused the different points of M arises in (3:9). Thus the right-hand
side of (3.9) is the following

Mn M3ni M2nil

2L)7Y N Cinf Y Py(f, — 0 ¢ b2, € 0'T). (3.10)

i—1 1=1 e=1 On 0€Mnite

The definition of the sets A,;. is akin to A,;.. The statement (3.9) with the right-
hand side (B.10) is the basic difference of the proof for the arbitrary geometry of M.
For the completeness of the proof we shall write the index [ in the further reasoning.
This index should be omitted for the two-point case.

The plan of the further proof is the following. First the basic reasoning will be
given. After that we define the partitions of A,, on the sets A,;. for the arbitrary
geometry of M. The basic reasoning is given on the set of events Ay, such that

P(Ay,) =14+ O(nb2™). (3.11)

The definition of the set Ay, is rather cumbersome. To simplify the understanding
of the proof we have postponed the definition of the set Aj, to the end of section.
For each 6 € A,,;. denote

Swp =D _&(0) — 0> 7+ 2np%(0,6)
s=1

s=1

and define the events
Bng = {Xl, R ,Xn : Sng > Eln}

8



where €1, — 0, €,2c;,>nb2t* — 0 as n — oo.
Denote B = Upen,,,;, Bno- For any 0, € Opie denote Bpi(0nij) = Use(o,,;) Bno-

nile

We have
inf Y Py(0, — 0 & by Q, b, € n'/7T)
On GGAnile
> inf Z E [x(0, — 0 ¢ b,Q) exp {265(9)} U €0, Agy,
O 9. s=1 (3.12)
u 1
> F |inf t—0&b,Q)exp Y 75— =nb'I0+0(1) 3,
IPORETR p{z 2 <>}

wn S nl/zrnia Anile|Aln} P(Aln) - Rn

Denote A, = exp{¢/ 1, /2},y = yg = n'/20 —),,. Then, using nb,0, — 0, nb>™> — 0
as n — 0o, we get

(20,) R, > (21,)“E

. 1
A, 11}f Z X(t — yo — Un & nV?0,Q) exp {—iyélyg} :

eeAnile

Yy € 07Ty, Anitel An] (14 0(1))

1
= (20,)"E |:An inf/ X(t =y ¢ n'?b,Q) exp {——y’fy} dy,
nl/QKnile_wn 2

t

'an € n1/2rm'a Anile|A1n}} (]- + 0(1)) = (2vn)_d[nile(]- + 0(1))

(3.13)
For each x € (0,1) denote
Knm(enzy) = {LE‘ X = )\xnz + u + 01’Lij7 U = {uk}tliu ‘uk‘ < (C3n - Cc2n)61n7
UJ_LUnZ', A S Rl} N K(l—/i)vnu
Km'len - U9€®m-le Knm(e)
If ¢, € n'/2T,,; C K.y, , then 2K e C N2 K e — 1, and therefore
[nile Z Unilejnile(l + 0(1)) (314)
with
Unile =L [Ana wn € Fm'a Am'le|A1n] )
_ 1
Jm'le = inf Jnile(t) = lnf/ X(t -y ¢ nl/zan) exp {——ylly} d'g
t t n1/2Knilen 2
Lemma 3.1 B
Jnile = Jnile(o)- (315)



Summing over [ and e, by I3), we get

M3ni M2nil

SN Juiten = P(I'M2(06)¢ & n'?5,Q) (1 + o(1)). (3.16)
=1 e=1
We have
Unie =FK Aru n € n1/2rm' A n
l [ wm 4] . (3.17)
- F [Ana ’an eEn / Fnia Bm'le|A1n] = Ulm' - U2m'le~
Lemma 3.2 Foralli,1 <i<m,
Upni = mes(Tpi) (1 4 0(1)), (3.18)
Uanite = o(mes(I'y;)) (3.19)
as n — oo.
Summing over ¢, by Lemma [3.2] we get
> Unite = mes(Ki, ) (1 + 0(1)) = (260,)*(1 + 0(1)). (3.20)

i=1

By ([3.163.20), we get
Mn M3ni Mani

S TnienUnite > (260,) P(I'2(05)¢ & n'/?0,Q2)(1 + o(1)). (3.21)

i=1 =1 e=1

Since ,0 < £ < 1, is arbitrary, (3.9), (3.12)-3.14),[.2I) together imply Theorem
21

For the arbitrary geometry of the set M the reasoning is the following. Let us
allocate in M connectivity components My, ..., My, having the greatest dimension.
These components define the asymptotic of lower bound of risks. Denote M =
UL, M;. Define the linear manifold N having the smallest dimension d; such that
M C N. Define in R? the coordinate system, such that N is induced the first d;
coordinates. Denote ey, ..., e4 the vectors of the coordinate system.

Denote Ynij = y(bnij) = {x : @ = Azpi + 0pij, A > 0 N 5,00, 1 < j < my,;. Define
the sets Y,,; = {y : y = Ynij, 1 < j < mqp,}. We allocate in Y,,; the subset Y, of all
points y,,;; such that K(6,,;) N b, M is not empty.

For each y,;; € ffm- we set 2,5 € bnM such that

z€bp, M
]?eﬁne the set Zm = {22 = Znij, Ynij € ?m} Denote my,; the number of points of
D ) )
We split Z,,; on subsets of points Z,; = {zni1, - - - » Znitdy > 1 < I < may, such that
the vectors znii1, . . ., 2nig, induce N. Note that ¢ < d; points could not enter in these
partitions since my,; may not be a multiple of d;. However their exception is not

10



essential for the further reasoning. Moreover, for the existence of such a partition
we may have to define different constants cs,, in the definition of different sets K,;;.
However, this does not affect significantly on the subsequent proof and we omit the

reasoning. .
For each 2, define the point Y, Ynite € Yni such that [Ynie — znite| < €3n015-
For each set Z,i = {znirjrs- - -, zm-dljdl} ={Znit1, - - -, Znita, } we make the following.

