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FEJÉR-RIESZ FACTORIZATIONS AND THE STRUCTURE

OF BIVARIATE POLYNOMIALS ORTHOGONAL ON THE

BI-CIRCLE

JEFFREY S. GERONIMO AND PLAMEN ILIEV

Abstract. We give a complete characterization of the positive trigono-
metric polynomials Q(θ, ϕ) on the bi-circle, which can be factored as
Q(θ, ϕ) = |p(eiθ, eiϕ)|2 where p(z, w) is a polynomial nonzero for |z| = 1
and |w| ≤ 1. The conditions are in terms of recurrence coefficients
associated with the polynomials in lexicographical and reverse lexico-
graphical ordering orthogonal with respect to the weight 1

4π2Q(θ,ϕ)
on

the bi-circle. We use this result to describe how specific factorizations of
weights on the bi-circle can be translated into identities relating the re-
currence coefficients for the corresponding polynomials and vice versa.
In particular, we characterize the Borel measures on the bi-circle for
which the coefficients multiplying the reverse polynomials associated
with the two operators: multiplication by z in lexicographical ordering
and multiplication by w in reverse lexicographical ordering vanish af-
ter a particular point. This can be considered as a spectral type result
analogous to the characterization of the Bernstein-Szegő measures on
the unit circle.

1. Introduction

The factorization of positive polynomials as a sum of squares of polyno-
mials or rational functions is an important problem in mathematics and led
Hilbert to pose his 17th problem which was solved by Artin. In the case
of trigonometric polynomials one of the simplest factorization results is the
lemma of Fejér-Riesz which states that every positive trigonometric polyno-
mial Qn(θ) of degree n can be written as Qn(θ) = |pn(eiθ)|2 where pn(z) is a
polynomial of degree n in z. This result has been useful for the trigonometric
moment problem, orthogonal polynomials, wavelets, and signal processing.

Extensions of this result to the multivariable case cannot be generic as a
simple degree of freedom calculation on the coefficients shows. Recently [11]
these results have been extended to two variable factorizations

Qn,m(θ, ϕ) = |pn,m(eiθ, eiϕ)|2 (1.1)

where n and m are the degrees of Qn,m in θ and ϕ, respectively, in the case
when pn,m(z, w) is a polynomial of degree n in z andm in w which is nonzero
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for |z| ≤ 1 and |w| ≤ 1. This augments results obtained earlier by Kummert
[18] (see also Ball [4]), Cole and Wermer [5], and Agler and McCarthy [1]
(see also Knese [16]). In particular, using the results of Knese [17] it is easy
to see that, except for certain special cases, the polynomials pn,m in (1.1)
cannot be associated with the distinguished varieties defined by Agler and
McCarthy [1]. Some extensions to more than two variables of the above
results have also recently been obtain by Grinshpan et al [14], Bakonyi
and Woerdeman [3], and Woerdeman [19]. In this paper we extend the
results in [11] in a different direction. We characterize completely positive
trigonometric polynomials Qn,m(θ, ϕ), which can be factored as in (1.1)
where pn,m(z, w) is a polynomial which is nonzero for |z| = 1 and |w| ≤
1. The conditions can be written in a relatively simple form if we use
the orthogonal polynomials in lexicographical and reverse lexicographical
ordering introduced in [12] with respect to the weight 1

4π2Qn,m(θ,ϕ)
on the

bi-circle. More precisely, in Theorem 2.4 we prove that (1.1) holds if and
only if certain matrices (which represent recurrence coefficients) Kn,m, K1

n,m,

Γ̃n,m, Γ̃
1
n,m satisfy the equations

Kn,m[Γ̃1
n,mΓ̃†

n,m]j(K1
n,m)T = 0, for j = 0, 1, . . . , n− 1. (1.2)

There are two important cases when equation (1.2) holds:

(i) The case when Kn,m = 0 characterizes the stable factorizations of
Qn,m discussed in [11] (i.e. equation (1.1) holds with a polynomial
pn,m(z, w) which is nonzero for |z| ≤ 1 and |w| ≤ 1).

(ii) The case when K1
n,m = 0 characterizes the anti-stable factorizations

of Qn,m. In this case (1.1) holds with a polynomial pn,m(z, w) such
that znpn,m(1/z,w) 6= 0 for |z| ≤ 1 and |w| ≤ 1).

We derive several corollaries of the above result which are of independent
interest. For instance, we characterize the Borel measures on the bi-circle

for which the recurrence coefficients Êk,l,
˜̂
Ek,l multiplying the reverse poly-

nomials associated with the two operators: multiplication by z in lexico-
graphical ordering and multiplication by w in reverse lexicographical vanish
after a particular point, see Theorem 2.10. This can be considered as a
spectral theory type result analogous to the characterization of Bernstein-
Szegő measures on the circle. We also show that in this case the space of
orthogonal polynomials can be decomposed as an appropriate direct sum
of two sets of orthogonal polynomials associated with the stable and the
anti-stable factorizations described above, see Theorem 2.7.

The paper is organized as follows. In Section 2 we introduce the notation
used throughout the paper including the recurrence formulas and state the
main theorems. In Section 3 some preliminary results are proved and certain
relations among the recurrence coefficients developed in [9] and their conse-
quences are discussed. In Section 4 we prove the first main theorem which
yields the factorizations (1.1) with pn,m(z, w) nonzero for |z| = 1 and |w| ≤ 1.
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In the forward direction, we use the Gohberg-Semencul formula, paramet-
ric and matrix-valued orthogonal polynomials to show that if (1.1) holds,

then the recurrence coefficients Êk,l for the polynomials in lexicographical

ordering associated with the weight 1
4π2Qn,m(θ,ϕ)

vanish after a particular

point. This leads to (1.2). The heart of the proof in the opposite direction
is based on a very subtle decomposition of the space of polynomials in the
reverse lexicographical ordering as the sum of two subspaces possessing a lot
of extra orthogonality properties. Using this decomposition, we construct an
appropriate rotation on the space of polynomials which gives the polynomial
pn,m(z, w) satisfying (1.1). All these constructions are missing in the stable
case: the space decomposition is trivial (one of the subspaces is empty) and
the rotation is simply the identity transformation. Thus, in our construc-
tion, the polynomial pn,m(z, w) is no longer the first column of the inverse of
the Toeplitz matrix associated with the trigonometric moments, but instead
is a linear combination of the columns in the first block column of this ma-
trix. One can use also the general theory of Helson and Lowdenslager [15]
and the constructions in Delsarte et al [7] to obtain factorizations of positive
functions Q(θ, ϕ) on the bi-circle. Note, however, that their approach works
in a rather general setting and will provide (in general) non-polynomial fac-
torizations of Qn,m, even when (1.1) holds with a polynomial pn,m(z, w). In
Section 5 we prove all remaining statements and corollaries. In Section 6
some examples are presented as illustrations of the main theorems.

2. Statement of results

2.1. Basic notations. We denote T = {z ∈ C : |z| = 1} the unit circle and

T
2 = {(z, w) : |z| = |w| = 1},

the bi-circle (torus) in C
2. Throughout the paper, we will use the parametriza-

tion z = eiθ and w = eiϕ, where θ, ϕ ∈ [−π, π].
We consider moment matrices associated with the lexicographical order-

ing which is defined by

(k, ℓ) <lex (k1, ℓ1)⇔ k < k1 or (k = k1 and ℓ < ℓ1),

and the reverse lexicographical ordering defined by

(k, ℓ) <revlex (k1, ℓ1)⇔ (ℓ, k) <lex (ℓ1, k1).

Both of these orderings are linear orders and in addition they satisfy

(k, ℓ) < (m,n)⇒ (k + p, ℓ+ q) < (m+ p, n+ q).

Let Πn,m denote the bivariate Laurent linear subspace span{zkwl, −n ≤
k ≤ n, −m ≤ l ≤ m} and let L be a linear functional defined on Πn,m such
that

L(z−kw−l) = ck,l = L(zkwl).
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We will call ck,l the (k, l) moment of L and L a moment functional. If
we form the (n + 1)(m + 1) × (n + 1)(m + 1) matrix Cn,m for L in the
lexicographical ordering then it has the special block Toeplitz form

Cn,m =











C0 C−1 · · · C−n

C1 C0 · · · C−n+1
...

. . .
...

Cn Cn−1 · · · C0











, (2.1)

where each Ck is an (m+ 1)× (m+ 1) Toeplitz matrix as follows

Ck =







ck,0 ck,−1 · · · ck,−m

...
. . .

...
ck,m · · · ck,0






, k = −n, . . . , n. (2.2)

Thus Cn,m has a doubly Toeplitz structure. If the reverse lexicographical
ordering is used in place of the lexicographical ordering we obtain another
moment matrix C̃n,m where the roles of n and m are interchanged. We say
that the moment functional L : Πn,m → C is positive if

L [p(z, w)p̄(1/z, 1/w)] > 0 (2.3)

for every nonzero polynomial p(z, w) ∈ Πn,m ∩ C[z, w]. Here and later we

set p̄(z, w) = p(z̄, w̄). It follows from a simple quadratic form argument
that L is positive if and only if its moment matrix Cn,m is positive definite.
We now perform the Gram-Schmidt procedure on the monomials using the
lexicographical ordering. The study of orthogonal polynomials on the bi-
circle with this ordering was begun by Delsarte et al. [6] and extended in [12].
Given a positive definite linear functional L : ΠN,M → C we perform the
Gram-Schmidt procedure using the lexicographical ordering on the spaces
span{zkwl : 0 ≤ k ≤ n, 0 ≤ l ≤ m} where n ≤ N , m ≤ N . Thus we define
the orthonormal polynomials φsn,m(z, w), 0 ≤ n ≤ N, 0 ≤ m ≤ M, 0 ≤ s ≤
m, by the equations

L(φsn,m(z, w)z−kw−l) = 0, 0 ≤ k < n and 0 ≤ l ≤ m or k = n and 0 ≤ l < s,

L(φsn,m(z, w)φ̄sn,m(1/z, 1/w)) = 1,
(2.4)

and

φsn,m(z, w) = kn,sn,m,sz
nws +

∑

(k,l)<lex(n,s)

kk,ln,m,sz
kwl. (2.5)

With the convention kn,sn,m,s > 0, the above equations uniquely specify φsn,m.
Polynomials orthonormal with respect to L but using the reverse lexico-
graphical ordering will be denoted by φ̃sn,m. They are uniquely determined
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by the above relations with the roles of n and m interchanged. Set

Φn,m(z, w) =









φmn,m
φm−1
n,m
...

