
UNIQUE CONTINUATION FOR A QUASILINEAR
ELLIPTIC EQUATION IN THE PLANE

SEPPO GRANLUND AND NIKO MAROLA

Abstract. We consider planar solutions to certain quasilinear el-
liptic equations subject to the Dirichlet boundary conditions. We
show that if the boundary data has finite number of relative max-
ima and minima then a solution has the unique continuation prop-
erty. Our method is new and applicable in the plane.

1. Introduction and preliminaries

In this paper we consider solutions of quasilinear second order elliptic
partial differential equations of the form

∇ · A(x,∇u) = B(x,∇u), (1.1)

where A : R2 × R2 → R2 and B : R2 × R2 → R are Carathéodory
functions under certain structural conditions discussed in Section 1.2.
A noteworthy example of such equations is the p-Laplace equation

∇ · (|∇u|p−2∇u) = 0, (1.2)

where 1 < p < ∞, which gives the Laplace equation when p = 2; we
refer to [11].

The result of this note is the following. Let G be a bounded simply-
connected Jordan domain in R2. Suppose u is a solution to (1.1) subject
to the Dirichlet boundary condition

u = g on ∂G,

where g ∈ W 1,p(G) ∩ C(G). We assume minimal regularity conditions
on ∂G so that every boundary point is regular, and hence u ∈ C(G). If
g|∂G has finite number of relative maxima and minima, then u satisfies
the unique continuation principle, i.e. if u vanishes in some open subset
of G, then u vanishes identically in G.

For linear equations the study of unique continuation is rather com-
plete [9]. It is known, however, that unique continuation does not hold
in certain cases for solutions to the equation in (1.1). We mention a
paper by Martio [13] in which he constructed some counterexamples in
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the case of p = n in (1.3), n ≥ 3, and B ≡ 0. The planar case for (1.1)
still remains an open problem, but in the present paper we provide a
partial solution.

A typical two-dimensional phenomenon is the connection between
quasiregular mappings and linear second order uniformly elliptic equa-
tions of the general form of two variables. Moreover, the unique con-
tinuation property can be derived from this intrinsic connection.

Unique continuation for nonlinear equations, such as (1.2), is still,
to the best of our knowledge, an open problem. There are some re-
sults. The two-dimensional case of the p-Laplace equation was solved
by Alessandrini [1] by considering the set of critical points of a two-
dimensional solution to (1.2). We refer also to Bojarski–Iwaniec [7] and
Manfredi [12] who observed that the complex gradient of a solution to
(1.2) is quasiregular, and hence the unique continuation property fol-
lows for solutions in two variables.

We mention papers [4] and [5] in which the unique continuation prop-
erty is achieved for solutions to certain generalizations of the p-Laplace
equation in the plane as a consequence of studying the properties of
critical points and level lines of such solutions; in [5], for instance, the
authors consider planar solutions to the equation

∇ · (|A∇u · ∇u|(p−2)/2A∇u) = 0

with A = A(x) uniformly elliptic and Lipschitz continuous symmetric
matrix.

In the present note, we consider two-dimensional solutions to more
general nonlinear equations and provide a new approach to this problem
in the plane. Our approach is based on the analysis of nodal domains,
which are maximal connected components of the set

{x ∈ G : u(x) 6= 0},

and nodal lines

{x ∈ G : u(x) = 0},
which are the boundaries of nodal domains. Our main tool is to couple
the strong maximum principle and the Harnack inequality with some
topological arguments; this argument applies in the situation in which
there are finite number of nodal domains. Interestingly, the unique con-
tinuation property can be deduced from some features of the topology
of planar sets.

The topological approach taken in the paper can be applied also
to the nonlinear eigenvalue problem involving the p-Laplacian and to
more general eigenvalue problems constituting the Fučik spectrum. We
refer to a recent paper [10] for more details.

We want to refer to [2] since the framework and some ideas there
are somewhat related to those taken in the present note. Finally, we
refer to three recent papers on unique continuation. Alessandrini [3]
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shows the (strong) unique continuation property for solutions to linear
elliptic equations in two variables in divergence form, possibly non-self-
adjoint and with lower order terms. Armstron–Silvestre [6] show that
a viscosity solution of a C1,1 uniformly elliptic fully nonlinear equation
satisfies the (strong) unique continuation property. In [8], on the other
hand, the authors study the game p-Laplace equation on a tree and
provide a characterization of the subsets of the tree that enjoy the
unique continuation property.