For each point 6, ;.,1 < s < d; we draw the linear manifold L, ;, = {z : 2 =
en'isjs + Medgy+1 oo+ Ad—d1€ds My -y Ad—dy, € Rl} We split ©,,; N Lisjs on the
subsets

@isjs(kh ey kd—d1> = {9 . 9 = em'sjs + (—1)t12]{3103n51n6d1+1

3.23
4o+ (=) N2k g, csnbineq; b, .. ta—a, = £1} (3:23)

where 0 < ky, ..., kq_q, < Cy, with Cipezpci, — 00, nb2HAC3 3 3 — 0 asn — oo,
Denote
Kisjs(kla SR kd—d1) = U9€®isjs (klv---vkdfdl)K(e)'

Denote map(is, js) the number of sets K; ;. (k1, ..., Kki—d,)-

Without loss of generality we can assume that ma,; (i1, j1) = mopu(is, jo) = ... =
Manit(id, Ja) = Mana, 1 <1 < ma,,. This can always be achieved by making different
constants cs,, defining the sets K,;;. Denote

Koia(ky, .o kaa) = UM K (ko kaeay ) (3.24)
It will be convenient to number the sets l_(m-l(kl, ..., kq_g, ) denoting their Ko, - ., Km’lmm-
Denote B B
@nile = ®n2 N Knilm Anile = Knile N Ana 1 <e< Mopgi. (325>
Thus O, contains d;2¢% points, that is, O, = {st}g;f}j’il, k = 24—

The further proof of Theorem [2.1] follows to the reasoning for the two-point
{y, —y} geometry of set M given above.

Now the definition of the set Ay, = Aj,u. and the complementary set By, =
Binite = DhpiteUBuaniieUBspie will be given. The definitions of the sets D¢, Banite, B3nite
are given bellow.

For all s,1 < s < n, denote D,s(6ni;) = {Xs : f(Xs,0) # 0, f(Xs,0) =0,0 #
0,0 € Av(Onij s Dn(Onij) = Uiz Dis(0nij); Dnite = Usco,,1. Dn(0).

Now we define the set Ba,ie C Bipite- For any 61,0, € © denote ny(6,602) =
(X, 01,09) with 1 < s < n. Define the sets of events Bag (01, 62) = { X : |ns(01,62)] >
6}, Bgs(eg) = B25(0,92> with 0 < e < %

For any 6 € Op;e denote Bonis(0) = Upen,0)B2s(0'), Boni(0) = Ui_; Banis(0).
Denote Bapjies = Uee(am-le B2nis(9)7 Bonite = U?:lB2niles-

The estimates of P(Bay.) are based on the "chaining method". For simplicity
we suppose that [,, = 2™. This does not cause serious differences in the reasoning.
For each 6 € ©,;. we define the sets U; = U;(#),1 < j < m of points hy =
0 + kdiner, hy € Apie, such that |k| is divisible by 2777 and is not divisible by
2m=itl [ < k < lj,. Denote W, 11 = U, 1(0) = Ay () \ UM, Ui(6). Denote
Uy(0) = {6p}. We say that the points h € U, and h; € U,_; are neighbors if b is
the nearest point of W,_; for h. For any h € ¥; we denote II(h) = {hy : by € ¥, _,4
and h, hy— are neighbors }.
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For any 6 € O, for each h € ¥;(#),2 < j <m+1, and all 5,1 < s < n define
the events

_ 1 &,
Vas(0) = { X1 = Ins(ha, R)| > €72, m5(0, hy) + 1 > 3 €y k% hy € T(h)}.
k=0
Denote
B4nis(‘9) = B2s(‘9) U U2§j§m+1 UhE\I/j(G) Vhs(9>7 B4niles = U9€®nileB4nis(‘9)
and Bunie = U?:lB4niles(‘9)- It is clear that Bgms(ﬁ) C B4nzs(‘9)

Lemma 3.3
P(B2nile U Dnile) S P(B4nile U Dnile) = 0(1) (326>

Define the event Bs,, = {X, : || > ev;'}. For any § € ©,;. for each h €
U;(0),1<j<m+1, and all 5,1 <s < n define the events

Bsuns = {Xs t |Tsn — 75| > eb;12j/2}.
Denote

B3m’s(9) = B3ns UUs<j<myt Unew; (o) B3nh8(9)> Bsnites = Uoeo,,11. B?mis(e)‘
and Bgmle(e) = nglB?miles

Lemma 3.4
P(B?)m'le N A4nile) = O(]-) (327)

For any 0 € O, denote Bi,s(0) = Buans(0) U Bsns(0) U D,s(0). Denote By, (6) =
U?:lBlns(9)> Bln = Blnile = UGEGMIeBln(e)'
By Lemmas B.3 and B4}, we get (B.11)).

4 Proofs of Lemmas 3.1 and

We begin with the proof of Lemma The proof of (B.I8)) is based on some version
of Osypov-van Bahr Theorems [4, 21| on large deviation probabilities.

Let Z be random vector in R? such that E[Z] = 0, Var(Z) = I, where [ is unit
matrix. Let P(]Z| < eb,') = 1, where ¢ > 0 as n — oo. Suppose E|Z|*™ < C < 0.
Let Z1,...,Z, be independent copies of Z. Denote S,, = n_l/z(Zl +...+ 7).

Denote i, the probability measure of Gaussian random vector ¢ with E[¢] = 0
and covariance matrix n/. For any Borel set W denote W - vicinity of W, > 0.

Theorem 4.1 Let the set W belong to a ball in R? having the radius r = o(e,n'/?b,)
where €, — 0 as n — 0. Let nb?> — oco,nb>™ — 0 asn — oco. Let W = W \ W,
where W1, Wy are the convex sets. Then

P(Sy € W) = pta(W)(1+ O(by)) + O(b) (W, ) (4.1)

where ¢, = o(n~1/2p)\71).
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The differences in the statements of Theorem .Tland Osypov - van Bahr Theorem
[4, 21] are caused the differences in the assumptions. In [4] 2] the results have been
proved if Elexp{c|Z|}] < oc.

Let us check up that the assumptions of Theorem [4.1] are fulfilled for the random
vector Z = I7V2(0p)x (A1)
Lemma 4.1

Blr, Aim] = O(b,"), (4.2)
E[’TT/, Alnl] = ](90) + O(bz)

Lemma [T and Theorem [A.1] imply (B.I8]).

