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Hereditary Polytopes

Mark Mixer, Egon Schulte and Asia Ivić Weiss

With best wishes to our friend and colleague Peter McMullen.

Abstract Every regular polytope has the remarkable property that it inherits all sym-
metries of each of its facets. This property distinguishes anatural class of polytopes
which are called hereditary. Regular polytopes are by definition hereditary, but the
other polytopes in this class are interesting, have possible applications in modeling
of structures, and have not been previously investigated. This paper establishes the
basic theory of hereditary polytopes, focussing on the analysis and construction of
hereditary polytopes with highly symmetric faces.

1 Introduction

In the classical theory of convex polyhedra, the Platonic and Archimedean solids
form a natural class of highly symmetric objects. The symmetry group of each of
these polyhedra acts transitively on its vertices. If we restrict to those solids whose
symmetry groups also act transitively on their edges, only the regular polyhedra,
the cuboctahedron, and the icosidodecahedron remain. These polytopes all have the
distinguishing property that every symmetry of their polygonal faces extends to a
symmetry of the solid. In fact, if we look for convex “hereditary” polyhedra (those
having this property of inheriting all the symmetries of their faces) with regular
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faces, we find that vertex and edge transitivity is implied (as we shall see in a more
general setting in Section 4).

It is natural to generalize this idea of hereditary polyhedra to the setting of ab-
stract polytopes of any rank. In this paper we study those polytopes that have the
property of inheriting all symmetries of their facets. The formal definition of a
hereditary polytope can be found in Section 2, along with other basic notions re-
quired for the understanding of this paper.

An abstract polytope of rank 3 can be seen as a map, that is a 2-cell embedding of
a connected graph into a closed surface. Regular and chiral maps have been studied
extensively in the past (see for example [3], [8]), and form anatural class of highly
symmetric maps. In some older literature, chiral maps are labeled as regular, as
locally they are regular in the following sense. The symmetry group of a chiral map
acts transitively on the vertices, edges, and faces, and themaps have the maximal
possible rotational symmetry. However, none of the reflectional symmetry of any
of the faces of a chiral map extends to a global symmetry. Therefore chiral maps,
although highly symmetric, are not hereditary in our sense.

The non-regular hereditary maps are the 2-orbit maps which are vertex and edge
transitive. This type of map has been extensively studied (see for example [10],
[14],[27]). It will be shown that certain 2-orbit polytopeswill always be heredi-
tary (see Theorem 2). However, the characterization of hereditary polytopes of rank
greater than three is complex.

In Section 3, we consider how various transitivity properties of the facets affect
the transitivity properties of a hereditary polytope. Section 4 deals with polytopes
with regular facets, with an emphasis on hereditary polyhedra. In Section 5, we
consider polytopes with chiral facets, and prove the existence of certain hereditary
polytopes of this type. In Section 6, some questions regarding the extensions of
hereditary polytopes are considered. We conclude with a brief section which sug-
gests some interesting problems for related work.

2 Basic notions

Following [19], apolytopeP of rank n, or ann-polytope, is a partially ordered
set of faces, with a strictly monotone rank function having range{−1, . . . ,n}. The
elements ofP with rank j are calledj-faces; typicallyFj indicates aj-face. Achain
of type{i1, . . . , ik} is a totally ordered set faces of ranks{i1, . . . , ik}. The maximal
chains ofP are called flags. We require thatP have a smallest(−1)-faceF−1, a
greatestn-faceFn and that each flag contains exactlyn+2 faces. Also,P should
be strongly flag-connected, that is, any two flagsΦ andΨ of P can be joined
by a sequence of flagsΦ := Φ0,Φ1, . . . ,Φk =: Ψ such that eachΦi andΦi+1 are
adjacent(in the sense that they differ by just one face), andΦ ∩Ψ ⊆ Φi for each
i. Furthermore, we require the following homogeneity property: wheneverF < G,
with rank(F) = j−1 and rank(G) = j+1, then there are exactly twoj-facesH with
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F < H < G. Essentially, these conditions say thatP shares many combinatorial
properties with the face lattice of a convex polytope.

If Φ is a flag, then we denote thei-adjacent flagby Φ i , that is the unique flag
adjacent toΦ and differing from it in the face of ranki. More generally, we define
inductivelyΦ i1,...,ik := (Φ i1,...,ik−1)ik for k ≥ 2. Note that if|i − j| ≥ 2, thenΦ i, j =
Φ j ,i ; otherwise in general,Φ i, j 6= Φ j ,i .

The faces of rank 0, 1, andn−1 are calledvertices, edges, and facets, respec-
tively. We will sometimes identify a facetFn−1 with the sectionFn−1/F−1 when there
is no chance for confusion. IfF is a vertex, the sectionFn/F := {G|F ≤ G≤ Fn} is
called thevertex-figureof P at F . A polytope is said to beequivelarof (Schläfli)
type{p1, . . . , pn−1} if each sectionFi+1/Fi−2 is combinatorially equivalent to api-
gon. Additionally, if the facets ofP are all isomorphic to an(n−1)-polytopeK

and its vertex-figures are all isomorphic to an(n−1)-polytopeL , then we sayP
is of type{K ,L }. (This is a small change of terminology from [19].)

The set of all automorphisms ofP is a group denoted byΓ (P) and called the
automorphism groupof P. For 0≤ i ≤ n− 1, ann-polytopeP is called i-face
transitiveif Γ (P) acts transitively on the set ofi-faces ofP. In addition,P is said
to be{0,1, . . . , i}-chain transitiveif Γ (P) acts transitively on the set of chains of
P of type{0,1, . . . , i}.

A polytopeP is said to beregular if Γ (P) acts transitively on the flags, that is
if P is {0,1, . . . ,n− 1}-chain transitive. The automorphism group of a regularn-
polytope is known to be astring C-group(a smooth quotient of a Coxeter group with
a linear diagram, which satisfies a specified intersection condition), and is generated
by involutionsρ0, . . . ,ρn−1, which are called thedistinguished generatorsassociated
with a flagΦ, and defined as follows. Eachρi mapsΦ to Φ i . These generators for
a polytope of Schläfli type{p1, . . . , pn−1} satisfy relations of the form

(ρiρ j)
pi j = ε for i, j = 0, . . . ,n−1, (1)

wherepii = 1, pi j = p ji := p j if j = i + 1, andpi j = 2 otherwise. When the sec-
tionsFn−1/F−1 of a polytopeP are themselves regular, we way thatP is regular-
facetted.

A polytopeP is said to bechiral if there are two orbits of flags under the action
of Γ (P) and adjacent flags are in different orbits. In this case, given a flagΦ =
{F−1, . . . ,Fn} of P there exist automorphisms, which are also called distinguished
generators,σ1, . . . ,σn−1 of P such that eachσi fixes all faces inΦ \ {Fi−1,Fi} and
cyclically permutes consecutivei-faces ofP in the rank 2 section ofFi+1/Fi−2.
Each chiral polytope comes in twoenantiomorphic forms; one associated with a
base flagΦ and the other with any of its adjacent flags. When the sectionsFn−1/F−1

of a polytopeP are themselves chiral, we say thatP is chiral-facetted.
A polytopeP is said to bek-orbit if there arek orbits of flags under the action

of Γ (P). In the case of 2-orbit polytopes, ifi-adjacent flags are in the same orbit
for i ∈ I and in different orbits fori 6∈ I , then we say thatP is in theclass2I .

Finally, a polytopeP is calledhereditaryif for each facetF of P the group
Γ (F/F−1) of the corresponding sectionF/F−1 is a subgroup ofΓ (P); in fact, then
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Γ (F/F−1) is a subgroup ofΓF(P), the stabilizer ofF in Γ (P). More informally,
P is hereditary if every automorphism of every facetF extends to an automorphism
of P which fixesF .

3 Transitivity on faces

We begin with a number of basic properties of hereditary polytopes which have
highly-symmetric facets.