φ0n,m









= Kn,m









znwm

znwm−1

...
1









, (2.6)

where the (m+ 1)× (n+ 1)(m+ 1) matrix Kn,m is given by

Kn,m =











kn,mn,m,m kn,m−1
n,m,m · · · · · · · · · k0,0n,m,m

0 kn,m−1
n,m,m−1 · · · · · · · · · k0,0n,m,m−1

...
. . .

. . .
. . .

. . .
. . .

0 · · · kn,0n,m,0 kn−1,m
n,m,0 · · · k0,0n,m,0











. (2.7)

As indicated above denote

Φ̃n,m(z, w) =











φ̃nn,m
φ̃n−1
n,m
...

φ̃0n,m











= K̃n,m









wmzn

wmzn−1

...
1









, (2.8)

where the (n+1)×(n+1)(m+1) matrix K̃n,m is given similarly to (2.7) with
the roles of n and m interchanged. For the bivariate polynomials φsn,m(z, w)

above we define the reverse polynomials
←−
φ s

n,m(z, w) by the relation

←−
φ s

n,m(z, w) = znwmφ̄sn,m(1/z, 1/w). (2.9)

With this definition
←−
φ s

n,m(z, w) is again a polynomial in z and w, and fur-
thermore

←−
Φn,m(z, w) :=













←−
φ m

n,m←−
φ m−1

n,m
...←−

φ 0
n,m













T

. (2.10)

An analogous procedure is used to define
←−̃
φ s

n,m. We use Mm,n to denote
the space of all m× n matrices. In [12] it was shown:
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Theorem 2.1. Given {Φn,m} and {Φ̃n,m}, 0 ≤ n ≤ N , 0 ≤ m ≤ M , the
following recurrence formulas hold:

An,mΦn,m = zΦn−1,m − Ên,m
←−
Φ T

n−1,m, (2.11a)

Φn,m +A†
n,mÊn,m(AT

n,m)−1←−Φ T
n,m = A†

n,mzΦn−1,m, (2.11b)

Γn,mΦn,m = Φn,m−1 −Kn,mΦ̃n−1,m, (2.11c)

Γ1
n,mΦn,m = wΦn,m−1 −K1

n,m

←−̃
Φ T

n−1,m, (2.11d)

Φn,m = In,mΦ̃n,m + Γ†
n,mΦn,m−1, (2.11e)

←−
Φ T

n,m = I1n,mΦ̃n,m + (Γ1
n,m)T

←−
Φ T

n,m−1, (2.11f)

where

Ên,m = 〈zΦn−1,m,
←−
Φ T

n−1,m〉 = ÊT
n,m ∈Mm+1,m+1, (2.12a)

An,m = 〈zΦn−1,m,Φn,m〉 ∈Mm+1,m+1, (2.12b)

Kn,m = 〈Φn,m−1, Φ̃n−1,m〉 ∈Mm,n, (2.12c)

Γn,m = 〈Φn,m−1,Φn,m〉 ∈Mm,m+1, (2.12d)

K1
n,m = 〈wΦn,m−1,

←−̃
Φ T

n−1,m〉 ∈Mm,n, (2.12e)

Γ1
n,m = 〈wΦn,m−1,Φn,m〉 ∈Mm,m+1, (2.12f)

In,m = 〈Φn,m, Φ̃n,m〉 ∈Mm+1,n+1, (2.12g)

I1n,m = 〈←−Φ T
n,m, Φ̃n,m〉 ∈Mm+1,n+1. (2.12h)

Remark 2.2. From now on we adapt the following convention. For every
statement (resp. formula) we will refer to the analogous statement (resp.
formula) with the roles of z and w exchanged as the tilde analog. For

instance, the tilde analog of formula (2.11a) is Ãn,mΦ̃n,m = wΦ̃n,m−1 −
˜̂
En,m

←−̃
Φ T

n,m−1.

Finally, we note that

K̃n,m = K†
n,m and K̃1

n,m = (K1
n,m)T .

2.2. Main results. We say that a polynomial p(z, w) ∈ C [z, w] is of de-
gree (n,m) where n and m are the minimal nonnegative integers such that
p(z, w) ∈ Πn,m. We say that the polynomial p(z, w) is stable if it does not
vanish for |z| ≤ 1 and |w| ≤ 1. Similarly, for a trigonometric polynomial
Q(θ, ϕ) = p(eiθ, eiϕ), we define the degree as the ordered pair (n,m), where
n and m are the minimal nonnegative integers such that p(z, w) ∈ Πn,m.

We can now state our main results.

Theorem 2.3. For a positive moment functional L defined on the space
Πn,m the following conditions are equivalent:
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(i) There exists a polynomial p(z, w) of degree at most (n,m), nonzero
for |z| = 1 and |w| ≤ 1, such that

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|p(eiθ, eiϕ)|2 dθ dϕ. (2.13)

(ii) The coefficients Kn,m, K1
n,m, Γ̃n,m, Γ̃1

n,m satisfy

Kn,m[Γ̃1
n,mΓ̃†

n,m]
j(K1

n,m)T = 0, for j = 0, 1, . . . , n− 1. (2.14)

Moreover, if the conditions above hold, we have

|p(z, w)|2 =Φn,m(z, w)
TΦn,m(z, w) − Φn,m−1(z, w)

TΦn,m−1(z, w)

=Φ̃n,m(z, w)
T Φ̃n,m(z, w) − Φ̃n−1,m(z, w)T Φ̃n−1,m(z, w),

for (z, w) ∈ T
2.

(2.15)

The polynomial p(z, w) in Theorem 2.3 can be computed from equation

(4.11) in Section 4, which depends on the matrices Ũ and Ṽ constructed

from Kn,m, K1
n,m, Γ̃n,m and Γ̃1

n,m in Lemma 4.6 and Lemma 4.8, see Remark
4.5 for more details.

As an immediate corollary of the above theorem and the maximum en-
tropy principle [2] we obtain the first Fejér-Riesz factorization.

Theorem 2.4 (Fejér-Riesz I). Suppose that Q(θ, ϕ) is a strictly positive
trigonometric polynomial of degree (n,m). Then Q(θ, ϕ) = |p(eiθ, eiϕ)|2
where p(z, w) is a polynomial of degree (n,m) such that p(z, w) 6= 0 for

|z| = 1, |w| ≤ 1 if and only if the coefficients Kn,m, K1
n,m, Γ̃n,m, Γ̃1

n,m

associated with the measure dθ dϕ
4π2Q(θ,ϕ) on [−π, π]2 satisfy equation (2.14).

Analogous results hold with the roles of z and w and n andm interchanged
if the coefficients in the reverse lexicographical ordering satisfy the tilde
analogs of equation (2.14) (see equation (2.17b) below). In the case when
both sets of conditions hold we find:

Theorem 2.5. For a positive moment functional L defined on the space
Πn,m the following conditions are equivalent:

(i) There exist stable polynomials p(z, w) and q(z, w) of degrees (n1,m1)
and (n2,m2) with n1 + n2 ≤ n, m1 +m2 ≤ m such that

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|p(eiθ, eiϕ)q(e−iθ, eiϕ)|2 dθ dϕ. (2.16)

(ii) The coefficients Kn,m, K1
n,m, Γn,m, Γ1

n,m, Γ̃n,m, Γ̃1
n,m satisfy

Kn,m[Γ̃1
n,mΓ̃†

n,m]j(K1
n,m)T = 0, for j = 0, 1, . . . , n− 1, (2.17a)

K†
n,m[Γ1

n,mΓ†
n,m]lK1

n,m = 0, for l = 0, 1, . . . ,m− 1. (2.17b)
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As in Theorem 2.3, given the coefficients in the recurrence formulas, the
polynomial p(z, w)zn2q(1/z,w) can be computed by (4.11) (see also Remark
4.5). In view of equation (2.16), we say in the rest of the paper that a func-
tional satisfying the equivalent conditions in the above theorem belongs to
the splitting case. Theorem 2.5 can also be recast as a Fejér-Riesz factoriza-
tion.

Theorem 2.6 (Fejér-Riesz II). Suppose that Q(θ, ϕ) is a strictly positive
trigonometric polynomial of degree (n,m). Then Q(θ, ϕ) = |p(eiθ, eiϕ)q(e−iθ, eiϕ)|2
where p(z, w) and q(z, w) are stable polynomials of degrees (n1,m1) and
(n2,m2) respectively, with n1 + n2 = n, m1 +m2 = m if and only if the co-

efficients Kn,m, K1
n,m, Γn,m, Γ1

n,m, Γ̃n,m, Γ̃
1
n,m associated with the measure

dθ dϕ
4π2 Q(θ,ϕ)

on [−π, π]2 satisfy equations (2.17).

In this case when the equivalent conditions in Theorem 2.5 hold we have
the following structural theorem.

Theorem 2.7. Suppose that (2.16) holds, where p(z, w) and q(z, w) are sta-
ble polynomials of degrees (n1,m1) and (n2,m2), respectively. Let Φp

k,l(z, w)

and Φq
k,l(z, w) be the the (vector) polynomials orthogonal with respect to the

measures dθ dϕ

4π2|p(eiθ,eiϕ)|2 and dθ dϕ

4π2|q(eiθ,eiϕ)|2 , respectively. Then

Φp
n1,m1

(z, w) =

[ ←−p (z, w)
Φp
n1,m1−1(z, w)

]

, Φq
n2,m2

(z, w) =

[ ←−q (z, w)
Φq
n2,m2−1(z, w)

]

.

(2.18)
Moreover, if we set n = n1 +n2 and m = m1 +m2, then there exist unitary
matrices U ∈Mm,m, V ∈Mm+1,m+1 such that

U †Φn,m−1(z, w) =

[

zn2q(1/z,w)Φp
n1,m1−1(z, w)

←−p (z, w)wm2−1Φq
n2,m2−1(z, 1/w)

]

, (2.19a)

and

V †Φn,m(z, w) =









←−p (z, w)zn2q(1/z,w)

zn2q(1/z,w)Φp
n1 ,m1−1(z, w)

←−p (z, w)wm2Φq
n2,m2−1(z, 1/w)









. (2.19b)

Roughly speaking, the above theorem allows to decompose the space of
orthogonal polynomials associated with the functional in (2.16) as a sum of
the two extreme cases:

• the stable case when q(z, w) = 1;
• the anti-stable case when p(z, w) = 1.