Lemma 4.2 Uniformly in 0 € Ayje

Ey[Sno| Arn] = o(1). (4.4)
Let €1, be such that ]
sup |E[Sng|A1n] < % (4.5)
GEAnile
Let h € ¥;, hy € II(h),2 < j < m + 1. We have
th - E[th|Aln] - thl + Slnh + S2nh - E[thl + Slnh + S2nh|A1n] (46)
where . .
Slnh = Z gs(hh h’) - }_I'/ Z Tsh17 (47>
s=1 s=1
S2nh = B, Z(Tshl - Ts) (48)
s=1
with FL =h— hl.
Denote

By, ={X1,..., Xy, : sup Spp > €1,/4}.
heWv

For any h € ¥;,2 < j < m + 1 denote

Bth - {X1> ce aXn : j2(Slnh - E[Slnh|Aln]) > 6171/4}7

Bﬁnh - {X1> cee aXn : j2(S2nh - E[S2nh|Aln]) > 6171/4}-
Denote B, = By, U (Ugen,.\w, (Bsno U Beng)). Note that B, O By.. Hence

Usnite < Usnite = E [Ap, ¥, € 0T, Byl Ary] - (4.9)
Denote r,; = inf,er,, |z|. We have
Uspite < C'exp{nry;/2} (Vbn + ) (Ve + Vesne)> (4.10)
0EA 1 nite
where Aipite = Anite \ Onite,
Vinog = P (Y € n**Ti, Beng | A1), € = 5,6, (4.11)
Von = P (¢ € 0T, Bon | Ay) - (4.12)
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Lemma 4.3 Let ( Gaussian random vector having the covariance matriz I(6y) and
let E[C] =0. Then for any h € ¥;, hy € II(h)

Von < Cnb> e 2P(C € n'/?T,,;), (4.13)
Vann < CnlhPberlj* P(C € n'Tyy), (4.14)
Vonn < Cnlh*b)e 2 P(C € n'/*Ty). (4.15)

The number of points ¥;,1 < j < m, equals 2/ and, if h € ¥}, then h = b,277.
The number of points V¥,,,; equals Ccd '2m and, if h € W41, then || < Cesgndin.
Hence, by Lemma [4.3] we get

Uspite < Cneyt exp{nr?,/2}P(C € n'/?T;)
4.16
<b2+)\ +b)\ <Z 2] b 92— )2]4 —I—Cd+1 42m5%n>) ) ( )
7=1
Note that m satisfies 01, = v,27™ or 2™ = Ccy'nb? (1 + o(1)). Hence
nep bt im12ms? = Cnep o) e Inb2me;’n 20,2 = Ce b et e ?m? = o(1).
(4.17)
By (@16, A.17), we get
Usnite = o(mes('y;)). (4.18)

By (@3) and [@I5), we get (1.
Proof of Lemma [4.3] is based on Theorem [4.2]

Theorem 4.2 Let we be given a random vector V- = (X, Z) where random variable
X and random vector Z = (Zy, ..., Zq) are such that E[V] = 0. Let

P(|X|<e)=1, E[X[]<Cbh™, (4.19)
P(|Z| <ebY) =1, E[Z]*"] < C < o, (4.20)
E[XZ] =00, 1<k<d (4.21)

with 0 < € < 1. Suppose the covariance matriz of random vector Z is positively
definite.

Let Vi = (X1, Z1), ..., Vi, = (X, Z,) be independent copies of random vector V.
Let U be a bounded set in RY being a difference of two convex sets.

Denote Spx =n"V3(X1+...+X,,) and S, = n"V*(Z,+...+Z,). Denote Y the
Gaussian random vector having the same covariance matriz as the random vector
Z.

Then, for the sufficiently large n,

I = P(S,x > €1n, Sn € nbyv +1,U) < CP(S,x > €1,)P(Y € nb,v +r,U) (4.22)

b2+>\

where €1,, 7, are chosen so that nb?>* ¢ 3e;? — 0 asn — oo and 1, > c,yn~Y/2b 1.
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It is clear that ey, r, can be chosen such that e, — 0,7,n'/2b, — 0 as n — co. In
the proof of (ZI4[4.15]) we suppose that €1, and r, satisfy these assumptions.
For the estimates of Vs, in (£14) we implement Theorem with Z = 7 and

= @(h, h) = &(ha, h) — h'my, — Zpkhlth

Here 7 = {T’f}gﬂ and pp,p = {thlh}gﬂ = (BT | A ]) ! with vy, = {Tkhlh}g:p Tkhih =
E[(g(hb h’) - h/Th1)Tk|A1n1]'
Thus 57, is replaced with

n d n
Sn:c = Slnh - Z Z PkhihTks = Z Sos(h'la h)
s=1

s=1 k=1

It is easy to see that E[p(hy, h)Tk|A1n1] = 0,1 < k < d. This implies (£.21]).

Now we show that .
Z Z PkhihTks = 0(1) (423)

s=1 k=1

if ¢, € n'/?T,; This justifies such a replacement.
By Lemma B4 given bellow, |rgn,n| < C|h|'*?2 if 2 < k < d. Hence, since
wn € nl/zrnia

Thhh Z% = O(|h)"26;Y) = o(1) (4.24)
with 2 < k < d.
Lemma 4.4 Let h € V;(0),1<j<m+1, hy € II(h) and let v L h,u € R?. Then
E[(&(h1, h) — 1) (0'7), Ava] = O(Jo]|B]H2). (4.25)
By Lemma 5l given bellow |ryp,,,| < C|h|b). Hence, since v, € n*/2T,;,

Pin Y _ s = O(n|h[bL) = o(1). (4.26)

s=1

By @.4), @.24), [.26), we get [@.23).
Lemma 4.5 Let h € ¥;(0),1 < j<m+1, hy € II(h) and let v || h. Then

E[(&(h1, h) = W7, )(0'7), Ava] = O(|0][R]b3). (4.27)

Note that
2n(hy, h) — 2n*(hy, h) < &(hy, h) < 2n(hi, h) < 2e (4.28)

if Alnl holds.
By ([£28)) and Lemma 6 given bellow, we get (A.19).
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Lemma 4.6 For all 0 € A,
E((0) = 0'7)%, Aum] = O(|6]**). (4.29)
Leth e ¥;(0),1 <j<m+1uhy €ll(h). Then
E[(&(h1, h) — B'7h,)?, Arat] = O(|R]*™). (4.30)

This completes the proof of (£I4).
The proof of (£.13) is akin to the proof of (£.14) and is omitted.
For the estimates of Vg, in (£I5]) we choose Z = 7 and

M&

X : Thl —7’ h1th'

k=1

Here 7 = {m.}{_, and prwn = {Pemntics = Pan(E[TT[A1n])™! with 7, =
{TknnHie1: Tonin = B[N (Thy — T)Tk| A1), 1 < k < d.