Proposition 1. If an n-polytopeP is hereditary and each facet is{0,1, . . . , i}-chain
transitive for some i with i≤ n− 2, thenP is {0,1, . . . , i}-chain transitive, and
hence the i-faces ofP are mutually isomorphic regular i-polytopes.

Proof. Let Φ andΨ be two chains ofP of type{0,1, . . . , i}. SinceP is strongly
flag-connected andi ≤ n−2, there exists a sequenceΦ := Φ0,Φ1, . . . ,Φk :=Ψ of
chains of type{0,1, . . . , i} such that, forj = 1, . . . ,k, all faces ofΦ j−1 andΦ j are
incident to a common facetH j . As each facet is transitive on chains of this type,
there is an automorphism ofH j mappingΦ j−1 to Φ j . These automorphisms of the
facetsH j are also automorphisms ofP, and their composition mapsΦ toΨ . ⊓⊔

In much the same way we can also prove the following proposition, again ap-
pealing to the strong flag-connectedness.

Proposition 2. If an n-polytopeP is hereditary and each facet is i-face transitive
for some i with i≤ n−2, thenP is i-face transitive. In particular, if each facet is
vertex transitive, thenP is vertex transitive.

Proof. Join any twoi-faces ofP by a sequence ofi-faces in which any two con-
secutivei-faces lie in a common facet. Then proceed as in the previous proof. ⊓⊔

Proposition 1 also has the following immediate consequence.

Proposition 3. If an n-polytopeP is hereditary and each facet is regular, then the
(n− 2)-faces ofP are all regular (n− 2)-polytopes mutually isomorphic under
isomorphisms induced by automorphisms ofP.

Our main interest is in hereditary polytopes all of whose facets are either regular
or chiral. The following theorem says that any such polytopemust have its facets
either all regular or all chiral. In other words, the “mixed-case” does not occur.

Theorem 1. If P is a hereditary polytope with each facet either regular or chiral,
then either each facet ofP is regular or each facet ofP is chiral.

Proof. SupposeP has at least one regular facet. We prove that then each facet of
P must be regular. By the connectedness properties ofP it suffices to show that
each facet adjacent to a regular facet must itself be regular.
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Let H be a regular facet, and letH ′ be an adjacent facet meetingH in an (n−
2)-faceG. Let Ω be a flag ofH/F−1 containingG. SinceH is regular, its group
Γ (H/F−1) contains a “reflection”ρH

0 which mapsΩ to Ω0, the 0-adjacent flag of
Ω in H/F−1. SinceP is hereditary,ρH

0 extends to an automorphism ofP, again
denotedρH

0 , which takes the flagΨ := Ω ∪{Fn} of P to Ψ0. But ρH
0 fixesH and

G, so must necessarily fixH ′ as well and hence belong toΓ (H ′/F−1). Moreover,
ρH

0 maps the flagΩ ′ := (Ω \ {H})∪{H ′} of H ′/F−1 to its 0-adjacent flag(Ω ′)0.
ThusΓ (H ′/F−1) contains an element which takes a flag ofH ′/F−1 to an adjacent
flag. On the other hand, each facet ofP is regular or chiral, soH ′ must necessarily
be regular. Bear in mind here that a chiral polytope does not admit an automorphism
mapping a flag to an adjacent flag.⊓⊔

A hereditary polytope with some of its facets regular, need not have all of its
facets regular. This is illustrated by the example of the semiregular tessellationT
of Euclidean 3-space by regular tetrahedra and (vertex) truncated regular tetrahedra.
This tessellation is related to the Petrie-Coxeter polyhedron {6,6|3}. The facets
(tiles) of T are of two kinds, namely (regular) Platonic solids and (semiregular)
Archimedean solids, or more precisely, truncated Platonicsolids. This tessellation
is a hereditary 4-orbit polytope of rank 4.

More examples arise in a similar way from the semiregular tessellations of the 3-
sphereS3 or hyperbolic 3-spaceH3 related to the regular skew polyhedra{2l ,2m| r}
in these spaces. Their tiles are Platonic solids{r,m} and (vertex) truncated Platonic
solids{l , r}. These tessellations can be derived by Wythoff’s construction applied
to the spherical or hyperbolic 4-generator Coxeter group with square diagram

s s

s s

❤

❤

l m

r

r

(2)

More details, including a list of the various possible choices forl ,m, r, can be found
in [5, 17, 24]. The semiregular tessellationT in E

3 mentioned earlier is obtained
in a similar fashion from the Euclidean Coxeter group given by the diagram in (2)
with l = m= r = 3.

4 Hereditary polytopes with regular facets

In this section we investigate hereditary polytopes which are regular-facetted. We
show that each such polytope is either itself regular or a 2-orbit polytope.
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4.1 Flag-orbits

We begin with the following observation.

Proposition 4. LetP be a regular-facetted hereditary n-polytope. If there exists an
(n−3)-face F such that its co-face Fn/F is a q-gon with q odd, thenP is a regular
n-polytope of Schläfli type {p1, . . . , pn−2,q}, where{p1, . . . , pn−2} is the Schl̈afli
type of any facet ofP.

Proof. The proof exploits the fact that for oddq the dihedral groupDq has just one
conjugacy class of reflections. Geometrically speaking this means that the reflection
mirror bisecting an edge of a convex regularq-gon also bisects the angle at the
opposite vertex. This conjugacy class then generatesDq.

First observe that, by Proposition 2, the groupΓ (P) is transitive on the(n−3)-
faces ofP sinceP has regular facets. (This already implies thateachco-face of an
(n−3)-face is aq-gon.) Now, if we can show that the stabilizer of an(n−3)-face in
Γ (P) acts transitively on the flags ofP containing that(n−3)-face, then clearly
Γ (P) acts flag-transitively onP and henceP must be regular.

Now supposeF is an(n−3)-face such thatFn/F is aq-gon. Clearly, since the
facets ofP are regular,F is also regular and its groupΓ (F/F−1) is a subgroup of
the automorphism group of any facet ofP that containsF. Moreover, sinceP is
hereditary,Γ (F/F−1) is also a subgroup ofΓ (P) acting flag-transitively onF/F−1

and trivially onFn/F .
On the other hand, ifH is any facet ofP containingF , then there exists a unique

involutionρH
n−2 (say) inΓ (H/F−1) which fixes a flag ofF/F−1 and interchanges the

two (n−2)-faces ofH containingF. Now, sinceq is odd, the reflectionsρH
n−2, with

H a facet containingF , generate a subgroup isomorphic to the dihedral groupDq.
Hence, since this subgroup acts flag-transitively onFn/F and trivially onF/F−1, it
can be identified withΓ (Fn/F).

ThenΓF(P) = Γ (F/F−1)×Γ (Fn/F), andΓF(P) acts transitively on the flags
of P that containF . ⊓⊔

The following theorem says that the hereditary polytopes with regular facets fall
into two classes.

Theorem 2. A regular-facetted n-polytope is hereditary if and only if it is regular or
a 2-orbit polytope in the class2{0,1,...,n−2}.

Proof. Let P be a regular-facetted hereditaryn-polytope. As before,P is (n−3)-
face transitive. LetF be any(n− 3)-face ofP. We must show that the stabilizer
ΓF(P) has at most two orbits on the set of flags ofP containingF . SinceF is
regular andP is hereditary,Γ (F/F−1) is again a subgroup ofΓF(P) acting flag-
transitively onF/F−1 and trivially onFn/F.

As in the previous proof, for each facetH of P containingF , there exists a
unique involutionρH

n−2 (say) inΓ (H/F−1) which fixes a flag ofF/F−1 and inter-
changes the two(n− 2)-faces ofH containingF. Suppose the co-faceFn/F is a
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q-gon, allowingq= ∞. By Proposition 4, ifq is odd, thenP is regular and we are
done.

