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LATTICE POINT GENERATING FUNCTIONS AND

SYMMETRIC CONES

MATTHIAS BECK, THOMAS BLIEM, BENJAMIN BRAUN, AND CARLA SAVAGE

Abstract. We show that a recent identity of Beck–Gessel–Lee–Savage on
the generating function of symmetrically contrained compositions of integers
generalizes naturally to a family of convex polyhedral cones that are invariant
under the action of a finite reflection group. We obtain general expressions for
the multivariate generating functions of such cones, and work out the specific
cases of a symmetry group of type A (previously known) and types B and D
(new). We obtain several applications of the special cases in type B, including
identities involving permutation statistics and lecture hall partitions.

1. Introduction

Motivated by the “constrained compositions” introduced by Andrews–Paule–
Riese [1], Beck–Gessel–Lee–Savage [2] enumerated symmetrically constrained

compositions, i.e., compositions of an integer M into n nonnegative parts

M = λ1 + λ2 + · · ·+ λn ,

where the sequence λ := (λ1, λ2, . . . , λn) satisfies the symmetric system of linear
inequalities

a1λπ(1) + a2λπ(2) + · · ·+ anλπ(n) ≥ 0 for all π ∈ Sn .

Specifically, [2] discusses various approaches to compute, for a fixed set of parame-
ters a1, a2, . . . , an, the generating functions

F (z1, z2, . . . , zn) :=
∑

λ

zλ1
1 zλ2

2 · · · zλn

n

and

F (q) := F (q, q, . . . , q) =
∑

λ

qλ1+λ2+···+λn ,

where both sums extend over all symmetrically constrained compositions λ. One
viewpoint of [2] is geometric: The compositions (λ1, λ2, . . . , λn) are interpreted as
integer lattice points in the cone

(1) {x ∈ Rn | ∀σ ∈ W : (σx, a) ≥ 0} ,

where W is the image of the permutation representation of Sn, a = (a1, . . . , an),
and ( , ) is the standard inner product on Rn. This viewpoint together with
permutation statistics of Sn gave rise to explicit (and in some instances surprising)
generating function formulas.

Our goal is to generalize the results in [2] to cones of the form (1) where W is
another reflection group. In addition to obtaining general multivariate generating
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function identities, we obtain several applications of these results for hyperocta-
hedral groups. These applications are similar in spirit to the applications in the
symmetric-group case found in [2].

The outline of our paper is as follows. The general setup for our approach is
discussed in the next section, which also contains our central result, Theorem 2.8.
Section 3 illustrates our approach by re-deriving the main result in [2]. Sections 4
and 5 consider cones constrained by reflection groups of type B and D, respec-
tively. Further, Section 4 contains applications obtained through specializing our
generating functions in the type-B case.
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2. General theory

Our goal in this section is to study integer points in cones that are constrained
by the orbit of a single linear constraint under an appropriate group action on real
space. This goal is realized in Theorem 2.8, where the multivariate generating func-
tion encoding the integer points in such a cone is expressed as a sum of simpler
generating functions. Theorem 2.8 is an algebraic consequence of a geometric tri-
angulation of the symmetric cone, which we obtain in Lemma 2.5. Proposition 2.6
makes the triangulation disjoint by using combinatorics of Coxeter groups as a
tiebreaker for the walls separating the maximal cones in the triangulation. This is
critical for our subsequent applications.

2.1. Almost irreducible finite reflection groups, Coxeter groups, and de-

scents. In the following, we will consider finite reflection groups (see, e.g., [9] for
background) that act on spaces in a restricted fashion. Namely, a finite reflection
group W ⊂ O(V ) acting on a Euclidean vector space V is called almost irre-

ducible if V decomposes into W -invariant subspaces V = V1⊕V2 such that W acts
irreducibly and nontrivially on V1 and trivially on V2, and that V2 is 1-dimensional.

Example 2.1. Sn acts almost irreducibly onRn by permutation of the components.
The irreducible summand consists of all vectors with component sum 0, and the
trivial summand consists of all vectors with equal components. This is the case
considered in [2].

Example 2.2. Let V1 be a Euclidean vector space and W ⊂ O(V1) a nontrivial
irreducible reflection group, i.e., a nontrivial reflection group such that V1 does not
contain any nontrivial proper W -invariant subspaces. Let W act trivially on R and
set V = V1 ⊕R. Then W acts almost irreducibly on V .
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A Coxeter group of rank r is a group admitting a presentation with generators
s1, . . . , sr and relations (sjsk)

mjk = 1 for mjk ∈ {1, 2, 3, . . .} ∪ {∞} subject to the
conditions that mjk = mkj and mjk = 1 ⇐⇒ j = k. Here, a value of mjk = ∞ is
to be understood as the absence of the corresponding relation. Such generators are
called simple generators. For each Coxeter group considered, we will suppose
that simple generators have been fixed once and for all. We refer the reader to [4]
or [9] for further information about Coxeter groups and their relation to reflection
groups.

The length l(σ) of an element σ ∈ W of a Coxeter group W is the smallest
integer such that there is a decomposition σ = sj1 · · · sjl(σ)

of σ as a product of l(σ)
not necessarily distinct simple generators. For any σ ∈ W , the right descent set

of σ is

(2) Dr(σ) := {j ∈ {1, . . . , r} | l(σsj) < l(σ)} .

Remark 2.3. Propositions 3.1, 4.1, and 5.1 review the connection between the
definition of descent given here and definitions of descent for Coxeter groups of
types A, B, and D in terms of the one-line notation.