Using the same reasoning as in the proof of (4I4) and Lemmas .7 (4.8 given
bellow we get (4.15]).

Lemma 4.7 Let u,h € R%. Then
E('(r = ))%, Aua] = O([u*|h[*). (4.31)
Lemma 4.8 Let h € ¥;(0),1 < j<m+1,hy € I(h). Let v L h,v € R%. Then
E[N (1, — 7)('T), A1) = O(|v]|A]|h|M?). (4.32)

Ifv | h, B B
E[W (h, — 7)(v'7), Aina] = O(Jv]|h]|ha]*). (4.33)

Pmof of Lemma [ The set A,;. is defined by the set of the points ©,;. =
{GSJ}SJ 1,k = 2974 The reasoning first will be given for |t| < ¢ < o0o. Denote

nt2y.i(t) € (n'/?6,00 — t) N (n'/2K(0,;)) the point in which n'/?y,; = n'/%y(0,;)
will pass at the shift . Denote n'/? y8+dm(t) (n'/20,00 — t) N (n 1/2K(9 ) the
point in which n'/2y,, ,, = —n'/?y,; will pass at the shift ¢.

Lemma 4.9 There holds

il > exp {“"\ysn } = 2ZZGXp {——nlysﬁ} (4.34)

s=1 j=1 s=1 j=1

Proof of Lemma [{.4 For a while we fix s < d; and j. We slightly modify the
coordinate system for the further reasoning. Suppose x,; = (1, fa, ..., 84) and ys; =
(bn, 0, ceey O, 5d1+17nn_1/2, cee 5dnn_1/2)(1 +0(n_1/2b;1)) with 5kn S Rl, di+1<k<
d.

Define the line y = n'/?(y,; + ur,;), u € R!, that is,

Y= n*2b, + U, y2 = Patly ..., Ta, = Pa, U,
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Ydi+1 = Ody+1m + Bars1Us - -, Ya = Oap + Batt,  [0pn] < C.di +1 <k <d,u € R"

Denote 0y, = 0 for 1 < k < d;.
Since the reasoning is given in a sufficiently small vicinity of point n'/ %y, the
surface n'/2b,0Q admits the approximation in this vicinity by an ellipsoid
(21 — n2b,)? + anas + ...+ gzl = nb?

where —ap, ..., —ay are the principal curvatures of the surface 9) at the point
(1,0,...,0). Thus, in the further reasoning, we can replace the set n'/2h,00 with
the ellipsoid. After the shift ¢t = (¢4, ...,t4) the ellipsoid is defined by the equation

(S(Il — nl/zbn + t1)2 + OéQ(LL’Q + t2)2 4+ ...+ Oéd(l’d + td)z = nbi

and intersects the line y = n/2(6y; +ux,;),u € R at the point n'/2y,;(¢) having the
coordinates

nl/2y1(t) = n1/2bn — t1 + Win, n1/2yk(t) = 51m — ﬁgtl + 52wln, 1< k‘ S d (435)
with
win = —(2n12b,) "o (on +to — Bot1) 2 4. . .+ q(Oan +ta— Bat1)?) (1 +0(1)). (4.36)

Arguing similarly we get that the ellipsoid intersects the line y = n'/ 2~y +
UTy;),u € R at the point n'/2y, 4, ;(t) having the coordinates

n'2y () = —n by —tywyn,  nV2YL(E) = —Op—Biti+Brwan 1< k <dy (4.37)
with

wan = (2012b,) " (o (—an+ta— Bat1)*+. . cAag(—Oan+ta—Bat1)?) (1+0(1)). (4.38)
Substituting (35, E37) in ([#34) we find that, if t; >>> n~/2h-1 then
max{exp{—n(y1(t)*)/2}, exp{—n(y,(t)*)/2}} >>> exp{—(nb} + 63,1 ... +57)/2}.

Thus we can suppose t; < cn™/2b-1 and neglect the addendums S;t;,2 < i < d in

Using (435, E37)) , we get

1 1
exp {—§n|y5j(t)|2} + exp {—§n|ys+d1,j(t)|2}

d

k=di+1

d d
1
+exp {—n1/2bnt1 - E Oéktk5kn}> exp {5 g Oékti} (1+o0(1)).

k=d1+1 k=di1+1

17



Taking the points y,;,1 < j < 2¢°% with all possible values +0,,d; < k < d and

2
summing up for them exp{— M}

{ nbi+6§1+m+...6§n}
expq — ’

we get

2

x (exp{n'/?b,t,} + exp{—n'"b,t,}) (4.40)
d

x ] (exp{antidmn} + exp{—artibin})(1+ o(1)).

k=di+1
Since exp{v} +exp{—v}—2 > 0 with v € R', then (£40) implies ([34) for |t| < C.
In essence, we have considered only the case v = 0. Any point vy, = n'/? (ysj +
uy;),0 < u <<< 1, pass after the shift ¢ at the point n/2(y.;(t) + uz,;) € (R \

(/26,2 — t)) N (nY/2K(0;)). Thus for any point y,,0 < u <<< 1 we can write a
similar inequality (434]). Since the shift ¢ is negligible,

mes((n'/%b,00) N K (6y;)) = mes((n'/?b,00 — t) N K (0,;))(1 + o(1)). (4.41)

This implies Juie(t) > Jire(0).
Let us consider the case ¢ << [t| << Cn'/?b,,. Note that, since all the principal
curvatures in all points of 99 are negative, we can conclude n'/2b,9 into an ellipsoid

- _ d 2 2 = 2 ~ o2 a2
E={r={v}i, a7+ ... +ag + Qg7 + ...+ gz =nb,}

passing through the points y,i. and —y,ie, 1 < e < d; and such that o, < 1,d; +
1 < k < d. Denote yg(t) € (n'/?20,00 —t) N {y : y = 0y + rpu,u € R'} and
Us;(t) € (E—t)N{y : y = bs; + znu,u € R'} the point in which the y; will pass at
the shift ¢.