Now supposeP is not regular. Thenq is even orq = ∞. In this case the sub-
groupΛ of ΓF(P) generated by the involutionsρH

n−2, with H a facet containingF ,
is isomorphic to a dihedral groupDq/2; when restricted to theq-gonal co-faceFn/F,
these involutionsρH

n−2 generate a subgroup of index 2 in the full dihedral automor-
phism groupDq of Fn/F. HenceΛ , restricted toFn/F, has two flag-orbits onFn/F.
It follows thatΓF(P) =Γ (F/F−1)×Λ , and thatΓF(P) has two orbits on the flags
of P that containF . ThusP is a 2-orbit polytope. Moreover, sinceP is hereditary
and the facets ofP are regular,Γ (P) contains the distinguished generators for the
group of any facet ofP, soP is necessarily of type 2I with {0, . . . ,n−2} ⊆ I . On
the other hand, sinceP itself is not regular, no flag can be mapped onto its(n−1)-
adjacent flag by an automorphism ofP. HenceP must be a 2-orbit polytope in the
class 2{0,1,...,n−2}.

Conversely, ifP is in the class 2{0,1,...,n−2}, then it has regular facets, and since
all flags that contain a mutual facet are in the same orbit, it is hereditary.

⊓⊔

Note that every 2-orbit polytopeP in the class 2{0,1,...,n−2} necessarily has reg-
ular facets, generally of two different kinds. In particular, P has a generalized
Schläfli symbol of the form

{

p1, . . . , pn−3,
pn−2

qn−2

}

,

where{p1, . . . , pn−3, pn−2} and{p1, . . . , pn−3,qn−2} are the ordinary Schläfli sym-
bols for the two kinds of facets (see [15]). This is a generalization of the classical
Schläfli symbol used in Coxeter [6] for semiregular convex polytopes.

We now describe some examples of regular-facetted hereditary polytopes of low
rank, concentrating mainly on rank 3. All regular polytopesare hereditary and (triv-
ially) regular-facetted, so we consider only non-regular polytopes, which, as we just
proved, must necessarily be 2-orbit polytopes in the class 2{0,1,...,n−2}.

4.2 Hereditary polyhedra

Since all abstract 2-polytopes (polygons) are regular, by Theorem 2, each heredi-
tary polyhedron is (trivially) regular-facetted and henceis either regular or a 2-orbit
polyhedron in the class 2{0,1}. Both the cuboctahedron and the icosidodecahedron
can easily be seen to be hereditary polyhedra. In fact, theseare the only hereditary
polyhedra amongst the Archimedean solids. Similarly, the uniform Euclidean plane
tessellation of type(3.6)2 is an infinite hereditary polyhedron (see [12]).

Recall that themedialof a polyhedron (map)P on a closed surface is the poly-
hedron Me(P) on the same surface whose vertices are the “midpoints” of theedges
of P, and whose edges join two vertices if and only if the corresponding edges of
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P are adjacent edges of a face ofP. All three examples of hereditary polyhedra
just mentioned can be constructed as medials of regular maps, namely of the cube
{4,3}, the dodecahedron{5,3}, and the euclidean plane tessellation{6,3}, respec-
tively.

More generally, given a regular polyhedronP of type{p,q}, the medial Me(P)
is a hereditary polyhedron, and Me(P) is regular if and only ifP is self-dual (see
[21, Theorem 4.1]). This can be quickly seen algebraically.If the automorphism
group of the original polyhedron isΓ (P) = 〈ρ0,ρ1,ρ2〉 (say), thenΓ (Me(P)) is
isomorphic toΓ (P) if P is not self-dual, orΓ (P)⋉C2 if P is self-dual (this
latter group is just the extended group ofP, consisting of all automorphisms and
dualities ofP). WhenP is not self-dual, there are generally two kinds of facets of
Me(P), namelyp-gons corresponding to conjugate subgroups of〈ρ0,ρ1〉 in Γ (P),
andq-gons corresponding to conjugate subgroups of〈ρ1,ρ2〉 in Γ (P); in particular,
whenq= p all facets of Me(P) arep-gons, so Me(P) has facets of just one type
(we describe an example below). This is also true whenP is self-dual; however,
in this case the two subgroups are conjugate in the extended group of P (under
a polarity fixing the base flag). In either case, Me(P) is hereditary since the two
kinds of conjugate subgroups inΓ (P) are also subgroups ofΓ (Me(P)).

Using the medial construction, we can find a finite hereditarypolyhedron with
only one isomorphism type of facet, which, although it has a Schläfli symbol, is
not regular. Consider a non self-dual polyhedron of type{p, p}, for example the
polyhedronP of type {5,5}12 denoted as “N98.6” by Conder [3] (or as{5,5} ∗
1920b by Hartley [13]). The medial ofP is a polyhedron of type{5,4} with the
same automorphism group, of order 1920, but with twice as many flags. Thus this
polyhedron is not regular, but it is still hereditary and of type 2{0,1}.

The previous example is also of independent interest with regards to the follow-
ing problem about the lengths of certain distinguished paths in its edge graph.

Remark 1.In Problem 7 of [26], it is asked to what extent a regular or chiral poly-
hedron of type{p,q} is determined by the lengths of itsj-holes and the lengths
of its j-zigzags. The polyhedronP with 1920 flags, mentioned above, has Petrie
polygons (1-zigzags) of length 12, 2-zigzags of length 5, and 2-holes of length 12.
Thus, we say it is of type{5,5|12}12,5 (see [19, p. 196]). However, calculation in
MAGMA [1] shows that the universal polyhedron of this type has 30720 flags. This
gives an example of a regular polyhedron which is not determined by the lengths of
all of its j-holes and the lengths of all of its j-zigzags.

Every non-regular hereditary polyhedronP, by Proposition 4, has vertex-figures
which are 2q-gons for someq. In particular, by Theorem 2,P is a 2-orbit poly-
hedron in class 2{0,1}. Additionally, Theorem 4.2 of [21] shows that any 2-orbit
polyhedron in class 2{0,1} is the medial of a regular map if and only ifq= 2.

However, there are non-regular hereditary polyhedra whichare not medials of
regular maps. We now define a class of such examples via a map operation which we
call “generalized halving.” The halving operation itself is described in Section 5.3.1.
If K is a regular map of type{2p,q} whose edge graph is bipartite, then we define
a hereditary polyhedronK a (on the same surface asK ) as follows; here “a” stands
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for “alternating vertices” (see also Section 5.3.1). Suppose that the vertices ofK are
coloredred andyellowsuch that adjacent vertices have different colors. The vertex-
figures at the red vertices ofK (obtained by joining the yellow vertices adjacent to
a given red vertex in cyclic order) form one class of facets ofK a. The other class
of facets ofK a is defined by joining the yellow vertices of a facet ofK whenever
they are adjacent to the same red vertex in that facet. The resulting polyhedron has
facets of type{p} and{q}, and vertex-figures of type{2q}. The polyhedronK a is
in the class 2{0,1}, and thus is hereditary.

Hereditary polyhedra can be seen as quotients of the uniformtessellations(p.q)r

of the sphere, Euclidean plane, or hyperbolic plane, which can be derived by
Wythoff’s construction from the(p,q, r) extended triangle group as indicated be-
low (see [6]).

s

s

s

❤

✑
✑
✑
✑✑

◗
◗
◗
◗◗p

q

r

(3)

In particular, the hereditary polyhedra arising as medialsof regular maps of type
{p,q} are quotients of the above infinite tessellations constructed from the(p,q,2)
extended triangle groups. Similarly, the polyhedra arising from our generalized
halving construction of a regular map of type{2p,q} are quotients of the infinite
tessellations constructed from the(p,q,q) extended triangle groups.