1.1. Notation. Throughout, G is a bounded simply-connected Jordan
domain of R2. A domain is an open connected set in R2. We write
Br = Br(x) = B(x, r) for concentric open balls of radii r > 0 centered
at some x ∈ G. We denote the closure, interior, exterior, and boundary
of E by E, int(E), ext(E), and ∂E, respectively.

1.2. Structural assumptions. Let us specify the structure of A and
B in (1.1); We shall assume that there are constants 0 < a0 ≤ a1 <∞
and 0 < b1 < ∞ such that for all vectors h in R2 and almost every
x ∈ G the following structural assumptions apply

A(x, h) · h ≥ a0|h|p,
|A(x, h)| ≤ a1|h|p−1,
|B(x, h)| ≤ b1|h|p−1

 (1.3)

where 1 < p < ∞. We do not assume the monotoneity or the ho-
mogeneity of the operator A since we do not consider existence or
uniqueness problems.

The structural conditions (1.3) result in Hölder continuity of a weak
solution to (1.1), and moreover in the Harnack inequality and the strong
maximum principle, we refer to Serrin [18].

We could also allow for the following structural conditions

A(x, h) · h ≥ a0|h|p,
|A(x, h)| ≤ a1|h|p−1,
|B(x, h)| ≤ b0|h|p + b1|h|p−1

 (1.4)

where 0 < b0 <∞ and 1 < p <∞. In this case local Hölder continuity
and the Harnack inequality for a locally bounded weak solution of (1.1)
follow from Trudinger [19].

We do not consider the case in which A and B may depend on u,
or, for that matter, aim at the most general structure in (1.3) or (1.4).
We will only need that solutions of (1.1) are continuous, and satisfy
the Harnack inequality and the strong maximum principle.

1.3. Some elements of the plane topology. We recall a few facts
about the topology of planar sets; a good reference is [16]. Let Ω be any
domain in R2. A Jordan arc is a point set which is homeomorphic with
[0, 1], wheras a Jordan curve is a point set which is homeomorphic
with a circle. By Jordan’s curve theorem a Jordan curve in R2 has
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two complementary domains, and the curve is the boundary of each
component. One of these two domains is bounded and this domain is
called the interior of the Jordan curve. A domain whose boundary is a
Jordan curve is called a Jordan domain.

As a related note, it is well known that the boundary of a bounded
simply-connected domain in the plane is connected. In the plane a
simply-connected domain Ω can be defined by the property that all
points in the interior of any Jordan curve, which consists of points of
Ω, are also points of Ω [15].

A Jordan arc with one end-point on ∂Ω and all its other points in Ω,
is called an end-cut. If both end-points are in ∂Ω, and the rest in Ω, a
Jordan arc is said to be a cross-cut in Ω. A point x ∈ ∂Ω is said to be
accessible from Ω if it is an end-point of an end-cut in Ω. Accessible
boundary points of a planar domain are aplenty: The accessible points
of ∂Ω are dense in ∂Ω [16, p. 162].

We recall a few facts about connected sets and ε-chains. If x and y
are distinct points, then an ε-chain of points joining x and y is a finite
sequence of points

x = a1, a2, . . . , ak = y

such that |ai − ai+1| ≤ ε, for i = 1, . . . , k − 1. A set of points is
ε-connected if every pair of points in it can be joined by an ε-chain of
points in the set. A compact set F in R2 is connected if and only if it
is ε-connected for every ε > 0 [16, Theorem 5.1, p. 81]. If a connected
set of points in R2 intersects both Ω and R2 \ Ω it intersects ∂Ω [16,
Theorem 1.3, p. 73].

Lastly, we recall the following topological property [16, p. 159]. A
subset E of R2 is said to be locally connected at any x ∈ R2 if for
every ε > 0 there exists δ > 0 such that any two points of Bδ(x) ∩ E
are joined by a connected set in Bε(x) ∩ E. A set is uniformly locally
connected, if for every ε > 0 there exists δ > 0 such that all pairs of
points, x and y, for which |x − y| < δ can be joined by a connected
subset of diameter less than ε. All convex domains and, more generally,
Jordan domains are uniformly locally connected [16, Theorem 14.1, p.
161]. However, simply-connected domains are not necessarily locally
connected.