It is easy to see

szp{ L oy UG WS

s=1 j=1

For the points g,;(t) we can make estimates similar to the case |{| < C' < oo and

can get
2d1 k ‘ 2d1 |y .
Z Z exp { ynzls } Z Z exp { nils } (443)

s=1 j=1

The statement (&43) implies J(t) > J(0) for c << [t| << Cn'/?b,,.

Finally, after the shift ¢, |t| < n!/2b,, one of the points Ynie OF —Ynite, 1 < e < d;
will be located at a distance having the order n'/2b, outside the ellipsoid = and
hence outside n'/2b,Q2. This implies .J(t) > J(0).

5 Proofs of Theorems 4.1] and

The proof of Theorem .1l contains only some different technical details in comparison
with the proof of similar Theorem in [2I]. The proof of Theorem is based on a
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fairly new analytical technique (see [6l, [10]) and is more interesting. Thus we begin
with the proof of Theorem

Proof of Theorem[4.2 We begin with auxillary estimates of moments of random
variable X and random vector Z. We have

E[|X||Z]] < (B|X|5)75 (B 275 < C(E[X?)== < OB, (
E[X?|Z|] < Cb'E[X?] < CbL, (

E[X?|Z)%] < Cb,2E[X?] < Cby, (

E[X?Z)*] < Cb,°EIX?] < Cb) ', (

E[X? 2] < CE[|Z]*) < CO) " B[ Z]**] < Ch) ™. (

For each z = {wy,...,24} € R? denote ||z|| = max;<;<q|7;|. For any 2 € R? and
any A C R? denote ||A — z|| = infyea ||z — 2||. For any € > 0 denote A, = {z :
|A—z|| < e,z € RY.

Define twice continuously differential functions fy, : R' — R! such that

1 if |z| > e,
n\T) =
fin(@) {o if |2 < €1n/2

and 0 < f1,(z) <1, % <021 <iy,iy <d,x € R
11 12
Denote ¢, = c,in~ /2071, We slightly modify the setup of Theorem in the
proof. The reasoning will be given with r, = 1. Theorem follows from the
reasoning if we put r, = ¢,.
Define three- times continuously differentiable functions fs, : B¢ — R! such that

1 if zen2bo+U
an(.fC> = . 1/2
0 if z¢n'bu+U,,

and 0 < fo(2) < 1, |5-2L280)_| < O 1 < iy, ig, i3 < d if © € R™

xilaxizaxi3
Denote
Sinx=X1+ ... + X1 + Xper + ...+ X5,

Win=n""Y(Zi+ ...+ Zy 1+ Y +... + V).

Hereafter Y7, ..., Y, are independent copies of random vector Y. Random variables
Y. Yi,...,Y, do not depend on X1,..., X, Z1,...,Z,.
For any v > 0 denote

Gn(7) = sup E[fin(Snx), Snz € n'?bv + U,

where the supremum is taken over all distributions of (X, Z) satisfying the assumptions
of Theorem 21

Lemma 5.1 Let assumptions of Theorem [{.9 be satisfied. Then

E[fin(Snx), Snz € n'?b,v + U]

5.6
< E[fln(SnX)]P(Y € nl/anU +U.,) + Cnbi+AC;f€1_rL2Gn—l(7n) (56)

forn > ng. Here v, = eb; (n—1)"Y2+ (n(n —1)"2b, — (n — 1)2b, ) + C/n+c,
where C' depends on U.
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Proof of Lemma[5d. We have

Elf1n(Snx) fon(Snz)] < E[fin(Snx) fan(Y)] + A (5.7)

where

A = |E[f1n(Snx) fon(Snz)] = E[fin(Snx) f2n(Y)]]. (5.8)
It is clear that A < A; + ...+ A,, where

Ak = |E[f1n(5an +Xk)f2n(Wkn+n_1/2Zk)] [fln(San +Xk)f2n(Wkn+n_l/2Y)]|
(5.9)

for 1 <k <n.
Expanding fi,, and fs, in the Taylor series, we get

Ay = |E[f1a(Sknx + Xi) (fon(Win + 072 2)] = four (Wi + n72Y))]]

1
< 'E {(fln(sknx) + fin (Sknx ) Xk + %/ Jin (Sknx + wXy) (1 —w) de,f)
0

) o 1 — 1 el 1 el

o /01(1 = )" (F3 Wi+ wZ) Z3 = fi, (Wi + @Y )Y?) d“’)] '
(5.10)

After opening the brackets in the right-hand side of (5.10) it remains to estimate
each of the resulting addendums independently. The estimates are performed in the

same way, using (419, 120, 21 B.1] - B.5). Therefore, we estimate only three of
them.