Moving on to rank 4, we observe that the semi-regular tessellation of Euclidean
3-space by regular tetrahedra and octahedra gives a simple example of a regular-
facetted hereditary polytope which is not regular. Its geometric symmetry group is
a subgroup of index 2 in the symmetry group of the cubical tessellations of 3-space.
Note that the combinatorial automorphism group of either tessellation is isomorphic
to its symmetry group.

5 Hereditary polytopes with chiral facets

When a hereditary polytope has chiral facets, its rank is at least 4. In this section we
show that any such polytope has either two or four flag-orbits.
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5.1 Flag-orbits

Call an abstract polytopeP equifacettedif its facets are mutually isomorphic. All
regular or chiral polytopes are equifacetted. A 2-orbitn-polytope in a class 2I with
n−1∈ I is also equifacetted.

Theorem 3. A chiral-facetted hereditary n-polytope is a2-orbit polytope which is
either chiral or in class2{n−1} (and hence is equifacetted), or a4-orbit polytope.

Proof. Let P be a chiral-facetted hereditaryn-polytope. First note that we must
haven≥ 4, since the facets of polytopes of rank at most 3 are always regular, not
chiral. By Proposition 2, the polytopeP is (n− 3)-face transitive since its facets
are(n−3)-face transitive. In particular, any flag ofP is equivalent underΓ (P) to
a flag containing a fixed(n−3)-faceF of P. Again we employ the action of the
stabilizerΓF(P) on the set of flags ofP containingF.

Let F be an(n−3)-face ofP, and letΩ be a flag of the sectionF/F−1. For
each facetH of P containingF there exists a unique involutionτH

0,n−2 (say) in
Γ (H/F−1) which interchanges the two(n−2)-faces ofH containingF while fixing
all faces ofΩ except the 0-face. LetΛ denote the subgroup ofΓF(P) generated
by the involutionsτH

0,n−2, with H a facet containingF. Now suppose again that the
2-polytopeFn/F is aq-gon, allowingq= ∞. When restricted to the co-faceFn/F,
the involutionsτH

0,n−2 act like reflections in perpendicular bisectors of edges of a
convex regularq-gon, and so the restrictedΛ is isomorphic to a dihedral groupDq

or Dq/2 according asq is odd or even. HenceΛ , restricted toFn/F, has one or two
flag-orbits on the 2-polytopeFn/F, respectively; in the latter case the two flag-orbits
can be represented by a pair of 1-adjacent flags ofFn/F. Note, however, that unlike
in the case of hereditary polytopes with regular facets,Λ does not act trivially on
the(n−3)-faceF/F−1. (In fact, eachτH

0,n−2 mapsΩ to Ω0, the 0-adjacent flag, so
the restriction ofΛ to F/F−1 is a groupC2.)

Now let G be an(n−2)-face ofP incident withF, and letH andH ′ denote the
two facets ofP meeting atG. ThenΦ := Ω ∪{G,H,Fn} is a flag ofP contain-
ing F . Note that{F,G,H,Fn} and{F,G,H ′,Fn} are 1-adjacent flags of theq-gon
Fn/F which are contained inΦ or Φn−1, respectively. Now letΨ be any flag ofP
containingF . Then two possible scenarios can occur.

First supposeq is odd. Then sinceΛ acts flag-transitively onFn/F , the flagΨ
can be mapped by an element ofΛ to a flagΨ ′ containing{F,G,H,Fn}. Then
Ψ ′ \ {Fn} is a flag of the facetH/F−1, and sinceH/F−1 is chiral, it can be taken by
an automorphism ofH/F−1 to either the flagΦ \ {Fn} of H/F−1 or the j-adjacent
flag (Φ \ {Fn})

j , for any j = 0, . . . ,n−2. ButP is hereditary, so the extension of
this automorphism toP then necessarily mapsΨ ′ to eitherΦ or Φ j . On the other
hand, the two flagsΦ andΦ j are not equivalent underΓ (P), since otherwise the
facets would be regular, not chiral. ThusΓ (P) has two flag-orbits represented by
any pair of j-adjacent flags, withj = 0, . . . ,n−2. HenceP is a 2-orbit polytope,
either of type 2/0 and thenP is chiral, or of type 2{n−1}. (Note that our arguments do
not require the above automorphisms to belong toΓF(P); in fact, whenj = n−3,
and possibly whenj = n−2 with n≥ 5, they will not lieΓF(P).)
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Next supposeq is even. NowΛ acts with two flag-orbits onFn/F , soΨ can be
mapped underΛ to a flagΨ ′ which either contains{F,G,H,Fn} or{F,G,H ′,Fn}. In
the former case,Ψ ′ is as above equivalent toΦ or Φ j , for any j = 0, . . . ,n−2, again
under the extension of a suitable automorphism of the chiralfacetH/F−1 to P. In
the latter case,Ψ ′ is equivalent toΦn−1 or Φn−1, j , for any j = 0, . . . ,n− 2, now
under the extended automorphism of the(n−1)-adjacent facetH ′/F−1 of H/F−1 in
P. As before,Φ andΦ j cannot be equivalent underΓ (P), and neither canΦn−1

andΦn−1, j . Moreover,Φ is equivalent toΦn−1 or Φn−1, j respectively, if and only if
Φ j is equivalentΦn−1, j or Φn−1. HenceP has two or four flag-orbits. If there are
four flag-orbits, then these can be represented byΦ,Φ j ,Φn−1,Φn−1, j , and we are
done. OtherwiseP is a 2-orbit polytope with its two flag-orbits represented byΦ
andΦ j . In this caseP is either of type 2/0 and thenP is chiral, or of type 2{n−1};
accordingly,Φ andΦn−1 represent different, or the same, flag-orbits underΓ (P).
In either case we are done as well, and the proof is complete.⊓⊔

Note that the proof of Theorem 3 shows that the four flag-orbits of a chiral-
facetted hereditary 4-orbitn-polytope P can be represented by the four flags
Ψ ,Ψ 0,Ψn−1,Ψ n−1,0, whereΨ is any flag ofP.

In rank 4, many examples of chiral polytopes with chiral facets are known (see [2,
4, 25]). These are chiral-facetted hereditary polytopes ofthe first kind mentioned in
Theorem 3. By contrast, it is not at all clear that chiral-facetted hereditary polytopes
of the two other kinds actually exist (for any rankn≥ 4). In the remainder of this
section we establish the existence of such examples. We showthat there is a wealth
of chiral-facetted hereditary 2-orbit polytopes in the class 2{n−1} for anyn≥ 4; and
that chiral-facetted hereditary 4-orbit polytopes exist at least in rank 4.

5.2 Chiral-facetted hereditary n-polytopes in class 2{n−1}

We begin by briefly reviewing the cube-like polytopes 2K originally due to Danzer
(see [9, 23] and [19, Section 8D]).

Let K be a finite abstract(n−1)-polytope with vertex-setV := {1, . . . ,v} (say).
SupposeK is vertex-describable, meaning that its faces are uniquely determined
by their vertex-sets. Thus we may identify the faces ofK with their vertex-sets,
which are subsets ofV. Then 2K is a (vertex-describable) abstractn-polytope with
2v vertices, each with a vertex-figure isomorphic toK . The vertex-set of 2K is

2V :=
v
⊗

i=1

{0,1}, (4)

the cartesian product ofv copies of{0,1}. When j ≥ 1 we take asj-faces of 2K ,
for any( j −1)-faceF of K and anyε := (ε1, . . . ,εv) in 2V , the subsetsF(ε) of 2V

defined by
F(ε) := {(η1, . . . ,ηv) ∈ 2V | ηi = εi if i 6∈ F}, (5)
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or, abusing notation, by the cartesian product

F(ε) :=

(

⊗

i∈F

{0,1}

)

×

(

⊗

i 6∈F

{εi}

)

.