As a corollary of the the proof we obtain also the following characterizations
of these situations.

Corollary 2.8. For a positive moment functional L defined on the space
Πn,m the following statements hold.
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(i) There exists a stable polynomial p(z, w) of degree at most (n,m) such
that

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|p(eiθ, eiϕ)|2 dθ dϕ (2.20)

if and only if Kn,m = 0. Moreover, we can take p(z, w) =
←−
φm

n,m(z, w).
(ii) There exists a stable polynomial q(z, w) of degree at most (n,m) such

that

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|q(e−iθ, eiϕ)|2 dθ dϕ (2.21)

if and only if K1
n,m = 0.

As a consequence of the above corollary, we obtain a simple character-
ization of the functionals which are tensor products of functionals on the
circle.

Corollary 2.9. Let L be a positive moment functional on the space Πn,m.
Then, there exist a positive functional Lz defined on span{zk : |k| ≤ n} and
a positive functional Lw defined on span{wl : |l| ≤ m} such that L(zkwl) =

Lz(zk)Lw(wl) if and only if Kn,m = K1
n,m = 0. In this case,

←−
φm

n,m(z, w) =
α(z)β(w), where α(z) and β(w) are stable polynomials of degrees at most n
and m, respectively and

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|α(eiθ)β(eiϕ)|2 dθ dϕ. (2.22)

Finally, the above results can be used to completely characterize the mea-

sures on T
2 for which the corresponding coefficients Êk,l and

˜̂
Ek,l vanish after

a particular point.

Theorem 2.10. Let µ be a positive Borel measure supported on the bi-circle.
Then µ is absolutely continuous with respect to Lebesgue measure with

dµ =
dθ dϕ

4π2|p(eiθ, eiϕ)q(e−iθ, eiϕ)|2 , (2.23)

where p(z, w) and q(z, w) are stable polynomials of degrees (n1,m1) and
(n2,m2), respectively, with n1 + n2 ≤ n, m1 +m2 ≤ m if and only if

Êk,l = 0 and
˜̂
Ek,l = 0 for all k ≥ n+ 1, l ≥ m+ 1. (2.24)

Moreover, in this case we have

Êk,l = 0, for k ≥ n+ 1, l ≥ m− 1 and
˜̂
Ek,l = 0, for k ≥ n− 1, l ≥ m+ 1.

(2.25)
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3. Preliminary results

3.1. Connection between bivariate and matrix orthogonal polyno-
mials. The vector polynomial Φn,m(z, w) defined in (2.6) can be written as

Φn,m(z, w) = Φm
n (z)











wm

wm−1

...
1











, (3.1a)

where Φm
n (z) is a unique (m + 1) × (m + 1) matrix polynomial of degree

n in z. Similarly, the vector polynomial Φ̃n,m(z, w) defined in (2.8) can be
written as

Φ̃n,m(z, w) = Φ̃n
m(w)











zn

zn−1

...
1











, (3.1b)

where Φ̃n
m(w) is a unique (n + 1) × (n + 1) matrix polynomial of degree m

in w. The recurrence relation (2.11a) and its tilde-analog are equivalent to
the recurrence relations for the matrix-valued polynomials {Φm

n (z)}n≥0 and

{Φ̃n
m(w)}m≥0.
We will also need the following Christoffel-Darboux formula, which is a

tilde analog of formula (4.1a)-(4.1c) in [12]

←−̃
Φ n,m(z, w)

←−̃
Φ n,m(z1, w1)

† −
←−̃
Φn−1,m(z, w)

←−̃
Φ n−1,m(z1, w1)

†

− ww̄1

[

Φ̃n,m(z, w)T Φ̃n,m(z1, w1)− Φ̃n−1,m(z, w)
T Φ̃n−1,m(z1, w1)

]

= (1− ww̄1)Φn,m(z, w)TΦn,m(z1, w1),

(3.2)

and its corollary (see equation (4.2) in [12])

Φn,m(z, w)T Φn,m(z1, w1)− Φn,m−1(z, w)
T Φn,m−1(z1, w1)

= Φ̃n,m(z, w)
T Φ̃n,m(z1, w1)− Φ̃n−1,m(z, w)T Φ̃n−1,m(z1, w1).

(3.3)

3.2. Relations among the coefficients. We list below different relations
among the coefficients defined in (2.12) needed in the paper.

The tilde analog of formula (3.52) on page 811 in [12] can be written as
follows

Γ̃1
k+1,lΓ̃

†
k+1,l =Γ̃†

k,lΓ̃
1
k,l + Ĩk,lÊk+1,l(Ĩ

1
k,l)

T

+ K̃1
k+1,l(Āk+1,l−1)

−1Ê†
k+1,l−1Ak+1,l−1K̃†

k+1,l.
(3.4)
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We also need formulas (3.1), (3.4) and (3.6) from [9]:

Êk+1,l−1 = Γk,lÊk+1,l(Γ
1
k,l)

T +Kk,l(K1
k,l)

T , (3.5a)

Γk,lÊk+1,lI
1
k,l = Ak+1,l−1Kk+1,l −Kk,lΓ̃

1
k,l, (3.5b)

I†k,lÊk+1,l(Γ
1
k,l)

T = (K1
k+1,l)

TAT
k+1,l−1 − Γ̃†

k,l(K1
k,l)

T . (3.5c)

Recall that if Êk,l = 0 then Ak,l = Il+1 is the identity (l+1)×(l+1) matrix.
Using this fact and the above formulas, we see that the following lemma
holds.

Lemma 3.1. If

Êk+1,l = 0 and Êk+1,l−1 = 0, (3.6)

then

Kk,l(K1
k,l)

T = 0, (3.7a)

Γ̃1
k+1,lΓ̃

†
k+1,l = Γ̃†

k,lΓ̃
1
k,l, (3.7b)

Kk+1,l = Kk,lΓ̃
1
k,l, (3.7c)

(K1
k+1,l)

T = Γ̃†
k,l(K1

k,l)
T . (3.7d)

3.3. Stability criterion. Throughout the paper we will use several times
the following fact: a polynomial p(z, w) is stable (i.e. non-vanishing for
|z| ≤ 1 and |w| ≤ 1) if and only if

• p(z, w) 6= 0 for |z| = 1 and |w| ≤ 1, and
• p(z, w) 6= 0 for |z| ≤ 1 and |w| = 1.

The above criterion is a simple corollary from the well-known stability cri-
teria for bivariate polynomials, see for instance [8].

4. One sided stable polynomials

In this section we prove Theorem 2.3.

4.1. Proof of the implication (i)⇒(ii) in Theorem 2.3. Assume first
that the conditions in Theorem 2.3(i) hold, i.e. the moment functional L is
defined on Πn,m by

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|p(eiθ, eiϕ)|2 dθ dϕ,

where p(z, w) is of degree (n,m) nonzero for |z| = 1 and |w| ≤ 1. (4.1)

We can use (4.1) to extend the functional L on the space of all Laurent poly-
nomials C[z, z−1, w,w−1]. Thus we can define vector polynomials Φk,l(z, w)
for all k, l ∈ N0.
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For every fixed z = eiθ ∈ T, we denote by Lθ the corresponding positive
moment functional on the space C[w,w−1] given by

Lθ(wl) =
1

2π

π
∫

−π

eilϕ

|p(eiθ, eiϕ)|2 dϕ. (4.2)

Similarly, for a polynomial φ(z, w) of degree (k, l) we can fix z = eiθ on the
unit circle and consider the corresponding polynomial φ(eiθ, w) of degree l

in w which depends on the parameter θ. We will denote by
←−
φθ(eiθ, w) the

reverse polynomial of φ(eiθ, w), i.e. we set

←−
φθ(eiθ, w) = wlφ̄(e−iθ, 1/w).

Lemma 4.1. Suppose that (4.1) holds. Then with respect to Lθ we have

p(eiθ, w) ⊥ {wl : l > 0}, (4.3a)
←−
pθ(eiθ, w) ⊥ {wl : l < m}, (4.3b)

and
∥

∥p(eiθ, w)
∥

∥ =
∥

∥

∥

←−
pθ(eiθ, w)

∥

∥

∥ = 1.

Proof. We have

Lθ
(

wl p(eiθ, w)
)

=
1

2π

π
∫

−π

eilϕp(eiθ, eiϕ)

|p(eiθ, eiϕ)|2 dϕ = − i

2π

∮

T

wl−1

p(eiθ, w)
dw = 0,

for l > 0 by Cauchy’s residue theorem, establishing (4.3a). The second
orthogonality follows by a similar computation. The assertion about the

norms of p(eiθ, w) and
←−
pθ(eiθ, w) is straightforward. �

We would like to construct now polynomials {φθl (w)}l≥0 orthonormal with

respect to Lθ. From Lemma 4.1 it follows that we can take

φθl (w) = wl−m
←−
pθ(eiθ, w), for l ≥ m. (4.4)

Let us denote by Cθ
l the (l+ 1)× (l+ 1) Toeplitz matrix associated with

Lθ, i.e. if we put cθj = Lθ(w−j) then

Cθ
l =











cθ0 cθ−1 · · · cθ−l

cθ1 cθ0 · · · cθ−l+1
...

. . .
...

cθl cθl−1 · · · cθ0











.
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Recall that we can use the coefficients of the orthonormal polynomial φθl (w)

to compute the inverse of Cθ
l−1 via the Gohberg-Semencul formula [13, The-

orem 6.2, page 88]. Explicitly, if we set

←−
φθl (w) =

l
∑

j=0

rljw
j , (4.5)

then

(Cθ
l−1)

−1 =













rl0 ©
rl1

. . .
...

rll−1 · · · rl0























rl0 rl1 . . . rll−1
. . .

© rl0











−













rll ©
rll−1

. . .
...

rl1 · · · rll























rll rll−1 . . . rl1
. . .