2. Unique continuation and nodal domains

We may interpret equation (1.1) in the weak sense. We recall that it
follows from the structural assumptions (1.3) (or (1.4)) that a weak so-
lution to (1.1) is Hölder continuous and satisfies the following Harnack
inequality. We refer to Serrin [18]. The proof is based on the Moser
iteration method [14].
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Theorem 2.1 (Harnack’s inequality). Suppose u is a non-negative so-
lution to (1.1) in B3r ⊂ G. Then

sup
Br

u ≤ C inf
Br

u,

where C = C(p, a0, a1, b1).

Having the structure (1.4) in (1.1), Theorem 2.1 can be found in
Trudinger [19]. Moreover, in this case we shall assume that a weak
solution u is locally bounded.

We also point out the following important property, the strong maxi-
mum principle, which can be deduced from the Harnack inequality. We
refer to a monograph by Pucci and Serrin [17] on maximum principles.

Theorem 2.2 (Strong maximum principle). Suppose u is a non-constant
solution to (1.1) in G. Then u cannot attain its maximum at an inte-
rior point of G.

We shall make use of the fact that if u is a solution to (1.1), then
−u+ c, c ∈ R, is also a solution to an equation similar to (1.1). Hence
Harnack’s inequality and the strong maximum principle apply to both
u and −u+ c.

Our main result is the following theorem. We assume minimal reg-
ularity conditions on ∂G so that every boundary point is regular, and
hence u ∈ C(G).

Theorem 2.3. Suppose u is a solution to the equation (1.1) under
structural conditions (1.3) (or (1.4), and u locally bounded) in a bounded
simply-connected Jordan domain G of R2 subject to the Dirichlet con-
dition

u = g on ∂G,

where g ∈ W 1,p(G)∩C(G). If g|∂G has finite number of relative maxima
and minima, then u has the unique continuation property: If u vanishes
in some open subset of G, then u vanishes identically in G.

We could also state the result as follows: If u is a constant in some
open subset of G, then u is identically constant in G. In what fol-
lows, however, we stick to the classical formulation by dealing with a
vanishing solution.

The crux of the proof is to study so-called nodal domains. A maximal
connected component, i.e. one that is not a strict subset of any other
connected set, of the set {x ∈ G : u(x) 6= 0} is called, in what follows,
a nodal domain. We denote these components by

N+
i = {x ∈ G : u(x) > 0}, and N−j = {x ∈ G : u(x) < 0},

where i, j = 1, 2, . . . . We remark that if u is, for instance, a solution
to the p-Laplace equation (1.2) it is not known whether the number of
nodal domains is finite.
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In the proof of the following key lemma, we make use of the fact
that G is a Jordan domain, and more precisely, G is uniformly locally
connected at every x ∈ ∂G, we refer to Section 1.3.

Lemma 2.4. Let the hypothesis of Theorem 2.3 be satisfied. Then the
number of nodal domains, N+

i and N−j , is finite.

Proof. We note first that u vanishes on all nodal lines in G, i.e. on
∂N+

i ∩G and ∂N−j ∩G. Hence by the strong maximum principle each
nodal line meets the boundary of G.

By the strong maximum principle the set ∂N+
i ∩∂G contains a global

maximum of u in N+
i . We then show that such maximum point x0 ∈

N+
i is also a relative maximum of g on ∂G: Let x0 ∈ ∂G be a maximum

point of u on some fixed nodal domain N+
i . We shall then apply local

connedtedness of G at every boundary point x ∈ ∂G (Section 1.3). We
claim next that there exists δx0 > 0 such that Bδ(x0) ∩ G, for each
δ < δx0 , contains only points of N+

i . But assume that this is not the
case. Hence for each δ < δx0 there exists x̃ ∈ Bδ(x0) ∩ G such that x̃
belongs to some other nodal domain than N+

i , say, N−j or u(x̃) = 0.
Obviously, we need to consider only the former case.