Recall that if W is a finite reflection group, it is automatically a Coxeter group.
Simple generators can be found as follows. Let H be the union of all reflection
hyperplanes for W ; denote by F the closure of a connected component in V \ H.
It is immediate that F is a convex polyhedral cone. Let H1, . . . , Hr be the facet
hyperplanes of F and let si be the reflection at Hi. Then s1, . . . , sr are simple
generators of the Coxeter group W . See [5, V.3.2, Th. 1] for the proof of these
statements.

A subset F ⊂ V is a fundamental domain for W if F is the closure of an
open set and each W -orbit intersects F in exactly one point. By [9, Section I.12],
every such F is polyhedral, and is bounded by hyperplanes fixed by a set of sim-
ple reflections in W . Through the rest of this paper, when given a set of simple
generators s1, . . . , sr of a reflection group W , we denote by F a fixed fundamental
domain with bounding hyperplanes corresponding to s1, . . . , sr.

2.2. Triangulations of monoconditional cones. Denote the value of a linear
form ϕ ∈ V ∗ on a vector x ∈ V by 〈x, ϕ〉. Let W ⊂ O(V ) be an almost irreducible
reflection group. A symmetric cone C ⊂ V is a convex polyhedral cone that
is W -invariant. A symmetric cone is called monoconditional if there is a linear
form ϕ ∈ V ∗, such that V1, V2 6⊂ ker(ϕ) and

(3) C = {x ∈ V | ∀σ ∈ W : 〈σx, ϕ〉 ≥ 0} .

This generalizes (1).

Example 2.4. The positive orthant Rn
≥0 is a monoconditional symmetric cone for

the almost irreducible action of Sn on Rn by permutation of the components. A
possible linear form defining it is the projection on the first component.

Lemma 2.5. Let W ⊂ O(V ) be an almost irreducible reflection group. Let C ⊂ V
be a monoconditional symmetric cone. Let F ⊂ V be a fundamental domain for

the action of W on V . Then the cone C+ := C ∩ F is simplicial. In particular, C
admits the triangulation

C =
⋃

σ∈W

σ C+ .
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Figure 1. Notation used in the proof of Lemma 2.5. The cyclic
group of order 2 acts almost irreducibly on R2 by sign change in
the first component.

Proof. Some of the notation used in this proof is shown in Figure 1 for convenience.
Let ϕ ∈ V ∗ be a linear form defining C as in (3). Let xϕ ∈ V such that 〈x, ϕ〉 =
−(x, xϕ) for all x ∈ V . Let x0 be the unique element of Wxϕ ∩ F . Then

C+ = {x ∈ F | ∀σ ∈ W : (σx, x0) ≤ 0} .

Let V = V1 ⊕ V2 be the decomposition of V into the irreducible and trivial compo-
nent. Let x0 = x′

0 + x′′
0 with x′

0 ∈ V1 and x′′
0 ∈ V2. By definition V2 6⊂ ker(ϕ), and

so xϕ 6∈ V1, thus x0 6∈ V1, and hence x′′
0 6= 0. As ϕ is only determined up to multi-

plication by a positive scalar, suppose without loss of generality that (x′′
0 , x

′′
0) = 1.

Let

P+ = {x ∈ F ∩ V1 | ∀σ ∈ W : (σx, x′
0) ≤ 1} .

Consider the reflections at the facet hyperplanes of F as simple generators of W .
Let l denote the corresponding length function. Let x ∈ F ∩ V1 and σ ∈ W . Let H
be a facet hyperplane of σF , such that l(sσ) > l(σ) for the reflection s at H . We
claim that in this situation

(4) (sσx, x′
0) ≤ (σx, x′

0) .

Indeed, consider the decomposition V1 = (H ∩ V1)⊕H⊥. According to this decom-
position, write x′

0 = v0 + w0 and σx = v1 + w1; then sσx = v1 − w1. We have
(σx, x′

0) = (v1, v0) + (w1, w0) and (sσx, x′
0) = (v1, v0)− (w1, w0). Hence

(5) (sσx, x′
0) = (σx, x′

0)− 2(w1, w0) .

Generally, if τ ∈ W , then l(τ) equals the number of reflection hyperplanes between
F and τF . As l(sσx) > l(σx), this implies that x0 and σx lie on the same side of
H . Hence (w1, w0) ≥ 0, and so (5) implies the claim (4).

By induction on l(σ), (4) implies that

P+ = {x ∈ F ∩ V1 | (x, x′
0) ≤ 1} .
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The cone C+ is the cone over P − x′′
0 , thus C+ = {x ∈ F | (x, x0) ≤ 0}. The

cone F ∩ V1 is a fundamental domain for the action of W on V1. Hence F ∩ V1 is
simplicial. We have F = (F ∩ V1) + V2, and so dim(F ) = dim(F ∩ V1) + 1. The
cone C+ is defined in F by the single additional inequality (x, x0) ≤ 0, thus C+ is
simplicial. �

Consider the situation of Lemma 2.5. Choose an order H1, . . . , Hn−1 of the facet
hyperplanes of F with the corresponding simple reflections s1, . . . , sn−1. For any
subset J ⊂ {1, . . . , n− 1}, let

CJ := C+ \
⋃

j∈J

Hj .

For example, C∅ = C+. If J 6= ∅ some of the facets of C+ are removed.

Proposition 2.6. In the situation of Lemma 2.5, C decomposes as a disjoint union

C =
⋃

σ∈W

σ CDr(σ) .

Proof. For x ∈ C, let

W (x) := {σ ∈ W | x ∈ σ C+} .

By Lemma 2.5, C =
⋃

σ∈W σ C+, and so the set W (x) is nonempty. It contains a
unique element of minimal length [9, §1.10], denoted by σx.