© rll











. (4.6)

Lemma 4.2. Suppose that (4.1) holds for all (k, l) ∈ Z
2. Then

Êk,l = 0 for k ≥ n+ 1 and l ≥ m− 1. (4.7)

Proof. Note that for fixed l ≥ m − 1, the matrix polynomials {Φl
k(z)}k≥0

defined in Subsection 3.1 are orthonormal on [−π, π] with respect to the
matrix weight 1

2πC
θ
l , i.e.

1

2π

∫ π

−π

Φl
k(e

iθ)Cθ
l [Φ

l
j(e

iθ)]†dθ = δkjIl+1.

From the theory of matrix-valued orthogonal polynomials it will follow that
Êk,l = 0 for k ≥ n+1 if we can show that (Cθ

l )
−1 is a (matrix) trigonometric

polynomial in θ of degree at most n. This follows immediately from (4.4),
(4.5) and (4.6). �

Lemma 4.3. Suppose that equation (4.7) holds. Then

Kk,l

[

Γ̃1
k,lΓ̃

†
k,l

]j

(K1
k,l)

T = 0, for all j ≥ 0, k ≥ n, l ≥ m. (4.8)

Proof. From Lemma 3.1 we see that equations (3.7) hold as long as k ≥ n
and l ≥ m. First, we would like to show by induction on j ∈ N0 that

Kk+j,l(K1
k+j,l)

T = Kk,l

[

Γ̃1
k,lΓ̃

†
k,l

]j

(K1
k,l)

T , for k ≥ n, l ≥ m. (4.9)

If j = 0, the above statement is obvious. Suppose now that (4.9) holds for
some j ≥ 0. From (3.7b) it follows that

[

Γ̃1
k,lΓ̃

†
k,l

]j+1
= Γ̃1

k,l

[

Γ̃1
k+1,lΓ̃

†
k+1,l

]j

Γ̃†
k,l.
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Using the above formula we find

Kk,l

[

Γ̃1
k,lΓ̃

†
k,l

]j+1
(K1

k,l)
T = Kk,lΓ̃

1
k,l

[

Γ̃1
k+1,lΓ̃

†
k+1,l

]j

Γ̃†
k,l(K1

k,l)
T

= Kk+1,l

[

Γ̃1
k+1,lΓ̃

†
k+1,l

]j

(K1
k+1,l)

T (by equations (3.7c) and (3.7d))

= Kk+1+j,l(K1
k+1+j,l)

T (by the induction hypothesis),

establishing (4.9) for j + 1 and completing the induction. From (3.7a) we
see that the left-hand side of (4.9) is equal to 0 leading to (4.8). �

Proof of the implication (i)⇒(ii) in Theorem 2.3. The proof follows imme-
diately from Lemma 4.2 and Lemma 4.3. �

4.2. Proof of the implication (ii)⇒(i) in Theorem 2.3. The key in-
gredient of the proof in the opposite direction, which also explains the con-
struction of the polynomial p(z, w), is the following lemma.

Lemma 4.4. Let L be a positive moment functional defined on Πn,m. Sup-
pose that there exist unitary matrices Ũ ∈ Mn,n and Ṽ ∈ Mn+1,n+1 such
that

Ũ †Φ̃n−1,m(z, w) =

[

Ψ̃
(1)
n−1,m(z, w)

Ψ̃
(2)
n−1,m(z, w)

]

, (4.10a)

and

Ṽ †Φ̃n,m(z, w) =







ψ̃n
n,m(z, w)

zΨ̃
(1)
n−1,m(z, w)

Ψ̃
(2)
n−1,m(z, w)






, (4.10b)

where Ψ̃
(j)
n−1,m(z, w) is an nj-dimensional vector whose components are poly-

nomials of degrees at most (n− 1,m) with n1 + n2 = n, and ψ̃n
n,m(z, w) is a

polynomial of degree at most (n,m). Then

p(z, w) =
←−̃
ψ n

n,m(z, w) = znwmψ̃n
n,m(1/z̄, 1/w̄) (4.11)

is a polynomial of degree at most (n,m), nonzero for |z| = 1, |w| ≤ 1 and
equations (2.13) and (2.15) hold.

Proof. From equations (4.10) and (4.11) it follows that
←−̃
Φ n,m(z, w)

←−̃
Φ n,m(z1, w1)

† −
←−̃
Φn−1,m(z, w)

←−̃
Φ n−1,m(z1, w1)

†

= p(z, w)p(z1, w1) for zz̄1 = 1, (4.12a)

and

Φ̃n,m(z, w)
T Φ̃n,m(z1, w1)− Φ̃n−1,m(z, w)T Φ̃n−1,m(z1, w1)

=←−p (z, w)←−p (z1, w1) for zz̄1 = 1, (4.12b)
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where ←−p (z, w) = znwmp(1/z̄, 1/w̄). Plugging equations (4.12) in (3.2) we
obtain

p(z, w)p(1/z̄, w1)−ww̄1
←−p (z, w)←−p (1/z̄, w1)

= (1− ww̄1)Φn,m(z, w)TΦn,m(1/z̄, w1). (4.13)

Using the last equation we can prove that p(z, w) is nonzero for |z| = 1
and |w| ≤ 1. Recall first that the vector polynomials Φn,m(z, w) can be
connected to the matrix polynomials Φm

n (z) via (3.1a). Moreover the matrix-
valued orthogonal polynomials {Φk,m(z)}nk=0 constructed in Subsection 3.1
are orthonormal with respect to the matrix inner product

〈A,B〉 = L(AMm(w)B†), (4.14a)

where Mm(w) is the (m+ 1)× (m+ 1) Toeplitz matrix

Mm(w) =











wm

wm−1

...
1











[

w−m w−m+1 . . . 1
]

=











1 w . . . wm

w−1 1 . . . wm−1

...
. . .

...
w−m w−m+1 . . . 1











. (4.14b)

In particular, from the theory of matrix-valued orthogonal polynomials we
know that det[Φm

n (z)] 6= 0 for |z| ≥ 1. This implies that

Φn,m(z, w) is a nonzero vector for |z| = 1 and w ∈ C. (4.15)

Suppose first that p(z0, w0) = 0 for some |z0| = 1 and |w0| < 1. Then using
(4.13) with z = z0 and w = w1 = w0 we obtain

−|w0|2|←−p (z0, w0)|2 = (1− |w0|2)Φn,m(z0, w0)
TΦn,m(z0, w0).

Since the left-hand side of the above equation is ≤ 0 and the right-hand side
is ≥ 0, we see that Φn,m(z0, w0) must be the zero vector, which contradicts
(4.15).

Suppose now that p(z0, w0) = 0 for some |z0| = 1 and |w0| = 1. Then
←−p (z0, w0) = 0 and therefore equation (4.13) with z = z0, w = w0 and
w1 6= w0 gives

Φn,m(z0, w0)
TΦn,m(z0, w1) = 0 for all w1 6= w0,

which implies that Φn,m(z0, w0) is the zero vector leading to a contradiction,
thus proving the required stability for p(z, w).

Note that equation (2.15) follows easily from (4.12a) and (3.3). Thus,
it remains to prove that equation (2.13) holds. Let us denote by pl(z) the
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coefficient of wl in p(z, w), i.e. we set

p(z, w) =

m
∑

l=0

pl(z)w
l. (4.16)

Then a straightforward computation shows that for |z| = 1 we have

p(z, w)p(z, w1)− ww̄1
←−p (z, w)←−p (z, w1)

1− ww̄1

=
[

1 w · · · wm
]

























p0(z) ©
p1(z)

. . .
...

pm(z) · · · p0(z)





















p0(z) p1(z) . . . pm(z)
. . .

© p0(z)











−













0 ©
pm(z)

. . .
...

p1(z) · · · pm(z) 0























0 pm(z) . . . p1(z)
. . .

...
pm(z)

© 0



































1
w̄1
...
w̄m
1











.

(4.17)

From (3.1a) we see that

Φn,m(z, w)
TΦn,m(z, w1) =

[

1 w · · · wm
]

JmΦm
n (z)TΦm

n (z)Jm











1
w̄1
...
w̄m
1











,

(4.18)
where Jm = [δi,m−j ]0≤i,j≤m. From equations (4.13), (4.17) and (4.18) it
follows that for |z| = 1 we have











p0(z) ©
p1(z)

. . .
...

pm(z) · · · p0(z)





















p0(z) p1(z) . . . pm(z)
. . .

© p0(z)











−













0 ©
pm(z)

. . .
...

p1(z) · · · pm(z) 0























0 pm(z) . . . p1(z)
. . .

...
pm(z)

© 0











= JmΦm
n (z)TΦm

n (z)Jm.

(4.19)

Since p(z, w) is nonzero for |z| = 1 and |w| ≤ 1 we see that for fixed z = eiθ

on the unit circle, φθm(w) = wmp(eiθ, 1/w̄) is an orthonormal polynomial
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of degree m with respect to the (parametric) moment functional Lθ, with
moments

cθl = Lθ(w−l) =
1

2π

π
∫

−π

e−ilϕ

|p(eiθ, eiϕ)|2 dϕ, for |l| ≤ m. (4.20)

From Gohberg-Semencul formula (see [13, Theorem 6.1, page 86]) it follows
that the left-hand side of equation (4.19) is the inverse of the Toeplitz matrix

Cθ
m =











cθ0 cθ−1 · · · cθ−m

cθ1 cθ0 · · · cθ−m+1
...

. . .
...

cθm cθm−1 · · · cθ0











.

Since J2
m = Im+1 and JmC

θ
mJm = (Cθ

m)T , equation (4.19) gives

Cθ
m = [Φm

n (z)† Φm
n (z)]−1, where z = eiθ. (4.21)

From the theory of matrix-valued orthogonal polynomials we know that the
matrix weight on the right-hand side of (4.21) generates the same matrix-
valued orthonormal polynomials {Φm

k (z)}0≤k≤n and therefore

L(zkMm(w)) =
1

2π

π
∫

−π

eikθCθ
mdθ for − n ≤ k ≤ n.

From the first row of the last matrix equation we find that for −n ≤ k ≤ n
we have

L(zkwl) =
1

2π

π
∫

−π

eikθcθ−ldθ. (4.22)

The proof of (2.13) follows at once from equations (4.20) and (4.22). �

Remark 4.5. To complete the proof of Theorem 2.3 we need to show that
equation (2.14) implies the existence of unitary matrices Ũ and Ṽ such that
equations (4.10) hold. For moment functionals satisfying (2.16) the existence
of such matrices follows easily from the tilde analog of formulas (2.19). In

general (for one-sided stability) the construction of Ũ and Ṽ is the content
of the next two lemmas.