We write u(x0) = maxx∈N+
i
u(x) = σ > 0. There exists a positive

δ̃ < δx0 such that

u(x) >
σ

2
for every x ∈ ∂N+

i ∩ ∂G ∩ Bδ̃(x0) (it can be verified that such points
exist since G is a Jordan domain). Moreover, since there exists a point
x̃ ∈ Bδ̃(x0) ∩ G such that x̃ ∈ N−j and G is locally connected at
every x ∈ ∂G, there must exist also a point x̄ ∈ Bδ̃(x0) ∩ G so that

u(x̄) = 0. For small enough δ̃ this is not possible since u is continuous
and u(x0) > 0.

We have therefore obtained that there exists a positive δx0 such that
Bδ(x0) ∩G, δ < δx0 , contains only points of N+

i .
It follows that the inequality

u(x) ≤ u(x0)

is valid both for every x ∈ Bδ(x0)∩∂N+
i and for every x ∈ Bδ(x0)∩∂G

(in fact Bδ(x0) ∩ ∂N+
i = Bδ(x0) ∩ ∂G as sets). Hence each maximum

point x0 ∈ N+
i constitutes a relative maximum of g on ∂G. An analo-

gous reasoning applies for minima and relative minima on N−j and ∂G,
respectively.

Since g is assumed to possess only finite number of relative maxima
and minima on ∂G, the number of nodal domains must be finite. �

Our idea in the proof of the preceding lemma has certain similarity
to that of Lemma 1.1 in Alessandrini [2] where the number of interior
critical points was considered to solution of linear equations.
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The following proof resembles the argument presented in a recent
paper by the authors, we refer to [10] for more details.

Proof of Theorem 2.3. We assume for contradiction that

(A) u vanishes in a maximal open set D ⊂ G but is not identically
zero in G.

The maximal open set D is formed as follows: for every x ∈ G for which
there exists an open neighborhood such that u ≡ 0 on this neighbor-
hood we denote by B(x, rx), rx = sup

{
t > 0 : u|∂B(x,t) ≡ 0

}
, the max-

imal open neighborhood of x where u vanishes identically. Then the
maximal open set D is simply the union of all such neighborhoods. We
pick a connected component of D, still denoted by D.

It is worth noting that (A) implies that the boundary data function
g changes sign at least once on ∂G.

By Lemma 2.4, there exist positive M+, M− <∞ such that we may
index the nodal domains i = 1, . . . ,M+ and j = 1, . . . ,M−.

Each nodal domain is simply-connected which can be seen as follows.
Suppose that N+

i is not simply-connected for some i ∈ {1, . . . ,M+}.
Then there exists a Jordan curve γ ⊂ N+

i with its interior Sγ and Sγ
contains points which do not belong to the fixed nodal domain N+

i .
Moreover, Sγ ⊂ G since G is assumed to be simply-connected. It
follows that the set E = {x ∈ Sγ \ N+

i : u(x) ≤ 0 or u(x) > 0} is

non-empty. If Ẽ = {x ∈ Sγ : u(x) < 0 or u(x) > 0} was empty, then
u(x) = 0 for all x ∈ E, and u(x) > 0 for all x ∈ Sγ \ E. This is
impossible by Harnack’s inequality, Theorem 2.1. Hence N+

i is simply-
connected.

We consider next the case in which Ẽ = {x ∈ Sγ : u(x) < 0 or u(x) >
0} ⊂ E is non-empty. It suffices to consider only the points at which
u < 0 (the points at which u > 0 are handled in the same way); this
set is still denoted by Ẽ. The set Ẽ is open and each component of Ẽ
is a subset of some nodal domain N−j . This contradicts with the fact

that each nodal line meets ∂G. Hence N+
i is simply-connected.

An analogous, symmetric, reasoning applies to N−j . Hence ∂N+
i and

∂N−j are connected as the boundaries of simply-connected domains,
and thus continua, i.e. compact connected sets with at least two points,
for each i and j.