Assume that σ−1
x x ∈ Hj for some j ∈ Dr(σx). Then sjσ

−1
x x = σ−1

x x, and so
x = σxsjσ

−1
x x. As σ−1

x x ∈ C+, this implies that σxsj ∈ W (x). On the other hand
l(σxsj) < l(σx), a contradiction. Hence σ−1

x x 6∈ Hj for all j ∈ Dr(σx). Hence
σ−1
x x ∈ CDr(σx), and so x ∈ σxCDr(σx). This proves that C =

⋃

σ∈W σ CDr(σ).
To prove disjointness, let x ∈ σ CDr(σ) for some σ ∈ W . We have to show that

σ = σx. Clearly σ ∈ W (x). It remains to show that σ has minimal length in W (x).
Assume that σ has not minimal length in W (x). Then there is j ∈ {1, . . . , n − 1}
such that l(σsj) < l(σ) and σsj ∈ W (x) [9, §1.10]. From σ ∈ W (x) we conclude
that σ−1x ∈ C+ and from σsi ∈ W (x) that sjσ

−1x ∈ C+. Hence σ
−1x ∈ Hj . Since

l(σsj) < l(σ) we have j ∈ Dr(σ). Hence σ−1x 6∈ CDr(σ), and so x 6∈ σ CDr(σ), a
contradiction. �

2.3. Generating functions for monoconditional cones. Let V ∗
C

= V ∗ ⊗R C.
Extend 〈 , 〉 to V × V ∗

C
by C-linearity in the second argument. Let Γ ⊂ V be

a lattice and S ⊂ V . Suppose that there is a nonempty open subset B ⊂ V ∗
C

such that the series
∑

x∈S∩Γ e
−〈x,ϕ〉 converges for ϕ ∈ B and has a meromorphic

continuation to V ∗
C
. We denote this continuation by fS and call it the generating

function of S with respect to Γ.

Example 2.7. If C ⊂ V is a cone, let

C∨ := {ϕ ∈ V ∗ | ∀x ∈ C : 〈x, ϕ〉 ≥ 0} ⊂ V ∗

be its dual cone. The complexified dual of C is defined as

C∨
C := {ϕ ∈ V ∗

C | ∀x ∈ C : ℜ(〈x, ϕ〉) ≥ 0} = C∨ + i V ∗.

Let C ⊂ V be a salient cone, rational with respect to Γ. Then
∑

x∈C∩Γ e
−〈x,ϕ〉

converges on the interior of C∨
C

and has a meromorphic continuation fC to V ∗
C
.
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From now on, suppose thatW is crystallographic, i.e., that there is aW -invariant
lattice Γ in V . A full-dimensional simplicial cone C ⊂ V is called unimodular

(with respect to Γ) if it is generated by a basis of Γ. These generators are called
primitive.

Theorem 2.8. In the situation of Lemma 2.5, suppose that C+ is unimodular with

respect to Γ. Let b1, . . . , bn be the primitive generators of C+, enumerated in the

unique way such that bj 6∈ Hj for j ∈ {1, . . . , n− 1}. Then the generating function

of C is

fC(ϕ) =
∑

σ∈W

∏

j∈Dr(σ)
e−〈σbj ,ϕ〉

(1− e−〈σb1,ϕ〉) · · · (1− e−〈σbn,ϕ〉)
.

In practice, Γ is often endowed with a distinguished basis. In this case, it is often
more convenient to work with the following formulation.

Corollary 2.9. In the situation of Theorem 2.8, let e1, . . . , en be a basis of Γ.
Define coordinates zj on V ∗

C
by zj(ϕ) := e−〈ej ,ϕ〉. For a = a1e1 + · · · + anen ∈ Γ,

let za := za1
1 · · · zan

n . Then

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

(1− zσb1) · · · (1− zσbn)
.

Proof of Theorem 2.8. As C+ is unimodular with primitive generators b1, . . . , bn,
its generating function is

fC+(ϕ) =
1

(1− e−〈b1,ϕ〉) · · · (1− e−〈bn,ϕ〉)
.

With unimodularity it also follows that each generator of C+ is only one lattice
hyperplane away from the opposite facet. Hence

C{j} ∩ Γ = (C+ \Hj) ∩ Γ = (C+ ∩ Γ) + bj

for all j ∈ {1, . . . , n − 1}. More generally, CJ ∩ Γ = (C+ ∩ Γ) +
∑

j∈J bj for any

J ⊂ {1, . . . , n − 1}. Applying this observation to J = Dr(σ) for a σ ∈ W and
rephrasing it in terms of generating functions, one obtains

fCDr(σ)
(ϕ) =

∏

j∈Dr(σ)
e−〈bj,ϕ〉

(1− e−〈b1,ϕ〉) · · · (1− e−〈bn,ϕ〉)
.

Hence for all σ ∈ W it follows that

fσCDr(σ)
(ϕ) =

∏

j∈Dr(σ)
e−〈σbj ,ϕ〉

(1 − e−〈σb1,ϕ〉) · · · (1− e−〈σbn,ϕ〉)
.

By Proposition 2.6, fC =
∑

σ∈W fσCDr(σ)
, which proves the formula. �

3. Cones with the symmetry of a simplex

Theorem 2.8 specializes to more concrete identities once we fix a particular al-
most irreducible reflection group W . The case of W being the group of symmetries
of a simplex has been treated in [2]. We include this case here to show how the
result can be derived from Theorem 2.8.