Then, ifF , F ′ are faces ofK andε = (ε1, . . . ,εv), ε ′ = (ε ′1, . . . ,ε ′v) are elements in
2V , we haveF(ε)⊆ F ′(ε ′) in 2K if and only if F ≤ F ′ in K andεi = ε ′i for eachi
not in F ′. The least face of 2K (of rank−1) is the empty set. Note that the vertices
ε of 2K arise here as singletons in the formF(ε) = {ε} whenF = /0, the least face
of K . Notice that ifK is the(n−1)-simplex, then 2K is then-cube.

Each j-face of 2K is isomorphic to aj-polytope 2F , whereF is a( j −1)-face
of K . More precisely, ifF is a ( j − 1)-face ofK andF := F/F−1, then each
j-faceF(ε) with ε in 2V is isomorphic to 2F .

The automorphism group of 2K is given by

Γ (2K ) ∼= C2 ≀Γ (K ) ∼= Cv
2 ⋊Γ (K ), (6)

the wreath product ofC2 andΓ (K ) defined by the natural action ofΓ (K ) on
the vertex-set ofK . In particular,Γ (2K ) acts vertex-transitively on 2K and the
vertex stabilizers are isomorphic toΓ (K ). Moreover, each automorphism of every
vertex-figure of 2K extends to an automorphism of the entire polytope 2K .

The following theorem summarizes properties of 2K that are relevant for our
discussion of hereditary polytopes.

Theorem 4. LetK be a finite abstract(n−1)-polytope with v vertices, and letK

be vertex-describable. Then2K is a finite abstract n-polytope with the following
properties.

(a) If K is a k-orbit polytope for k≥ 1, then2K is also a k-orbit polytope.
(b) If K is regular, then2K is regular.
(c) If K is a2-orbit polytope in class2I for I ⊆ {0, . . . ,n−2}, then2K is a2-orbit
polytope in class2J for J := {0}∪{i +1 | i ∈ I}.
(d) If K is chiral, then2K is a2-orbit polytope in class2{0}.

Proof. For part (a), sinceΓ (2K ) acts vertex-transitively on 2K , every flag-orbit
underΓ (2K ) can be represented by a flag containing the vertexo := (0, . . . ,0) of
2K . Moreover, since the vertex stabilizer ofo is isomorphic toΓ (K ), two flags
containingo are equivalent inΓ (2K ) if and only if they are equivalent inΓ (K ).
Thus the number of flag-orbits ofK and 2K is the same. This proves part (a). For
part (b), simply apply part (a) withk= 1.

For part (c), supposeK is a 2-orbit polytope in class 2I . Then part (a) shows
that 2K is also a 2-orbit polytope. Choose a flagΨ := {F0,F1, . . . ,Fn−2} of K and
consider the corresponding flagΦ := {o,F0(o),F1(o), . . . ,Fn−2(o)} of 2K which
containso (we are suppressing the least face and the largest face). InK , the i-
adjacent flagsΨ ,Ψ i of K lie in the same orbit underΓ (K ) if and only if i ∈ I .
Relative to 2K , the adjacency levels ofK are shifted by 1. Hence, ifj ≥ 1, then
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a pair of j-adjacent flagsΦ,Φ j of 2K lie in the same orbit underΓ (2K ) if and
only if j ∈ {i +1 | i ∈ I}. In addition, the 0-adjacent flagsΦ,Φ0 of 2K always are
equivalent underΓ (2K ); in fact, the mapping on 2V defined by

(ε1,ε2, . . . ,εv)−→ (ε1+1,ε2, . . . ,εv),

with addition mod 2 in the first component, induces an automorphism of 2K taking
Φ to Φ0. Thus,Φ andΦ j are in the same flag-orbit of 2K if and only if j ∈ J. This
proves part (c). For part (d), apply part (c) withI = /0. ⊓⊔

Appealing to duality, the previous theorem now allows us to settle the existence
of chiral-facetted hereditaryn-polytopes in class 2{n−1}. Call an abstract polytope
Q facet-describableif each face ofQ is uniquely determined by the facets ofQ that
are incident with it. Thus,Q is facet-describable if and only if its dualQ∗ is vertex-
describable. Just like vertex-describability, facet-describability is a relatively mild
assumption on a polytope. Any polytope that is a lattice, is both vertex-describable
and facet-describable.

Corollary 1. LetQ be a finite chiral(n−1)-polytope, and letQ be facet-describable.
Then(2Q ∗

)∗ is a chiral-facetted hereditary2-orbit n-polytope in class2{n−1} with
facets isomorphic toQ. Moreover,

Γ ((2Q ∗
)∗) ∼= C2 ≀Γ (Q) ∼= C f

2 ⋊Γ (Q),

where f is the number of facets ofQ.

Proof. The dualQ∗ of Q is chiral and vertex-describable. By Theorem 4, the poly-
tope 2Q

∗
has 2-orbits and belongs to class 2{0}. Hence its dual,(2Q ∗

)∗, is a 2-orbit

polytope in class 2{n−1}. Its facets are the duals of the vertex-figures of 2Q ∗
. Thus

the facets of(2Q ∗
)∗ are isomorphic toQ and hence are chiral. Moreover,(2Q ∗

)∗

is hereditary, since every automorphism of every vertex-figure of 2Q
∗

extends to an
automorphism of the entire polytope 2Q ∗

. The second part of the corollary follows
from (6), bearing in mind thatf is just the number of vertices ofQ∗ and that dual
polytopes have the same group.⊓⊔

Chiral polytopes are known to exist for every rank greater than or equal to 3
(see Pellicer [22]). We strongly suspect that most polytopes constructed in [22] are
also facet-describable. Corollary 1 provides ann-polytope of the desired kind for
everyn ≥ 4 for which there exists a finite chiral(n− 1)-polytope which is facet-
describable. Forn= 4 or 5 there are many such examples.

5.3 Chiral-facetted hereditary polytopes with four-orbits

In this section we describe a construction of “alternating”polytopes which is in-
spired by the methods in Monson & Schulte [20] and provides examples of chiral-
facetted hereditary 4-polytopes with four flag-orbits.
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5.3.1 Halving of polyhedra

We begin by reviewing a construction of polyhedra which arises from the halving
operationη of [19, Section 7B] described below; it can be considered as aspecial
case of the construction given in 4.2.

Let K be an equivelar map of type{4,q} whose edge graph is bipartite. Then
every edge circuit inK has even length. Suppose that the vertices ofK are colored
red andyellowsuch that adjacent vertices have different colors. The vertex-figures
at the red vertices ofK (obtained by joining the vertices adjacent to a given red
vertex in cyclic order) form the faces of a map of type{q,q} (which is usually a
polyhedron) on the same surface as the original map. Its vertices and “face centers”
are the yellow and red vertices ofK , respectively; its edges are the “diagonals” in
(square) faces ofK that join yellow vertices.

When the two colors are interchanged, we similarly obtain another map of type
{q,q}, the dual of the first map, which a priori need not be isomorphic to the first
map. However, ifK admits an automorphism swapping the two color-classes of
vertices, then these maps are isomorphic; this holds, for example, if the original
polyhedronK is vertex-transitive. In our applications this will alwaysbe the case,
and in such instances we denote the map byK a (with the “a” standing for “alternate
vertices”).

We now impose symmetry conditions onK . First let K be regular, and let
Γ (K ) = 〈α0,α1,α2〉, whereα0,α1,α2 are the distinguished generators. From the
halving operation

η : (α0,α1,α2)→ (α0α1α0,α2,α1) =: (β0,β1,β2), (7)

we then obtain the new generatorsβ0,β1,β2 for the automorphism group of a self-
dual regular polyhedronK η of type{q,q}, which is a subgroup of index 2 inΓ (K )
(see [19, Section 7B]); bear in mind here that the edge graph of K is bipartite and
that (α0α1)

4 = ε. This polyhedron can be drawn as a map on the same surface as
K by employing Wythoff’s construction with generatorsβ0,β1,β2 and base vertex
z (say) ofK . Then it is easily seen thatK η is just the polyhedronK a described
earlier, realized here withzas a yellow vertex ofK .