Note also that if we know Ṽ we can compute explicitly p(z, w) in equation
(2.13) from (4.10b) and (4.11). In Theorem 2.3 we gave the simplest formula
for |p(z, w)|2, which involves only the orthogonal polynomials. However, one
can easily extract from the proof of Lemma 4.4 other formulas which can be
used in practice to compute p(z, w). For instance, we can use (4.12a) (which
is stronger than (2.15)), or setting w1 = 0 in (4.13) we obtain

p(z, w)p̄(1/z, 0) = Φn,m(z, w)
TΦn,m(1/z, 0),

which gives p(z, w) up to a factor depending only on z.
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Lemma 4.6. Let K and K1 be m× n matrices, and let r = rank(K), r1 =
rank(K1). Then the following conditions are equivalent:

(i) K(K1)T = 0;
(ii) We have

K = USŨ †, K1 = U1S1ŨT , (4.23)

where U,U1 ∈ Mm,m, Ũ ∈ Mn,n are unitary and S, S1 are m × n
“diagonal” matrices with block structures of the form

S =











s1
. . . 0

sr
0 0











, (4.24a)

and

S1 =











0 0
s11

0
. . .

s1
r1











, (4.24b)

with positive s1, . . . sr, s
1
1, . . . , s

1
r1

and r + r1 ≤ n.

Remark. Note the the condition r + r1 ≤ n implies S(S1)T = 0.

Proof. We focus on the implication (i) ⇒ (ii), since the other direction is

obvious. Consider A = K†K and B = (K1)T K1. Note that A and B are
hermitian n × n matrices such that AB = BA = 0. Hence, there exists an
orthonormal basis (ũ1, ũ2, . . . , ũn) for C

n which diagonalizes A and B, i.e.

K†Kũj = λj ũj, (K1)TK1ũj = µj ũj and ũ†i ũj = δij . (4.25)

Let Ũ be the unitary matrix with columns ũ1, . . . , ũn. From (4.25) we see
that

λj = ‖Kũj‖2 ≥ 0 and µj = ‖K1ũj‖2 ≥ 0.

Moreover, the fact K(K1)T = 0 implies that λjµj = 0 for all j. Suppose now
that

• λ1, λ2, . . . λr are positive and λr+1 = · · · = λn = 0;
• µn−r1+1, . . . , µn are positive and µ1 = µ2 = · · · = µn−r1 = 0.

Set

si =
√

λi for i = 1, 2, . . . , r

s1j =
√
µn−r1+j for j = 1, 2, . . . , r1.

Consider the sets of vectors

T =

{

ui =
Kũi
si

: i = 1, 2, . . . , r

}

(4.26a)
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and

T1 =

{

uj =
K1 ¯̃uj+n−m

s1
j−m+r1

: j = m− r1 + 1, . . . ,m

}

. (4.26b)

Using (4.25) it is easy to see that T and T1 are orthonormal sets of vectors.
Extending the set T to an orthonormal basis for C

m and constructing a
matrix with columns these vectors we obtain a unitary m × m matrix U ;
extending the set T1 to an orthonormal basis for C

m and constructing a
matrix with columns these vectors we obtain a unitary m ×m matrix U1.
With these matrices one can check that (4.23) holds. �

Remark 4.7. If know that K(K1)T = 0 and K†K1 = 0 (which are satisfied
by the matrices K = Kn,m and K1 = K1

n,m in Theorem 2.5) then we can

choose U = U1 in equation (4.23). Indeed, using the notations in the proof
of Lemma 4.6 we see that vectors in T are perpendicular to the vectors in
T1. Extending the orthonormal set T ∪ T1 to an orthonormal basis for Cm

we can construct a unitary matrix U = U1 with columns these vectors.

Lemma 4.8. Let G be an n× n matrix. Suppose that

(Gk)i,j = 0 for all i = 1, 2, . . . , r, j = n− r1 + 1, n − r1 + 2, . . . , n,

and k = 1, 2, . . . , n− 1,
(4.27)

where r + r1 < n. Then, there exists a unitary n × n block matrix Ẽ of the
form

Ẽ =





Ir 0 0
0 ∗ 0
0 0 Ir1



 , (4.28)

such that the matrix Ẽ†GẼ has the following block structure

Ẽ†GẼ =

[

∗ 0
∗ ∗

]

, (4.29)

where the zero block in equation (4.29) above is an n1 × n2 matrix with
n1 ≥ r, n2 ≥ r1 and n1 + n2 = n.

Proof. Let {e1, e2, . . . , en} be the standard basis for Cn, and let

W0 = span{en−r1+1, en−r1+2, . . . , en}.
Consider the space

W =W0 +GW0 + · · ·+Gn−1W0. (4.30)

By Cayley-Hamilton theorem, W is the minimal subspace of Cn which is
G-invariant and contains W0. From equation (4.27) it follows that

span{e1, e2, . . . , er} ⊂W⊥. (4.31)

Let



20 J. GERONIMO AND P. ILIEV

• {v1, v2, . . . , vn1} be an orthonormal basis for W⊥ which extends
{e1, e2, . . . , er}, i.e. vj = ej for j = 1, 2, . . . , r;
• {vn1+1, vn1+2, . . . , vn} be an orthonormal basis for W which extends
{en−r1+1, en−r1+2, . . . , en}, i.e. vj = ej for j > n− r1.

Then the unitary matrix Ẽ with columns v1, v2, . . . , vn will have the block
structure given in (4.28), and the G-invariance ofW implies equation (4.29).

�

Proof of the implication (ii)⇒(i) in Theorem 2.3. Applying Lemma 4.6 with

K = Kn,m and K1 = K1
n,m

we see that there exist unitary matrices U,U1 ∈Mm,m, Ũ ∈Mn,n such that
equations (4.23), (4.24) hold. Moreover, applying Lemma 4.8 with

G = Ũ †Γ̃1
n,mΓ̃

†
n,mŨ ,

we see that Ũ can be modified (if necessary), so that equations (4.23), (4.24)
hold and

G = Ũ †Γ̃1
n,mΓ̃†

n,mŨ =

[

∗ 0
∗ ∗

]

, (4.32)

where the zero block in the equation above is an n1 × n2 matrix with n1 ≥
r = rank(Kn,m), n2 ≥ r1 = rank(K1

n,m) and n1 + n2 = n.

Replacing Kn,m and K1
n,m in the tilde analogs of equations (2.11c) and

(2.11d) with the expressions given in (4.23) we find

Ũ †Γ̃n,mΦ̃n,m = Ũ †Φ̃n−1,m − STU †Φn,m−1, (4.33c)

and
Ũ †Γ̃1

n,mΦ̃n,m = zŨ †Φ̃n−1,m − (S1)T (U1)T
←−
Φ T

n,m−1. (4.33d)

With n1 and n2 fixed above, we will use the following notation: for an
n-dimensional vector Ψ̃, we denote by Ψ̃(1) (resp. Ψ̃(2)) the vector which

consists of the first n1 (resp. the last n2) entries of the vector Ψ̃. Thus if we
set

Ψ̃n−1,m = Ũ †Φ̃n−1,m, (4.34)

then the vector Ψ̃n−1,m can be represented in the block form

Ψ̃n−1,m =

[

Ψ̃
(1)
n−1,m

Ψ̃
(2)
n−1,m

]

. (4.35)

With this choice of a unitary matrix Ũ , we want to show that there exists a
unitary matrix Ṽ such that (4.10b) holds. Since the bottom n2 rows of the
matrix ST are equal to 0, we see from equations (4.33c) and (4.35) that

(Ũ †Γ̃n,mΦ̃n,m)(2) = Ψ̃
(2)
n−1,m. (4.36c)

Similarly, since the first n1 rows of the matrix (S1)T are equal to 0, we see
from equations (4.33d) and (4.35) that

(Ũ †Γ̃1
n,mΦ̃n,m)(1) = zΨ̃

(1)
n−1,m. (4.36d)
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Equations (4.36) show that the entries of the vector polynomials zΨ̃
(1)
n−1,m

and Ψ̃
(2)
n−1,m are linear combinations of the entries of the vector polynomial

Φ̃n,m and therefore, they are orthogonal with respect to L to all monomials of

degree at most (n,m−1). Moreover, since Ũ is unitary, it follows from (4.34)

and (4.35) that the entries of each of the vectors zΨ̃
(1)
n−1,m and Ψ̃

(2)
n−1,m form

orthonormal sets of polynomials of degrees at most (n,m) with respect to L.
Finally, from equations (4.32) and (4.36) we see that the entries of the vector

zΨ̃
(1)
n−1,m are perpendicular to the entries of the vector Ψ̃

(2)
n−1,m. Therefore,

all the entries in the vectors zΨ̃
(1)
n−1,m and Ψ̃

(2)
n−1,m form an orthonormal set of

n polynomials, which can be extended by adding a polynomial ψ̃n
n,m(z, w) to

an orthonormal set of polynomials of degree at most (n,m), perpendicular to
all polynomials of degree at most (n,m−1). The transition matrix between

this set and the orthonormal polynomials {φ̃sn,m(z, w)}s=0,1,...,n is a unitary

matrix whose transpose is a unitary matrix Ṽ satisfying equation (4.10b).
The proof now follows from Lemma 4.4. �

5. Proofs of the theorems in the splitting case

5.1. Proof of Theorem 2.5. The proof of implication (i)⇒(ii) follows eas-
ily from Theorem 2.3 and its tilde analog. Indeed, note that if (2.16) holds,
then we have

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|P (eiθ, eiϕ)|2 dθ dϕ (5.1a)

=
1

4π2

∫

[−π,π]2

eikθeilϕ

|Q(eiθ, eiϕ)|2 dθ dϕ (5.1b)

where

P (z, w) = p(z, w)zn2q(1/z,w) is a polynomial of degree at

most (n,m), stable for |z| = 1 and |w| ≤ 1,
(5.2a)

and

Q(z, w) = p(z, w)wm2 q̄(z, 1/w) is a polynomial of degree at

most (n,m), stable for |z| ≤ 1 and |w| = 1.
(5.2b)