Let Sn denote the group of permutations of the set {1, . . . , n}. For π ∈ Sn, we
define the descent set of π as

(6) D(π) := {j ∈ {1, . . . , n− 1} | π(j) > π(j + 1)} .
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This is the standard definition used in the literature on permutations.
The group Sn acts on Rn by permutation of the components. For π ∈ Sn, let

σπ ∈ O(Rn) denote the transformation by which π acts on Rn. Let W = {σπ |
π ∈ Sn} ⊂ O(Rn). Then W is the group of symmetries of the (n− 1)-dimensional
standard simplex. For j = 1, . . . , n− 1, let sj ∈ W be the transposition of the jth
and (j + 1)st component in Rn. Then s1, . . . , sn−1 are simple generators of W .

The following shows that the definitions of descent given in (2) and (6) agree.

Proposition 3.1 ([4, Proposition 1.5.3]). Dr(σπ) = D(π) for all π ∈ Sn.

Our main result in this section is the following.

Proposition 3.2 ([2, Theorem 1]). Fix integers a1 ≤ · · · ≤ an such that a1 + · · ·+
an = 1. Let

C := {x ∈ Rn | ∀π ∈ Sn : a1xπ(1) + · · ·+ anxπ(n) ≥ 0} .

Let Σj := a1 + · · · + aj for j ∈ {1, . . . , n − 1}. The generating function of C with

respect to Zn is

fC =
1

1− z1 · · · zn

∑

π∈Sn

∏

j∈D(π)(z1 · · · zn)
−Σj

∏j
i=1 zπ(i)

∏n−1
j=1

(

1− (z1 · · · zn)−Σj
∏j

i=1 zπ(i)

) .

Note that the condition on the ai to be increasing is a normalization rather than
a restriction.

Proof. The cone C is symmetric and monoconditional for W . Let F = {x ∈
Rn | x1 ≥ · · · ≥ xn}, a fundamental domain for W . Then our chosen simple
generators s1, . . . , sn−1 of W are the reflections at the facet hyperplanes of F . Let
x0 = (−a1, . . . ,−an) ∈ F . By the proof of Lemma 2.5,

C+ = {x ∈ F | (x, x0) ≤ 0} = {x ∈ F | a1x1 + · · ·+ anxn ≥ 0}

= {x ∈ Rn | Ax ≥ 0} ,

where

A =























1

1

−1

−1

0 0

0

0

0 0

a1 an























.

The determinant of A is a1 + · · ·+ an = 1, i.e., A is unimodular and so is C+. Let
b1, . . . , bn be the primitive generators of C+, enumerated in the unique way such
that bj /∈ Hj for j ∈ {1, . . . , n− 1}. Then by Corollary 2.9, the generating function
of C is

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

(1− zσb1) · · · (1− zσbn)
.
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Proposition 3.2 follows once we describe Dr(σ), bj, and the action of W explicitly.
The inverse of A is

B := A−1 =



















Σ′
1 Σ′

n−1

Σ′
n−1

−Σ1

−Σ1 −Σn−1

1

1



















,

where Σ′
j := 1− Σj . Then bj is the jth column vector of B. Let

bij :=











1 if j = n,

1− Σj if i ≤ j < n,

−Σj if j < i

be the ith component of bj , i.e., the (i, j)th component of B. As defined above,
with π ∈ Sn we associate σπ ∈ O(n) by σπei = eπ(i). Then W = {σπ | π ∈ Sn} and
we have Dr(σπ) = D(π). Hence

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

∏n
j=1(1− zσbj )

=
∑

π∈Sn

∏

j∈Dr(σπ)
zσπbj

∏n
j=1(1 − zσπbj )

=
∑

π∈Sn

∏

j∈D(π)

∏n
i=1 z

bij
π(i)

∏n
j=1

(

1−
∏n

i=1 z
bij
π(i)

)

=
1

1− z1 · · · zn

∑

π∈Sn

∏

j∈D(π)(z1 · · · zn)
−Σj

∏j
i=1 zπ(i)

∏n−1
j=1

(

1− (z1 · · · zn)−Σj
∏j

i=1 zπ(i)

) . �

4. Cones with hyperoctahedral symmetry

We now consider the case of cones which are symmetric under the action of a
hyperoctahedral group. Let W ⊂ O(n) be the hyperoctahedral group on the first
n − 1 components of Rn. Let s1 ∈ W be the sign change in the first component
and, for j = 2, . . . , n− 1, let sj ∈ W be the transposition of the (j − 1)st and jth
component in Rn. Then s1, . . . , sn−1 are simple generators of W .

For combinatorial (as opposed to geometric) arguments, it is often more con-
venient to use the following parameterization of the hyperoctahedral group: For
π ∈ Sn−1 and ε ∈ {±1}n−1, define σπ,ε ∈ O(n) by

(7) σπ,εei = εieπ(i) ,

where we use the convention that π(n) := n for π ∈ Sn−1 and εn := 1 for ε ∈
{±1}n−1. Then W = {σπ,ε | π ∈ Sn−1, ε ∈ {±1}n−1}. Let Bn−1 denote the
set Sn−1 × {±1}n−1, endowed with the group structure such that σ : Bn−1 → W
becomes an isomorphism of groups.
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In terms of this parameterization, the right descent set of W can be expressed
more explicitly. For (π, ε) ∈ Bn−1 let

(8) D(π, ε) := {j ∈ {1, . . . , n− 1} | εj−1π(j − 1) > εjπ(j)}

with the convention that ε0π(0) := 0. Then the following holds.

Proposition 4.1 ([4, Proposition 8.1.2]). For all (π, ε) ∈ Bn−1, we have

Dr(σπ,ε) = D(π, ε) .