Notice that replacingη by

η0 : (α0,α1,α2)→ (α1,α2,α0α1α0) =: (γ0,γ1,γ2) (8)

results in another set of generatorsγ0,γ1,γ2, which are conjugate underα0 to
β0,β1,β2. When Wythoff’s construction is applied with these new generators and
base vertexα0(z) adjacent toz, we similarly arrive at a regular polyhedronK η0

on the same surface which is dually positioned toK η , has its vertices at the red
vertices ofK , and is isomorphic toK a. Note that the new generatorsγ0,γ1,γ2 in
(8) can be found fromα0,α1,α2 in one of two equivalent ways: either as inη0 by
first applyingη and then conjugating theβ j ’s by α0, or by first conjugating theα j ’s
by α0 and then applyingη to these new generators.
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If K is chiral, we can work with corresponding operations at the rotation group
level, again denoted byη andη0. SupposeΓ (K ) = 〈σ1,σ2〉, whereσ1,σ2 are the
distinguished generators. Then the two operations

η : (σ1,σ2) → (σ2
1 σ2,σ−1

2 ) =: (ϕ1,ϕ2)

η0 : (σ1,σ2) → (σ2,σ−1
2 σ2

1 ) =: (ψ1,ψ2)
(9)

give a pair of self-dual chiral maps of type{q,q} each isomorphic toK a. These
maps can be drawn on the same underlying surface by employinga variant of
Wythoff’s construction, now applied with the new generators of (9) and with ei-
therz or σ1(z) as base vertex. The two maps are again dually positioned relative to
each other. The vertexz of K is a vertex ofK η , but not ofK η0

. Hence, ifz is a
yellow vertex ofK , thenK η uses only yellow vertices ofK whileK η0

uses only
red vertices ofK . In analogy to what we said about the operations in (7) and (8),
the new generatorsψ1,ψ2 in η0 of (9) can be found fromσ1,σ2 in one of two equiv-
alent ways: either as inη0 by first applyingη and then passing to the generators for
the other enantiomorphic form ofK η , or by first passing to the generators for the
other enantiomorphic form ofK and then applyingη to these new generators.

5.3.2 Alternating chiral-facetted 4-polytopes

Following [20], ann-polytope is said to bealternating if it has facets of possi-
bly two distinct combinatorial isomorphism types appearing in alternating fashion
around faces of rankn−3. We allow the possibility that the two isomorphism types
coincide, although we are less interested in this case. The cuboctahedron is an ex-
ample of an alternating polyhedron in which triangles and squares alternate around
a vertex.

A more interesting example is the familiar semiregular tiling T of Euclidean
3-spaceE3 by regular octahedra and tetrahedra illustrated in Figure 1, which is an
alternating 4-polytope in which octahedra and tetrahedra alternate around an edge
(see [6, 20]). Its vertex-figures are (alternating) cuboctahedra. More generally it is
true that the vertex-figures of an alternatingn-polytopes are alternating(n− 1)-
polytopes. From now on, we restrict ourselves to polytopes of rank 3 or 4.

The relationship of the semiregular tilingT with the (regular) cubical tilingC :=
{4,3,4} in E

3 will serve as the blueprint for our construction. As the edgegraph of
C is bipartite, we can color the verticesred or yellow such that adjacent vertices
receive different colors. Then the octahedral tiles ofT can be viewed as the vertex-
figures ofC at the red vertices, each spanned by the yellow vertices adjacent to the
corresponding red vertex. The complement inE

3 of the union of all these octahedral
tiles gives rise to the family of tetrahedral tiles ofT , each inscribed in a cube ofC ;
each cube contributes exactly one tetrahedral tile, such that the tetrahedral tiles in
adjacent cubes share a common edge.
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Fig. 1 A patch of the semiregular tilingT derived from the cubical tilingC . Shown are a tetra-
hedal tile with verticesA,B,C,D, and one eighths of an octahedral tile (verticesA,B,C) centered
at the base vertexF0 = z. The axes of the three generating rotationsσ1,σ2,σ3 for the rotation
subgroup ofC are indicated, as is the fundamental tetrahedron for this subgroup with vertices
F0,F ′

0,F2,F3. The plane throughA,B,C dissects this fundamental tetrahedron into two smaller
tetrahedra, each becoming a fundamental tetrahedron for the full symmetry group of a tile, namely
the tetrahedron with verticesF0,F ′

0,F2,E for the octahedral tile and the tetrahedron with vertices
F ′

0,F2,E,F3 for the tetrahedral tile.

Now let P be any finite 4-polytope, letK be a vertex-transitive polyhedron of
type{4,q}, and letL be a polyhedron of type{q, r}. Suppose that all facets ofP

are isomorphic toK , and that all vertex-figures are isomorphic toL . ThusP is
equivelar of type{4,q, r}.

Further, suppose the edge graph ofP is bipartite, with vertices colored red or
yellow such that adjacent vertices have different colors. Let R andY, respectively,
denote the sets of red or yellow vertices ofP. Then every edge circuit inP has
even length, and the edge graph ofK is also bipartite. It is convenient to require two
additional “lattice-like” conditions to hold. First, bothP andL should be vertex-
describable, so that we may identify faces with their vertex-sets; then, as a facet of
a vertex-describable polytope,K must also be vertex-describable. Second, any two
opposite vertices of a 2-face ofP should not be opposite vertices of another 2-face
of P. Later we impose strong symmetry conditions onK , L andP, but for now
we work in the present generality.

We now derive fromP a new 4-polytopePa, where “a” indicates “alternating”.
The vertex-set ofPa is the setY of yellow vertices ofP. Our description of the
faces ofPa is in terms of their vertex-sets, that is, subsets ofY. In particular, the
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edges ofPa are the diagonals of the (square) 2-faces ofP that connect yellow
vertices; more precisely,{v,w} is a 1-face ofPa if and only if v,w∈Y andv,w are
opposite vertices in a 2-face ofP. Then, by our assumption on the 2-faces ofP,
any two vertices ofPa are joined by at most one edge.

The 2-faces ofPa are the vertex-figures, within the facets ofP, at the red
vertices of these facets; more precisely,{v1, . . . ,vq′} is a 2-face ofPa if and only
if there exists a facetF of P with a red vertexv such that{v1, . . . ,vq′} is the set
of (yellow) vertices, labeled in cyclic order, of the vertex-figure atv in F. Clearly,
the 2-faces ofPa must beq-gons, that is,q′ = q in each case. Alternatively, we can
describe the 2-faces ofPa as the 2-faces of the vertex-figures at red vertices inP.

The facets ofPa are of two kinds and correspond to either a halved facet or the
vertex figure at a red vertex ofP. Each facetF of P gives rise to a facetFa of Pa,
of thefirst kind, obtained (as in Section 5.3.1) as the polyhedron whose 2-faces are
the vertex-figures ofF at the red vertices; whenF is viewed as a map of type{4,q}
on a surface,Fa is a map of type{q,q} that can be drawn on the same surface. Note
here that, by the vertex-transitivity ofK , the combinatorial structure ofFa does not
depend on which class of vertices in the bipartition of the vertex-set ofF is used as
the vertex-set forFa (the two maps arising from the two possible choices of vertex-
sets are related by duality, but they are isomorphic sinceK is vertex-transitive).
Thus the facetsFa of the first kind are mutually isomorphic, each to the mapK a of
Section 5.3.1. The facets ofPa of thesecond kindare the vertex-figures,P/v, of
P at the red vertices,v.

For example, ifP is the cubical tessellationC described earlier, then the facets
of the first kind are tetrahedraFa = {3,3} inscribed in cubesF of C , and the facets
of the second kind are the octahedral vertex-figuresC/v = {3,4} of C at the red
vertices. Thus, combinatorially,Pa =T , the semiregular tiling ofE3 by tetrahedra
and octahedra.