Using (5.4), we get

1
n_3/2E |i/ f{/n(San + WXk)(l - Wl) dle,?
0

(5.11)

S Cn—3/2CT—L3€1—T?b2—1Gkn( ) < C€_2 _3b2+>\Gkn(7n>-

1n nln

1
X / (1 — w) ( W(Wkn + UJQZk)Zk W(Wkn + UJQY)Y?’) du)2:|

The first inequality in (5.11]) is obtained on the base of the following reasoning

Win + 102 Z € n'?bv + U, = Wi € 0200 + U, 1oy,
= n'2(n = 1) Wi, € (n = 1)2b, 30 + (n(n — 1)"2b, — (n — 1)/2b, ;)
+ 02— 1)U, iy
- n1/2(n o 1)_1/2Wkn c (n . 1)1/2[%—121 +U .
(5.12)
Using (5.1]), we get

B f1n(Skn- 1X)an ! for (W) ZZ]]

5.13
< Cn~ 1b)\ €1n Gkn(fYn) < Cb2+)\€ln Cn1 Gkn(fyn) ( )
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Using (£21]), we get
B[ (Sknx) Xk (Z = Y) £ (Win)]

(5.14)
0" PEXKZR B[ f1,(Sknx) fon Win)] < Cn™ 20 6 G ().
This completes the proof of Lemma [B.11
We begin the proof of Theorem with auxilliary estimates.
P(Y € n*'?b, + U,,) < exp{Cc,n'?b,} P(Y € n*/?b, + U) (5.15)
< agP(Y € n'?b, + U). '
Note that
Ve -1, 0+U, =Y cnbu+U,, (5.16)
with w, = v, +n/2b, — (n — 1)Y/2b,_;.
Therefore
P(Y € (n—1)", 0+ U,) <PY €n'?b0+U,,) (5.17)

< Cexp{n*?b,w, } P(Y € n*?b,v 4+ U) < a; P(Y € n*?b0 + U).
The further reasonings are based on an induction on n. We take a sufficiently large
n = ng such that C’noelno o, 1b2+)‘ < a with aapa; < 1. We take C,,, such that
Coy P(Y € nl/*bny + U)E[fin(Snyx)] > 1. (5.18)
Then
E[f1n(Snox)s Snoz € no bnov +U] <G P(Y € n1/2bno + U)E[fin(Snox)]. (5.19)
Suppose Theorem was proved for n — 1 > ng. Let us prove it for n. We show
E[fin(Snx), Snz € n*?byv + U] < C,P(Y € n'/?b, + U)E[f1(Snx)] (5.20)

where C),, = ag+ C,,_1aa;. Then, since C,, form geometric progression with exponent
aapa; < 1, Theorem [4.2 follows from (5.20).
Applying (5.6) and the inductive assumption , we get
Elfin(Snx), Snz € n?bv + U <P e n'b, + Uer) E[f1n(Snx)]
T OnbE 6 2C  Elfin(Sux)IP(Y € (= 1)Y25, 1 + U,,) (5.21)
< (CLO + Cn_laal) [fln( nX )] (Y € n1/2b + U)
This implies Theorem
Proof of Theorem [} In the proofs of Theorem [4.1] and Osypov Theorem [2]]
the basic reasonings coinside. The difference is only in the preliminary estimates.
On these estimates the basic reasoning are based on.
Denote ¢(h) = Elexp{h/X}]. Define random vector X, having the conjugate

distribution
Fy(dx) = F(dz,h) = ¢ ' (h) exp{h2} F(dz).

Denote

m(h) = Ey[Xy), o(h) = Var[X}].
For any v € R? denote h(v) the solution of the equation
m(h) = v. (5.22)
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Lemma 5.2 For all v,|v| < €b,,e > 0 there exists the solution h(v) of equation

(2.22) and
¢(h) =1+ [h*/2+ O(|nf’n) ), (5.23)
m(h) = h+ O(|h|?b)™Y), (5.24)
h(v) = v+ O(Ju*b)™), (5.25)
o(h) = I(1+ O(|r)*b}™1)). (5.26)

Proof of Lemma[5.2 Expanding in the Taylor series we get

o(h) =1+ % /(h’x)2 dF(x) + O (|h|3/ |x\3dF(x)) =1+ %W + O(|hPn) 1),
(5.27)
m(h) = ¢~ (h) /:Bexp{h'x} dF ()

= /x(h/x)dF(x)(l - |h|2/2 + O(|h|3b2—1> +0 (/x(h'x)2dF(x)) (5.28)
=h+O(|h]* + |n|*6)7Y).
Substituting (5.28) in (5.22), we get (5.25). Estimating similarly to (5.28)), we get

(B.26).
Denote

A(h,v) = —(h,v) + In¢p(h). (5.29)

By (5.235.25)), we get
In 6 (h(v)) = %hz(v)(l +OMY)). (5.30)

By (5:26]), we get

det ™2 (h(v)) = 1 + O(D)). (5.31)
By (5:25) and (5.30) we get

A(h(v), ) = JoP(1 + Ol ™)) — 5lol?(1 +O(E)
) (5.32)
= Sl +O(ol)

The estimates (5.2315.26) and (5.30H5.32) are the versions of similar estimates in
[21]. Using these estimates we get Theorem [Tl on the base of the same reasoning
as in [2I]. This reasoning is omitted

6 Proofs of Lemmas 3.3/3.4/4.1)/4.2] and 4.4-4.§]

The Lemmas will be proved in the following order: 3.3|3.414.T1[4.2/4.61[4. 414. 714 5148
Proof of Lemmal3.3. Let h € W;(0) and hy € II(h). By (2.1) and (2.3), we get

1. _
Ph1(|77(h'17 h)l > 6) < Ph1(|77(h'17 h) - ih/Th1| > 6/2> + Phl(‘h/Thl‘ > 6/2) (6 1)
1. ~ ~ .
< 46_2Eh1[(77(h'17 h) - ih/Th1)2] + 22+)\€_2_)\|h"2+)\Eh1|Th1|2+)\ < C‘h|2+)\‘
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By straightforward calculations, using (6.1]), for 1 < j < m, we get
P(Vi(0)) < CPy, (In(hy, h)| > €572) < Ce 2 |n|*™ < Cj* (2J) : (6.2)

In the case of j = m -+ 1 the constant C in (6.2 is replaced with Ccd'. By (6.2,
we get

242
P(B.(0)) < C’nZW <2—7;) G+ Cncd-tomeE A s2Him (6.3)

Note that 2™ = Cey,'nb? (1 + 0(1)) . Therefore, using n=*b,* < nb2™, we get

P(Byn(0)) < Cnb?t* 4 CncdfitAg=miN pdp2a

6.4
< Cnb2+)\ —2-X —I-CC Cd+2+)\ —)\b O(nbi-l-)\) _ 0(1) ( )
if c3, tends to infinity sufficiently slowly.
Since P}Ef}il(S) < C|h|**, then, arguing similarly (6.2)-(6.4), we get
m+1
Duie) SCn 35 > PBi,(S)
J=1 hev;(9) (6 5)

<Cn Z 2 (b, 279)H 4 Oned T2 2me2 A = o(1).