Note that the descent set defined in (8) is translated by +1 with respect to
definitions found in the literature on signed permutations. This is because to have
a consistent setup in section 2, we always start the enumeration of the simple
reflections with 1, whereas from a signed permutations perspective it is convenient
to start this enumeration with 0.

We define the descent statistic on the hyperoctahedral group by setting the
descent number

des(π, ε) := |D(π, ε)|

for (π, ε) ∈ Bn−1. Similarly, the major index is

maj(π, ε) :=
∑

j∈D(π,ε)

(j − 1)

and the comajor index is

comaj(π, ε) :=
∑

j∈D(π,ε)

(n− j)

for (π, ε) ∈ Bn−1. It follows that we have the relationship

(9) comaj(π, ε) = (n− 1)des(π, ε)−maj(π, ε) .

4.1. The multivariate generating function. In this situation, Corollary 2.9 spe-
cializes as follows.

Proposition 4.2. Fix integers 0 ≤ a1 ≤ · · · ≤ an−1 6= 0. Let

C := {x ∈ Rn | ∀π ∈ Sn−1, ε ∈ {±1}n−1 :

ε1a1xπ(1) + · · ·+ εn−1an−1xπ(n−1) ≤ xn} .

The generating function of C with respect to Zn is

fC =
1

1− zn

∑

π∈Sn−1

∑

ε∈{±1}n−1

∏

j∈D(π,ε)

∏n−1
i=j zεiπ(i)z

ai
n

∏n−1
j=1

(

1−
∏n−1

i=j zεiπ(i)z
ai
n

) .

Note that the condition on the ai to be nonnegative and increasing is a normal-
ization rather than a restriction.

Proof. The cone C is symmetric and monoconditional for W . Let

F := {x ∈ Rn | 0 ≤ x1 ≤ · · · ≤ xn−1} ,

a fundamental domain for W . The s1, . . . , sn−1 defined previously are the simple
generators of W corresponding to F . Let x0 := (a1, . . . , an−1,−1) ∈ F . By the
proof of Lemma 2.5,

C+ = {x ∈ F | (x, x0) ≤ 0} = {x ∈ F | a1x1 + · · ·+ an−1xn−1 ≤ xn}

= {x ∈ Rn | Ax ≥ 0} ,
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where

A =























1

1

−1

−1

0 0

0

0

0 0

−a1 −an−1 1























.

The matrix A and hence C+ is unimodular. Let b1, . . . , bn be the primitive gener-
ators of C+, enumerated in the unique way such that bj /∈ Hj for j < n. Then by
Corollary 2.9, the generating function of C is

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

(1− zσb1) · · · (1− zσbn)
.

The inverse of A is

B := A−1 =



















1

1 1

0 0

0

Σ1 Σn−1 1



















,

where Σj := aj + · · ·+ an−1. Then bj is the jth column vector of B. Let

bij :=











0 if i < j,

1 if j ≤ i < n or i = j = n,

Σj if j < i = n

be the ith component of bj , i.e., the (i, j)th component of B. By Proposition 4.1
and using our notation introduced at the beginning of this section,

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

∏n
j=1(1− zσbj )

=
∑

(π,ε)∈Bn−1

∏

j∈Dr(σπ,ε)
zσπ,εbj

∏n
j=1(1− zσπ,εbj )

=
∑

(π,ε)∈Bn−1

∏

j∈D(π,ε)

∏n
i=1 z

εibij
π(i)

∏n
j=1

(

1−
∏n

i=1 z
εibij
π(i)

)

=
1

1− zn

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε)

∏n−1
i=j zεiπ(i)z

ai
n

∏n−1
j=1

(

1−
∏n−1

i=j zεiπ(i)z
ai
n

) . �

4.2. Hyperoctahedral Eulerian polynomials. In the remainder of section 4, we
provide applications of Proposition 4.2 with connections to permutation statistics
and Ehrhart theory. Our first application is well known, going back to [7] and [11];
the polyhedral perspective of the following identity was first established in [11], also
using Ehrhart theory.
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Corollary 4.3 ([7], [11]). The hyperoctahedral Eulerian polynomials are given by

∑

(π,ε)∈Bn−1

tdes(π,ε) = (1− t)n
∞
∑

k=0

(2k + 1)n−1tk .

Proof. Let

P = [−1, 1]n−1 .

be the (n − 1)-dimensional hypercube. Our strategy to prove Corollary 4.3 is to
compute the Ehrhart series

EhrP (t) :=
∑

k≥0

|kP ∩ Zn−1| · tk

of P in two different ways and to conclude by comparing the results.
On the one hand, note that the cone C over P ,

C = {x ∈ Rn | ∀j < n : |xj | ≤ xn} ,

is the cone considered in Proposition 4.2 for a1 = · · · = an−2 = 0, an−1 = 1, so by
Proposition 4.2 its generating function is

fC =
1

1− zn

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε)

(

zn
∏n−1

i=j zεiπ(i)

)

∏n−1
j=1

(

1− zn
∏n−1

i=j zεiπ(i)

) .

Since EhrP (t) is obtained by evaluating fC at z1 = · · · = zn−1 = 1, zn = t, we
obtain

EhrP (t) =
1

1− t

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε) t
∏n−1

j=1 (1− t)

=
1

(1− t)n

∑

(π,ε)∈Bn−1

tdes(π,ε) .

On the other hand, by definition

EhrP (t) =
∑

k≥0

(2k + 1)n−1tk .

Together, we obtain

1

(1− t)n

∑

(π,ε)∈Bn−1

tdes(π,ε) =
∑

k≥0

(2k + 1)n−1tk

and Corollary 4.3 follows. �

4.3. The distribution of the comajor index. We show here how to derive the
distribution of the comajor index; while this is likely well known, we could not find
an explicit statement in the literature. For k ∈ N and a variable t, let

[k]t := 1 + t+ t2 + · · ·+ tk−1 and [k]t! := [1]t[2]t · · · [k]t .