Suppose next there exists a point x ∈ ∂D ∩G and its neighborhood
Bδ(x), δ > 0, such that Bδ ⊂ G and Bδ(x)∩ext(D) contains only points
of either N+

i or N−j for some i and j, i.e. points at which either u > 0 or
u < 0. Assume, without loss of generality, that Bδ(x)∩ext(D) contains
points of N+

i only. Then u ≥ 0 on Bδ(x) and by Harnack’s inequality,
Theorem 2.1, u ≡ 0 on Bδ/2(x), which contradicts the maximality of
the set D, and hence also the antithesis (A). In this case our claim
follows.
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By the preceding reasoning it is sufficient to consider the following
situation. For any x ∈ ∂D ∩ G and for any δ < δ0, δ0 > 0, the
neighborhood Bδ(x) ⊂ G contains points of the nodal domains N+

i

and N−j for some indices i and for some indices j.
We point out that there exist a fixed index pair (s, t) ∈ {1, . . . ,M+}×
{1, . . . ,M−} and δ0 > 0 such that each Bδ(x) contains points ofN+

s and
N−t , but there might be also points of other nodal domains in Bδ(x),
for every δ < δ0; this is a consequence of the fact that the number of
nodal domains is finite in our case. We reason as follows: We consider
a point x ∈ ∂D ∩ G and Bδ(x), δ < δ0. We then select a decreasing
sequence {δi} such that δi < δ0 and limi→∞ δi = 0. For each δi we may
pick a pair of nodal domains, which we write

ai := (N+
s(δi)

, N−t(δi)),

such that Bδi(x) contains points of both nodal domains. Since the
number of all possible nodal domain pairs is finite, there exists a pair
which appears infinitely many times in the sequence {ai}. We may
hence choose this fixed pair (N+

s , N
−
t ), where s(δij) = s and t(δij) = t,

for some subsequence {δij} such that limj→∞ δij = 0. It can be seen
from this reasoning that the same pair occurs in any neighborhood
Bδ(x), δ < δ0.

We shall next base our reasoning on some topological arguments.
We write ∂DA = {x ∈ ∂D : x is accessible from D},

∂N+
i,A = {x ∈ ∂N+

i : x is accessible from N+
i },

and correspondingly ∂N−j,A. By [16] accessible boundary points ∂DA,

∂N+
i,A, and ∂N−j,A are dense in ∂D, ∂N+

i , and ∂N−j , respectively.
We will describe a selection process which gives a pair of points x1

and x2 such that x1, x2 ∈ ∂DA ∩ G and that the associated spherical
neighborhoods Bδ(x1) and Bδ(x2), δ < δ0, contain points of the same
nodal line ∂N+

s , s ∈ {1, . . . ,M+} fixed. Moreover, it is assumed that
Bδ(x1) ∩ Bδ(x2) = ∅, and that Bδ(x1), Bδ(x2) ⊂ G. This procedure is
as follows: We select a finite sequence of points {xl}, each xl ∈ ∂DA∩G.
As pointed out earlier, for each xl there exists δ0 > 0 such that the
spherical neighborhood Bδ(x), δ < δ0, contains points of N+

s and N−t
for some s ∈ {1, . . . ,M+} and t ∈ {1, . . . ,M−}. Since the number of
all possible nodal domain pairs as described above is finite, after finite
number of steps the sequence {xl} will contain a pair of points, denoted
x1 and x2, which have the aforementioned properties.

We then select x3 ∈ Bδ(x1) ∩ ∂N+
s,A and x4 ∈ Bδ(x2) ∩ ∂N+

s,A.
We connect x1 to x2 by a cross-cut γD in D, and x3 to x4 by a cross-

cut γN+
s

in N+
s . We remark that x3, and analogously x4, is accessible

in N+
s with a line segment (consult, e.g., Remark 3.3 in [10]). Also x1,

and analogously x2, is accessible in D with a line segment. We fix such
8



line segments to access the points x1, x2, x3, and x4. In this way the
line segments constitute part of the cross-cut γD and γN+

s
, respectively.

Since the boundary ∂N+
s is connected it is also ε-connected for every

ε > 0. Hence for each ε > 0 the points x1 and x3 can be joined by an
ε-chain {a1, . . . , ak} ⊂ ∂N+

s ∩G such that

x1 = a1, a2, . . . , ak−1, ak = x3.

We consider a collection of open balls {B 3
2
ε(ai)}ki=1, ai ∈ ∂N+

s ∩G, such

that B 3
2
ε(ai) ⊂ G, and a domain U1

ε which is defined to be

U1
ε =

k⋃
i=1

B 3
2
ε(ai).