J=1

Now (6.4I6.5)) implies (3.26]).
Proof of Lemma([3.4} Applying the Chebyshev inequality and using (2.3]), we get

P(Bym) < F B[] < OB, (66)
Let h € ¥;(A),1 < j <m+ 1. By Chebyshev inequality, we get

P(|7gn — 7s| > €b, 272 Aypy) < C27ICTN2R2IA2AN B 1, 124N Ayt ] + E[|771Y)
< CQ—j(2+>\)/2bi+>\€—2—>\(Eh[|7_h|2+>\] + E[|7’|2+)‘]) < C'Q_j(2+’\)/2bi+’\.
(6.7)

By (G.09), [6.1), we get

P(Bspie) < CTLZ 2Ip2TAQIHIN/2 o O d—1gmo=mHN/2124A  Cpp2+d = o(1).
j=1

By 6.4),(C.5) and (6.8), we get
P(Binie) < Cnb2t. (6.9)

(6.8)

Proof of Lemma[{.1 Since E[r] = 0, we have

|E[7, Aini]| = |E[7, Bini]|
< E||r],|7| > b;l] + E[|7|, Bina N{]7| < b;l})] (6.10)
< BIPAEIT)P 4 b P(Bi ) = O
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where the last equality follows from (2.3)),(6.4),([6.6).
The proof of (4.3) is similar and is omitted.

The considerable part of the subsequent estimates is based on the following
lemma.

Lemma 6.1 Let h € V;(0),hy € II(h),1 < j < m+ 1,0 € Ony.. Then, for any
a>0,b>0,a+b>2+ A, there holds

En B, |0 (ha, h’)|b7A1n1] < CWH)‘. (6.11)
Proof of Lemmal6 1l By (2.1) and (23] we get

Ehl [|}_I'Th1 |a\77(h17 h’) |b7 Alnl] < CEhl [|}_I'Th1 ‘[H_bv Alnl] + CEhl Hn(hlv h’) |a+b’ Alnl]
< CEhl [|}_I'Th1 ‘[H_bv Alnl] + CEhl Hn(hlv h’) - }_I'Thl |a+b’ Alnl]
< CEpy[[hrn, |, Avma] + C B, [[n(ha, h) = hrn 2, Ava] < OR[>,
(6.12)
Proof of Lemma [{-3 Expanding &, in the Taylor series, we get

n

Sno = 2(2%(9) —0'7s) — ;nisw) + % Z % +2np%(0,0) (6.13)

s=1 s=1

where 0 < k < 1.
Since E[n2(0)] = p*(0,0) and 2E[n,(0)] = —FE[n2(0)] = —p*(0,0), by virtue of
2.2), we get
1
E[(21,(6) = 0'7) = m, (6) + 50'16] = O(|o]**?). (6.14)
By ([64[6.9), we get

El[na(0), Bin1) < Ellnn(0)], [1m(0)] > €] + El|na(0)], Bina \ {|n(0)] < €}]
< Elna(0)], [12(0)] > €] + eP(Bim) < El[na(0)], [12(0)] > €] + Cby ™.

By 21, 23]), we get

Ellna(0)], [n(0)] > €]
< Ellm(0)], [m ()] > €, [nn(0) — %Q’TI < €/2]+ Ellm(0)], [n(0)] > € [07] < ¢/2]

(6.15)

1 1
< CE[l0'7], [0.(6)] > €, |nn(6) — 57| < ¢/2] + 4™ B(1.(0) — 59’7)2]
< Ce'AE[|0' 7] + O™ < Ov2

(6.16)
By (6.15) and (6.16]), we get
E[1,(0)|Bii] < CH2H. (6.17)
Arguing similarly to (6.15] [6.10), we get
En(0), Bun] = O(b;"). (6.18)
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By (6.I46.906.1006.17), ([6.18)), we get
1 1
E[(2n,(0) — 59'7) —n2y(0) + 59’19, Bim] = O(|b,[*™). (6.19)

By Lemma [6.1], we get

dleror

By (613),([6-14),([619),([620) we get (£4).
Proof of Lemma [{.6 Using (6.13), we get

A} < CE[ O], Am] < CIOP. (6:20)

BI€(6) ~ 7%, Ava] < OBl (6) — 50'7)7

(6.21)
+ CEl1,(0), Ay] + CE[n(0), Avna .
By Lemma [6.1] we get
Eny(0), Aim] = O(|0]*™). (6.22)
and
E[nS(6), Aia] = O(|0)*). (6.23)
By 1), 6.21), (6.22), [6.23) we get H.29).
Estimating similarly to (62IH6.23)), we get
1,
E[(g(hh h’) - ih Th1)27 Alnl]
1 B (6.24)
< CEp, [(€(h, ) = Sh'm,)%, A ] < CIR[*H,
This implies (4.30).
Proof of Lemma [{.4} Applying the Cauchy inequality, by ([A31]), we get
E[(&(hy,h) — W1, (V'T), A,
(€1, 1) — B, ('), Ay .

< (BIE(, ) = W), Al 2(E[(0'7)2, Aa]) 2 < Clol B2,

This completes the proof of Lemma 4.4
Proof of Lemma [{.7. Using the inequality (a + b)* — 2b* < 2a?, putting a =
n(0,u) + 2w/t — n(h, h 4+ u) + Ju'n, and b = n(h, h + u) — (0, u), we get

El(u' (7 = m))%, Au] = 2E[(n(h, b+ 1) = 1(0,u))?, At

1 1
< 2E[(n(h,h+u) — §ul7—h —n(0,u) + iu/T)27 Ai] = J.