Incidence of faces inPa is defined by inclusion of vertex-sets; that is, two faces
of Pa are incident if and only if their vertex-sets (as subsets of the vertex-set ofP)
are related by inclusion. Note that two facets ofPa can only be adjacent (share a
2-face) if they are of different kinds, and that a facetFa of the first kind is adjacent
to a facetP/vof the second kind if and only ifv is a vertex ofF . Each edge ofPa is
surrounded by four facets ofPa, occurring in alternating fashion; more explicitly,
if {v,w} is an edge ofPa given by the diagonal of a 2-faceG of P, then these four
facets areFa, P/u, (F ′)a andP/u′, in this order, whereF andF ′ are the two facets
of P meeting atG, andu,u′ are the two vertices ofG distinct fromv andw. Thus
Pa is alternating.

The vertex-set of the vertex-figurePa/v of Pa at a vertexv (a yellow vertex of
P) consists of the verticesw of Pa such that{v,w} is an edge ofPa. Combina-
torially, Pa/v is the medialMe(L ) of the vertex-figureL of P. To see this, in
the above, replace the vertexw of the edge{v,w} by the “midpoint” of that edge
(this is equivalent to the “center” of the respective 2-faceof P that determines that
edge), and impose on this new vertex-set the same combinatorial structure as on
the original vertex-set ofPa/v. In the example of the semiregular tilingT of E3
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the vertex-figures are cuboctahedra, occurring as medials of the octahedral vertex-
figures of the cubical tilingC at yellow vertices.

Notice that the new polytopePa has the same number of flags as the original
polytopeP. In fact, the number of vertices ofPa is half that ofP, while the
number of flags of the vertex-figuresMe(L ) of Pa is twice that of the vertex-
figuresL or P. Bear in mind our assumption thatP is finite.

We now investigate the combinatorial symmetries ofPa. First observe thatPa

inherits all automorphisms ofP that preserve colors of vertices. Observe here that,
since the edge graph ofP is bipartite and connected, an automorphismγ of P maps
the full set of yellow verticesY to itself if and only ifγ maps any yellow vertex to
a yellow vertex. LetΓ c(P) denote the subgroup ofΓ (P) mappingY (and thusR)
to itself. Clearly,Γ c(P) has index 1 or 2 inΓ (P). Then it is immediately clear
thatΓ c(P) is a subgroup ofΓ (Pa). In fact, the combinatorics ofPa is entirely
derived fromY and has been described in aY-invariant fashion.

With an eye on the hereditary property, we remark further that the vertex sta-
bilizer Γv(P) of a red vertexv in Γ (P) becomes a subgroup of the automor-
phism group of the corresponding facetP/v of Pa. Similarly, for any facetF of
P, the subgroup of color preserving automorphisms ofΓ (P), which is given by
Γ c(P)∩Γ (F/F−1), becomes a subgroup of the automorphism group of the corre-
sponding facetFa of Pa.

Our remarks aboutΓ c(P) have immediate implications for the number of flag-
orbits ofPa.

In particular, ifP is regular, thenΓ c(P) must have index 2 as a subgroup of
Γ (P), and thus index 1 or 2 as a subgroup ofΓ (Pa). To see this, note that the
order ofΓ c(P) is exactly half the number of flags ofP, and thus ofPa. Hence
Pa is regular or a 2-orbit polytope in class 2{0,1,2}. In either case,Pa is hereditary
(and regular-facetted).

Similarly, if P is chiral, thenΓ c(P) must have index 2 as a subgroup ofΓ (P),
and thus index 1, 2 or 4 as a subgroup ofΓ (Pa). Now the order ofΓ c(P) is
exactly a quarter of the number of flags ofP, and thus ofPa. Now supposePa is
hereditary. We show that then the facets and vertex-figures of P must be all regular
or all chiral.

In fact, if the facets of the original polytopeP are regular, each facetFa of
Pa of the first kind must also be regular and its full automorphism group must be
a subgroup ofΓ (Pa) (see Section 5.3.1); now since the combinatorial reflection
symmetry inFa that takes a flag ofFa to its 0-adjacent flag also gives a similar such
reflection symmetry in the adjacent facetP/v (say) ofPa meetingFa in the 2-
face of the flag, it follows that the vertex-figures ofP must actually also be regular
since they already have (at least) maximal symmetry by rotation. Similarly, if the
vertex-figures of the original polytopeP are regular, then the hereditary property
of Pa implies that the full automorphism groupΓ (P/v) of a facetP/v of Pa is
a subgroup ofΓ (Pa) containing a combinatorial reflection symmetry ofP/v that
takes a flag ofP/v to its 0-adjacent flag; as above, this reflection symmetry must
induce a similar reflection symmetry in an adjacent facetFa (say) ofPa and hence
force this facet to be regular, since it already has (at least) maximal symmetry by
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rotation. Thus, if the original polytopeP is chiral, thenPa can be hereditary only
if the facets and vertex-figures ofPa are all regular or all chiral.

Conversely, if the facets and vertex-figures of a chiral polytopeP are all regular
or all chiral, then the new polytopePa is hereditary, since each facet of either kind
has all its automorphisms extended to the entire polytopePa. In particular, if the
facets and vertex-figures ofP are all regular, thenPa is regular-facetted and is
either itself regular or a 2-orbit polytope of type 2{0,1,2}. Otherwise,Pa is chiral-
facetted and has 1, 2 or 4 flag-orbits.

Now supposeP and all its facets and vertex-figures are chiral. Then recallfrom
Section 5.1 that the flag-orbits of the corresponding hereditary polytopePa can be
represented by one, two, or four flags from amongΨ , Ψ0, Ψ 3, Ψ 3,0, whereΨ is
any flag ofPa. First note that a pair of 0-adjacent flags ofPa cannot possibly be
equivalent underΓ (Pa), since otherwise the facet ofPa common to both flags
would have to be regular, not chiral. ThusΨ ,Ψ0 (resp.Ψ3,Ψ3,0) are not equivalent
underΓ (Pa), andPa has 2 or 4 flag-orbits. Similarly, if the two kinds of facets
of Pa are distinct (that is, non-isomorphic), then a pair of 3-adjacent flags ofPa

cannot possibly be equivalent either, since any automorphism ofPa taking a flag to
its 3-adjacent flag would provide an isomorphism between thetwo facets contained
in these flags. ThusΨ ,Ψ 3 (resp.Ψ0,Ψ 3,0) are non-equivalent andPa must have 4
flag-orbits. Note that the non-isomorphism condition on thetwo kinds of facets of
Pa holds, for example, if their numbers of flags are distinct, that is, if the number
of flags ofK is not exactly twice that ofL .

Our main findings are summarized in the following theorem.

Theorem 5. LetP be a finite regular or chiral4-polytope of type{K ,L }, where
K andL are polyhedra of type{4,q} and {q, r}, respectively. Suppose that the
edge graph ofP is bipartite, thatP andL are vertex-describable, and that any
two opposite vertices of a2-face ofP are not opposite vertices of another2-face of
P. ThenPa is a finite alternating hereditary4-polytope with facets isomorphic to
L or K a, and with vertex-figures isomorphic to the medial Me(L ) of L . Every
edge ofPa is surrounded by four facets, two of each kind occurring in analternat-
ing fashion. Moreover,Pa has the following hereditary properties.

(a) If K andL are regular, thenPa is a regular-facetted hereditary polytope
and is either itself regular or a2-orbit polytope of type2{0,1,2}.

(b) If K and L are chiral, thenPa is a chiral-facetted hereditary polytope
with 2 or 4 flag-orbits. IfL andK a are not isomorphic (for example, this
holds when|Γ (L )| 6= |Γ (K )|/2), thenPa has4 flag-orbits.

In either case (a) or (b), the group of all color preserving automorphismsΓ c(P)
of P is a subgroup ofΓ (Pa) of index1 or 2, with the same or twice the number of
flag-orbits asΓ (Pa).