Corollary 4.4. The distribution of the comajor index on the hyperoctahedral group

is given by
∑

(π,ε)∈Bn−1

tcomaj(π,ε) = (1 + t)n−1 [n− 1]t! .
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Proof. Let

P = {x ∈ Rn−1 | |x1|+ · · ·+ |xn−1| ≤ 1}

be the (n − 1)-dimensional cross-polytope. Our strategy to prove Corollary 4.4 is
to compute the Ehrhart series

EhrP (t) :=
∑

k≥0

|kP ∩ Zn−1| · tk

of P in two different ways and to conclude by comparing the results.
On the one hand, note that the cone C over P ,

C = {x ∈ Rn | |x1|+ · · ·+ |xn−1| ≤ xn} ,

is the cone considered in Proposition 4.2 for a1 = · · · = an−1 = 1, so by Proposition 4.2
its generating function is

fC =
1

1− zn

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε)

∏n−1
i=j zεiπ(i)zn

∏n−1
j=1

(

1−
∏n−1

i=j zεiπ(i)zn

) .

Since EhrP (t) is obtained by evaluating fC at z1 = · · · = zn−1 = 1, zn = t, we
obtain

EhrP (t) =
1

1− t

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε)

∏n−1
i=j t

∏n−1
j=1

(

1−
∏n−1

i=j t
)

=

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε) t
n−j

(1− t)
∏n−1

j=1 (1− tn−j)

=

∑

(π,ε)∈Bn−1
tcomaj(π,ε)

(1− t)
∏n−1

j=1 (1− tn−j)
.

On the other hand, it is known [3, Theorem 2.7] that

EhrP (t) =
(1 + t)n−1

(1− t)n
.

Together, we obtain
∑

(π,ε)∈Bn−1
tcomaj(π,ε)

(1− t)
∏n−1

j=1 (1− tn−j)
=

(1 + t)n−1

(1− t)n
,

so

∑

(π,ε)∈Bn−1

tcomaj(π,ε) =
(1 + t)n−1(1− t)

∏n−1
j=1 (1− tn−j)

(1 − t)n

=
(1 + t)n−1

∏n−1
j=1 (1 − tn−j)

(1− t)n−1

= (1 + t)n−1
n−1
∏

j=1

1− tn−j

1− t

= (1 + t)n−1 [n− 1]t! . �
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Figure 2. The rational polytope P = {x ∈ R3 | |x1|+ |x2|+ |x3|+
max {|x1|, |x2|, |x3|} ≤ 1}. Its Ehrhart series can be computed by
Corollary 4.6.

Remark 4.5. The distributions for the descent and comajor index statistics on Bn

arise from studying simple choices of the ai from the set of 0/1-vectors. It would be
interesting to determine the structure of the multivariate generating functions (or
their specializations) when other 0/1-vectors are used; due to the hyperoctahedral
symmetry of our cones, this amounts to studying the case

(a1, a2, . . . , an−1) = (0, . . . , 0, 1, . . . , 1) .

The resulting cones interpolate naturally between cones over hypercubes and cones
over crosspolytopes. While we were not able to treat this family of polytopes using
the methods exposed in this article, the following section shows how to do so for a
different interpolation.

4.4. Almost constant coefficients. In this section, we show how to use Proposition 4.2
to obtain a closed form expression for the Ehrhart series of a family of rational poly-
topes interpolating between the hypercube and the cross polytope (considered in
subsections 4.2 and 4.3, respectively). These are the polytopes P such that the
cone over P is of the form considered in Proposition 4.2 such that a1 through an−2

coincide. An example of such a polytope is shown in Figure 2.

Corollary 4.6. Let b, c ≥ 0, not both 0. Let

P = {x ∈ Rn−1 | c · (|x1|+ · · ·+ |xn−1|) + b ·max {|x1|, . . . , |xn−1|} ≤ 1} .
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Then the Ehrhart series of P is

EhrP (t) =

{

[c]t(1 + tc)n−1/(1− tc)n if b = 0,

[b]t
∑

k≥0 ([k + 1]tc + tc[k]tc)
n−1

tbk if b ≥ 1.

Proof. In Proposition 4.2, we set a1 = · · · = an−2 = c and an−1 = c + b. Then
EhrP (t) = fC(t) := fC(1, . . . , 1, t), the generating function of C evaluated at
z1, . . . , zn−1 = 1, zn = t.

For b > 0, the generating function fC(t) becomes

fC(t) =

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε) t
c(n−j)+b

(1 − t)
∏n−1

j=1 (1 − tc(n−j)+b)

=

∑

(π,ε)∈Bn−1
(tc)comaj(π,ε)(tb)des(π,ε)

(1− t)
∏n−1

j=1 (1− (tc)jtb)
.

For c ≥ 1, if b = 0 then fC(t) = fP (t
c)[c]t where P is the (n − 1)-dimensional

crosspolytope discussed in subsection 4.3; this can be seen by direct computation
using Proposition 4.2, and is also a consequence of the fact that crosspolytopes are
reflexive [3, Chapter 4]. Otherwise, to simplify, we make use of a result of Chow
and Gessel [8, eq. (26)] to compute the joint distribution of descent and comajor
index over Bn, namely

(10)
∑

k≥0

([k + 1]q + [k]q)
nxk =

∑

(π,ε)∈Bn
xdes(π,ε)qmaj(π,ε)

∏n
j=0(1− xqi)

.