Therefore, equation (2.17a) follows from Theorem 2.3 (i)⇒(ii) for the poly-
nomial P (z, w) and equation (2.17b) follows from the tilde analog of The-
orem 2.3 (i)⇒(ii) for the polynomial Q(z, w). Conversely, suppose that
equations (2.17) hold. Then, by Theorem 2.3 (ii)⇒(i) and its tilde analog,
we deduce that there exist polynomials P (z, w) and Q(z, w) of degrees at
most (n,m) such that equations (5.1) hold and

(a) P (z, w) is stable for |z| = 1 and |w| ≤ 1
(b) Q(z, w) is stable for |z| ≤ 1 and |w| = 1.
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Without any restrictions, we can assume that P (z, w) and Q(z, w) are not
divisible by z and w. From equation (2.15) for P (z, w) and Q(z, w) we see
that |P (z, w)|2 = |Q(z, w)|2 for all (z, w) ∈ T

2 which implies that in the ring
of Laurent polynomials C[z, z−1, w,w−1] we have

P (z, w)P̄ (1/z, 1/w) = Q(z, w)Q̄(1/z, 1/w). (5.3)

Suppose now that we factor P (z, w) into a product of irreducible factors
pj(z, w) in C[z, w]. Likewise we can factor Q(z, w) into a product of irre-
ducible factors ql(z, w) in C[z, w]. Using (5.3) we see that we can factor
P (z, w)P̄ (1/z, 1/w) = Q(z, w)Q̄(1/z, 1/w) in C[z, z−1, w,w−1] in two ways
as a product of irreducible factors

P (z, w)P̄ (1/z, 1/w) =
∏

j

pj(z, w)p̄j(1/z, 1/w)

=
∏

l

ql(z, w)q̄l(1/z, 1/w) = Q(z, w)Q̄(1/z, 1/w).
(5.4)

Since C[z, z−1, w,w−1] is a unique factorization domain, it follows that for
every j, there exists a unique l such that exactly one of the following holds:

(I) pj(z, w) and ql(z, w) are associates in C[z, z−1, w,w−1];
(II) pj(z, w) and q̄l(1/z, 1/w) are associates in C[z, z−1, w,w−1].

Note that the units in C[z, z−1, w,w−1] are of the form czswr, where c 6= 0,
s, r ∈ Z. Thus, we see that if (I) holds then with the normalization chosen
above (P and Q are not divisible by z and w) we must have pj(z, w) =
cql(z, w) where c is a nonzero constant. From properties (a) and (b) of the
polynomials P (z, w) and Q(z, w) we deduce that pj(z, w) = cql(z, w) 6= 0
when |z| = 1, |w| ≤ 1, and likewise pj(z, w) = cql(z, w) 6= 0 when |z| ≤ 1,
|w| = 1. This shows that if (I) holds, then pj(z, w) 6= 0 when |z| ≤ 1 and
|w| ≤ 1.

If (II) holds then pj(z, w) = czsjwrj q̄l(1/z, 1/w) where c 6= 0, and sj, rj
are the minimal nonnegative integers for which zsjwrj q̄l(1/z, 1/w) belongs
to C[z, w]. It is easy to see that pj(z, w) and ql(z, w) have the same de-
gree (sj , rj). From property (a) of the polynomial P (z, w) we deduce that
zsjpj(1/z,w) = cwrj q̄l(z, 1/w) 6= 0 when |z| = 1, |w| ≤ 1. From property (b)
of the polynomial Q(z, w) we conclude that zsjpj(1/z,w) = cwrj q̄l(z, 1/w) 6=
0 when |z| ≤ 1, |w| = 1. Thus we see that if (II) holds, then the polynomial
zsjpj(1/z,w) has no zeros when |z| ≤ 1 and |w| ≤ 1.

Let J1 (resp. J2) denote the set of indices j for which (I) (resp. (II)) holds.
Then the polynomials p(z, w) =

∏

j∈J1 pj(z, w) and q(z, w) =
∏

j∈J2 z
sjpj(1/z,w)

satisfy the conditions in Theorem 2.5(i), completing the proof. �

5.2. Proof of Theorem 2.7. For the proof of Theorem 2.7 we summarize
first some basic properties of the vector orthogonal polynomials Φk,l(z, w)
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associated with a moment functional L of the form

L(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|p(eiθ, eiϕ)|2 dθ dϕ,

where p(z, w) is of degree (n,m) nonzero for |z| ≤ 1 and |w| ≤ 1. (5.5)

We define as usual ←−p (z, w) = znwmp(1/z̄, 1/w̄).

Lemma 5.1. If (5.5) holds then

L(p(z, w)z−kw−l) = 0 for all k ∈ Z, l > 0, (5.6a)

L(←−p (z, w)z−kw−l) = 0 for all k < n, l ∈ Z. (5.6b)

Proof. The proof of (5.6a) follows immediately by computing first the w
integral and by using equation (4.3a) in Lemma 4.1. The proof of (5.6b)
follows by a similar computation, by evaluating first the z integral. �

Lemma 5.2. Suppose that (5.5) holds. Then the vector polynomial Φn,m(z, w)
has the following block structure

Φn,m(z, w) =

[ ←−p (z, w)
Φn,m−1(z, w)

]

. (5.7)

Moreover,

L(Φn,m−1(z, w)z
−kw−l) = 0 for all k < n, l ≥ 0. (5.8)

Proof. Equation (5.7) follows from Theorem 7.2 in [12]. Plugging (5.7) and
its tilde analog in (3.2) we obtain the following identity

p(z, w)p(z1, w1)−←−p (z, w)←−p (z1, w1)

= (1− ww̄1)Φn,m−1(z, w)
T Φn,m−1(z1, w1)

+ (1− zz̄1)
←−̃
Φn−1,m(z, w)

←−̃
Φn−1,m(z1, w1)

†.

Thus, if take z = z1 on the unit circle the last term above will vanish and
we can rewrite the equation as follows

p(z, w)p̄(1/z, w̄1)−←−p (z, w)z−nw̄m
1 p(z, 1/w̄1)

1− ww̄1
= Φn,m−1(z, w)

T Φn,m−1(z, w1).

Using the matrix-valued polynomial Φm−1
n (z) defined in (3.1a) and its re-

verse
←−
Φm−1

n (z) = znΦm−1
n (1/z̄)T we can replace in the last equation Φn,m−1(z, w1)

by

z−n←−Φm−1
n (z)T

[

w̄m−1
1 w̄m−2

1 · · · 1
]T
,

and therefore we obtain

p(z, w)znp̄(1/z, w̄1)−←−p (z, w)w̄m
1 p(z, 1/w̄1)

1− ww̄1
= Φn,m−1(z, w)

T ←−Φm−1
n (z)T











w̄m−1
1

w̄m−2
1
...
1











.

(5.9)
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Let us denote by S(z, w, w̄1) the function on the left-hand side above. Note
that we can rewrite S(z, w, w̄1) as follows

S(z, w, w̄1) = p(z, w)
A(z, 1/w, w̄1)

w
+←−p (z, w)B(z, 1/w, w̄1)

w
, (5.10)

where

A(z, 1/w, w̄1) =
znp̄(1/z, w̄1)− znp̄(1/z, 1/w)

1/w − w̄1

and

B(z, 1/w, w̄1) =
w−mp(z, w) − w̄m

1 p(z, 1/w̄1)

1/w − w̄1

are polynomials in z, 1/w and w̄1 of degrees at most n, m − 1 and m − 1,
respectively. Thus, there exist 1 × m vectors Am(z, 1/w) and Bm(z, 1/w)
whose entries are polynomials in z and 1/w of degrees at most n and m− 1,
respectively, such that

A(z, 1/w, w̄1) = Am(z, 1/w)











w̄m−1
1

w̄m−2
1
...
1











and B(z, 1/w, w̄1) = Bm(z, 1/w)











w̄m−1
1

w̄m−2
1
...
1











.

Combining the last equation with equations (5.9) and (5.10) we see that

p(z, w)
Am(z, 1/w)

w
−←−p (z, w)Bm(z, 1/w)

w
= Φn,m−1(z, w)

T ←−Φm−1
n (z)T .

From the theory of matrix-valued orthogonal polynomials we know that

det(
←−
Φm−1

n (z)) 6= 0 for |z| ≤ 1. Therefore, the entries of the matrix [
←−
Φm−1

n (z)T ]−1

are analytic functions on closed unit disk |z| ≤ 1 and we have

Φn,m−1(z, w)
T =

(

p(z, w)
Am(z, 1/w)

w
−←−p (z, w)Bm(z, 1/w)

w

)

[←−
Φm−1

n (z)T
]−1

.

Equation (5.8) follows immediately from the last equation and Lemma 5.1.
�

Proof of Theorem 2.7. The block structure of the vector polynomials given
in equation (2.18) follows immediately from equation (5.7) in Lemma 5.2.
Let us denote by Lp and Lq the positive moment functionals corresponding
to the stable polynomials p(z, w) and q(z, w), i.e.

Lp(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|p(eiθ, eiϕ)|2 dθ dϕ

and

Lq(zkwl) =
1

4π2

∫

[−π,π]2

eikθeilϕ

|q(eiθ, eiϕ)|2 dθ dϕ.

To prove that there exists a unitary matrix U such that (2.19a) holds, it is
enough to show two things:
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(i) the entries of the vector polynomial on the right-hand side of (2.19a)
form an orthonormal set of polynomials of degrees at most (n,m−1)
with respect to L;

(ii) the entries of the vector polynomial on the right-hand side of (2.19a)
are orthogonal with respect to L to all polynomials of degrees at most
(n− 1,m− 1).

Clearly, the entries of the vector polynomial on the right-hand side of (2.19a)
are polynomials of degrees at most (n,m− 1) and it is easy to see that they
all have norm 1. The fact that they are mutually orthogonal follows from
the following direct computation

L(z−n2 q̄(z, 1/w)Φp
n1 ,m1−1(1/z, 1/w)

←−p (z, w)wm2−1Φq
n2,m2−1(z, 1/w)

T )

= − 1

4π2

∫

T





∫

T

←−
Φ p

n1,m1−1(z, w)
T wm2−1Φq

n2,m2−1(z, 1/w)
T

p(z, w)zn2q(1/z,w)
dw





dz

z

= 0,

since the w-integral is zero by Cauchy’s residue theorem. Thus, it remains
to check (ii). Below we compute the inner products with the monomials
zkwl where 0 ≤ k ≤ n− 1 = n1 + n2 − 1 and 0 ≤ l ≤ m− 1 = m1 +m2 − 1.