The construction summarized in the previous theorem is a rich source for interest-
ing examples of chiral-facetted hereditary 4-polytopes with 4 flag-orbits. To begin
with, supposeP is a finite chiral 4-polytope of type{K ,L } such thatK ,L are
chiral andK a,L are non-isomorphic. There is a wealth of polytopes of this kind.
Now, if the edge graph ofP is bipartite,P andL are vertex-describable, and any
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two opposite vertices of a 2-face ofP are not opposite vertices of another 2-face of
P, then Theorem 5 applies and yields a chiral-facetted alternating 4-polytopePa

which is hereditary and has 4 flag-orbits. Thus we need to assure that these three
conditions hold; the requirement of a bipartite edge graph seems to be the most se-
vere condition among the three. In our examples described below we verified these
conditions with MAGMA .

For example, starting with the universal 4-polytopeP = {{4,4}1,3,{4,4}1,3},
which has 50 vertices, 50 facets, and an automorphism group of size 2000, our
construction yields a hereditary 4-orbit polytopePa which has two kinds of chiral
facets, namely{4,4}1,3 and{4,4}1,2. It can be seen, for example using MAGMA ,
that the universal 4-polytope with the same facets but the enantiomorphic vertex-
figures fails the conditions of Theorem 5, in that there existtwo opposite vertices of
a 2-face which are opposite vertices of another 2-face of that polytope.

6 Extensions of hereditary polytopes

In this section we briefly discuss extension problems for hereditary polytopes. We
begin with a generalization of the notion of a hereditary polytope.

Let 1≤ j ≤ n−1. An n-polytopeP is said to bej-face hereditaryif for each j-
faceF of P, the automorphism groupΓ (F/F−1) of the sectionF/F−1 is a subgroup
of Γ (P) (and hence ofΓF(P)). ThusP is j-face hereditary if every automorphism
of a j-faceF extends to an automorphism ofP. Note that a hereditary polytope is
(n−1)-face hereditary, orfacet hereditary.

A j-face hereditary polytope isstrongly j-face hereditaryif for each j-faceF of
P, the automorphism groupΓ (F/F−1) is a subgroup ofΓ (P) acting trivially on
theco-face Fn/F; thenΓ (F/F−1) is the stabilizer of a flag ofFn/F in ΓF(P). Thus,
for a stronglyj-face hereditary polytope, every automorphism of aj-faceF extends
to a particularly well-behaved automorphism ofP, namely one which fixes every
face ofP in the co-face ofF in P.

The (vertex) truncated tetrahedron is a 1-face (or edge-) hereditary polyhedron
which is not 2-face hereditary. The perpendicular bisectors of its edges are mirrors
of reflection, but no geometric symmetry or combinatorial automorphism can rotate
the vertices of a single face by one step. This example is a 3-orbit polyhedron.

Note that every 2-orbitn-polytope in a class 2I with {0,1, . . . , j − 1} ⊆ I is a
strongly j-face hereditary polytope with regularj-faces. This follows directly from
the definition of the class 2I . For example, a 2-orbit polytope of rank 4 and type
2{0,1} is 2-face hereditary; it may also be 3-face hereditary, but not a priori so.

Now the basic question arises whether or not each hereditaryn-polytope occurs
as a facet of an(n−1)-face hereditary(n+1)-polytope; or more generally, whether
or not eachj-face hereditaryn-polytope occurs as aj-face of ak-face hereditary
(n+1)-polytope, for anyj ≤ k≤ n.

In this context the following result is of interest.
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Theorem 6. LetK be a finite j-face hereditary n-polytope for some j= 1, . . . ,n−
1, and let K be vertex-describable. ThenK is the vertex-figure of a vertex-
transitive finite( j +1)-face hereditary(n+1)-polytope.

Proof. We employ the 2K construction described in Section 5.2. SinceK is a
vertex-describable finiten-polytope, 2K is a vertex-transitive finite(n+1)-polytope
all of whose vertex-figures are isomorphic toK . Every( j +1)-face of 2K is iso-
morphic to a( j +1)-polytope 2F , whereF := F/F−1 is the j-polytope given by a
j-faceF asK . Moreover,Γ (2K )∼=Cv

2⋊Γ (K ), wherev is the number of vertices

of K ; similarly, Γ (2F ) ∼= Cv(F )
2 ⋊Γ (F ), wherev(F ) is the number of vertices

of F (that is, the number of vertices ofF in K ). In particular, the automorphism
group of any( j +1)-face 2F of 2K is a subgroup ofΓ (2K ) if K is j-face heredi-
tary, since thenΓ (F ) is a subgroup ofΓ (K ). Thus 2K is a( j +1)-face hereditary
(n+1)-polytope ifK is a j-face hereditaryn-polytope. ⊓⊔

When j = n−1 we have the following immediate consequence.

Corollary 2. Each finite vertex-describable hereditary n-polytope is the vertex-
figure of a vertex-transitive finite hereditary(n+1)-polytope.

Theorem 6 and its proof are good sources for interesting examples of hereditary
polytopes. For instance, ifK is the truncated tetrahedron, which is 1-face hereditary
but not 2-face hereditary, then 2K is a 2-face hereditary 4-polytope which is not 3-
face hereditary. In fact, the facets of 2K are of two kinds, 3-cubes{4,3}= 2{3} and
orientable regular maps{4,6|4,4} = 2{6} of genus 9 (see [19, p. 261]); however,
not all automorphisms of facets of the latter kind extend to automorphisms of 2K

(otherwiseK would have to be 2-hereditary). Similar examples of arbitrary higher
ranks can be constructed by iterating the 2K construction. For example, whenK
is the truncated tetrahedron, 22K

is a 3-face, but not 4-face, hereditary 5-polytope.
Note that a further generalization of hereditary polytopesemploys sections rather

than faces. For 0≤ i < j ≤ n−1, ann-polytopeP is said to be(i, j)-section hered-
itary (resp.strongly (i, j)-section hereditary) if for each sectionG/F, with F an
i-face andG a j-face with F < G, the groupΓ (G/F) of G/F is a subgroup of
Γ (P) (resp. fixing, in addition, each face in bothF/F−1 andFn/G).

7 Conclusion

This paper established the basic theory of hereditary polytopes. One should pursue
these ideas further by considering some of the following problems, which have been
brought to light by our work.

As a first example, one could examine if there exist hereditary polytopes whose
i-faces are all themselves non-regular hereditary polytopes (i ≥ 3). In other words,
given any hereditary polytopeP, can another hereditary polytope be built which
hasP as its facets? This question is open even whenP is of rank 3.
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In this paper we considered polytopes where the automorphism group of each
facet is a subgroup of the full automorphism group of the polytope. It would also be
of interest to study “chirally hereditary” polytopes, thatis, those polytopes which
are not hereditary, but have the property that each rotational symmetry of a facet
extends to a global symmetry. For example, an interesting class of such objects is
the chiral polytopes with regular facets - which includes all chiral maps.

Additionally, it would be of interest to investigate the idea of geometrically
hereditary polytopes. For example inE3, can one classify thei-face transitive ge-
ometrically hereditary polyhedra, that is, those with symmetry group inheriting all
isometries of their polygonal faces? The rhombic dodecahedron is an example of
a 2-face transitive geometrically hereditary polyhedron.(For a survey on related
questions for convex polyhedra see also [18].)

Acknowledgements A substantial part of this article was written while we visited the Fields In-
stitute for extended periods of time during the Thematic Program on Discrete Geometry and Ap-
plication in Fall 2011. We greatly appreciated the hospitality of the Fields Institute and are very
grateful for the support we received. Mark Mixer was Fields Postdoctoral Fellow in Fall 2011.
Egon Schulte was also supported by NSF-grant DMS–0856675, and Asia Ivić Weiss by NSERC.
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