(6.26)

Using the inequality 2a® < 4(a+b)?+4b?, putting a = n(h, h+u) — 1u'7, — (0, u) +
1u't and b =n(0,u) — $u'7, by (1)), we get
1 1
J <AE[(n(h,h +u) — §u’rh)2, App] +4E[(n(0,u) — 51/7')2, Ajpa]
6.27)
1 (
< CEL[(n(h,h+u) — §u’7h)2] + Cluf*™ < Clu*™.
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Thus, for the proof of ([@3T]), it suffices to show
Ji = El(n(h, b+ u) = n(0,w))?, Aii] = O(Jul|1]*). (6.28)
By straightforward calculations, we get
(n(h, h+u) = n(0,u))?

= (77(07 h + u) - 77(07 h) - 77(07 u) - 77(07 h’)n(ov u))2(77(07 h) + 1)_2
Therefore
J1 = E[(n(0, h +u) —n(0,h) —n(0,u) —n(0, R)n(0,u))*(n(0, h) + 1)72, Apn]
CE[(n(0,h+u) —n(0,h) — n(0,u) — (0, A)n(0,u))?, Apn]
< CE[(n(0, h + u) — %(h +u)'r — (n(0, ) — %h'T) — (n(0,u) — %U'T))Q, Al
+ CEn(

N

2

[77 07 h)77 (O>u))>A1n1] = Jll + J12~
(6.29)
Applying (2.I)), we get
T < CEI((0, h+ ) — 5+ w)'r)?) + CE[(n(0,h) — 37
(6.30)

+ CE[(n(0,u) — %u’fﬂ < Clh+uP™ + ClhP.
By Lemma [6.1] we get
Jia < CE[n*(0,h), Aipt] + CE[R*(0,u), Aipi] < C(Ju + |A[*). (6.31)
By (6.29H6.311[6.27[6.26)), we get

1
El(u/(7 = 5m))*, Au] < C(Jh + w4 a4 R, (6.32)

Putting [u| = co|h| and Cy = C((1 + ¢0)>** + g™ + c2)cy?, we get
Bl (1 — )2, Aint) < Cilul?|h|. (6.33)

This completes the proof of Lemma 4.7
Proof of Lemma [{.J Denote

W = E[(hy7)(&(hy, h) = 1) | Avma] = E[(Ry (T — 70,)) (E(Ra, B) — W' T, )| Ava]
+ B[(Ry7h,)(E(ha, h) = B/, )| Avpr] = Wiy + Wi
(6.34)

By (@.31)),[#.30), we get

Wi < (B (7 = )| Ava]) P (BI(E(h, B) = BT, )?| Ava]) 2

_ 6.35
< C|h1‘1+)‘/2‘h‘1+)\/2. ( )
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We have

Wiy = Ep, [(1+ n(h1,0))*(hy7n, ) (€(h1, h) — W', )| A
= Ep, [(Ry70,)(E(ha, h) — B/, )| Avma] + 2B, [n(Ra, 0) (B 7, ) (€(Ra, B) — DT, )| Ava]
+ Eh1 [7]2(h1, 0)(;1/177“)(5(}2,1, h) - }_L/Thl)‘Alnl] = W121 + W122 + W123.

(6.36)

By (6.13), we get

Wior = Ep, W7, (20(hy, B) — hiy), Avma] = Eng [Ry70,07 (hay h), Avpd]

3(hi, h . (6.37)
(. 1) = A1 | = Wiann + Wizia + Wiais.

2
e
T T T 1)

By @2.10),2.2), we get
_ 1, _ 1 _
O(|h"2+)\) = Ehl[(n(h'lv h) - ih Th1)2] = pz(h'lv h’) - Ehl [n(hlv h)h/Thl] + Zhl(hl)h
1, - - -
= §h I(hy)h(1+ |h|)‘) — Ep, [n(hy, h)hry,].
(6.38)
Since h, || h, by ([6.38)), we get
! 1 ! 7 7
By [Wy1h,m(ha, h)] = §h11(h1)h(1 +O(|h). (6.39)

Applying the Holder’s inequality, we get

1=
Ehl [h/lThl (n(h’h h) - §h/7—h1)7 Blnl]

< (B, P PD T (B (0001, h) = S, )2 (Pay (Bt (640

= O(|ha|R]"*26,/2).
By (6.39),(6.40), [@.3), we get

Wian = O(|h/1||}_l|bii) (6.41)
By Lemma [6.1] we get
Wigia + Wigis = O([ha |||+, (6.42)
By (6.37),([6.41),([6.42), we get
Wiz1 = O(|h4]|h|b)). (6.43)

Using Lemma and (6.13), we get
Wiz + Wiaz = O(|h|*™|hy]). (6.44)
By (6.36), (6.43), (6.44), we get
Wiz = O(|h)]|h|b)). (6.45)
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By (6.34), (6.33), (6.45), we get ([.2T).

Proof of Lemma [{.8 We begin with the proof of (A32]). Using (431]), we get

VB[R (7 = 7, )T, Avaa] < (BIW(7 = my), Avd]) 2 (B[])? < ClR|IRa 2. (6.46)

The proof of (£33)) is based on the following reasoning. By (4.31]), we get

O(Ih*6y) = El(h(T — 7,))*, Avma] = Bl(h7)?, Ai]—
— QE[(}_?,T (]_'LTh), Alnl] -+ E[(]_'LThl)2, Alnl] = Jl — 2J2 + Jg.

We have
‘]3 = Ehl[(n(hla O) + 1)2(67711)2’ Alnl]

= Ehl [772(}?'17 O)(}_?'Thl)27 Alnl] + 2Ejh1 [n(h'la O)(}_?'Thl)27 Alnl]

+ Ehl [(BTh1)27 Alnl] - J31 + 2J32 + J33.

By Lemma [6.T], we get )
Ja1 + 255 < C|R)?|R|.

Estimating similarly to the proof of (4.2)),([4.3]), we get
Jss = W I(h)h + O(|h*b)).

By (6.48)-(6.50), we get

Js = BiI(hy)hy + O(|h[?0)).

By (6.47), (£.3),(6.51]), we get
Jy = R\ Ihy + O(|h[?b)).

By (6.52),(.3), we get )
Ji — Jo = O(|h)?BD).

This implies (£33)).
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