For the first m1 entries on the right-hand side of (2.19a) we obtain

L(zn2q(1/z,w)Φp
n1 ,m1−1(z, w)z

−kw−l)

= − 1

4π2

∫

T2

Φp
n1,m1−1(z, w)z

n2−kw−l

|p(z, w)|2 q̄(z, 1/w)
dz

z

dw

w

= Lp
(

Φp
n1,m1−1(z, w)

zn2−k

wlq̄(z, 1/w)

)

= 0,

by equation (5.8) in Lemma 5.2 and the computation for the last m2 entries
on the right-hand side of (2.19a) is similar. The fact that there exists a
unitary matrix V such that (2.19b) holds can be established along the same
lines. �

Remark 5.3. The decomposition in Theorem 2.7 can be naturally con-
nected to a decomposition of a Christoffel-Darboux type formula. Indeed, for
a polynomial h(z, w) let us consider the corresponding Christoffel-Darboux
kernel

Lh(z, w; η) =
h(z, w)h(1/z̄, η)−←−h (z, w)

←−
h (1/z̄, η)

1− wη̄ .

Using the notations in Theorem 2.7, we set qw(z, w) = zn2q(1/z,w) and
h(z, w) = p(z, w)qw(z, w). Then it is easy to see that

Lh(z, w; η) = qw(z, w)qw(1/z̄, η)Lp(z, w; η) +←−p (z, w)←−p (1/z̄, η)Lqw(z, w; η).

The point now is that the polynomials p(z, w) and q(z, w) are stable for
|z| ≤ 1, |w| ≤ 1 and therefore the corresponding kernels possess a great
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many orthogonality relations (see for instance [10]) which can be used to
prove equations (2.19) and thus give an alternate proof of the implication
(i)⇒(ii) in Theorem 2.5.

It is a challenging problem to find a direct algebro-geometric proof of
the implication (i)⇒(ii) in Theorem 2.3 (i.e. if we have stability only with
respect to one of the variables). If we use the notations in Theorem 2.3
and Lemma 4.4, the heart of the problem is the following: start with a
polynomial p(z, w) which is stable for |z| = 1 and |w| ≤ 1 and give an ex-
plicit description (or prove existence) of the spaces H1 and H2, where Hj

is the space spanned by the entries of the vector polynomials Ψ̃
(j)
n−1,m(z, w)

in Lemma 4.4. These spaces must be mutually orthogonal and must satisfy
additional extra orthogonality properties in view of equation (4.10b). Since
the orthogonality relations can be expressed in terms of residues, construct-
ing bases for these spaces amounts to an interesting interpolation problem
on a zero-dimensional variety, which involves appropriate zeros of p(z, w)
and ←−p (z, w). Equivalently, this would give a subtle decomposition of the
Christoffel-Darboux kernel associated with p(z, w).

5.3. Proofs of Corollaries 2.8 and 2.9.

Proof of Corollary 2.8. The statement in (i) is proved in [12, Theorem 7.2]
but we sketch it briefly below since it follows easily from the constructions
in this paper. If (2.20) holds then the defining relation (2.12c) for Kn,m

and Lemma 5.2 show that Kn,m = 0. Conversely, suppose that Kn,m = 0.
Equation (2.11c) and its tilde analog imply that

Φn,m(z, w) =

[

φmn,m(z, w)

Φn,m−1(z, w)

]

, Φ̃n,m(z, w) =

[

φ̃nn,m

Φ̃n−1,m(z, w)

]

. (5.11)

Using the second equation above and Lemma 4.4 (with Ũ and Ṽ being
the identity matrices), we see that equation (2.20) holds where p(z, w) =←−
φ m

n,m(z, w) is stable for |z| = 1 and |w| ≤ 1. Since φmn,m(z, w) = φ̃nn,m(z, w)
we can use the first equation in (5.11) and the tilde analog of Lemma 4.4 to
deduce that p(z, w) is stable also for |z| ≤ 1 and |w| = 1, which shows that
p(z, w) is stable for |z| ≤ 1 and |w| ≤ 1 completing the proof of (i).

Suppose now that (2.21) holds. Applying Theorem 2.7 and its tilde analog

we see that there exist unitary matrices U ∈Mm,m, Ũ ∈Mn,n such that

Φn,m−1(z, w) = wm−1UΦq
n,m−1(z, 1/w), Φ̃n−1,m(z, w) = zn−1Ũ Φ̃q

n−1,m(1/z,w).

Plugging these formulas in the definition (2.12e) of K1
n,m we find

K1
n,m = U 〈Φq

n,m−1(1/z,w), Φ̃
q
n−1,m(1/z,w)〉 ŨT .
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Note that the inner product in the expression above gives the matrix Kn,m

for the measure dθ dϕ

4π2|q(eiθ,eiϕ)|2 , and therefore is zero from the first part of the

corollary. Thus, K1
n,m = 0.

Conversely, suppose now that K1
n,m = 0. From (2.11d) and its tilde analog

we see that there exist unitary matrices V ∈Mm+1,m+1, Ṽ ∈Mn+1,n+1 such
that

V †Φn,m(z, w) =

[

ψm
n,m(z, w)

wΦn,m−1(z, w)

]

, Ṽ †Φ̃n,m(z, w) =

[

ψ̃n
n,m(z, w)

zΦ̃n−1,m(z, w)

]

.

(5.12)

From Lemma 4.4 we deduce that (2.21) holds with q(z, w) = zn
←−̃
ψ n

n,m(1/z,w),

which is stable for |z| = 1 and |w| ≤ 1. We want to show next that ψ̃n
n,m(z, w)

and
←−
ψm

n,m(z, w) are equal up to a unimodular constant, i.e.

ψ̃n
n,m(z, w) = ǫ

←−
ψm

n,m(z, w), where |ǫ| = 1. (5.13)

Note that if we can prove the above equation, we can use the tilde analog
of Lemma 4.4 to deduce that q(z, w) = ǭznψm

n,m(1/z,w) is stable for |z| ≤ 1
and |w| = 1, thus proving that q(z, w) is stable for |z| ≤ 1 and |w| ≤ 1.

The proof of (5.13) follows from the characteristic properties of ψm
n,m(z, w)

and ψ̃n
n,m(z, w). Indeed, from the first equation in (5.12) it is easy to see

that ψm
n,m(z, w) is the unique (up to a unimodular constant) orthonormal

vector in Πn,m such that

ψm
n,m(z, w) ⊥ {zkwl : 0 ≤ k ≤ n− 1, 0 ≤ l ≤ m} ∪ {znwl : 1 ≤ l ≤ m}.

Similarly, from the second equation in (5.12) we see that ψ̃m
n,m(z, w) is the

unique (up to a unimodular constant) orthonormal vector in Πn,m such that

ψ̃m
n,m(z, w) ⊥ {zkwl : 0 ≤ k ≤ n, 0 ≤ l ≤ m− 1} ∪ {zkwm : 1 ≤ k ≤ n}.

The above characteristic properties of ψm
n,m(z, w) and ψ̃n

n,m(z, w) establish
(5.13), thus completing the proof. �

Proof of Corollary 2.9. Assume first that L(zkwl) = Lz(zk)Lw(wl). If we
denote by {αk(z)}0≤k≤n the (one-variable) polynomials orthonormal with
respect to Lz and by {βl(w)}0≤l≤m the (one-variable) polynomials orthonor-
mal with respect to Lw, then it easy to see that

Φn,m(z, w) = αn(z)









βm(w)
βm−1(w)

...
β0(w)









, and Φ̃n,m(z, w) = βm(w)









αn(z)
αn−1(z)

...
α0(z)









.

From these explicit formulas and the defining relations (2.12c), (2.12e) for
Kn,m and K1

n,m it easy to see that Kn,m = K1
n,m = 0.

Conversely, suppose that Kn,m = K1
n,m = 0. Note that if h(z, w) is a

polynomial of degree (k, l) such that h(z, w) and zkh(1/z,w) are stable, then
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h(z, w) is independent of z (i.e. k = 0). Using this observation, Corollary
2.8 and arguments similar to the ones we used in the proof of the implication

(ii)⇒(i) in Theorem 2.5, we see that
←−
φm

n,m(z, w) = α(z)β(w), where α(z)
and β(w) are stable polynomials of degrees at most n and m, respectively
and that equation (2.22) holds, completing the proof. �

5.4. Proof of Theorem 2.10. With the measure dµ we will associate the
positive moment functional L defined on C[z, z−1, w,w−1] by

L(zkwl) =

∫

T2

zkwldµ. (5.14)

First suppose that equation (2.23) holds where p(z, w) and q(z, w) are
stable polynomials of degrees (n1,m1) and (n2,m2), respectively, with n1 +
n2 ≤ n, m1+m2 ≤ m. Then we can represent L as in equations (5.1) where
P (z, w) and Q(z, w) are given in equations (5.2). Using Lemma 4.2 and its
tilde analog, we see that equation (2.25) holds. To complete the proof of
the theorem, it remains to show that equation (2.24) implies the existence
of stable polynomials p(z, w) and q(z, w) of degrees (n1,m1) and (n2,m2),
with n1 + n2 ≤ n, m1 +m2 ≤ m such that (2.23) holds. From Lemma 4.3
and its tilde analog we see that

Kk,l

[

Γ̃1
k,lΓ̃

†
k,l

]j

(K1
k,l)

T = 0, for all j ≥ 0, k ≥ n+ 2, l ≥ m+ 2,

(5.15a)

(Kk,l)
†
[

Γ1
k,lΓ

†
k,l

]j

K1
k,l = 0, for all j ≥ 0, k ≥ n+ 2, l ≥ m+ 2.