Since U1
ε is a domain there exists a Jordan arc, γεx1x3 , connecting x1

to x3 in U1
ε . Correspondingly, the points x2 and x4 can be joined by

an ε-chain in ∂N+
s and we obtain a domain U2

ε and a Jordan arc γεx2x4
connecting x2 to x4 in U2

ε .
It is worth noting that we have selected γεx1x3 and γεx2x4 such that

either of them does not intersect γD or γN+
s

, save the points x1 and
x2, and x3 and x4, respectively. This is possible because of the line
segment construction described above.

From the preceding Jordan arcs we obtain a Jordan curve Γε, and
by slight abuse of notation we write it as a product

Γε = γεx1x3 · γN+
s
· γεx2x4 · γD.

The Jordan curve Γε divides the plane into two disjoint domains, and
Γε constitutes the boundary of both domains. We consider the bounded
domain, denoted by Tε, enclosed by Γε. See Figure 1.

We next deal with the Jordan domain Tε. There exists at least
one point y ∈ Tε such that u(y) < 0, i.e. y ∈ N−j0 for some fixed
j0 ∈ {1, . . . ,M−}. Assume that this is not the case: then u(x) ≥ 0 for
every x ∈ Tε. As γD is part of the boundary Tε contains also points
of D, and hence u vanishes at such points. By Harnack’s inequality,
Theorem 2.1, u ≡ 0 in Tε. This is, however, impossible since γN+

s
is part

of the boundary of Tε, thus u > 0 on a sufficiently small neighborhood
of a point in γN+

s
.

In an analogous way, it is possible to show that there exists a point
z ∈ N−j0 ∩ (G \ T ε). We stress that it is crucial that the selected points

z and y belong to the same nodal domain N−j0 . It is worth noting here
that by the strong maximum principle Γε cannot enclose the nodal
domain N−j0 containing the point y, and therefore G \ T ε must also

contain points of N−j0 . We then connect z and y in N−j0 by a Jordan arc
γzy. Observe that u(x) < 0 for every x ∈ γzy.
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The Jordan arc γzy as a connected set intersects Γε at least at one
point. We then distinguish the following four possible cases for the
point of intersection: The point of intersection is contained in

(1) γD,
(2) γN+

s
,

(3) γεx1x3 ,
(4) γεx2x4 .

In the case (1) and (2) we have reached a contradiction as u(x) = 0
for every x ∈ γD and u(x) > 0 for every x ∈ γN+

s
, respectively.

Consider the case (3) and case (4). We denote the point of inter-
section by xε for every ε > 0. We can select an appropriate subse-
quence {xεj}∞j=1, limj→∞ εj = 0, such that for each j either xεj ∈ U1

εj

or xεj ∈ U2
εj

. We assume, without loss of generality, that xεj ∈ U1
εj

.

The sequence {xεj} is clearly bounded, and hence there exists a subse-
quence, still denoted {xεj}, such that limj→∞ xεj = x0. Observe that
each

xεj ∈ B 3
2
εj

(am)

for some am ∈ ∂N+
s ∩ G in the εj-chain. We note that u(am) = 0.

Moreover, if there existed δ0 and a subsequence, still denoted {xεj},
such that

|u(xεj)| ≥ δ0 > 0

for every xεj , this would contradict with uniform continuity of u (note
that u is uniformly continuous on compact subsets of G). We hence
have that

u(x0) = lim
j→∞

u(xεj) = 0.

In conclusion, we have reached a contradiction since u(x0) = 0 but, on
the other hand, x0 ∈ γzy and hence u(x0) < 0.

All four cases (1)–(4) lead to a contradiction. Hence antithesis (A)
is false, thus the claim follows. �

Figure 1. Jordan domain Tε and Jordan curve γzy (dot-
ted line) connecting z to y in N−j0 .

10



To conclude, a non-trivial solution of (1.1) in G under (1.3) or (1.4)
and subject to the Dirichlet condition as described in Theorem 2.3
has only finitely many nodal domains and all nodal lines intersect ∂G.
These two facts ensure that such solution does not vanish in an open
subset of G.
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