Observe that for (π, ε) ∈ Bn, using (9),

qcomaj(π,ε) = (qn)des(π,ε)(1/q)maj(π,ε).

Thus, substituting into (10), we get

∑

(π,ε)∈Bn

xdes(π,ε)qcomaj(π,ε) =
∑

(π,ε)∈Bn

(xqn)des(π,ε)(1/q)maj(π,ε)

=
n
∏

i=0

(1− xqn−i)
∑

k≥0

([k + 1]1/q + [k]1/q)
n(xqn)k

=

n
∏

i=0

(1− xqi)
∑

k≥0

([k + 1]q + q[k]q)
n(x)k.

To get the numerator of fC(t), we set n = n− 1, x = tb and q = tc in the last line
above and get:

fC(t) =

∏n−1
i=0 (1− tci+b)

∑

k≥0([k + 1]tc + tc[k]tc)
n−1tbk

(1− t)
∏n−1

j=1 (1− tcj+b)

=[b]t
∑

k≥0

([k + 1]tc + tc[k]tc)
n−1tbk. �
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4.5. Coefficients in arithmetic progression and lecture hall partitions. If
we further generalize the results of the previous subsections to allow ai to be a
linear function of i, then fC(t) can be expressed in terms of lecture hall partitions.

Lecture hall partitions, introduced by Bousquet-Mélou and Eriksson [6], are
elements of the set

Ln = {λ ∈ Zn | 0 ≤ λ1

1 ≤ λ2

2 ≤ · · · ≤ λn

n } .

The following relationship between statistics on lecture hall partitions and sta-
tistics on signed permutations follows from work of Pensyl and Savage [10]:

(11)
∑

λ∈Ln

x⌈
λn
2n ⌉qstat1(λ)ystat2(λ) =

∑

(π,ε)∈Bn
qcomaj(π,ε)xdes(π,ε)(y2)cobin(π,ε)

∏n−1
i=0 (1 − xqn−iy2((i+1)+···+n))

,

where

stat1(λ) =
n
∑

i=1

⌈

λi

2i

⌉

, stat2(λ) =
n
∑

i=1

2i

⌈

λi

2i

⌉

,

cobin(π, ε) =
∑

j∈D(π,ε)

(j + · · ·+ n)

for λ ∈ Ln, (π, ε) ∈ Bn, and ⌈x⌉ = inf([x,∞) ∩ Z).
We can apply Proposition 4.2, with z1 = · · · = zn−1 = 1, zn = t and appropriate

choices of ai, to establish a surprising connection between lecture hall partitions
and type B symmetrically constrained cones.

Corollary 4.7. Let d ≥ 0, c ≥ −2d, and b ≥ 0, not all 0. Define a1, . . . , an−1 by

ai = 2di+ c (i = 1, . . . , n− 2), an−1 = 2d(n− 1) + c+ b .

Then

fC(t) =
1

1− t

∑

λ∈Ln−1

t
∑n−1

i=1 ai

⌈

λi
2i

⌉

.

Proof. Observe that for 1 ≤ i ≤ n−2, substituting the values of ai into Proposition 4.2
with z1 = · · · = zn−1 = 1, zn = t, and then using (11), we obtain

fC(t) =

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε) t
aj+···+an−1

(1− t)
∏n−1

j=1 (1− taj+···+an−1)

=

∑

(π,ε)∈Bn−1

∏

j∈D(π,ε) t
b+(n−j)c+2d(j+···+(n−1))

(1 − t)
∏n−1

i=1 (1 − t(b+c(n−i)+2d(i+···+(n−1))

=

∑

(π,ε)∈Bn−1
(tc)comaj(π,ε)(tb)des(π,ε)(t2d)cobin(π,ε)

(1− t)
∏n−1

i=1 (1− t(b+c(n−i)+2d(i+···+(n−1))

=

∑

(π,ε)∈Bn−1
(tc)comaj(π,ε)(tb)des(π,ε)(t2d)cobin(π,ε)

(1− t)
∏n−1

i=1 (1− t(b+c(n−i)+2d(i+···+(n−1))

=
1

1− t

∑

λ∈Ln−1

t
b
⌈

λn−1
2n−2

⌉

+c stat1(λ)+d stat2(λ)

=
1

1− t

∑

λ∈Ln−1

t
∑n−1

i=1 ai

⌈

λi
2i

⌉

. �
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As an example, let n = 3, a1 = 2 and a2 = 4. Then

C = {x ∈ R3 | ∀π ∈ S2, ε ∈ {±1}2 : 2ε1xπ(1) + 4ε2xπ(2) ≤ x3} ,

and from Proposition 4.2,

∑

x∈C

tx3 =
1 + 3t3 + 3t6 + t10

(1− t)(1− t6)(1− t4)

= 1 + t+ t2 + t3 + 5t4 + 5t5 + 9t6 + 9t7 + 13t8 + 13t9 + · · · .

On the other hand, checking the corollary, we have

1

1− t

∑

λ∈L2

t2⌈
λ1
2 ⌉+4⌈λ2

4 ⌉ =
1 + 4t4 + 4t6 + 4t8 + 8t10 + 8t12 + 8t14 + · · ·

1− t

= 1 + t+ t2 + t3 + 5t4 + 5t5 + 9t6

+ 9t7 + 13t8 + 13t9 + · · · .

5. Cones with symmetry of type D

In this section, we consider the case of monoconditional cones with symmetry
given by a Coxeter group of type D. Unsurprisingly, much of the setup in this
section is similar to the hyperoctahedral case; the most notable new feature is that
we consider lattice point enumeration with respect to a sublattice of the standard
integer lattice.