(5.15b)

By Theorem 2.5 we deduce that there exist stable polynomials p(z, w) and
q(z, w) of degrees (n1,m1) and (n2,m2), with n1 + n2 ≤ n+ 2, m1 +m2 ≤
m+2 such that (2.16) holds for all (k, l) satisfying |k| ≤ n+ 2, |l| ≤ m+ 2.
Moreover, from equations (2.15) we see that

p(z, w)p̄(1/z, 1/w)q(1/z,w)q̄(z, 1/w)

= Φ̃n+2,m+2(z, w)
T Φ̃n+2,m+2(1/z, 1/w) − Φ̃n+1,m+2(z, w)

T Φ̃n+1,m+2(1/z, 1/w)

= Φn+2,m+2(z, w)
TΦn+2,m+2(1/z, 1/w) − Φn+2,m+1(z, w)

TΦn+2,m+1(1/z, 1/w).
(5.16)

Recall that if Êk,l = 0 then Ak,l = Il+1 and therefore by (2.11a) we obtain

Φk,l(z, w) = zΦk−1,l(z, w). (5.17a)

Similarly, if
˜̂
Ek,l = 0 then

Φ̃k,l(z, w) = wΦk,l−1(z, w). (5.17b)
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Using (2.24) we see that equations (5.17) hold for all k ≥ n+1 and l ≥ m+1,
which combined with (5.16) shows that

p(z, w)p̄(1/z, 1/w)q(1/z,w)q̄(z, 1/w)

= Φ̃k,l(z, w)
T Φ̃k,l(1/z, 1/w) − Φ̃k−1,l(z, w)

T Φ̃k−1,l(1/z, 1/w) (5.18a)

for k ≥ n+ 2, l ≥ m, and

p(z, w)p̄(1/z, 1/w)q(1/z,w)q̄(z, 1/w)

= Φk,l(z, w)
TΦk,l(1/z, 1/w) − Φk,l−1(z, w)

TΦk,l−1(1/z, 1/w) (5.18b)

for k ≥ n, l ≥ m+ 2. From Theorem 2.3 we see that equation (2.16) holds
for all k, l ∈ Z which establishes (2.23). It remains to show now that in fact
n1 + n2 ≤ n and m1 +m2 ≤ m. To see this, we will use the following two
observations:

(i) If p(z, w) and q(z, w) are stable polynomials of degrees (n1,m1)
and (n2,m2), then P (z, w) = p(z, w)zn2q(1/z,w) is a polynomial
of degree (n1 + n2,m1 +m2) which is not divisible by z and w (i.e.
P (0, w) 6≡ 0 and P (z, 0) 6≡ 0).

(ii) If P (z, w) is a polynomial of degree (n0,m0), which is not divisible
by z and w such that P (z, w)P̄ (1/z, 1/w) ∈ Πn,m, then n0 ≤ n and
m0 ≤ m.

From (i) we see that the polynomial P (z, w) = p(z, w)zn2q(1/z,w) is a
polynomial of degree (n1 + n2,m1 +m2) which is not divisible by z and w.
From equation (5.18a) with k = n + 2, l = m and equation (5.18b) with
k = n, l = m+ 2 we see that

P (z, w)P̄ (1/z, 1/w) ∈ Πn+2,m ∩Πn,m+2 = Πn,m,

which combined with (ii) completes the proof. �

6. Examples

We now consider some examples that exhibit the properties of the theo-
rems proved earlier.

6.1. One-sided. Our first example will be a polynomial of degree (2,2) that
is stable for |z| = 1, |w| ≤ 1. We will construct the polynomial using the

algorithm given in [12]. Setting u0,0 = 1, u2,0 = 1/4, u−1,2 = 1−a2

1+a2
, u2,2 =

−
√
15(1−a2)
60a , u−2,2 = −a(1−a2)

(1+a2)2
with (−3 +

√
13)/2 < a < (3 +

√
13)/2 and

ui,j = 0, for (i, j) ∈ {(0, 1), (1, 0), (0, 2), (−1, 1), (1, 1), (1, 2), (−2, 1), (2, 1)}
we construct the orthogonal polynomials up to level (2,2). In this case we
find using Maple or Mathematica that

K2,2 =
2
√
15(1− a2)

15(1 + a2)

[

0 0
2 −1

]

,
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K1
2,2 = −

√
15(1− a2)

60a

[

1 2
0 0

]

,

Γ2,2 =

[

0 1 0

0 0
√
3c

3(1+a2)

]

,

Γ1
2,2 =

[

2
√
3d

3
√
c

0
√
3(1−a4)
12a

√
c

0 1 0

]

,

Γ̃2,2 =





0 5
√
c√
e

8
√
15(1−a2)2

15(1+a2)
√
f

0 0
√
15f

15(1+a2)



 ,

and

Γ̃1
2,2 =





√
5d

2
√
c
− (1−a4)(1−a2)

√
e

4af
√
c

√
15g

30a
√
f

0 5(1+a2)
√
c

2a
√
e

4
√
15(1−a2)2

15a
√
f





where c = 14a2 − a4 − 1, d = 11a2 − a4 − 1, e = 55 + 190a2 + 55a4,
f = 11 + 38a2 + 11a4, g = 4a4 + 7a2 + 4.

It is not difficult to see that K2,2(K1
2,2)

T = 0 = K†
2,2K1

2,2, and using Maple
or Mathematica we find

K2,2Γ̃
1
2,2Γ̃

†
2,2(K1

2,2)
T = 0

while

K†
2,2Γ

1
2,2Γ

†
2,2K1

2,2 =
(1− a2)2

15a(1 + a2)

[

−1 −2
1
2 1

]

6= 0. (6.1)

Using Remark 4.5 we find a candidate for p(z, w) is

p̂(z, w) =(4a(1 − a2)w2 − 3(1 + a2)2)z2 + 3((1 − a4)w2 + 3a(1 + a2))z

− 13a(1 − a2)w2 + 12a2.

Using the Schur-Cohn test it is not difficult to see that p̂(z, w) is nonzero for
|z| = 1 and |w| ≤ 1. Applying Lemma 4.6 (see also Remark 4.7) we see that

equations (4.23) and (4.24) hold with r = r1 = 1, s1 =
2(1−a2)√
3(1+a2)

, s11 =
1−a2

4
√
3a
,

U1 = U =

[

0 1
1 0

]

, and Ũ =
1√
5

[

2 −1
−1 −2

]

.

Next we find Ψ̃1,2(z, w) in (4.10a) by computing

Ψ̃1,2(z, w) = Ũ †Φ̃1,2(z, w) =

√
5

10a

[

4azw2 − w2 − a2w2 + z − a2z
−2azw2 − 2w2 − 2a2w2 + 2z − 2a2z

]

.

We look for a unitary matrix Ṽ such that equation (4.10b) holds with n1 =
n2 = 1.
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This uniquely specifies Ṽ (except the first column, which can be multiplied
by an arbitrary complex number of modulus 1) as

Ṽ =









√
3a√
c

√
d√
c

0

2
√
3(1+a2)

√
d√

cf
−6a(1+a2)√

fc
−

√
c√
f

−
√
d√
f

√
3a√
f

−2
√
3(1+a2)√

f









.

The first entry of the vector polynomial Ψ̃2,2(z, w) = Ṽ †Φ̃2,2(z, w) is
√
15

30a
√
d

←−̂
p (z, w).

Thus, Lemma 4.4 shows that p(z, w) =
√
15

30a
√
d
p̂(z, w).

6.2. Splitting case. The second example we will consider illustrates The-
orem 2.5. In this case we chose u0,0 = 1, u−1,1 = a, u1,1 = b, u2,0 = ab = u0,2
and ui,j = 0, (i, j) ∈ {(0, 1), (1, 0), (1, 2), (−1, 2), (2, 1), (−2, 1), (2, 2), (−2, 2)}
where −1 < a < 1 and −1 < b < 1. Using the algorithm given in [12] we
find that

K2,2 =

[

a 0
0 0

]

,

K1
2,2 =

[

0 0
0 b

]

,

Γ2,2 =

[

0
√
1− a2 0

0 0 1

]

= Γ̃2,2,

Γ1
2,2 =

[

1 0 0

0
√
1− b2 0

]

= Γ̃1
2,2.

It is easy to check that equations (2.17) are satisfied. Moreover, we find that

P (z, w)P̄ (1/z, 1/w) = Φ̃2,2(z, w)
T Φ̃2,2(1/z, 1/w)−Φ̃1,2(z, w)

T Φ̃1,2(1/z, 1/w)
(6.2)

where

P (z, w) =
(1− bzw)(z − aw)
√

(1− a2)(1 − b2)
is stable for |z| = 1 and |w| ≤ 1. It is easy to see that the polynomial P (z, w)
above is the unique polynomial (up to a multiplicative constant of modulus
1) of degree at most (2, 2) which is stable for |z| = 1 and |w| ≤ 1 and which
satisfies (6.2). Finally, note that

P (z, w) = p(z, w)zq(1/z,w)

where

p(z, w) =
1− bzw√
1− b2

, and q(z, w) =
1− azw√
1− a2

are stable polynomials. We can obtain all this also by following the steps of
Example 1. Indeed, we see that we can take U = Ũ = I2 the identity 2× 2
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matrix and

Ṽ =





0 1 0
1 0 0
0 0 1



 .

The first entry of the vector polynomial Ψ̃2,2(z, w) = Ṽ †Φ̃2,2(z, w) is P (z, w).
Note that if a = 0 then K2,2 = 0 and the functional is in the stable case,
while if b = 0 then K1

2,2 = 0 and the functional is in the anti-stable case.
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Szegő measures, to appear in Contemp. Math. (arXiv:1111.5658).
[11] J. Geronimo and H. J. Woerdeman, Positive extensions, Fejér-Riesz factorization and

autoregressive filters in two variables, Ann. of Math. (2) 160 (2004), no. 3, 839–906.
[12] J. Geronimo and H. J. Woerdeman, Two variable orthogonal polynomials on the

bicircle and structured matrices, SIAM J. Matrix Anal. Appl. 29 (2007), no. 3, 796–
825.

[13] I. C. Gohberg and I. A. Fel’dman, Convolution equations and projection methods for

their solution, Translations of Mathematical Monographs, Vol. 41, American Mathe-
matical Society, Providence, R.I., 1974.

[14] A. Grinshpan, D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov and H. J. Woerdeman,
Classes of tuples of commuting contractions satisfying the multivariable von Neumann

inequality, J. Funct. Anal. 256 (2009), no. 9, 3035–3054.
[15] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several vari-

ables, Acta Math. 99 (1958), 165–202.
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