Throughout this section, let W be the finite reflection group of type Dn−1 on
the first n − 1 components of Rn. Specifically, let s1 ∈ O(n) be the reflection at
the hyperplane {x ∈ Rn | x1 + x2 = 0}. For j = 2, . . . , n− 1, let sj ∈ O(n) be the
transposition of the (j − 1)st and jth component in Rn. Then s1, . . . , sn−1 are the
simple generators of W .

We next describe Dr(σ) and the action of W explicitly. Let

En−1 := {ε ∈ {±1}n−1 | ε1 · · · εn−1 = 1} .

For π ∈ Sn−1 and ε ∈ En−1, define σπ,ε ∈ O(n) by σπ,εei = εieπ(i) for i < n and
σπ,εen = en. Then W = {σπ,ε | π ∈ Sn−1, ε ∈ En−1}. We use the convention that
π(n) := n for π ∈ Sn−1 and εn := 1 for ε ∈ En−1.

For π ∈ Sn−1 and ε ∈ En−1 let

D(π, ε) := {j ∈ {1, . . . , n− 1} | εj−1π(j − 1) > εjπ(j)}

with the convention that ε0π(0) := −ε2π(2).

Proposition 5.1 ([4, Proposition 8.2.2]). For all σπ,ε ∈ W we have

Dr(σπ,ε) = D(π, ε) .

For a proposition P , we use the symbol

[P ] :=

{

1 if P is true,

0 if P is false.

Proposition 5.2. Fix integers a1, . . . , an−1 such that |a1| ≤ a2 ≤ · · · ≤ an−1 6= 0.
Let

C := {x ∈ Rn | ∀π ∈ Sn−1, ε ∈ En−1 :

ε1a1xπ(1) + · · ·+ εn−1an−1xπ(n−1) ≤ xn} .
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Let

Γ := {x ∈ Zn | x1 ≡ · · · ≡ xn−1 mod (2)}.

The generating function of C with respect to Γ is

fC =
1

1− zn

∑

π∈Sn−1

∑

ε∈En−1

∏

j∈D(π,ε)

(

z−ε1
π(1)z

−a1
n

)[j=2] (
∏n−1

i=j zεiπ(i)z
ai
n

)1+[j≥3]

∏n−1
j=1

(

1−
(

z−ε1
π(1)z

−a1
n

)[j=2] (
∏n−1

i=j zεiπ(i)z
ai
n

)1+[j≥3]
) ,

where z1, . . . , zn are the coordinates corresponding to the standard lattice Zn ⊂ Rn.

Note that the conditions on the ai are normalizations rather than restrictions.

Proof. The cone C is symmetric and monoconditional for W . Let

F := {x ∈ Rn | |x1| ≤ x2 ≤ · · · ≤ xn−1} ,

a fundamental domain for W . Our simple generators s1, . . . , sn−1 defined at the
beginning of this section are the simple generators of W corresponding to the facets
of F . Let x0 := (a1, . . . , an,−1) ∈ F . By the proof of Lemma 2.5,

C+ = {x ∈ F | (x, x0) ≤ 0} = {x ∈ F | a1x1 + · · ·+ an−1xn−1 ≤ xn}

= {x ∈ Rn | Ax ≥ 0} ,

where

A :=























1

1

−1

−1

1 1 0 0

0 0

0

0

0 0

−a1 −an−1 1























.

The inverse of A is

A−1 =

























1/2 −1/2

1/2

1/2

1/2

1/2

1

1 1

0 0

0 0

0

Σ1/2 Σ′
2/2 Σ3 Σn−1 1

























,

where Σj := aj + · · ·+ an−1 and Σ′
2 := Σ2 − a1. Hence the Γ-primitive generators

of C+ are the column vectors b1, . . . , bn of the matrix

B :=























1 −1

1

1

1

1

2

2 2

0 0

0 0

0

Σ1 Σ′
2 2Σ3 2Σn−1 1























.
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As det(B) = 2n−2 = |Zn/Γ| it follows that C+ is unimodular. Note that b1, . . . , bn
are enumerated in the unique way such that bj 6∈ Hj for j < n, where Hj is the
reflection hyperplane for the reflection sj . Hence by Corollary 2.9 the generating
function of C is

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

(1− zσb1) · · · (1− zσbn)
.

Let

bij :=







































−1 if i = 1, j = 2,

1 if j ≤ i < n or i = j = n,

0 if i < j ≥ 2,

Σ1 if i = n, j = 1,

Σ′
2 if i = n, j = 2,

2Σj if i = n, 2 < j < n

be the ith component of bj , i.e., the (i, j)th component of B. Thus

fC =
∑

σ∈W

∏

j∈Dr(σ)
zσbj

∏n
j=1(1− zσbj )

=
∑

π∈Sn−1

∑

ε∈En−1

∏

j∈Dr(σπ,ε)
zσπ,εbj

∏n
j=1(1− zσπ,εbj )

=
∑

π∈Sn−1

∑

ε∈En−1

∏

j∈D(π,ε)

∏n
i=1 z

εibij
π(i)

∏n
j=1

(

1−
∏n

i=1 z
εibij
π(i)

)

=
1

1− zn

∑

π∈Sn−1

∑

ε∈En−1

∏

j∈D(π,ε)

(

z−ε1
π(1)z

−a1
n

)[j=2] (
∏n−1

i=j zεiπ(i)z
ai
n

)1+[j≥3]

∏n−1
j=1

(

1−
(

z−ε1
π(1)z

−a1
n

)[j=2] (
∏n−1

i=j zεiπ(i)z
ai
n

)1+[j≥3]
) .�
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